Basic program to obtain properly-scaled gyro, accelerometer, and magnetometer data from the MPU-9150 9-axis motion sensor. Nine-axis sensor fusion with Sebastian Madgwick's and Mahony's open-source sensor fusion filters running on an STM32F401RE Nucleo board at 84 MHz achieve sensor fusion filter update rates of ~5000 Hz. Additional info at https://github.com/kriswiner/STM32F401.
Dependencies: ST_401_84MHZ mbed
main.cpp@0:39935bb3c1a1, 2014-06-29 (annotated)
- Committer:
- onehorse
- Date:
- Sun Jun 29 22:48:08 2014 +0000
- Revision:
- 0:39935bb3c1a1
Basic program to get properly-scaled gyro, accelerometer, and magnetometer data from the MPU9150 9-axis motion sensor. Sensor fusion is performed using Madgwick and Mahony open-source MARG fusion filters.
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
onehorse | 0:39935bb3c1a1 | 1 | /* MPU9150 Basic Example Code |
onehorse | 0:39935bb3c1a1 | 2 | by: Kris Winer |
onehorse | 0:39935bb3c1a1 | 3 | date: April 1, 2014 |
onehorse | 0:39935bb3c1a1 | 4 | license: Beerware - Use this code however you'd like. If you |
onehorse | 0:39935bb3c1a1 | 5 | find it useful you can buy me a beer some time. |
onehorse | 0:39935bb3c1a1 | 6 | |
onehorse | 0:39935bb3c1a1 | 7 | Demonstrate basic MPU-9150 functionality including parameterizing the register addresses, initializing the sensor, |
onehorse | 0:39935bb3c1a1 | 8 | getting properly scaled accelerometer, gyroscope, and magnetometer data out. Added display functions to |
onehorse | 0:39935bb3c1a1 | 9 | allow display to on breadboard monitor. Addition of 9 DoF sensor fusion using open source Madgwick and |
onehorse | 0:39935bb3c1a1 | 10 | Mahony filter algorithms. Sketch runs on the 3.3 V 8 MHz Pro Mini and the Teensy 3.1. |
onehorse | 0:39935bb3c1a1 | 11 | |
onehorse | 0:39935bb3c1a1 | 12 | SDA and SCL should have external pull-up resistors (to 3.3V). |
onehorse | 0:39935bb3c1a1 | 13 | 10k resistors are on the EMSENSR-9250 breakout board. |
onehorse | 0:39935bb3c1a1 | 14 | |
onehorse | 0:39935bb3c1a1 | 15 | Hardware setup: |
onehorse | 0:39935bb3c1a1 | 16 | MPU9150 Breakout --------- Arduino |
onehorse | 0:39935bb3c1a1 | 17 | VDD ---------------------- 3.3V |
onehorse | 0:39935bb3c1a1 | 18 | VDDI --------------------- 3.3V |
onehorse | 0:39935bb3c1a1 | 19 | SDA ----------------------- A4 |
onehorse | 0:39935bb3c1a1 | 20 | SCL ----------------------- A5 |
onehorse | 0:39935bb3c1a1 | 21 | GND ---------------------- GND |
onehorse | 0:39935bb3c1a1 | 22 | |
onehorse | 0:39935bb3c1a1 | 23 | Note: The MPU9150 is an I2C sensor and uses the Arduino Wire library. |
onehorse | 0:39935bb3c1a1 | 24 | Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1. |
onehorse | 0:39935bb3c1a1 | 25 | We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file. |
onehorse | 0:39935bb3c1a1 | 26 | We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ to 400000L /twi.h utility file. |
onehorse | 0:39935bb3c1a1 | 27 | */ |
onehorse | 0:39935bb3c1a1 | 28 | |
onehorse | 0:39935bb3c1a1 | 29 | //#include "ST_F401_84MHZ.h" |
onehorse | 0:39935bb3c1a1 | 30 | //F401_init84 myinit(0); |
onehorse | 0:39935bb3c1a1 | 31 | #include "mbed.h" |
onehorse | 0:39935bb3c1a1 | 32 | #include "MPU9150.h" |
