Basic program to obtain properly-scaled gyro, accelerometer, and magnetometer data from the MPU-9150 9-axis motion sensor. Nine-axis sensor fusion with Sebastian Madgwick's and Mahony's open-source sensor fusion filters running on an STM32F401RE Nucleo board at 84 MHz achieve sensor fusion filter update rates of ~5000 Hz. Additional info at https://github.com/kriswiner/STM32F401.
Dependencies: ST_401_84MHZ mbed
Diff: main.cpp
- Revision:
- 0:39935bb3c1a1
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/main.cpp Sun Jun 29 22:48:08 2014 +0000 @@ -0,0 +1,253 @@ +/* MPU9150 Basic Example Code + by: Kris Winer + date: April 1, 2014 + license: Beerware - Use this code however you'd like. If you + find it useful you can buy me a beer some time. + + Demonstrate basic MPU-9150 functionality including parameterizing the register addresses, initializing the sensor, + getting properly scaled accelerometer, gyroscope, and magnetometer data out. Added display functions to + allow display to on breadboard monitor. Addition of 9 DoF sensor fusion using open source Madgwick and + Mahony filter algorithms. Sketch runs on the 3.3 V 8 MHz Pro Mini and the Teensy 3.1. + + SDA and SCL should have external pull-up resistors (to 3.3V). + 10k resistors are on the EMSENSR-9250 breakout board. + + Hardware setup: + MPU9150 Breakout --------- Arduino + VDD ---------------------- 3.3V + VDDI --------------------- 3.3V + SDA ----------------------- A4 + SCL ----------------------- A5 + GND ---------------------- GND + + Note: The MPU9150 is an I2C sensor and uses the Arduino Wire library. + Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1. + We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file. + We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ to 400000L /twi.h utility file. + */ + +//#include "ST_F401_84MHZ.h" +//F401_init84 myinit(0); +#include "mbed.h" +#include "MPU9150.h" +#include "N5110.h" + +// Using NOKIA 5110 monochrome 84 x 48 pixel display +// pin 9 - Serial clock out (SCLK) +// pin 8 - Serial data out (DIN) +// pin 7 - Data/Command select (D/C) +// pin 5 - LCD chip select (CS) +// pin 6 - LCD reset (RST) +//Adafruit_PCD8544 display = Adafruit_PCD8544(9, 8, 7, 5, 6); + +float sum = 0; +uint32_t sumCount = 0, mcount = 0; +char buffer[14]; + + MPU9150 MPU9150; + + Timer t; + + Serial pc(USBTX, USBRX); // tx, rx + + // VCC, SCE, RST, D/C, MOSI,S CLK, LED + N5110 lcd(PA_8, PB_10, PA_9, PA_6, PA_7, PA_5, PC_7); + + + +int main() +{ + pc.baud(9600); + + //Set up I2C + i2c.frequency(400000); // use fast (400 kHz) I2C + + pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock); + + t.start(); + + lcd.init(); +// lcd.setBrightness(0.05); + + + // Read the WHO_AM_I register, this is a good test of communication + uint8_t whoami = MPU9150.readByte(MPU9150_ADDRESS, WHO_AM_I_MPU9150); // Read WHO_AM_I register for MPU-9250 + pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r"); + + if (whoami == 0x68) // WHO_AM_I should be 0x68 + { + pc.printf("MPU9150 WHO_AM_I is 0x%x\n\r", whoami); + pc.printf("MPU9150 is online...\n\r"); + lcd.clear(); + lcd.printString("MPU9150 is", 0, 0); + sprintf(buffer, "0x%x", whoami); + lcd.printString(buffer, 0, 1); + lcd.printString("shoud be 0x68", 0, 2); + wait(1); + + MPU9150.MPU9150SelfTest(SelfTest); + pc.printf("x-axis self test: acceleration trim within %f % of factory value\n\r", SelfTest[0]); + pc.printf("y-axis self test: acceleration trim within %f % of factory value\n\r", SelfTest[1]); + pc.printf("z-axis self test: acceleration trim within %f % of factory value\n\r", SelfTest[2]); + pc.printf("x-axis self test: gyration trim within %f % of factory value\n\r", SelfTest[3]); + pc.printf("y-axis self test: gyration trim within %f % of factory value\n\r", SelfTest[4]); + pc.printf("z-axis self test: gyration trim within %f % of factory value\n\r", SelfTest[5]); + wait(1); + MPU9150.resetMPU9150(); // Reset registers to default in preparation for device calibration + MPU9150.calibrateMPU9150(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers + pc.printf("x gyro bias = %f\n\r", gyroBias[0]); + pc.printf("y gyro bias = %f\n\r", gyroBias[1]); + pc.printf("z gyro bias = %f\n\r", gyroBias[2]); + pc.printf("x accel bias = %f\n\r", accelBias[0]); + pc.printf("y accel bias = %f\n\r", accelBias[1]); + pc.printf("z accel bias = %f\n\r", accelBias[2]); + wait(1); + MPU9150.initMPU9150(); + pc.printf("MPU9150 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature + MPU9150.initAK8975A(magCalibration); + pc.printf("AK8975 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer + } + else + { + pc.printf("Could not connect to MPU9150: \n\r"); + pc.printf("%#x \n", whoami); + + lcd.clear(); + lcd.printString("MPU9150", 0, 0); + lcd.printString("no connection", 0, 1); + sprintf(buffer, "WHO_AM_I 0x%x", whoami); + lcd.printString(buffer, 0, 2); + + while(1) ; // Loop forever if communication doesn't happen + } + + uint8_t MagRate = 10; // set magnetometer read rate in Hz; 10 to 100 (max) Hz are reasonable values + MPU9150.getAres(); // Get accelerometer sensitivity + MPU9150.getGres(); // Get gyro sensitivity + mRes = 10.