Added mag calibration and interrupt-based data ready
Dependencies: BLE_API mbed-src nRF51822
MPU9250.h@3:fe46f14f5aef, 2015-06-15 (annotated)
- Committer:
- onehorse
- Date:
- Mon Jun 15 21:34:33 2015 +0000
- Revision:
- 3:fe46f14f5aef
- Parent:
- 2:4e59a37182df
- Child:
- 4:8d11bfc7cac0
first attempt
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
onehorse | 0:2e5e65a6fb30 | 1 | #ifndef MPU9250_H |
onehorse | 0:2e5e65a6fb30 | 2 | #define MPU9250_H |
onehorse | 0:2e5e65a6fb30 | 3 | |
onehorse | 0:2e5e65a6fb30 | 4 | #include "mbed.h" |
onehorse | 0:2e5e65a6fb30 | 5 | #include "math.h" |
onehorse | 0:2e5e65a6fb30 | 6 | |
onehorse | 0:2e5e65a6fb30 | 7 | // See also MPU-9250 Register Map and Descriptions, Revision 4.0, RM-MPU-9250A-00, Rev. 1.4, 9/9/2013 for registers not listed in |
onehorse | 0:2e5e65a6fb30 | 8 | // above document; the MPU9250 and MPU9150 are virtually identical but the latter has a different register map |
onehorse | 0:2e5e65a6fb30 | 9 | // |
onehorse | 0:2e5e65a6fb30 | 10 | //Magnetometer Registers |
onehorse | 0:2e5e65a6fb30 | 11 | #define AK8963_ADDRESS 0x0C<<1 |
onehorse | 0:2e5e65a6fb30 | 12 | #define WHO_AM_I_AK8963 0x00 // should return 0x48 |
onehorse | 0:2e5e65a6fb30 | 13 | #define INFO 0x01 |
onehorse | 0:2e5e65a6fb30 | 14 | #define AK8963_ST1 0x02 // data ready status bit 0 |
onehorse | 0:2e5e65a6fb30 | 15 | #define AK8963_XOUT_L 0x03 // data |
onehorse | 0:2e5e65a6fb30 | 16 | #define AK8963_XOUT_H 0x04 |
onehorse | 0:2e5e65a6fb30 | 17 | #define AK8963_YOUT_L 0x05 |
onehorse | 0:2e5e65a6fb30 | 18 | #define AK8963_YOUT_H 0x06 |
onehorse | 0:2e5e65a6fb30 | 19 | #define AK8963_ZOUT_L 0x07 |
onehorse | 0:2e5e65a6fb30 | 20 | #define AK8963_ZOUT_H 0x08 |
onehorse | 0:2e5e65a6fb30 | 21 | #define AK8963_ST2 0x09 // Data overflow bit 3 and data read error status bit 2 |
onehorse | 0:2e5e65a6fb30 | 22 | #define AK8963_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0 |
onehorse | 0:2e5e65a6fb30 | 23 | #define AK8963_ASTC 0x0C // Self test control |
onehorse | 0:2e5e65a6fb30 | 24 | #define AK8963_I2CDIS 0x0F // I2C disable |
onehorse | 0:2e5e65a6fb30 | 25 | #define AK8963_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value |
onehorse | 0:2e5e65a6fb30 | 26 | #define AK8963_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value |
onehorse | 0:2e5e65a6fb30 | 27 | #define AK8963_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value |
onehorse | 0:2e5e65a6fb30 | 28 | |
onehorse | 0:2e5e65a6fb30 | 29 | #define SELF_TEST_X_GYRO 0x00 |
onehorse | 0:2e5e65a6fb30 | 30 | #define SELF_TEST_Y_GYRO 0x01 |
onehorse | 0:2e5e65a6fb30 | 31 | #define SELF_TEST_Z_GYRO 0x02 |
onehorse | 0:2e5e65a6fb30 | 32 | |
onehorse | 0:2e5e65a6fb30 | 33 | /*#define X_FINE_GAIN 0x03 // [7:0] fine gain |
onehorse | 0:2e5e65a6fb30 | 34 | #define Y_FINE_GAIN 0x04 |
onehorse | 0:2e5e65a6fb30 | 35 | #define Z_FINE_GAIN 0x05 |
onehorse | 0:2e5e65a6fb30 | 36 | #define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer |
onehorse | 0:2e5e65a6fb30 | 37 | #define XA_OFFSET_L_TC 0x07 |
onehorse | 0:2e5e65a6fb30 | 38 | #define YA_OFFSET_H 0x08 |
onehorse | 0:2e5e65a6fb30 | 39 | #define YA_OFFSET_L_TC 0x09 |
onehorse | 0:2e5e65a6fb30 | 40 | #define ZA_OFFSET_H 0x0A |
onehorse | 0:2e5e65a6fb30 | 41 | #define ZA_OFFSET_L_TC 0x0B */ |
onehorse | 0:2e5e65a6fb30 | 42 | |
onehorse | 0:2e5e65a6fb30 | 43 | #define SELF_TEST_X_ACCEL 0x0D |
onehorse | 0:2e5e65a6fb30 | 44 | #define SELF_TEST_Y_ACCEL 0x0E |
onehorse | 0:2e5e65a6fb30 | 45 | #define SELF_TEST_Z_ACCEL 0x0F |
onehorse | 0:2e5e65a6fb30 | 46 | |
onehorse | 0:2e5e65a6fb30 | 47 | #define SELF_TEST_A 0x10 |
onehorse | 0:2e5e65a6fb30 | 48 | |
onehorse | 0:2e5e65a6fb30 | 49 | #define XG_OFFSET_H 0x13 // User-defined trim values for gyroscope |
onehorse | 0:2e5e65a6fb30 | 50 | #define XG_OFFSET_L 0x14 |
onehorse | 0:2e5e65a6fb30 | 51 | #define YG_OFFSET_H 0x15 |
onehorse | 0:2e5e65a6fb30 | 52 | #define YG_OFFSET_L 0x16 |
onehorse | 0:2e5e65a6fb30 | 53 | #define ZG_OFFSET_H 0x17 |
onehorse | 0:2e5e65a6fb30 | 54 | #define ZG_OFFSET_L 0x18 |
onehorse | 0:2e5e65a6fb30 | 55 | #define SMPLRT_DIV 0x19 |
onehorse | 0:2e5e65a6fb30 | 56 | #define CONFIG 0x1A |
onehorse | 0:2e5e65a6fb30 | 57 | #define GYRO_CONFIG 0x1B |
onehorse | 0:2e5e65a6fb30 | 58 | #define ACCEL_CONFIG 0x1C |
onehorse | 0:2e5e65a6fb30 | 59 | #define ACCEL_CONFIG2 0x1D |
onehorse | 0:2e5e65a6fb30 | 60 | #define LP_ACCEL_ODR 0x1E |
onehorse | 0:2e5e65a6fb30 | 61 | #define WOM_THR 0x1F |
onehorse | 0:2e5e65a6fb30 | 62 | |
onehorse | 0:2e5e65a6fb30 | 63 | #define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms |
onehorse | 0:2e5e65a6fb30 | 64 | #define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0] |
onehorse | 0:2e5e65a6fb30 | 65 | #define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms |
onehorse | 0:2e5e65a6fb30 | 66 | |
onehorse | 0:2e5e65a6fb30 | 67 | #define FIFO_EN 0x23 |
onehorse | 0:2e5e65a6fb30 | 68 | #define I2C_MST_CTRL 0x24 |
onehorse | 0:2e5e65a6fb30 | 69 | #define I2C_SLV0_ADDR 0x25 |
onehorse | 0:2e5e65a6fb30 | 70 | #define I2C_SLV0_REG 0x26 |
onehorse | 0:2e5e65a6fb30 | 71 | #define I2C_SLV0_CTRL 0x27 |
onehorse | 0:2e5e65a6fb30 | 72 | #define I2C_SLV1_ADDR 0x28 |
onehorse | 0:2e5e65a6fb30 | 73 | #define I2C_SLV1_REG 0x29 |
onehorse | 0:2e5e65a6fb30 | 74 | #define I2C_SLV1_CTRL 0x2A |
onehorse | 0:2e5e65a6fb30 | 75 | #define I2C_SLV2_ADDR 0x2B |
onehorse | 0:2e5e65a6fb30 | 76 | #define I2C_SLV2_REG 0x2C |
onehorse | 0:2e5e65a6fb30 | 77 | #define I2C_SLV2_CTRL 0x2D |
onehorse | 0:2e5e65a6fb30 | 78 | #define I2C_SLV3_ADDR 0x2E |
onehorse | 0:2e5e65a6fb30 | 79 | #define I2C_SLV3_REG 0x2F |
onehorse | 0:2e5e65a6fb30 | 80 | #define I2C_SLV3_CTRL 0x30 |
onehorse | 0:2e5e65a6fb30 | 81 | #define I2C_SLV4_ADDR 0x31 |
onehorse | 0:2e5e65a6fb30 | 82 | #define I2C_SLV4_REG 0x32 |
onehorse | 0:2e5e65a6fb30 | 83 | #define I2C_SLV4_DO 0x33 |
onehorse | 0:2e5e65a6fb30 | 84 | #define I2C_SLV4_CTRL 0x34 |
onehorse | 0:2e5e65a6fb30 | 85 | #define I2C_SLV4_DI 0x35 |
onehorse | 0:2e5e65a6fb30 | 86 | #define I2C_MST_STATUS 0x36 |
onehorse | 0:2e5e65a6fb30 | 87 | #define INT_PIN_CFG 0x37 |
onehorse | 0:2e5e65a6fb30 | 88 | #define INT_ENABLE 0x38 |
onehorse | 0:2e5e65a6fb30 | 89 | #define DMP_INT_STATUS 0x39 // Check DMP interrupt |
onehorse | 0:2e5e65a6fb30 | 90 | #define INT_STATUS 0x3A |
onehorse | 0:2e5e65a6fb30 | 91 | #define ACCEL_XOUT_H 0x3B |
onehorse | 0:2e5e65a6fb30 | 92 | #define ACCEL_XOUT_L 0x3C |
onehorse | 0:2e5e65a6fb30 | 93 | #define ACCEL_YOUT_H 0x3D |
onehorse | 0:2e5e65a6fb30 | 94 | #define ACCEL_YOUT_L 0x3E |
onehorse | 0:2e5e65a6fb30 | 95 | #define ACCEL_ZOUT_H 0x3F |
onehorse | 0:2e5e65a6fb30 | 96 | #define ACCEL_ZOUT_L 0x40 |
onehorse | 0:2e5e65a6fb30 | 97 | #define TEMP_OUT_H 0x41 |
onehorse | 0:2e5e65a6fb30 | 98 | #define TEMP_OUT_L 0x42 |
onehorse | 0:2e5e65a6fb30 | 99 | #define GYRO_XOUT_H 0x43 |
onehorse | 0:2e5e65a6fb30 | 100 | #define GYRO_XOUT_L 0x44 |
onehorse | 0:2e5e65a6fb30 | 101 | #define GYRO_YOUT_H 0x45 |
onehorse | 0:2e5e65a6fb30 | 102 | #define GYRO_YOUT_L 0x46 |
onehorse | 0:2e5e65a6fb30 | 103 | #define GYRO_ZOUT_H 0x47 |
onehorse | 0:2e5e65a6fb30 | 104 | #define GYRO_ZOUT_L 0x48 |
onehorse | 0:2e5e65a6fb30 | 105 | #define EXT_SENS_DATA_00 0x49 |
onehorse | 0:2e5e65a6fb30 | 106 | #define EXT_SENS_DATA_01 0x4A |
onehorse | 0:2e5e65a6fb30 | 107 | #define EXT_SENS_DATA_02 0x4B |
onehorse | 0:2e5e65a6fb30 | 108 | #define EXT_SENS_DATA_03 0x4C |
onehorse | 0:2e5e65a6fb30 | 109 | #define EXT_SENS_DATA_04 0x4D |
onehorse | 0:2e5e65a6fb30 | 110 | #define EXT_SENS_DATA_05 0x4E |
onehorse | 0:2e5e65a6fb30 | 111 | #define EXT_SENS_DATA_06 0x4F |
onehorse | 0:2e5e65a6fb30 | 112 | #define EXT_SENS_DATA_07 0x50 |
onehorse | 0:2e5e65a6fb30 | 113 | #define EXT_SENS_DATA_08 0x51 |
onehorse | 0:2e5e65a6fb30 | 114 | #define EXT_SENS_DATA_09 0x52 |
onehorse | 0:2e5e65a6fb30 | 115 | #define EXT_SENS_DATA_10 0x53 |