onehorse | 0:39935bb3c1a1 | 33 | #include "N5110.h" |
onehorse | 0:39935bb3c1a1 | 34 | |
onehorse | 0:39935bb3c1a1 | 35 | // Using NOKIA 5110 monochrome 84 x 48 pixel display |
onehorse | 0:39935bb3c1a1 | 36 | // pin 9 - Serial clock out (SCLK) |
onehorse | 0:39935bb3c1a1 | 37 | // pin 8 - Serial data out (DIN) |
onehorse | 0:39935bb3c1a1 | 38 | // pin 7 - Data/Command select (D/C) |
onehorse | 0:39935bb3c1a1 | 39 | // pin 5 - LCD chip select (CS) |
onehorse | 0:39935bb3c1a1 | 40 | // pin 6 - LCD reset (RST) |
onehorse | 0:39935bb3c1a1 | 41 | //Adafruit_PCD8544 display = Adafruit_PCD8544(9, 8, 7, 5, 6); |
onehorse | 0:39935bb3c1a1 | 42 | |
onehorse | 0:39935bb3c1a1 | 43 | float sum = 0; |
onehorse | 0:39935bb3c1a1 | 44 | uint32_t sumCount = 0, mcount = 0; |
onehorse | 0:39935bb3c1a1 | 45 | char buffer[14]; |
onehorse | 0:39935bb3c1a1 | 46 | |
onehorse | 0:39935bb3c1a1 | 47 | MPU9150 MPU9150; |
onehorse | 0:39935bb3c1a1 | 48 | |
onehorse | 0:39935bb3c1a1 | 49 | Timer t; |
onehorse | 0:39935bb3c1a1 | 50 | |
onehorse | 0:39935bb3c1a1 | 51 | Serial pc(USBTX, USBRX); // tx, rx |
onehorse | 0:39935bb3c1a1 | 52 | |
onehorse | 0:39935bb3c1a1 | 53 | // VCC, SCE, RST, D/C, MOSI,S CLK, LED |
onehorse | 0:39935bb3c1a1 | 54 | N5110 lcd(PA_8, PB_10, PA_9, PA_6, PA_7, PA_5, PC_7); |
onehorse | 0:39935bb3c1a1 | 55 | |
onehorse | 0:39935bb3c1a1 | 56 | |
onehorse | 0:39935bb3c1a1 | 57 | |
onehorse | 0:39935bb3c1a1 | 58 | int main() |
onehorse | 0:39935bb3c1a1 | 59 | { |
onehorse | 0:39935bb3c1a1 | 60 | pc.baud(9600); |
onehorse | 0:39935bb3c1a1 | 61 | |
onehorse | 0:39935bb3c1a1 | 62 | //Set up I2C |
onehorse | 0:39935bb3c1a1 | 63 | i2c.frequency(400000); // use fast (400 kHz) I2C |
onehorse | 0:39935bb3c1a1 | 64 | |
onehorse | 0:39935bb3c1a1 | 65 | pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock); |
onehorse | 0:39935bb3c1a1 | 66 | |
onehorse | 0:39935bb3c1a1 | 67 | t.start(); |
onehorse | 0:39935bb3c1a1 | 68 | |
onehorse | 0:39935bb3c1a1 | 69 | lcd.init(); |
onehorse | 0:39935bb3c1a1 | 70 | // lcd.setBrightness(0.05); |
onehorse | 0:39935bb3c1a1 | 71 | |
onehorse | 0:39935bb3c1a1 | 72 | |
onehorse | 0:39935bb3c1a1 | 73 | // Read the WHO_AM_I register, this is a good test of communication |
onehorse | 0:39935bb3c1a1 | 74 | uint8_t whoami = MPU9150.readByte(MPU9150_ADDRESS, WHO_AM_I_MPU9150); // Read WHO_AM_I register for MPU-9250 |
onehorse | 0:39935bb3c1a1 | 75 | pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x68\n\r"); |
onehorse | 0:39935bb3c1a1 | 76 | |
onehorse | 0:39935bb3c1a1 | 77 | if (whoami == 0x68) // WHO_AM_I should be 0x68 |
onehorse | 0:39935bb3c1a1 | 78 | { |
onehorse | 0:39935bb3c1a1 | 79 | pc.printf("MPU9150 WHO_AM_I is 0x%x\n\r", whoami); |
onehorse | 0:39935bb3c1a1 | 80 | pc.printf("MPU9150 is online...\n\r"); |
onehorse | 0:39935bb3c1a1 | 81 | lcd.clear(); |
onehorse | 0:39935bb3c1a1 | 82 | lcd.printString("MPU9150 is", 0, 0); |
onehorse | 0:39935bb3c1a1 | 83 | sprintf(buffer, "0x%x", whoami); |
onehorse | 0:39935bb3c1a1 | 84 | lcd.printString(buffer, 0, 1); |
onehorse | 0:39935bb3c1a1 | 85 | lcd.printString("shoud be 0x68", 0, 2); |
onehorse | 0:39935bb3c1a1 | 86 | wait(1); |