*1229./4096.; // Conversion from 1229 microTesla full scale (4096) to 12.29 Gauss full scale + // So far, magnetometer bias is calculated and subtracted here manually, should construct an algorithm to do it automatically + // like the gyro and accelerometer biases + magbias[0] = -5.; // User environmental x-axis correction in milliGauss + magbias[1] = -95.; // User environmental y-axis correction in milliGauss + magbias[2] = -260.; // User environmental z-axis correction in milliGauss + + + while(1) { + + // If intPin goes high, all data registers have new data + if(MPU9150.readByte(MPU9150_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt + + MPU9150.readAccelData(accelCount); // Read the x/y/z adc values + // Now we'll calculate the accleration value into actual g's + ax = (float)accelCount[0]*aRes; // - accelBias[0]; // get actual g value, this depends on scale being set + ay = (float)accelCount[1]*aRes; // - accelBias[1]; + az = (float)accelCount[2]*aRes; // - accelBias[2]; + + MPU9150.readGyroData(gyroCount); // Read the x/y/z adc values + // Calculate the gyro value into actual degrees per second + gx = (float)gyroCount[0]*gRes; // - gyroBias[0]; // get actual gyro value, this depends on scale being set + gy = (float)gyroCount[1]*gRes; // - gyroBias[1]; + gz = (float)gyroCount[2]*gRes; // - gyroBias[2]; + + mcount++; + if (mcount > 200/MagRate) { // this is a poor man's way of setting the magnetometer read rate (see below) + MPU9150.readMagData(magCount); // Read the x/y/z adc values + // Calculate the magnetometer values in milliGauss + // Include factory calibration per data sheet and user environmental corrections + mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set + my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1]; + mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2]; + mcount = 0; + } + } + + Now = t.read_us(); + deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update + lastUpdate = Now; + + sum += deltat; + sumCount++; + +// if(lastUpdate - firstUpdate > 10000000.0f) { +// beta = 0.04; // decrease filter gain after stabilized +// zeta = 0.015; // increasey bias drift gain after stabilized + // } + + // Pass gyro rate as rad/s +// MPU9150.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); + MPU9150.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); + + // Serial print and/or display at 0.5 s rate independent of data rates + delt_t = t.read_ms() - count; + if (delt_t > 500) { // update LCD once per half-second independent of read rate + + pc.printf("ax = %f", 1000*ax); + pc.printf(" ay = %f", 1000*ay); + pc.printf(" az = %f mg\n\r", 1000*az); + + pc.printf("gx = %f", gx); + pc.printf(" gy = %f", gy); + pc.printf(" gz = %f deg/s\n\r", gz); + + pc.printf("gx = %f", mx); + pc.printf(" gy = %f", my); + pc.printf(" gz = %f mG\n\r", mz); + + tempCount = MPU9150.readTempData(); // Read the adc values + temperature = ((float) tempCount) / 340.0f + 36.53f; // Temperature in degrees Centigrade + pc.printf(" temperature = %f C\n\r", temperature); + + pc.printf("q0 = %f\n\r", q[0]); + pc.printf("q1 = %f\n\r", q[1]); + pc.printf("q2 = %f\n\r", q[2]); + pc.printf("q3 = %f\n\r", q[3]); + +/* lcd.clear(); + lcd.printString("MPU9150", 0, 0); + lcd.printString("x y z", 0, 1); + sprintf(buffer, "%d %d %d mg", (int)(1000.0f*ax), (int)(1000.0f*ay), (int)(1000.0f*az)); + lcd.printString(buffer, 0, 2); + sprintf(buffer, "%d %d %d deg/s", (int)gx, (int)gy, (int)gz); + lcd.printString(buffer, 0, 3); + sprintf(buffer, "%d %d %d mG", (int)mx, (int)my, (int)mz); + lcd.printString(buffer, 0, 4); + */ + // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. + // In this coordinate system, the positive z-axis is down toward Earth. + // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. + // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. + // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. + // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. + // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be + // applied in the correct order which for this configuration is yaw, pitch, and then roll. + // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. + yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); + pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); + roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); + pitch *= 180.0f / PI; + yaw *= 180.0f / PI; + yaw -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04 + roll *= 180.0f / PI; + + pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll); + pc.printf("average rate = %f\n\r", (float) sumCount/sum); +// sprintf(buffer, "YPR: %f %f %f", yaw, pitch, roll); +// lcd.printString(buffer, 0, 4); +// sprintf(buffer, "rate = %f", (float) sumCount/sum); +// lcd.printString(buffer, 0, 5); + + myled= !myled; + count = t.read_ms(); + + if(count > 1<<21) { + t.start(); // start the timer over again if ~30 minutes has passed + count = 0; + deltat= 0; + lastUpdate = t.read_us(); + } + sum = 0; + sumCount = 0; +} +} + + } \ No newline at end of file