onehorse | 0:2e5e65a6fb30 | 116 | #define EXT_SENS_DATA_11 0x54 |
onehorse | 0:2e5e65a6fb30 | 117 | #define EXT_SENS_DATA_12 0x55 |
onehorse | 0:2e5e65a6fb30 | 118 | #define EXT_SENS_DATA_13 0x56 |
onehorse | 0:2e5e65a6fb30 | 119 | #define EXT_SENS_DATA_14 0x57 |
onehorse | 0:2e5e65a6fb30 | 120 | #define EXT_SENS_DATA_15 0x58 |
onehorse | 0:2e5e65a6fb30 | 121 | #define EXT_SENS_DATA_16 0x59 |
onehorse | 0:2e5e65a6fb30 | 122 | #define EXT_SENS_DATA_17 0x5A |
onehorse | 0:2e5e65a6fb30 | 123 | #define EXT_SENS_DATA_18 0x5B |
onehorse | 0:2e5e65a6fb30 | 124 | #define EXT_SENS_DATA_19 0x5C |
onehorse | 0:2e5e65a6fb30 | 125 | #define EXT_SENS_DATA_20 0x5D |
onehorse | 0:2e5e65a6fb30 | 126 | #define EXT_SENS_DATA_21 0x5E |
onehorse | 0:2e5e65a6fb30 | 127 | #define EXT_SENS_DATA_22 0x5F |
onehorse | 0:2e5e65a6fb30 | 128 | #define EXT_SENS_DATA_23 0x60 |
onehorse | 0:2e5e65a6fb30 | 129 | #define MOT_DETECT_STATUS 0x61 |
onehorse | 0:2e5e65a6fb30 | 130 | #define I2C_SLV0_DO 0x63 |
onehorse | 0:2e5e65a6fb30 | 131 | #define I2C_SLV1_DO 0x64 |
onehorse | 0:2e5e65a6fb30 | 132 | #define I2C_SLV2_DO 0x65 |
onehorse | 0:2e5e65a6fb30 | 133 | #define I2C_SLV3_DO 0x66 |
onehorse | 0:2e5e65a6fb30 | 134 | #define I2C_MST_DELAY_CTRL 0x67 |
onehorse | 0:2e5e65a6fb30 | 135 | #define SIGNAL_PATH_RESET 0x68 |
onehorse | 0:2e5e65a6fb30 | 136 | #define MOT_DETECT_CTRL 0x69 |
onehorse | 0:2e5e65a6fb30 | 137 | #define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP |
onehorse | 0:2e5e65a6fb30 | 138 | #define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode |
onehorse | 0:2e5e65a6fb30 | 139 | #define PWR_MGMT_2 0x6C |
onehorse | 0:2e5e65a6fb30 | 140 | #define DMP_BANK 0x6D // Activates a specific bank in the DMP |
onehorse | 0:2e5e65a6fb30 | 141 | #define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank |
onehorse | 0:2e5e65a6fb30 | 142 | #define DMP_REG 0x6F // Register in DMP from which to read or to which to write |
onehorse | 0:2e5e65a6fb30 | 143 | #define DMP_REG_1 0x70 |
onehorse | 0:2e5e65a6fb30 | 144 | #define DMP_REG_2 0x71 |
onehorse | 0:2e5e65a6fb30 | 145 | #define FIFO_COUNTH 0x72 |
onehorse | 0:2e5e65a6fb30 | 146 | #define FIFO_COUNTL 0x73 |
onehorse | 0:2e5e65a6fb30 | 147 | #define FIFO_R_W 0x74 |
onehorse | 0:2e5e65a6fb30 | 148 | #define WHO_AM_I_MPU9250 0x75 // Should return 0x71 |
onehorse | 0:2e5e65a6fb30 | 149 | #define XA_OFFSET_H 0x77 |
onehorse | 0:2e5e65a6fb30 | 150 | #define XA_OFFSET_L 0x78 |
onehorse | 0:2e5e65a6fb30 | 151 | #define YA_OFFSET_H 0x7A |
onehorse | 0:2e5e65a6fb30 | 152 | #define YA_OFFSET_L 0x7B |
onehorse | 0:2e5e65a6fb30 | 153 | #define ZA_OFFSET_H 0x7D |
onehorse | 0:2e5e65a6fb30 | 154 | #define ZA_OFFSET_L 0x7E |
onehorse | 0:2e5e65a6fb30 | 155 | |
onehorse | 0:2e5e65a6fb30 | 156 | // Using the MSENSR-9250 breakout board, ADO is set to 0 |
onehorse | 0:2e5e65a6fb30 | 157 | // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1 |
onehorse | 0:2e5e65a6fb30 | 158 | //mbed uses the eight-bit device address, so shift seven-bit addresses left by one! |
onehorse | 0:2e5e65a6fb30 | 159 | #define ADO 0 |
onehorse | 0:2e5e65a6fb30 | 160 | #if ADO |
onehorse | 0:2e5e65a6fb30 | 161 | #define MPU9250_ADDRESS 0x69<<1 // Device address when ADO = 1 |
onehorse | 0:2e5e65a6fb30 | 162 | #else |
onehorse | 0:2e5e65a6fb30 | 163 | #define MPU9250_ADDRESS 0x68<<1 // Device address when ADO = 0 |
onehorse | 0:2e5e65a6fb30 | 164 | #endif |
onehorse | 0:2e5e65a6fb30 | 165 | |
onehorse | 0:2e5e65a6fb30 | 166 | // Set initial input parameters |
onehorse | 0:2e5e65a6fb30 | 167 | enum Ascale { |
onehorse | 0:2e5e65a6fb30 | 168 | AFS_2G = 0, |
onehorse | 0:2e5e65a6fb30 | 169 | AFS_4G, |
onehorse | 0:2e5e65a6fb30 | 170 | AFS_8G, |
onehorse | 0:2e5e65a6fb30 | 171 | AFS_16G |
onehorse | 0:2e5e65a6fb30 | 172 | }; |
onehorse | 0:2e5e65a6fb30 | 173 | |
onehorse | 0:2e5e65a6fb30 | 174 | enum Gscale { |
onehorse | 0:2e5e65a6fb30 | 175 | GFS_250DPS = 0, |
onehorse | 0:2e5e65a6fb30 | 176 | GFS_500DPS, |
onehorse | 0:2e5e65a6fb30 | 177 | GFS_1000DPS, |
onehorse | 0:2e5e65a6fb30 | 178 | GFS_2000DPS |
onehorse | 0:2e5e65a6fb30 | 179 | }; |
onehorse | 0:2e5e65a6fb30 | 180 | |
onehorse | 0:2e5e65a6fb30 | 181 | enum Mscale { |
onehorse | 0:2e5e65a6fb30 | 182 | MFS_14BITS = 0, // 0.6 mG per LSB |
onehorse | 0:2e5e65a6fb30 | 183 | MFS_16BITS // 0.15 mG per LSB |
onehorse | 0:2e5e65a6fb30 | 184 | }; |
onehorse | 0:2e5e65a6fb30 | 185 | |
onehorse | 0:2e5e65a6fb30 | 186 | uint8_t Ascale = AFS_2G; // AFS_2G, AFS_4G, AFS_8G, AFS_16G |
onehorse | 0:2e5e65a6fb30 | 187 | uint8_t Gscale = GFS_250DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS |
onehorse | 0:2e5e65a6fb30 | 188 | uint8_t Mscale = MFS_16BITS; // MFS_14BITS or MFS_16BITS, 14-bit or 16-bit magnetometer resolution |
onehorse | 0:2e5e65a6fb30 | 189 | uint8_t Mmode = 0x06; // Either 8 Hz 0x02) or 100 Hz (0x06) magnetometer data ODR |
onehorse | 0:2e5e65a6fb30 | 190 | float aRes, gRes, mRes; // scale resolutions per LSB for the sensors |
onehorse | 0:2e5e65a6fb30 | 191 | |
onehorse | 0:2e5e65a6fb30 | 192 | //Set up I2C, (SDA,SCL) |
onehorse | 3:fe46f14f5aef | 193 | //I2C i2c(I2C_SDA, I2C_SCL); |
onehorse | 3:fe46f14f5aef | 194 | I2C i2c(P0_20, P0_22); |
onehorse | 0:2e5e65a6fb30 | 195 | |
onehorse | 0:2e5e65a6fb30 | 196 | DigitalOut myled(LED1); |
onehorse | 0:2e5e65a6fb30 | 197 | |
onehorse | 0:2e5e65a6fb30 | 198 | // Pin definitions |
onehorse | 0:2e5e65a6fb30 | 199 | int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins |
onehorse | 0:2e5e65a6fb30 | 200 | |
onehorse | 0:2e5e65a6fb30 | 201 | int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output |
onehorse | 0:2e5e65a6fb30 | 202 | int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output |
onehorse | 0:2e5e65a6fb30 | 203 | int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output |
onehorse | 0:2e5e65a6fb30 | 204 | float magCalibration[3] = {0, 0, 0}, magbias[3] = {0, 0, 0}; // Factory mag calibration and mag bias |
onehorse | 0:2e5e65a6fb30 | 205 | float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer |
onehorse | 0:2e5e65a6fb30 | 206 | float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values |
onehorse | 0:2e5e65a6fb30 | 207 | int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius |
onehorse | 0:2e5e65a6fb30 | 208 | float temperature; |
onehorse | 0:2e5e65a6fb30 | 209 | float SelfTest[6]; |
onehorse | 0:2e5e65a6fb30 | 210 | |
onehorse | 0:2e5e65a6fb30 | 211 | int delt_t = 0; // used to control display output rate |
onehorse | 0:2e5e65a6fb30 | 212 | int count = 0; // used to control display output rate |
onehorse | 0:2e5e65a6fb30 | 213 | |
onehorse | 0:2e5e65a6fb30 | 214 | // parameters for 6 DoF sensor fusion calculations |
onehorse | 0:2e5e65a6fb30 | 215 | float PI = 3.14159265358979323846f; |
onehorse | 0:2e5e65a6fb30 | 216 | float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3 |
onehorse | 0:2e5e65a6fb30 | 217 | float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta |
onehorse | 0:2e5e65a6fb30 | 218 | float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s) |
onehorse | 0:2e5e65a6fb30 | 219 | float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value |
onehorse | 0:2e5e65a6fb30 | 220 | #define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral |
onehorse | 0:2e5e65a6fb30 | 221 | #define Ki 0.0f |
onehorse | 0:2e5e65a6fb30 | 222 | |
onehorse | 0:2e5e65a6fb30 | 223 | float pitch, yaw, roll; |
onehorse | 0:2e5e65a6fb30 | 224 | float deltat = 0.0f; // integration interval for both filter schemes |
onehorse | 0:2e5e65a6fb30 | 225 | int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval |
onehorse | 0:2e5e65a6fb30 | 226 | float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion |
onehorse | 0:2e5e65a6fb30 | 227 | float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method |
onehorse | 0:2e5e65a6fb30 | 228 | |