onehorse | 0:39935bb3c1a1 | 87 | |
onehorse | 0:39935bb3c1a1 | 88 | MPU9150.MPU9150SelfTest(SelfTest); |
onehorse | 0:39935bb3c1a1 | 89 | pc.printf("x-axis self test: acceleration trim within %f % of factory value\n\r", SelfTest[0]); |
onehorse | 0:39935bb3c1a1 | 90 | pc.printf("y-axis self test: acceleration trim within %f % of factory value\n\r", SelfTest[1]); |
onehorse | 0:39935bb3c1a1 | 91 | pc.printf("z-axis self test: acceleration trim within %f % of factory value\n\r", SelfTest[2]); |
onehorse | 0:39935bb3c1a1 | 92 | pc.printf("x-axis self test: gyration trim within %f % of factory value\n\r", SelfTest[3]); |
onehorse | 0:39935bb3c1a1 | 93 | pc.printf("y-axis self test: gyration trim within %f % of factory value\n\r", SelfTest[4]); |
onehorse | 0:39935bb3c1a1 | 94 | pc.printf("z-axis self test: gyration trim within %f % of factory value\n\r", SelfTest[5]); |
onehorse | 0:39935bb3c1a1 | 95 | wait(1); |
onehorse | 0:39935bb3c1a1 | 96 | MPU9150.resetMPU9150(); // Reset registers to default in preparation for device calibration |
onehorse | 0:39935bb3c1a1 | 97 | MPU9150.calibrateMPU9150(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers |
onehorse | 0:39935bb3c1a1 | 98 | pc.printf("x gyro bias = %f\n\r", gyroBias[0]); |
onehorse | 0:39935bb3c1a1 | 99 | pc.printf("y gyro bias = %f\n\r", gyroBias[1]); |
onehorse | 0:39935bb3c1a1 | 100 | pc.printf("z gyro bias = %f\n\r", gyroBias[2]); |
onehorse | 0:39935bb3c1a1 | 101 | pc.printf("x accel bias = %f\n\r", accelBias[0]); |
onehorse | 0:39935bb3c1a1 | 102 | pc.printf("y accel bias = %f\n\r", accelBias[1]); |
onehorse | 0:39935bb3c1a1 | 103 | pc.printf("z accel bias = %f\n\r", accelBias[2]); |
onehorse | 0:39935bb3c1a1 | 104 | wait(1); |
onehorse | 0:39935bb3c1a1 | 105 | MPU9150.initMPU9150(); |
onehorse | 0:39935bb3c1a1 | 106 | pc.printf("MPU9150 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature |
onehorse | 0:39935bb3c1a1 | 107 | MPU9150.initAK8975A(magCalibration); |
onehorse | 0:39935bb3c1a1 | 108 | pc.printf("AK8975 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer |
onehorse | 0:39935bb3c1a1 | 109 | } |
onehorse | 0:39935bb3c1a1 | 110 | else |
onehorse | 0:39935bb3c1a1 | 111 | { |
onehorse | 0:39935bb3c1a1 | 112 | pc.printf("Could not connect to MPU9150: \n\r"); |
onehorse | 0:39935bb3c1a1 | 113 | pc.printf("%#x \n", whoami); |
onehorse | 0:39935bb3c1a1 | 114 | |
onehorse | 0:39935bb3c1a1 | 115 | lcd.clear(); |
onehorse | 0:39935bb3c1a1 | 116 | lcd.printString("MPU9150", 0, 0); |
onehorse | 0:39935bb3c1a1 | 117 | lcd.printString("no connection", 0, 1); |
onehorse | 0:39935bb3c1a1 | 118 | sprintf(buffer, "WHO_AM_I 0x%x", whoami); |
onehorse | 0:39935bb3c1a1 | 119 | lcd.printString(buffer, 0, 2); |
onehorse | 0:39935bb3c1a1 | 120 | |
onehorse | 0:39935bb3c1a1 | 121 | while(1) ; // Loop forever if communication doesn't happen |
onehorse | 0:39935bb3c1a1 | 122 | } |
onehorse | 0:39935bb3c1a1 | 123 | |
onehorse | 0:39935bb3c1a1 | 124 | uint8_t MagRate = 10; // set magnetometer read rate in Hz; 10 to 100 (max) Hz are reasonable values |
onehorse | 0:39935bb3c1a1 | 125 | MPU9150.getAres(); // Get accelerometer sensitivity |