onehorse | 0:2e5e65a6fb30 | 229 | class MPU9250 { |
onehorse | 0:2e5e65a6fb30 | 230 | |
onehorse | 0:2e5e65a6fb30 | 231 | protected: |
onehorse | 0:2e5e65a6fb30 | 232 | |
onehorse | 0:2e5e65a6fb30 | 233 | public: |
onehorse | 0:2e5e65a6fb30 | 234 | //=================================================================================================================== |
onehorse | 0:2e5e65a6fb30 | 235 | //====== Set of useful function to access acceleratio, gyroscope, and temperature data |
onehorse | 0:2e5e65a6fb30 | 236 | //=================================================================================================================== |
onehorse | 0:2e5e65a6fb30 | 237 | |
onehorse | 0:2e5e65a6fb30 | 238 | void writeByte(uint8_t address, uint8_t subAddress, uint8_t data) |
onehorse | 0:2e5e65a6fb30 | 239 | { |
onehorse | 0:2e5e65a6fb30 | 240 | char data_write[2]; |
onehorse | 0:2e5e65a6fb30 | 241 | data_write[0] = subAddress; |
onehorse | 0:2e5e65a6fb30 | 242 | data_write[1] = data; |
onehorse | 0:2e5e65a6fb30 | 243 | i2c.write(address, data_write, 2, 0); |
onehorse | 0:2e5e65a6fb30 | 244 | } |
onehorse | 0:2e5e65a6fb30 | 245 | |
onehorse | 0:2e5e65a6fb30 | 246 | char readByte(uint8_t address, uint8_t subAddress) |
onehorse | 0:2e5e65a6fb30 | 247 | { |
onehorse | 0:2e5e65a6fb30 | 248 | char data[1]; // `data` will store the register data |
onehorse | 0:2e5e65a6fb30 | 249 | char data_write[1]; |
onehorse | 0:2e5e65a6fb30 | 250 | data_write[0] = subAddress; |
onehorse | 0:2e5e65a6fb30 | 251 | i2c.write(address, data_write, 1, 1); // no stop |
onehorse | 0:2e5e65a6fb30 | 252 | i2c.read(address, data, 1, 0); |
onehorse | 0:2e5e65a6fb30 | 253 | return data[0]; |
onehorse | 0:2e5e65a6fb30 | 254 | } |
onehorse | 0:2e5e65a6fb30 | 255 | |
onehorse | 0:2e5e65a6fb30 | 256 | void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) |
onehorse | 0:2e5e65a6fb30 | 257 | { |
onehorse | 0:2e5e65a6fb30 | 258 | char data[14]; |
onehorse | 0:2e5e65a6fb30 | 259 | char data_write[1]; |
onehorse | 0:2e5e65a6fb30 | 260 | data_write[0] = subAddress; |
onehorse | 0:2e5e65a6fb30 | 261 | i2c.write(address, data_write, 1, 1); // no stop |
onehorse | 0:2e5e65a6fb30 | 262 | i2c.read(address, data, count, 0); |
onehorse | 0:2e5e65a6fb30 | 263 | for(int ii = 0; ii < count; ii++) { |
onehorse | 0:2e5e65a6fb30 | 264 | dest[ii] = data[ii]; |
onehorse | 0:2e5e65a6fb30 | 265 | } |
onehorse | 0:2e5e65a6fb30 | 266 | } |
onehorse | 0:2e5e65a6fb30 | 267 | |
onehorse | 0:2e5e65a6fb30 | 268 | |
onehorse | 0:2e5e65a6fb30 | 269 | void getMres() { |
onehorse | 0:2e5e65a6fb30 | 270 | switch (Mscale) |
onehorse | 0:2e5e65a6fb30 | 271 | { |
onehorse | 0:2e5e65a6fb30 | 272 | // Possible magnetometer scales (and their register bit settings) are: |
onehorse | 0:2e5e65a6fb30 | 273 | // 14 bit resolution (0) and 16 bit resolution (1) |
onehorse | 0:2e5e65a6fb30 | 274 | case MFS_14BITS: |
onehorse | 0:2e5e65a6fb30 | 275 | mRes = 10.0*4219.0/8190.0; // Proper scale to return milliGauss |
onehorse | 0:2e5e65a6fb30 | 276 | break; |
onehorse | 0:2e5e65a6fb30 | 277 | case MFS_16BITS: |
onehorse | 0:2e5e65a6fb30 | 278 | mRes = 10.0*4219.0/32760.0; // Proper scale to return milliGauss |
onehorse | 0:2e5e65a6fb30 | 279 | break; |
onehorse | 0:2e5e65a6fb30 | 280 | } |
onehorse | 0:2e5e65a6fb30 | 281 | } |
onehorse | 0:2e5e65a6fb30 | 282 | |
onehorse | 0:2e5e65a6fb30 | 283 | |
onehorse | 0:2e5e65a6fb30 | 284 | void getGres() { |
onehorse | 0:2e5e65a6fb30 | 285 | switch (Gscale) |
onehorse | 0:2e5e65a6fb30 | 286 | { |
onehorse | 0:2e5e65a6fb30 | 287 | // Possible gyro scales (and their register bit settings) are: |
onehorse | 0:2e5e65a6fb30 | 288 | // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). |
onehorse | 0:2e5e65a6fb30 | 289 | // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: |
onehorse | 0:2e5e65a6fb30 | 290 | case GFS_250DPS: |
onehorse | 0:2e5e65a6fb30 | 291 | gRes = 250.0/32768.0; |
onehorse | 0:2e5e65a6fb30 | 292 | break; |
onehorse | 0:2e5e65a6fb30 | 293 | case GFS_500DPS: |
onehorse | 0:2e5e65a6fb30 | 294 | gRes = 500.0/32768.0; |
onehorse | 0:2e5e65a6fb30 | 295 | break; |
onehorse | 0:2e5e65a6fb30 | 296 | case GFS_1000DPS: |
onehorse | 0:2e5e65a6fb30 | 297 | gRes = 1000.0/32768.0; |
onehorse | 0:2e5e65a6fb30 | 298 | break; |
onehorse | 0:2e5e65a6fb30 | 299 | case GFS_2000DPS: |
onehorse | 0:2e5e65a6fb30 | 300 | gRes = 2000.0/32768.0; |
onehorse | 0:2e5e65a6fb30 | 301 | break; |
onehorse | 0:2e5e65a6fb30 | 302 | } |
onehorse | 0:2e5e65a6fb30 | 303 | } |
onehorse | 0:2e5e65a6fb30 | 304 | |
onehorse | 0:2e5e65a6fb30 | 305 | |
onehorse | 0:2e5e65a6fb30 | 306 | void getAres() { |
onehorse | 0:2e5e65a6fb30 | 307 | switch (Ascale) |
onehorse | 0:2e5e65a6fb30 | 308 | { |
onehorse | 0:2e5e65a6fb30 | 309 | // Possible accelerometer scales (and their register bit settings) are: |
onehorse | 0:2e5e65a6fb30 | 310 | // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). |
onehorse | 0:2e5e65a6fb30 | 311 | // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: |
onehorse | 0:2e5e65a6fb30 | 312 | case AFS_2G: |
onehorse | 0:2e5e65a6fb30 | 313 | aRes = 2.0/32768.0; |
onehorse | 0:2e5e65a6fb30 | 314 | break; |
onehorse | 0:2e5e65a6fb30 | 315 | case AFS_4G: |
onehorse | 0:2e5e65a6fb30 | 316 | aRes = 4.0/32768.0; |
onehorse | 0:2e5e65a6fb30 | 317 | break; |
onehorse | 0:2e5e65a6fb30 | 318 | case AFS_8G: |
onehorse | 0:2e5e65a6fb30 | 319 | aRes = 8.0/32768.0; |
onehorse | 0:2e5e65a6fb30 | 320 | break; |
onehorse | 0:2e5e65a6fb30 | 321 | case AFS_16G: |
onehorse | 0:2e5e65a6fb30 | 322 | aRes = 16.0/32768.0; |
onehorse | 0:2e5e65a6fb30 | 323 | break; |
onehorse | 0:2e5e65a6fb30 | 324 | } |
onehorse | 0:2e5e65a6fb30 | 325 | } |
onehorse | 0:2e5e65a6fb30 | 326 | |
onehorse | 0:2e5e65a6fb30 | 327 | |
onehorse | 0:2e5e65a6fb30 | 328 | void readAccelData(int16_t * destination) |
onehorse | 0:2e5e65a6fb30 | 329 | { |
onehorse | 0:2e5e65a6fb30 | 330 | uint8_t rawData[6]; // x/y/z accel register data stored here |
onehorse | 0:2e5e65a6fb30 | 331 | readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array |
onehorse | 0:2e5e65a6fb30 | 332 | destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value |
onehorse | 0:2e5e65a6fb30 | 333 | destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; |
onehorse | 0:2e5e65a6fb30 | 334 | destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; |
onehorse | 0:2e5e65a6fb30 | 335 | } |
onehorse | 0:2e5e65a6fb30 | 336 | |
onehorse | 0:2e5e65a6fb30 | 337 | void readGyroData(int16_t * destination) |
onehorse | 0:2e5e65a6fb30 | 338 | { |
onehorse | 0:2e5e65a6fb30 | 339 | uint8_t rawData[6]; // x/y/z gyro register data stored here |
onehorse | 0:2e5e65a6fb30 | 340 | readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array |
onehorse | 0:2e5e65a6fb30 | 341 | destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value |
onehorse | 0:2e5e65a6fb30 | 342 | destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; |
onehorse | 0:2e5e65a6fb30 | 343 | destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; |
onehorse | 0:2e5e65a6fb30 | 344 | } |
onehorse | 0:2e5e65a6fb30 | 345 | |
onehorse | 0:2e5e65a6fb30 | 346 | void readMagData(int16_t * destination) |
onehorse | 0:2e5e65a6fb30 | 347 | { |
onehorse | 0:2e5e65a6fb30 | 348 | uint8_t rawData[7]; // x/y/z gyro register data, ST2 register stored here, must read ST2 at end of data acquisition |
onehorse | 0:2e5e65a6fb30 | 349 | if(readByte(AK8963_ADDRESS, AK8963_ST1) & 0x01) { // wait for magnetometer data ready bit to be set |
onehorse | 0:2e5e65a6fb30 | 350 | readBytes(AK8963_ADDRESS, AK8963_XOUT_L, 7, &rawData[0]); // Read the six raw data and ST2 registers sequentially into data array |
onehorse | 0:2e5e65a6fb30 | 351 | uint8_t c = rawData[6]; // End data read by reading ST2 register |
onehorse | 0:2e5e65a6fb30 | 352 | if(!(c & 0x08)) { // Check if magnetic sensor overflow set, if not then report data |
onehorse | 0:2e5e65a6fb30 | 353 | destination[0] = (int16_t)(((int16_t)rawData[1] << 8) | rawData[0]); // Turn the MSB and LSB into a signed 16-bit value |
onehorse | 0:2e5e65a6fb30 | 354 | destination[1] = (int16_t)(((int16_t)rawData[3] << 8) | rawData[2]) ; // Data stored as little Endian |
onehorse | 0:2e5e65a6fb30 | 355 | destination[2] = (int16_t)(((int16_t)rawData[5] << 8) | rawData[4]) ; |
onehorse | 0:2e5e65a6fb30 | 356 | } |
onehorse | 0:2e5e65a6fb30 | 357 | } |
onehorse | 0:2e5e65a6fb30 | 358 | } |
onehorse | 0:2e5e65a6fb30 | 359 | |
onehorse | 0:2e5e65a6fb30 | 360 | int16_t readTempData() |
onehorse | 0:2e5e65a6fb30 | 361 | { |
onehorse | 0:2e5e65a6fb30 | 362 | uint8_t rawData[2]; // x/y/z gyro register data stored here |
onehorse | 0:2e5e65a6fb30 | 363 | readBytes(MPU9250_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array |
onehorse | 0:2e5e65a6fb30 | 364 | return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value |
onehorse | 0:2e5e65a6fb30 | 365 | } |
onehorse | 0:2e5e65a6fb30 | 366 | |
onehorse | 0:2e5e65a6fb30 | 367 | |
onehorse | 0:2e5e65a6fb30 | 368 | void resetMPU9250() { |
onehorse | 0:2e5e65a6fb30 | 369 | // reset device |
onehorse | 0:2e5e65a6fb30 | 370 | writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device |
onehorse | 0:2e5e65a6fb30 | 371 | wait(0.1); |
onehorse | 0:2e5e65a6fb30 | 372 | } |
onehorse | 0:2e5e65a6fb30 | 373 | |
onehorse | 0:2e5e65a6fb30 | 374 | void initAK8963(float * destination) |
onehorse | 0:2e5e65a6fb30 | 375 | { |
onehorse | 0:2e5e65a6fb30 | 376 | // First extract the factory calibration for each magnetometer axis |
onehorse | 0:2e5e65a6fb30 | 377 | uint8_t rawData[3]; // x/y/z gyro calibration data stored here |
onehorse | 0:2e5e65a6fb30 | 378 | writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer |
onehorse | 0:2e5e65a6fb30 | 379 | wait(0.01); |
onehorse | 0:2e5e65a6fb30 | 380 | writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x0F); // Enter Fuse ROM access mode |
onehorse | 0:2e5e65a6fb30 | 381 | wait(0.01); |
onehorse | 0:2e5e65a6fb30 | 382 | readBytes(AK8963_ADDRESS, AK8963_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values |
onehorse | 0:2e5e65a6fb30 | 383 | destination[0] = (float)(rawData[0] - 128)/256.0f + 1.0f; // Return x-axis sensitivity adjustment values, etc. |
onehorse | 0:2e5e65a6fb30 | 384 | destination[1] = (float)(rawData[1] - 128)/256.0f + 1.0f; |
onehorse | 0:2e5e65a6fb30 | 385 | destination[2] = (float)(rawData[2] - 128)/256.0f + 1.0f; |
onehorse | 0:2e5e65a6fb30 | 386 | writeByte(AK8963_ADDRESS, AK8963_CNTL, 0x00); // Power down magnetometer |
onehorse | 0:2e5e65a6fb30 | 387 | wait(0.01); |
onehorse | 0:2e5e65a6fb30 | 388 | // Configure the magnetometer for continuous read and highest resolution |
onehorse | 0:2e5e65a6fb30 | 389 | // set Mscale bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL register, |
onehorse | 0:2e5e65a6fb30 | 390 | // and enable continuous mode data acquisition Mmode (bits [3:0]), 0010 for 8 Hz and 0110 for 100 Hz sample rates |
onehorse | 0:2e5e65a6fb30 | 391 | writeByte(AK8963_ADDRESS, AK8963_CNTL, Mscale << 4 | Mmode); // Set magnetometer data resolution and sample ODR |
onehorse | 0:2e5e65a6fb30 | 392 | wait(0.01); |
onehorse | 0:2e5e65a6fb30 | 393 | } |
onehorse | 0:2e5e65a6fb30 | 394 | |
onehorse | 0:2e5e65a6fb30 | 395 | |
onehorse | 0:2e5e65a6fb30 | 396 | void initMPU9250() |
onehorse | 0:2e5e65a6fb30 | 397 | { |
onehorse | 0:2e5e65a6fb30 | 398 | // Initialize MPU9250 device |
onehorse | 0:2e5e65a6fb30 | 399 | // wake up device |
onehorse | 0:2e5e65a6fb30 | 400 | writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors |
onehorse | 0:2e5e65a6fb30 | 401 | wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt |
onehorse | 0:2e5e65a6fb30 | 402 | |
onehorse | 0:2e5e65a6fb30 | 403 | // get stable time source |
onehorse | 0:2e5e65a6fb30 | 404 | writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 |
onehorse | 0:2e5e65a6fb30 | 405 | |
onehorse | 0:2e5e65a6fb30 | 406 | // Configure Gyro and Accelerometer |
onehorse | 0:2e5e65a6fb30 | 407 | // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; |
onehorse | 0:2e5e65a6fb30 | 408 | // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both |
onehorse | 0:2e5e65a6fb30 | 409 | // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate |
onehorse | 0:2e5e65a6fb30 | 410 | writeByte(MPU9250_ADDRESS, CONFIG, 0x03); |
onehorse | 0:2e5e65a6fb30 | 411 | |
onehorse | 0:2e5e65a6fb30 | 412 | // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV) |
onehorse | 0:2e5e65a6fb30 | 413 | writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above |
onehorse | 0:2e5e65a6fb30 | 414 | |
onehorse | 0:2e5e65a6fb30 | 415 | // Set gyroscope full scale range |
onehorse | 0:2e5e65a6fb30 | 416 | // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3 |
onehorse | 0:2e5e65a6fb30 | 417 | uint8_t c = readByte(MPU9250_ADDRESS, GYRO_CONFIG); |
onehorse | 0:2e5e65a6fb30 | 418 | writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] |
onehorse | 0:2e5e65a6fb30 | 419 | writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3] |
onehorse | 0:2e5e65a6fb30 | 420 | writeByte(MPU9250_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro |
onehorse | 0:2e5e65a6fb30 | 421 | |
onehorse | 0:2e5e65a6fb30 | 422 | // Set accelerometer configuration |
onehorse | 0:2e5e65a6fb30 | 423 | c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG); |
onehorse | 0:2e5e65a6fb30 | 424 | writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] |
onehorse | 0:2e5e65a6fb30 | 425 | writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3] |
onehorse | 0:2e5e65a6fb30 | 426 | writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer |
onehorse | 0:2e5e65a6fb30 | 427 | |
onehorse | 0:2e5e65a6fb30 | 428 | // Set accelerometer sample rate configuration |
onehorse | 0:2e5e65a6fb30 | 429 | // It is possible to get a 4 kHz sample rate from the accelerometer by choosing 1 for |
onehorse | 0:2e5e65a6fb30 | 430 | // accel_fchoice_b bit [3]; in this case the bandwidth is 1.13 kHz |
onehorse | 0:2e5e65a6fb30 | 431 | c = readByte(MPU9250_ADDRESS, ACCEL_CONFIG2); |
onehorse | 0:2e5e65a6fb30 | 432 | writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c & ~0x0F); // Clear accel_fchoice_b (bit 3) and A_DLPFG (bits [2:0]) |
onehorse | 0:2e5e65a6fb30 | 433 | writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, c | 0x03); // Set accelerometer rate to 1 kHz and bandwidth to 41 Hz |
onehorse | 0:2e5e65a6fb30 | 434 | |
onehorse | 0:2e5e65a6fb30 | 435 | // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates, |
onehorse | 0:2e5e65a6fb30 | 436 | // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting |
onehorse | 0:2e5e65a6fb30 | 437 | |
onehorse | 0:2e5e65a6fb30 | 438 | // Configure Interrupts and Bypass Enable |
onehorse | 0:2e5e65a6fb30 | 439 | // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips |
onehorse | 0:2e5e65a6fb30 | 440 | // can join the I2C bus and all can be controlled by the Arduino as master |
onehorse | 0:2e5e65a6fb30 | 441 | writeByte(MPU9250_ADDRESS, INT_PIN_CFG, 0x22); |
onehorse | 0:2e5e65a6fb30 | 442 | writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt |
onehorse | 0:2e5e65a6fb30 | 443 | } |
onehorse | 0:2e5e65a6fb30 | 444 | |
onehorse | 0:2e5e65a6fb30 | 445 | // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average |
onehorse | 0:2e5e65a6fb30 | 446 | // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers. |
onehorse | 0:2e5e65a6fb30 | 447 | void calibrateMPU9250(float * dest1, float * dest2) |
onehorse | 0:2e5e65a6fb30 | 448 | { |
onehorse | 0:2e5e65a6fb30 | 449 | uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data |
onehorse | 0:2e5e65a6fb30 | 450 | uint16_t ii, packet_count, fifo_count; |
onehorse | 0:2e5e65a6fb30 | 451 | int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; |