onehorse | 0:39935bb3c1a1 | 126 | MPU9150.getGres(); // Get gyro sensitivity |
onehorse | 0:39935bb3c1a1 | 127 | mRes = 10.*1229./4096.; // Conversion from 1229 microTesla full scale (4096) to 12.29 Gauss full scale |
onehorse | 0:39935bb3c1a1 | 128 | // So far, magnetometer bias is calculated and subtracted here manually, should construct an algorithm to do it automatically |
onehorse | 0:39935bb3c1a1 | 129 | // like the gyro and accelerometer biases |
onehorse | 0:39935bb3c1a1 | 130 | magbias[0] = -5.; // User environmental x-axis correction in milliGauss |
onehorse | 0:39935bb3c1a1 | 131 | magbias[1] = -95.; // User environmental y-axis correction in milliGauss |
onehorse | 0:39935bb3c1a1 | 132 | magbias[2] = -260.; // User environmental z-axis correction in milliGauss |
onehorse | 0:39935bb3c1a1 | 133 | |
onehorse | 0:39935bb3c1a1 | 134 | |
onehorse | 0:39935bb3c1a1 | 135 | while(1) { |
onehorse | 0:39935bb3c1a1 | 136 | |
onehorse | 0:39935bb3c1a1 | 137 | // If intPin goes high, all data registers have new data |
onehorse | 0:39935bb3c1a1 | 138 | if(MPU9150.readByte(MPU9150_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt |
onehorse | 0:39935bb3c1a1 | 139 | |
onehorse | 0:39935bb3c1a1 | 140 | MPU9150.readAccelData(accelCount); // Read the x/y/z adc values |
onehorse | 0:39935bb3c1a1 | 141 | // Now we'll calculate the accleration value into actual g's |
onehorse | 0:39935bb3c1a1 | 142 | ax = (float)accelCount[0]*aRes; // - accelBias[0]; // get actual g value, this depends on scale being set |
onehorse | 0:39935bb3c1a1 | 143 | ay = (float)accelCount[1]*aRes; // - accelBias[1]; |
onehorse | 0:39935bb3c1a1 | 144 | az = (float)accelCount[2]*aRes; // - accelBias[2]; |
onehorse | 0:39935bb3c1a1 | 145 | |
onehorse | 0:39935bb3c1a1 | 146 | MPU9150.readGyroData(gyroCount); // Read the x/y/z adc values |
onehorse | 0:39935bb3c1a1 | 147 | // Calculate the gyro value into actual degrees per second |
onehorse | 0:39935bb3c1a1 | 148 | gx = (float)gyroCount[0]*gRes; // - gyroBias[0]; // get actual gyro value, this depends on scale being set |
onehorse | 0:39935bb3c1a1 | 149 | gy = (float)gyroCount[1]*gRes; // - gyroBias[1]; |
onehorse | 0:39935bb3c1a1 | 150 | gz = (float)gyroCount[2]*gRes; // - gyroBias[2]; |
onehorse | 0:39935bb3c1a1 | 151 | |
onehorse | 0:39935bb3c1a1 | 152 | mcount++; |
onehorse | 0:39935bb3c1a1 | 153 | if (mcount > 200/MagRate) { // this is a poor man's way of setting the magnetometer read rate (see below) |
onehorse | 0:39935bb3c1a1 | 154 | MPU9150.readMagData(magCount); // Read the x/y/z adc values |
onehorse | 0:39935bb3c1a1 | 155 | // Calculate the magnetometer values in milliGauss |
onehorse | 0:39935bb3c1a1 | 156 | // Include factory calibration per data sheet and user environmental corrections |
onehorse | 0:39935bb3c1a1 | 157 | mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]; // get actual magnetometer value, this depends on scale being set |
onehorse | 0:39935bb3c1a1 | 158 | my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1]; |
onehorse | 0:39935bb3c1a1 | 159 | mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2]; |
onehorse | 0:39935bb3c1a1 | 160 | mcount = 0; |
onehorse | 0:39935bb3c1a1 | 161 | } |