onehorse | 0:2e5e65a6fb30 | 452 | |
onehorse | 0:2e5e65a6fb30 | 453 | // reset device, reset all registers, clear gyro and accelerometer bias registers |
onehorse | 0:2e5e65a6fb30 | 454 | writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device |
onehorse | 0:2e5e65a6fb30 | 455 | wait(0.1); |
onehorse | 0:2e5e65a6fb30 | 456 | |
onehorse | 0:2e5e65a6fb30 | 457 | // get stable time source |
onehorse | 0:2e5e65a6fb30 | 458 | // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 |
onehorse | 0:2e5e65a6fb30 | 459 | writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x01); |
onehorse | 0:2e5e65a6fb30 | 460 | writeByte(MPU9250_ADDRESS, PWR_MGMT_2, 0x00); |
onehorse | 0:2e5e65a6fb30 | 461 | wait(0.2); |
onehorse | 0:2e5e65a6fb30 | 462 | |
onehorse | 0:2e5e65a6fb30 | 463 | // Configure device for bias calculation |
onehorse | 0:2e5e65a6fb30 | 464 | writeByte(MPU9250_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts |
onehorse | 0:2e5e65a6fb30 | 465 | writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable FIFO |
onehorse | 0:2e5e65a6fb30 | 466 | writeByte(MPU9250_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source |
onehorse | 0:2e5e65a6fb30 | 467 | writeByte(MPU9250_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master |
onehorse | 0:2e5e65a6fb30 | 468 | writeByte(MPU9250_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes |
onehorse | 0:2e5e65a6fb30 | 469 | writeByte(MPU9250_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP |
onehorse | 0:2e5e65a6fb30 | 470 | wait(0.015); |
onehorse | 0:2e5e65a6fb30 | 471 | |
onehorse | 0:2e5e65a6fb30 | 472 | // Configure MPU9250 gyro and accelerometer for bias calculation |
onehorse | 0:2e5e65a6fb30 | 473 | writeByte(MPU9250_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz |
onehorse | 0:2e5e65a6fb30 | 474 | writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz |
onehorse | 0:2e5e65a6fb30 | 475 | writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity |
onehorse | 0:2e5e65a6fb30 | 476 | writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity |
onehorse | 0:2e5e65a6fb30 | 477 | |
onehorse | 0:2e5e65a6fb30 | 478 | uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec |
onehorse | 0:2e5e65a6fb30 | 479 | uint16_t accelsensitivity = 16384; // = 16384 LSB/g |
onehorse | 0:2e5e65a6fb30 | 480 | |
onehorse | 0:2e5e65a6fb30 | 481 | // Configure FIFO to capture accelerometer and gyro data for bias calculation |
onehorse | 0:2e5e65a6fb30 | 482 | writeByte(MPU9250_ADDRESS, USER_CTRL, 0x40); // Enable FIFO |
onehorse | 0:2e5e65a6fb30 | 483 | writeByte(MPU9250_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9250) |
onehorse | 0:2e5e65a6fb30 | 484 | wait(0.04); // accumulate 40 samples in 80 milliseconds = 480 bytes |
onehorse | 0:2e5e65a6fb30 | 485 | |
onehorse | 0:2e5e65a6fb30 | 486 | // At end of sample accumulation, turn off FIFO sensor read |
onehorse | 0:2e5e65a6fb30 | 487 | writeByte(MPU9250_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO |
onehorse | 0:2e5e65a6fb30 | 488 | readBytes(MPU9250_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count |
onehorse | 0:2e5e65a6fb30 | 489 | fifo_count = ((uint16_t)data[0] << 8) | data[1]; |
onehorse | 0:2e5e65a6fb30 | 490 | packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging |
onehorse | 0:2e5e65a6fb30 | 491 | |
onehorse | 0:2e5e65a6fb30 | 492 | for (ii = 0; ii < packet_count; ii++) { |
onehorse | 0:2e5e65a6fb30 | 493 | int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0}; |
onehorse | 0:2e5e65a6fb30 | 494 | readBytes(MPU9250_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging |
onehorse | 0:2e5e65a6fb30 | 495 | accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO |
onehorse | 0:2e5e65a6fb30 | 496 | accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ; |
onehorse | 0:2e5e65a6fb30 | 497 | accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ; |
onehorse | 0:2e5e65a6fb30 | 498 | gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ; |
onehorse | 0:2e5e65a6fb30 | 499 | gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ; |
onehorse | 0:2e5e65a6fb30 | 500 | gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ; |
onehorse | 0:2e5e65a6fb30 | 501 | |
onehorse | 0:2e5e65a6fb30 | 502 | accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases |
onehorse | 0:2e5e65a6fb30 | 503 | accel_bias[1] += (int32_t) accel_temp[1]; |
onehorse | 0:2e5e65a6fb30 | 504 | accel_bias[2] += (int32_t) accel_temp[2]; |
onehorse | 0:2e5e65a6fb30 | 505 | gyro_bias[0] += (int32_t) gyro_temp[0]; |
onehorse | 0:2e5e65a6fb30 | 506 | gyro_bias[1] += (int32_t) gyro_temp[1]; |
onehorse | 0:2e5e65a6fb30 | 507 | gyro_bias[2] += (int32_t) gyro_temp[2]; |
onehorse | 0:2e5e65a6fb30 | 508 | |
onehorse | 0:2e5e65a6fb30 | 509 | } |
onehorse | 0:2e5e65a6fb30 | 510 | accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases |
onehorse | 0:2e5e65a6fb30 | 511 | accel_bias[1] /= (int32_t) packet_count; |
onehorse | 0:2e5e65a6fb30 | 512 | accel_bias[2] /= (int32_t) packet_count; |
onehorse | 0:2e5e65a6fb30 | 513 | gyro_bias[0] /= (int32_t) packet_count; |
onehorse | 0:2e5e65a6fb30 | 514 | gyro_bias[1] /= (int32_t) packet_count; |
onehorse | 0:2e5e65a6fb30 | 515 | gyro_bias[2] /= (int32_t) packet_count; |
onehorse | 0:2e5e65a6fb30 | 516 | |
onehorse | 0:2e5e65a6fb30 | 517 | if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation |
onehorse | 0:2e5e65a6fb30 | 518 | else {accel_bias[2] += (int32_t) accelsensitivity;} |
onehorse | 0:2e5e65a6fb30 | 519 | |
onehorse | 0:2e5e65a6fb30 | 520 | // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup |
onehorse | 0:2e5e65a6fb30 | 521 | data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format |
onehorse | 0:2e5e65a6fb30 | 522 | data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases |
onehorse | 0:2e5e65a6fb30 | 523 | data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF; |
onehorse | 0:2e5e65a6fb30 | 524 | data[3] = (-gyro_bias[1]/4) & 0xFF; |
onehorse | 0:2e5e65a6fb30 | 525 | data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF; |
onehorse | 0:2e5e65a6fb30 | 526 | data[5] = (-gyro_bias[2]/4) & 0xFF; |
onehorse | 0:2e5e65a6fb30 | 527 | |
onehorse | 0:2e5e65a6fb30 | 528 | /// Push gyro biases to hardware registers |
onehorse | 0:2e5e65a6fb30 | 529 | /* writeByte(MPU9250_ADDRESS, XG_OFFSET_H, data[0]); |
onehorse | 0:2e5e65a6fb30 | 530 | writeByte(MPU9250_ADDRESS, XG_OFFSET_L, data[1]); |
onehorse | 0:2e5e65a6fb30 | 531 | writeByte(MPU9250_ADDRESS, YG_OFFSET_H, data[2]); |
onehorse | 0:2e5e65a6fb30 | 532 | writeByte(MPU9250_ADDRESS, YG_OFFSET_L, data[3]); |
onehorse | 0:2e5e65a6fb30 | 533 | writeByte(MPU9250_ADDRESS, ZG_OFFSET_H, data[4]); |
onehorse | 0:2e5e65a6fb30 | 534 | writeByte(MPU9250_ADDRESS, ZG_OFFSET_L, data[5]); |
onehorse | 0:2e5e65a6fb30 | 535 | */ |
onehorse | 0:2e5e65a6fb30 | 536 | dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction |
onehorse | 0:2e5e65a6fb30 | 537 | dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity; |
onehorse | 0:2e5e65a6fb30 | 538 | dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity; |
onehorse | 0:2e5e65a6fb30 | 539 | |
onehorse | 0:2e5e65a6fb30 | 540 | // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain |
onehorse | 0:2e5e65a6fb30 | 541 | // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold |
onehorse | 0:2e5e65a6fb30 | 542 | // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature |
onehorse | 0:2e5e65a6fb30 | 543 | // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that |
onehorse | 0:2e5e65a6fb30 | 544 | // the accelerometer biases calculated above must be divided by 8. |
onehorse | 0:2e5e65a6fb30 | 545 | |
onehorse | 0:2e5e65a6fb30 | 546 | int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases |
onehorse | 0:2e5e65a6fb30 | 547 | readBytes(MPU9250_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values |
onehorse | 0:2e5e65a6fb30 | 548 | accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1]; |
onehorse | 0:2e5e65a6fb30 | 549 | readBytes(MPU9250_ADDRESS, YA_OFFSET_H, 2, &data[0]); |
onehorse | 0:2e5e65a6fb30 | 550 | accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1]; |
onehorse | 0:2e5e65a6fb30 | 551 | readBytes(MPU9250_ADDRESS, ZA_OFFSET_H, 2, &data[0]); |
onehorse | 0:2e5e65a6fb30 | 552 | accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1]; |
onehorse | 0:2e5e65a6fb30 | 553 | |
onehorse | 0:2e5e65a6fb30 | 554 | uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers |
onehorse | 0:2e5e65a6fb30 | 555 | uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis |
onehorse | 0:2e5e65a6fb30 | 556 | |
onehorse | 0:2e5e65a6fb30 | 557 | for(ii = 0; ii < 3; ii++) { |
onehorse | 0:2e5e65a6fb30 | 558 | if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit |
onehorse | 0:2e5e65a6fb30 | 559 | } |
onehorse | 0:2e5e65a6fb30 | 560 | |
onehorse | 0:2e5e65a6fb30 | 561 | // Construct total accelerometer bias, including calculated average accelerometer bias from above |
onehorse | 0:2e5e65a6fb30 | 562 | accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale) |
onehorse | 0:2e5e65a6fb30 | 563 | accel_bias_reg[1] -= (accel_bias[1]/8); |
onehorse | 0:2e5e65a6fb30 | 564 | accel_bias_reg[2] -= (accel_bias[2]/8); |
onehorse | 0:2e5e65a6fb30 | 565 | |
onehorse | 0:2e5e65a6fb30 | 566 | data[0] = (accel_bias_reg[0] >> 8) & 0xFF; |
onehorse | 0:2e5e65a6fb30 | 567 | data[1] = (accel_bias_reg[0]) & 0xFF; |
onehorse | 0:2e5e65a6fb30 | 568 | data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers |
onehorse | 0:2e5e65a6fb30 | 569 | data[2] = (accel_bias_reg[1] >> 8) & 0xFF; |
onehorse | 0:2e5e65a6fb30 | 570 | data[3] = (accel_bias_reg[1]) & 0xFF; |
onehorse | 0:2e5e65a6fb30 | 571 | data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers |
onehorse | 0:2e5e65a6fb30 | 572 | data[4] = (accel_bias_reg[2] >> 8) & 0xFF; |
onehorse | 0:2e5e65a6fb30 | 573 | data[5] = (accel_bias_reg[2]) & 0xFF; |
onehorse | 0:2e5e65a6fb30 | 574 | data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers |
onehorse | 0:2e5e65a6fb30 | 575 | |
onehorse | 0:2e5e65a6fb30 | 576 | // Apparently this is not working for the acceleration biases in the MPU-9250 |
onehorse | 0:2e5e65a6fb30 | 577 | // Are we handling the temperature correction bit properly? |
onehorse | 0:2e5e65a6fb30 | 578 | // Push accelerometer biases to hardware registers |
onehorse | 0:2e5e65a6fb30 | 579 | /* writeByte(MPU9250_ADDRESS, XA_OFFSET_H, data[0]); |
onehorse | 0:2e5e65a6fb30 | 580 | writeByte(MPU9250_ADDRESS, XA_OFFSET_L, data[1]); |
onehorse | 0:2e5e65a6fb30 | 581 | writeByte(MPU9250_ADDRESS, YA_OFFSET_H, data[2]); |
onehorse | 0:2e5e65a6fb30 | 582 | writeByte(MPU9250_ADDRESS, YA_OFFSET_L, data[3]); |
onehorse | 0:2e5e65a6fb30 | 583 | writeByte(MPU9250_ADDRESS, ZA_OFFSET_H, data[4]); |
onehorse | 0:2e5e65a6fb30 | 584 | writeByte(MPU9250_ADDRESS, ZA_OFFSET_L, data[5]); |
onehorse | 0:2e5e65a6fb30 | 585 | */ |
onehorse | 0:2e5e65a6fb30 | 586 | // Output scaled accelerometer biases for manual subtraction in the main program |
onehorse | 0:2e5e65a6fb30 | 587 | dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; |
onehorse | 0:2e5e65a6fb30 | 588 | dest2[1] = (float)accel_bias[1]/(float)accelsensitivity; |
onehorse | 0:2e5e65a6fb30 | 589 | dest2[2] = (float)accel_bias[2]/(float)accelsensitivity; |
onehorse | 0:2e5e65a6fb30 | 590 | } |
onehorse | 0:2e5e65a6fb30 | 591 | |
onehorse | 0:2e5e65a6fb30 | 592 | |
onehorse | 0:2e5e65a6fb30 | 593 | // Accelerometer and gyroscope self test; check calibration wrt factory settings |
onehorse | 0:2e5e65a6fb30 | 594 | void MPU9250SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass |
onehorse | 0:2e5e65a6fb30 | 595 | { |
onehorse | 2:4e59a37182df | 596 | uint8_t rawData[6] = {0, 0, 0, 0, 0, 0}; |
onehorse | 0:2e5e65a6fb30 | 597 | uint8_t selfTest[6]; |
onehorse | 2:4e59a37182df | 598 | int16_t gAvg[3], aAvg[3], aSTAvg[3], gSTAvg[3]; |
onehorse | 0:2e5e65a6fb30 | 599 | float factoryTrim[6]; |
onehorse | 2:4e59a37182df | 600 | uint8_t FS = 0; |
onehorse | 0:2e5e65a6fb30 | 601 | |
onehorse | 2:4e59a37182df | 602 | writeByte(MPU9250_ADDRESS, SMPLRT_DIV, 0x00); // Set gyro sample rate to 1 kHz |
onehorse | 2:4e59a37182df | 603 | writeByte(MPU9250_ADDRESS, CONFIG, 0x02); // Set gyro sample rate to 1 kHz and DLPF to 92 Hz |
onehorse | 2:4e59a37182df | 604 | writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 1<<FS); // Set full scale range for the gyro to 250 dps |
onehorse | 2:4e59a37182df | 605 | writeByte(MPU9250_ADDRESS, ACCEL_CONFIG2, 0x02); // Set accelerometer rate to 1 kHz and bandwidth to 92 Hz |
onehorse | 2:4e59a37182df | 606 | writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 1<<FS); // Set full scale range for the accelerometer to 2 g |
onehorse | 2:4e59a37182df | 607 | |
onehorse | 2:4e59a37182df | 608 | for( int ii = 0; ii < 200; ii++) { // get average current values of gyro and acclerometer |
onehorse | 2:4e59a37182df | 609 | |
onehorse | 2:4e59a37182df | 610 | readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array |
onehorse | 2:4e59a37182df | 611 | aAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value |
onehorse | 2:4e59a37182df | 612 | aAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; |
onehorse | 2:4e59a37182df | 613 | aAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; |
onehorse | 2:4e59a37182df | 614 | |
onehorse | 2:4e59a37182df | 615 | readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array |
onehorse | 2:4e59a37182df | 616 | gAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value |
onehorse | 2:4e59a37182df | 617 | gAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; |
onehorse | 2:4e59a37182df | 618 | gAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; |
onehorse | 2:4e59a37182df | 619 | } |
onehorse | 2:4e59a37182df | 620 | |
onehorse | 2:4e59a37182df | 621 | for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average current readings |
onehorse | 2:4e59a37182df | 622 | aAvg[ii] /= 200; |
onehorse | 2:4e59a37182df | 623 | gAvg[ii] /= 200; |
onehorse | 2:4e59a37182df | 624 | } |
onehorse | 2:4e59a37182df | 625 | |
onehorse | 2:4e59a37182df | 626 | // Configure the accelerometer for self-test |
onehorse | 2:4e59a37182df | 627 | writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0xE0); // Enable self test on all three axes and set accelerometer range to +/- 2 g |
onehorse | 2:4e59a37182df | 628 | writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s |
onehorse | 3:fe46f14f5aef | 629 | wait(0.025); // Delay a while to let the device stabilize |
onehorse | 2:4e59a37182df | 630 | |
onehorse | 2:4e59a37182df | 631 | for( int ii = 0; ii < 200; ii++) { // get average self-test values of gyro and acclerometer |
onehorse | 2:4e59a37182df | 632 | |
onehorse | 2:4e59a37182df | 633 | readBytes(MPU9250_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array |
onehorse | 2:4e59a37182df | 634 | aSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value |
onehorse | 2:4e59a37182df | 635 | aSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; |
onehorse | 2:4e59a37182df | 636 | aSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; |
onehorse | 2:4e59a37182df | 637 | |
onehorse | 2:4e59a37182df | 638 | readBytes(MPU9250_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array |
onehorse | 2:4e59a37182df | 639 | gSTAvg[0] += (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value |
onehorse | 2:4e59a37182df | 640 | gSTAvg[1] += (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; |
onehorse | 2:4e59a37182df | 641 | gSTAvg[2] += (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; |
onehorse | 2:4e59a37182df | 642 | } |
onehorse | 2:4e59a37182df | 643 | |
onehorse | 2:4e59a37182df | 644 | for (int ii =0; ii < 3; ii++) { // Get average of 200 values and store as average self-test readings |