onehorse | 0:39935bb3c1a1 | 162 | } |
onehorse | 0:39935bb3c1a1 | 163 | |
onehorse | 0:39935bb3c1a1 | 164 | Now = t.read_us(); |
onehorse | 0:39935bb3c1a1 | 165 | deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update |
onehorse | 0:39935bb3c1a1 | 166 | lastUpdate = Now; |
onehorse | 0:39935bb3c1a1 | 167 | |
onehorse | 0:39935bb3c1a1 | 168 | sum += deltat; |
onehorse | 0:39935bb3c1a1 | 169 | sumCount++; |
onehorse | 0:39935bb3c1a1 | 170 | |
onehorse | 0:39935bb3c1a1 | 171 | // if(lastUpdate - firstUpdate > 10000000.0f) { |
onehorse | 0:39935bb3c1a1 | 172 | // beta = 0.04; // decrease filter gain after stabilized |
onehorse | 0:39935bb3c1a1 | 173 | // zeta = 0.015; // increasey bias drift gain after stabilized |
onehorse | 0:39935bb3c1a1 | 174 | // } |
onehorse | 0:39935bb3c1a1 | 175 | |
onehorse | 0:39935bb3c1a1 | 176 | // Pass gyro rate as rad/s |
onehorse | 0:39935bb3c1a1 | 177 | // MPU9150.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); |
onehorse | 0:39935bb3c1a1 | 178 | MPU9150.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); |
onehorse | 0:39935bb3c1a1 | 179 | |
onehorse | 0:39935bb3c1a1 | 180 | // Serial print and/or display at 0.5 s rate independent of data rates |
onehorse | 0:39935bb3c1a1 | 181 | delt_t = t.read_ms() - count; |
onehorse | 0:39935bb3c1a1 | 182 | if (delt_t > 500) { // update LCD once per half-second independent of read rate |
onehorse | 0:39935bb3c1a1 | 183 | |
onehorse | 0:39935bb3c1a1 | 184 | pc.printf("ax = %f", 1000*ax); |
onehorse | 0:39935bb3c1a1 | 185 | pc.printf(" ay = %f", 1000*ay); |
onehorse | 0:39935bb3c1a1 | 186 | pc.printf(" az = %f mg\n\r", 1000*az); |
onehorse | 0:39935bb3c1a1 | 187 | |
onehorse | 0:39935bb3c1a1 | 188 | pc.printf("gx = %f", gx); |
onehorse | 0:39935bb3c1a1 | 189 | pc.printf(" gy = %f", gy); |
onehorse | 0:39935bb3c1a1 | 190 | pc.printf(" gz = %f deg/s\n\r", gz); |
onehorse | 0:39935bb3c1a1 | 191 | |
onehorse | 0:39935bb3c1a1 | 192 | pc.printf("gx = %f", mx); |
onehorse | 0:39935bb3c1a1 | 193 | pc.printf(" gy = %f", my); |
onehorse | 0:39935bb3c1a1 | 194 | pc.printf(" gz = %f mG\n\r", mz); |
onehorse | 0:39935bb3c1a1 | 195 | |
onehorse | 0:39935bb3c1a1 | 196 | tempCount = MPU9150.readTempData(); // Read the adc values |
onehorse | 0:39935bb3c1a1 | 197 | temperature = ((float) tempCount) / 340.0f + 36.53f; // Temperature in degrees Centigrade |
onehorse | 0:39935bb3c1a1 | 198 | pc.printf(" temperature = %f C\n\r", temperature); |
onehorse | 0:39935bb3c1a1 | 199 | |
onehorse | 0:39935bb3c1a1 | 200 | pc.printf("q0 = %f\n\r", q[0]); |
onehorse | 0:39935bb3c1a1 | 201 | pc.printf("q1 = %f\n\r", q[1]); |
onehorse | 0:39935bb3c1a1 | 202 | pc.printf("q2 = %f\n\r", q[2]); |
onehorse | 0:39935bb3c1a1 | 203 | pc.printf("q3 = %f\n\r", q[3]); |
onehorse | 0:39935bb3c1a1 | 204 | |
onehorse | 0:39935bb3c1a1 | 205 | /* lcd.clear(); |
onehorse | 0:39935bb3c1a1 | 206 | lcd.printString("MPU9150", 0, 0); |
onehorse | 0:39935bb3c1a1 | 207 | lcd.printString("x y z", 0, 1); |
onehorse | 0:39935bb3c1a1 | 208 | sprintf(buffer, "%d %d %d mg", (int)(1000.0f*ax), (int)(1000.0f*ay), (int)(1000.0f*az)); |
onehorse | 0:39935bb3c1a1 | 209 | lcd.printString(buffer, 0, 2); |