onehorse | 2:4e59a37182df | 645 | aSTAvg[ii] /= 200; |
onehorse | 2:4e59a37182df | 646 | gSTAvg[ii] /= 200; |
onehorse | 2:4e59a37182df | 647 | } |
onehorse | 2:4e59a37182df | 648 | |
onehorse | 2:4e59a37182df | 649 | // Configure the gyro and accelerometer for normal operation |
onehorse | 2:4e59a37182df | 650 | writeByte(MPU9250_ADDRESS, ACCEL_CONFIG, 0x00); |
onehorse | 2:4e59a37182df | 651 | writeByte(MPU9250_ADDRESS, GYRO_CONFIG, 0x00); |
onehorse | 3:fe46f14f5aef | 652 | wait(0.025); // Delay a while to let the device stabilize |
onehorse | 0:2e5e65a6fb30 | 653 | |
onehorse | 2:4e59a37182df | 654 | // Retrieve accelerometer and gyro factory Self-Test Code from USR_Reg |
onehorse | 2:4e59a37182df | 655 | selfTest[0] = readByte(MPU9250_ADDRESS, SELF_TEST_X_ACCEL); // X-axis accel self-test results |
onehorse | 2:4e59a37182df | 656 | selfTest[1] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_ACCEL); // Y-axis accel self-test results |
onehorse | 2:4e59a37182df | 657 | selfTest[2] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_ACCEL); // Z-axis accel self-test results |
onehorse | 2:4e59a37182df | 658 | selfTest[3] = readByte(MPU9250_ADDRESS, SELF_TEST_X_GYRO); // X-axis gyro self-test results |
onehorse | 2:4e59a37182df | 659 | selfTest[4] = readByte(MPU9250_ADDRESS, SELF_TEST_Y_GYRO); // Y-axis gyro self-test results |
onehorse | 2:4e59a37182df | 660 | selfTest[5] = readByte(MPU9250_ADDRESS, SELF_TEST_Z_GYRO); // Z-axis gyro self-test results |
onehorse | 0:2e5e65a6fb30 | 661 | |
onehorse | 2:4e59a37182df | 662 | // Retrieve factory self-test value from self-test code reads |
onehorse | 2:4e59a37182df | 663 | factoryTrim[0] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[0] - 1.0) )); // FT[Xa] factory trim calculation |
onehorse | 2:4e59a37182df | 664 | factoryTrim[1] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[1] - 1.0) )); // FT[Ya] factory trim calculation |
onehorse | 2:4e59a37182df | 665 | factoryTrim[2] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[2] - 1.0) )); // FT[Za] factory trim calculation |
onehorse | 2:4e59a37182df | 666 | factoryTrim[3] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[3] - 1.0) )); // FT[Xg] factory trim calculation |
onehorse | 2:4e59a37182df | 667 | factoryTrim[4] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[4] - 1.0) )); // FT[Yg] factory trim calculation |
onehorse | 2:4e59a37182df | 668 | factoryTrim[5] = (float)(2620/1<<FS)*(pow( 1.01 , ((float)selfTest[5] - 1.0) )); // FT[Zg] factory trim calculation |
onehorse | 2:4e59a37182df | 669 | |
onehorse | 0:2e5e65a6fb30 | 670 | // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response |
onehorse | 2:4e59a37182df | 671 | // To get percent, must multiply by 100 |
onehorse | 2:4e59a37182df | 672 | for (int i = 0; i < 3; i++) { |
onehorse | 2:4e59a37182df | 673 | destination[i] = 100.0*((float)(aSTAvg[i] - aAvg[i]))/factoryTrim[i]; // Report percent differences |
onehorse | 2:4e59a37182df | 674 | destination[i+3] = 100.0*((float)(gSTAvg[i] - gAvg[i]))/factoryTrim[i+3]; // Report percent differences |
onehorse | 0:2e5e65a6fb30 | 675 | } |
onehorse | 0:2e5e65a6fb30 | 676 | |
onehorse | 0:2e5e65a6fb30 | 677 | } |
onehorse | 0:2e5e65a6fb30 | 678 | |
onehorse | 0:2e5e65a6fb30 | 679 | |
onehorse | 0:2e5e65a6fb30 | 680 | |
onehorse | 0:2e5e65a6fb30 | 681 | // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays" |
onehorse | 0:2e5e65a6fb30 | 682 | // (see http://www.x-io.co.uk/category/open-source/ for examples and more details) |
onehorse | 0:2e5e65a6fb30 | 683 | // which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute |
onehorse | 0:2e5e65a6fb30 | 684 | // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc. |
onehorse | 0:2e5e65a6fb30 | 685 | // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms |
onehorse | 0:2e5e65a6fb30 | 686 | // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz! |
onehorse | 0:2e5e65a6fb30 | 687 | void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz) |
onehorse | 0:2e5e65a6fb30 | 688 | { |
onehorse | 0:2e5e65a6fb30 | 689 | float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability |
onehorse | 0:2e5e65a6fb30 | 690 | float norm; |
onehorse | 0:2e5e65a6fb30 | 691 | float hx, hy, _2bx, _2bz; |
onehorse | 0:2e5e65a6fb30 | 692 | float s1, s2, s3, s4; |
onehorse | 0:2e5e65a6fb30 | 693 | float qDot1, qDot2, qDot3, qDot4; |
onehorse | 0:2e5e65a6fb30 | 694 | |
onehorse | 0:2e5e65a6fb30 | 695 | // Auxiliary variables to avoid repeated arithmetic |
onehorse | 0:2e5e65a6fb30 | 696 | float _2q1mx; |
onehorse | 0:2e5e65a6fb30 | 697 | float _2q1my; |
onehorse | 0:2e5e65a6fb30 | 698 | float _2q1mz; |
onehorse | 0:2e5e65a6fb30 | 699 | float _2q2mx; |
onehorse | 0:2e5e65a6fb30 | 700 | float _4bx; |
onehorse | 0:2e5e65a6fb30 | 701 | float _4bz; |
onehorse | 0:2e5e65a6fb30 | 702 | float _2q1 = 2.0f * q1; |
onehorse | 0:2e5e65a6fb30 | 703 | float _2q2 = 2.0f * q2; |
onehorse | 0:2e5e65a6fb30 | 704 | float _2q3 = 2.0f * q3; |
onehorse | 0:2e5e65a6fb30 | 705 | float _2q4 = 2.0f * q4; |
onehorse | 0:2e5e65a6fb30 | 706 | float _2q1q3 = 2.0f * q1 * q3; |
onehorse | 0:2e5e65a6fb30 | 707 | float _2q3q4 = 2.0f * q3 * q4; |
onehorse | 0:2e5e65a6fb30 | 708 | float q1q1 = q1 * q1; |
onehorse | 0:2e5e65a6fb30 | 709 | float q1q2 = q1 * q2; |
onehorse | 0:2e5e65a6fb30 | 710 | float q1q3 = q1 * q3; |
onehorse | 0:2e5e65a6fb30 | 711 | float q1q4 = q1 * q4; |
onehorse | 0:2e5e65a6fb30 | 712 | float q2q2 = q2 * q2; |
onehorse | 0:2e5e65a6fb30 | 713 | float q2q3 = q2 * q3; |
onehorse | 0:2e5e65a6fb30 | 714 | float q2q4 = q2 * q4; |
onehorse | 0:2e5e65a6fb30 | 715 | float q3q3 = q3 * q3; |
onehorse | 0:2e5e65a6fb30 | 716 | float q3q4 = q3 * q4; |
onehorse | 0:2e5e65a6fb30 | 717 | float q4q4 = q4 * q4; |
onehorse | 0:2e5e65a6fb30 | 718 | |
onehorse | 0:2e5e65a6fb30 | 719 | // Normalise accelerometer measurement |
onehorse | 0:2e5e65a6fb30 | 720 | norm = sqrt(ax * ax + ay * ay + az * az); |
onehorse | 0:2e5e65a6fb30 | 721 | if (norm == 0.0f) return; // handle NaN |
onehorse | 0:2e5e65a6fb30 | 722 | norm = 1.0f/norm; |
onehorse | 0:2e5e65a6fb30 | 723 | ax *= norm; |
onehorse | 0:2e5e65a6fb30 | 724 | ay *= norm; |
onehorse | 0:2e5e65a6fb30 | 725 | az *= norm; |
onehorse | 0:2e5e65a6fb30 | 726 | |
onehorse | 0:2e5e65a6fb30 | 727 | // Normalise magnetometer measurement |
onehorse | 0:2e5e65a6fb30 | 728 | norm = sqrt(mx * mx + my * my + mz * mz); |
onehorse | 0:2e5e65a6fb30 | 729 | if (norm == 0.0f) return; // handle NaN |
onehorse | 0:2e5e65a6fb30 | 730 | norm = 1.0f/norm; |
onehorse | 0:2e5e65a6fb30 | 731 | mx *= norm; |
onehorse | 0:2e5e65a6fb30 | 732 | my *= norm; |
onehorse | 0:2e5e65a6fb30 | 733 | mz *= norm; |
onehorse | 0:2e5e65a6fb30 | 734 | |
onehorse | 0:2e5e65a6fb30 | 735 | // Reference direction of Earth's magnetic field |
onehorse | 0:2e5e65a6fb30 | 736 | _2q1mx = 2.0f * q1 * mx; |
onehorse | 0:2e5e65a6fb30 | 737 | _2q1my = 2.0f * q1 * my; |
onehorse | 0:2e5e65a6fb30 | 738 | _2q1mz = 2.0f * q1 * mz; |
onehorse | 0:2e5e65a6fb30 | 739 | _2q2mx = 2.0f * q2 * mx; |
onehorse | 0:2e5e65a6fb30 | 740 | hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4; |
onehorse | 0:2e5e65a6fb30 | 741 | hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4; |
onehorse | 0:2e5e65a6fb30 | 742 | _2bx = sqrt(hx * hx + hy * hy); |
onehorse | 0:2e5e65a6fb30 | 743 | _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4; |
onehorse | 0:2e5e65a6fb30 | 744 | _4bx = 2.0f * _2bx; |
onehorse | 0:2e5e65a6fb30 | 745 | _4bz = 2.0f * _2bz; |
onehorse | 0:2e5e65a6fb30 | 746 | |
onehorse | 0:2e5e65a6fb30 | 747 | // Gradient decent algorithm corrective step |
onehorse | 0:2e5e65a6fb30 | 748 | s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); |
onehorse | 0:2e5e65a6fb30 | 749 | s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); |