onehorse | 0:39935bb3c1a1 | 210 | sprintf(buffer, "%d %d %d deg/s", (int)gx, (int)gy, (int)gz); |
onehorse | 0:39935bb3c1a1 | 211 | lcd.printString(buffer, 0, 3); |
onehorse | 0:39935bb3c1a1 | 212 | sprintf(buffer, "%d %d %d mG", (int)mx, (int)my, (int)mz); |
onehorse | 0:39935bb3c1a1 | 213 | lcd.printString(buffer, 0, 4); |
onehorse | 0:39935bb3c1a1 | 214 | */ |
onehorse | 0:39935bb3c1a1 | 215 | // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation. |
onehorse | 0:39935bb3c1a1 | 216 | // In this coordinate system, the positive z-axis is down toward Earth. |
onehorse | 0:39935bb3c1a1 | 217 | // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise. |
onehorse | 0:39935bb3c1a1 | 218 | // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative. |
onehorse | 0:39935bb3c1a1 | 219 | // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll. |
onehorse | 0:39935bb3c1a1 | 220 | // These arise from the definition of the homogeneous rotation matrix constructed from quaternions. |
onehorse | 0:39935bb3c1a1 | 221 | // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be |
onehorse | 0:39935bb3c1a1 | 222 | // applied in the correct order which for this configuration is yaw, pitch, and then roll. |
onehorse | 0:39935bb3c1a1 | 223 | // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links. |
onehorse | 0:39935bb3c1a1 | 224 | yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]); |
onehorse | 0:39935bb3c1a1 | 225 | pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2])); |
onehorse | 0:39935bb3c1a1 | 226 | roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]); |
onehorse | 0:39935bb3c1a1 | 227 | pitch *= 180.0f / PI; |
onehorse | 0:39935bb3c1a1 | 228 | yaw *= 180.0f / PI; |
onehorse | 0:39935bb3c1a1 | 229 | yaw -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04 |
onehorse | 0:39935bb3c1a1 | 230 | roll *= 180.0f / PI; |
onehorse | 0:39935bb3c1a1 | 231 | |
onehorse | 0:39935bb3c1a1 | 232 | pc.printf("Yaw, Pitch, Roll: %f %f %f\n\r", yaw, pitch, roll); |
onehorse | 0:39935bb3c1a1 | 233 | pc.printf("average rate = %f\n\r", (float) sumCount/sum); |
onehorse | 0:39935bb3c1a1 | 234 | // sprintf(buffer, "YPR: %f %f %f", yaw, pitch, roll); |
onehorse | 0:39935bb3c1a1 | 235 | // lcd.printString(buffer, 0, 4); |
onehorse | 0:39935bb3c1a1 | 236 | // sprintf(buffer, "rate = %f", (float) sumCount/sum); |
onehorse | 0:39935bb3c1a1 | 237 | // lcd.printString(buffer, 0, 5); |
onehorse | 0:39935bb3c1a1 | 238 | |
onehorse | 0:39935bb3c1a1 | 239 | myled= !myled; |
onehorse | 0:39935bb3c1a1 | 240 | count = t.read_ms(); |
onehorse | 0:39935bb3c1a1 | 241 | |
onehorse | 0:39935bb3c1a1 | 242 | if(count > 1<<21) { |
onehorse | 0:39935bb3c1a1 | 243 | t.start(); // start the timer over again if ~30 minutes has passed |
onehorse | 0:39935bb3c1a1 | 244 | count = 0; |
onehorse | 0:39935bb3c1a1 | 245 | deltat= 0; |
onehorse | 0:39935bb3c1a1 | 246 | lastUpdate = t.read_us(); |
onehorse | 0:39935bb3c1a1 | 247 | } |
onehorse | 0:39935bb3c1a1 | 248 | sum = 0; |
onehorse | 0:39935bb3c1a1 | 249 | sumCount = 0; |
onehorse | 0:39935bb3c1a1 | 250 | } |
onehorse | 0:39935bb3c1a1 | 251 | } |
onehorse | 0:39935bb3c1a1 | 252 | |
onehorse | 0:39935bb3c1a1 | 253 | } |