onehorse | 0:2e5e65a6fb30 | 750 | s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); |
onehorse | 0:2e5e65a6fb30 | 751 | s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); |
onehorse | 0:2e5e65a6fb30 | 752 | norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude |
onehorse | 0:2e5e65a6fb30 | 753 | norm = 1.0f/norm; |
onehorse | 0:2e5e65a6fb30 | 754 | s1 *= norm; |
onehorse | 0:2e5e65a6fb30 | 755 | s2 *= norm; |
onehorse | 0:2e5e65a6fb30 | 756 | s3 *= norm; |
onehorse | 0:2e5e65a6fb30 | 757 | s4 *= norm; |
onehorse | 0:2e5e65a6fb30 | 758 | |
onehorse | 0:2e5e65a6fb30 | 759 | // Compute rate of change of quaternion |
onehorse | 0:2e5e65a6fb30 | 760 | qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1; |
onehorse | 0:2e5e65a6fb30 | 761 | qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2; |
onehorse | 0:2e5e65a6fb30 | 762 | qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3; |
onehorse | 0:2e5e65a6fb30 | 763 | qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4; |
onehorse | 0:2e5e65a6fb30 | 764 | |
onehorse | 0:2e5e65a6fb30 | 765 | // Integrate to yield quaternion |
onehorse | 0:2e5e65a6fb30 | 766 | q1 += qDot1 * deltat; |
onehorse | 0:2e5e65a6fb30 | 767 | q2 += qDot2 * deltat; |
onehorse | 0:2e5e65a6fb30 | 768 | q3 += qDot3 * deltat; |
onehorse | 0:2e5e65a6fb30 | 769 | q4 += qDot4 * deltat; |
onehorse | 0:2e5e65a6fb30 | 770 | norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion |
onehorse | 0:2e5e65a6fb30 | 771 | norm = 1.0f/norm; |
onehorse | 0:2e5e65a6fb30 | 772 | q[0] = q1 * norm; |
onehorse | 0:2e5e65a6fb30 | 773 | q[1] = q2 * norm; |
onehorse | 0:2e5e65a6fb30 | 774 | q[2] = q3 * norm; |
onehorse | 0:2e5e65a6fb30 | 775 | q[3] = q4 * norm; |
onehorse | 0:2e5e65a6fb30 | 776 | |
onehorse | 0:2e5e65a6fb30 | 777 | } |
onehorse | 0:2e5e65a6fb30 | 778 | |
onehorse | 0:2e5e65a6fb30 | 779 | |
onehorse | 0:2e5e65a6fb30 | 780 | |
onehorse | 0:2e5e65a6fb30 | 781 | // Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and |
onehorse | 0:2e5e65a6fb30 | 782 | // measured ones. |
onehorse | 0:2e5e65a6fb30 | 783 | void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz) |
onehorse | 0:2e5e65a6fb30 | 784 | { |
onehorse | 0:2e5e65a6fb30 | 785 | float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability |
onehorse | 0:2e5e65a6fb30 | 786 | float norm; |
onehorse | 0:2e5e65a6fb30 | 787 | float hx, hy, bx, bz; |
onehorse | 0:2e5e65a6fb30 | 788 | float vx, vy, vz, wx, wy, wz; |
onehorse | 0:2e5e65a6fb30 | 789 | float ex, ey, ez; |
onehorse | 0:2e5e65a6fb30 | 790 | float pa, pb, pc; |
onehorse | 0:2e5e65a6fb30 | 791 | |
onehorse | 0:2e5e65a6fb30 | 792 | // Auxiliary variables to avoid repeated arithmetic |
onehorse | 0:2e5e65a6fb30 | 793 | float q1q1 = q1 * q1; |
onehorse | 0:2e5e65a6fb30 | 794 | float q1q2 = q1 * q2; |
onehorse | 0:2e5e65a6fb30 | 795 | float q1q3 = q1 * q3; |
onehorse | 0:2e5e65a6fb30 | 796 | float q1q4 = q1 * q4; |
onehorse | 0:2e5e65a6fb30 | 797 | float q2q2 = q2 * q2; |
onehorse | 0:2e5e65a6fb30 | 798 | float q2q3 = q2 * q3; |
onehorse | 0:2e5e65a6fb30 | 799 | float q2q4 = q2 * q4; |
onehorse | 0:2e5e65a6fb30 | 800 | float q3q3 = q3 * q3; |
onehorse | 0:2e5e65a6fb30 | 801 | float q3q4 = q3 * q4; |
onehorse | 0:2e5e65a6fb30 | 802 | float q4q4 = q4 * q4; |
onehorse | 0:2e5e65a6fb30 | 803 | |
onehorse | 0:2e5e65a6fb30 | 804 | // Normalise accelerometer measurement |
onehorse | 0:2e5e65a6fb30 | 805 | norm = sqrt(ax * ax + ay * ay + az * az); |
onehorse | 0:2e5e65a6fb30 | 806 | if (norm == 0.0f) return; // handle NaN |
onehorse | 0:2e5e65a6fb30 | 807 | norm = 1.0f / norm; // use reciprocal for division |
onehorse | 0:2e5e65a6fb30 | 808 | ax *= norm; |
onehorse | 0:2e5e65a6fb30 | 809 | ay *= norm; |
onehorse | 0:2e5e65a6fb30 | 810 | az *= norm; |
onehorse | 0:2e5e65a6fb30 | 811 | |
onehorse | 0:2e5e65a6fb30 | 812 | // Normalise magnetometer measurement |
onehorse | 0:2e5e65a6fb30 | 813 | norm = sqrt(mx * mx + my * my + mz * mz); |
onehorse | 0:2e5e65a6fb30 | 814 | if (norm == 0.0f) return; // handle NaN |
onehorse | 0:2e5e65a6fb30 | 815 | norm = 1.0f / norm; // use reciprocal for division |
onehorse | 0:2e5e65a6fb30 | 816 | mx *= norm; |
onehorse | 0:2e5e65a6fb30 | 817 | my *= norm; |
onehorse | 0:2e5e65a6fb30 | 818 | mz *= norm; |
onehorse | 0:2e5e65a6fb30 | 819 | |
onehorse | 0:2e5e65a6fb30 | 820 | // Reference direction of Earth's magnetic field |
onehorse | 0:2e5e65a6fb30 | 821 | hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3); |
onehorse | 0:2e5e65a6fb30 | 822 | hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2); |
onehorse | 0:2e5e65a6fb30 | 823 | bx = sqrt((hx * hx) + (hy * hy)); |
onehorse | 0:2e5e65a6fb30 | 824 | bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3); |
onehorse | 0:2e5e65a6fb30 | 825 | |
onehorse | 0:2e5e65a6fb30 | 826 | // Estimated direction of gravity and magnetic field |
onehorse | 0:2e5e65a6fb30 | 827 | vx = 2.0f * (q2q4 - q1q3); |
onehorse | 0:2e5e65a6fb30 | 828 | vy = 2.0f * (q1q2 + q3q4); |
onehorse | 0:2e5e65a6fb30 | 829 | vz = q1q1 - q2q2 - q3q3 + q4q4; |
onehorse | 0:2e5e65a6fb30 | 830 | wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3); |
onehorse | 0:2e5e65a6fb30 | 831 | wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4); |
onehorse | 0:2e5e65a6fb30 | 832 | wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3); |
onehorse | 0:2e5e65a6fb30 | 833 | |
onehorse | 0:2e5e65a6fb30 | 834 | // Error is cross product between estimated direction and measured direction of gravity |
onehorse | 0:2e5e65a6fb30 | 835 | ex = (ay * vz - az * vy) + (my * wz - mz * wy); |
onehorse | 0:2e5e65a6fb30 | 836 | ey = (az * vx - ax * vz) + (mz * wx - mx * wz); |
onehorse | 0:2e5e65a6fb30 | 837 | ez = (ax * vy - ay * vx) + (mx * wy - my * wx); |
onehorse | 0:2e5e65a6fb30 | 838 | if (Ki > 0.0f) |
onehorse | 0:2e5e65a6fb30 | 839 | { |
onehorse | 0:2e5e65a6fb30 | 840 | eInt[0] += ex; // accumulate integral error |
onehorse | 0:2e5e65a6fb30 | 841 | eInt[1] += ey; |
onehorse | 0:2e5e65a6fb30 | 842 | eInt[2] += ez; |
onehorse | 0:2e5e65a6fb30 | 843 | } |
onehorse | 0:2e5e65a6fb30 | 844 | else |
onehorse | 0:2e5e65a6fb30 | 845 | { |
onehorse | 0:2e5e65a6fb30 | 846 | eInt[0] = 0.0f; // prevent integral wind up |
onehorse | 0:2e5e65a6fb30 | 847 | eInt[1] = 0.0f; |
onehorse | 0:2e5e65a6fb30 | 848 | eInt[2] = 0.0f; |
onehorse | 0:2e5e65a6fb30 | 849 | } |
onehorse | 0:2e5e65a6fb30 | 850 | |
onehorse | 0:2e5e65a6fb30 | 851 | // Apply feedback terms |
onehorse | 0:2e5e65a6fb30 | 852 | gx = gx + Kp * ex + Ki * eInt[0]; |
onehorse | 0:2e5e65a6fb30 | 853 | gy = gy + Kp * ey + Ki * eInt[1]; |
onehorse | 0:2e5e65a6fb30 | 854 | gz = gz + Kp * ez + Ki * eInt[2]; |
onehorse | 0:2e5e65a6fb30 | 855 | |
onehorse | 0:2e5e65a6fb30 | 856 | // Integrate rate of change of quaternion |
onehorse | 0:2e5e65a6fb30 | 857 | pa = q2; |
onehorse | 0:2e5e65a6fb30 | 858 | pb = q3; |
onehorse | 0:2e5e65a6fb30 | 859 | pc = q4; |
onehorse | 0:2e5e65a6fb30 | 860 | q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat); |
onehorse | 0:2e5e65a6fb30 | 861 | q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat); |
onehorse | 0:2e5e65a6fb30 | 862 | q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat); |
onehorse | 0:2e5e65a6fb30 | 863 | q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat); |
onehorse | 0:2e5e65a6fb30 | 864 | |
onehorse | 0:2e5e65a6fb30 | 865 | // Normalise quaternion |
onehorse | 0:2e5e65a6fb30 | 866 | norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); |
onehorse | 0:2e5e65a6fb30 | 867 | norm = 1.0f / norm; |
onehorse | 0:2e5e65a6fb30 | 868 | q[0] = q1 * norm; |
onehorse | 0:2e5e65a6fb30 | 869 | q[1] = q2 * norm; |
onehorse | 0:2e5e65a6fb30 | 870 | q[2] = q3 * norm; |
onehorse | 0:2e5e65a6fb30 | 871 | q[3] = q4 * norm; |
onehorse | 0:2e5e65a6fb30 | 872 | |
onehorse | 0:2e5e65a6fb30 | 873 | } |
onehorse | 0:2e5e65a6fb30 | 874 | }; |
onehorse | 0:2e5e65a6fb30 | 875 | #endif |