
Eurobot_2012_Secondary
Revision 0:fbfafa6bf5f9, committed 2012-04-20
- Comitter:
- narshu
- Date:
- Fri Apr 20 21:32:24 2012 +0000
- Commit message:
Changed in this revision
diff -r 000000000000 -r fbfafa6bf5f9 Kalman/Kalman.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Kalman/Kalman.cpp Fri Apr 20 21:32:24 2012 +0000 @@ -0,0 +1,262 @@ +//*************************************************************************************** +//Kalman Filter implementation +//*************************************************************************************** +#include "Kalman.h" +#include "rtos.h" +#include "RFSRF05.h" +//#include "MatrixMath.h" +//#include "Matrix.h" +#include "math.h" +#include "globals.h" +#include "motors.h" +#include "system.h" +#include "geometryfuncs.h" + +#include <tvmet/Matrix.h> +#include <tvmet/Vector.h> +using namespace tvmet; +DigitalOut led1(LED1); +DigitalOut led2(LED2); +DigitalOut led3(LED3); +DigitalOut led4(LED4); + + +Kalman::Kalman(Motors &motorsin) : + sonararray(p10,p21,p22,p23,p24,p25,p26,p5,p6,p7,p8,p9), + motors(motorsin), + predictthread(predictloopwrapper, this, osPriorityNormal, 512), + predictticker( SIGTICKARGS(predictthread, 0x1) ), +// sonarthread(sonarloopwrapper, this, osPriorityNormal, 256), +// sonarticker( SIGTICKARGS(sonarthread, 0x1) ), + updatethread(updateloopwrapper, this, osPriorityNormal, 2048) { + + //Initilising matrices + + // X = x, y, theta; + X = 0.5, 0, 0; + + P = 1, 0, 0, + 0, 1, 0, + 0, 0, 0.04; + + //Q = 0.002, 0, 0, //temporary matrix, Use dt! + // 0, 0.002, 0, + // 0, 0, 0.002; + + //measurment variance R is provided by each sensor when calling runupdate + + //attach callback + sonararray.callbackobj = (DummyCT*)this; + sonararray.mcallbackfunc = (void (DummyCT::*)(int beaconnum, float distance, float variance)) &Kalman::runupdate; + + + predictticker.start(20); +// sonarticker.start(50); + + +} + + +void Kalman::predictloop() { + + float lastleft = 0; + float lastright = 0; + + while (1) { + Thread::signal_wait(0x1); + led1 = !led1; + + int leftenc = motors.getEncoder1(); + int rightenc = motors.getEncoder2(); + + float dleft = motors.encoderToDistance(leftenc-lastleft)/1000.0f; + float dright = motors.encoderToDistance(rightenc-lastright)/1000.0f; + + lastleft = leftenc; + lastright = rightenc; + + + //The below calculation are in body frame (where +x is forward) + float dxp, dyp,d,r; + float thetap = (dright - dleft)*PI / (float(robotCircumference)/1000.0f); + if (abs(thetap) < 0.02) { //if the rotation through the integration step is small, approximate with a straight line to avoid numerical error + d = (dright + dleft)/2.0f; + dxp = d*cos(thetap/2.0f); + dyp = d*sin(thetap/2.0f); + + } else { //calculate circle arc + //float r = (right + left) / (4.0f * PI * thetap); + r = (dright + dleft) / (2.0f*thetap); + dxp = abs(r)*sin(thetap); + dyp = r - r*cos(thetap); + } + + statelock.lock(); + + //rotating to cartesian frame and updating state + X(0) += dxp * cos(X(2)) - dyp * sin(X(2)); + X(1) += dxp * sin(X(2)) + dyp * cos(X(2)); + X(2) = rectifyAng(X(2) + thetap); + + //Linearising F around X + Matrix<float, 3, 3> F; + F = 1, 0, (dxp * -sin(X(2)) - dyp * cos(X(2))), + 0, 1, (dxp * cos(X(2)) - dyp * sin(X(2))), + 0, 0, 1; + + //Generating forward and rotational variance + float varfwd = fwdvarperunit * (dright + dleft) / 2.0f; + float varang = varperang * thetap; + float varxydt = xyvarpertime * PREDICTPERIOD; + float varangdt = angvarpertime * PREDICTPERIOD; + + //Rotating into cartesian frame + Matrix<float, 2, 2> Qsub,Qsubrot,Qrot; + Qsub = varfwd + varxydt, 0, + 0, varxydt; + + Qrot = Rotmatrix(X(2)); + + Qsubrot = Qrot * Qsub * trans(Qrot); + + //Generate Q + Matrix<float, 3, 3> Q;//(Qsubrot); + Q = Qsubrot(0,0), Qsubrot(0,1), 0, + Qsubrot(1,0), Qsubrot(1,1), 0, + 0, 0, varang + varangdt; + + P = F * P * trans(F) + Q; + + statelock.unlock(); + //Thread::wait(PREDICTPERIOD); + + //cout << "predict" << X << endl; + //cout << P << endl; + } +} + +//void Kalman::sonarloop() { +// while (1) { +// Thread::signal_wait(0x1); +// sonararray.startRange(); +// } +//} + + +void Kalman::runupdate(measurement_t type, float value, float variance) { + //printf("beacon %d dist %f\r\n", sonarid, dist); + //led2 = !led2; + + measurmentdata* measured = (measurmentdata*)measureMQ.alloc(); + if (measured) { + measured->mtype = type; + measured->value = value; + measured->variance = variance; + + osStatus putret = measureMQ.put(measured); + if (putret) + led4 = 1; + // printf("putting in MQ error code %#x\r\n", putret); + } else { + led4 = 1; + //printf("MQalloc returned NULL ptr\r\n"); + } + +} + +void Kalman::updateloop() { + measurement_t type; + float value,variance,rbx,rby,expecdist,Y; + float dhdx,dhdy; + bool aborton2stddev = false; + + Matrix<float, 1, 3> H; + + float S; + Matrix<float, 3, 3> I3( identity< Matrix<float, 3, 3> >() ); + + + while (1) { + led2 = !led2; + + osEvent evt = measureMQ.get(); + + if (evt.status == osEventMail) { + + measurmentdata &measured = *(measurmentdata*)evt.value.p; + type = measured.mtype; //Note, may support more measurment types than sonar in the future! + value = measured.value; + variance = measured.variance; + + // don't forget to free the memory + measureMQ.free(&measured); + + if (type <= maxmeasure) { + + if (type <= SONAR3) { + + float dist = value / 1000.0f; //converting to m from mm + int sonarid = type; + aborton2stddev = false; + + statelock.lock(); + SonarMeasures[sonarid] = dist; //update the current sonar readings + + rbx = X(0) - beaconpos[sonarid].x/1000.0f; + rby = X(1) - beaconpos[sonarid].y/1000.0f; + + expecdist = hypot(rbx, rby);//sqrt(rbx*rbx + rby*rby); + Y = dist - expecdist; + + dhdx = rbx / expecdist; + dhdy = rby / expecdist; + + H = dhdx, dhdy, 0; + + } else if (type <= IR3) { + + aborton2stddev = false; + int IRidx = type-3; + + statelock.lock(); + IRMeasures[IRidx] = value; + + rbx = X(0) - beaconpos[IRidx].x/1000.0f; + rby = X(1) - beaconpos[IRidx].y/1000.0f; + + float expecang = atan2(-rbx, -rby) - X(2); + //printf("expecang: %0.4f, value: %0.4f \n\r", expecang*180/PI,value*180/PI); + Y = rectifyAng(value + expecang); + + float dstsq = rbx*rbx + rby*rby; + H = -rby/dstsq, rbx/dstsq, -1; + } + + Matrix<float, 3, 1> PH (P * trans(H)); + S = (H * PH)(0,0) + variance; + + if (aborton2stddev && Y*Y > 4 * S) { + statelock.unlock(); + continue; + } + + Matrix<float, 3, 1> K (PH * (1/S)); + + //Updating state + X += col(K, 0) * Y; + X(2) = rectifyAng(X(2)); + + P = (I3 - K * H) * P; + + statelock.unlock(); + + } + + } else { + led4 = 1; + //printf("ERROR: in updateloop, code %#x", evt); + } + + } + +} \ No newline at end of file
diff -r 000000000000 -r fbfafa6bf5f9 Kalman/Kalman.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Kalman/Kalman.h Fri Apr 20 21:32:24 2012 +0000 @@ -0,0 +1,59 @@ +#include "rtos.h" +//#include "Matrix.h" +#include "motors.h" +#include "RFSRF05.h" + +#include <tvmet/Matrix.h> +#include <tvmet/Vector.h> +using namespace tvmet; + + +class Kalman { +public: + enum measurement_t {SONAR1 = 0, SONAR2, SONAR3, IR1, IR2, IR3}; + static const measurement_t maxmeasure = IR3; + + Kalman(Motors &motorsin); + + void predict(); + void runupdate(measurement_t type, float value, float variance); + + //State variables + Vector<float, 3> X; + Matrix<float, 3, 3> P; + Mutex statelock; + + float SonarMeasures[3]; + float IRMeasures[3]; + +private: + + //Matrix<float, 3, 3> Q; //perhaps calculate on the fly? dependant on speed etc? + + RFSRF05 sonararray; + Motors& motors; + + Thread predictthread; + void predictloop(); + static void predictloopwrapper(void const *argument){ ((Kalman*)argument)->predictloop(); } + RtosTimer predictticker; + +// Thread sonarthread; +// void sonarloop(); +// static void sonarloopwrapper(void const *argument){ ((Kalman*)argument)->sonarloop(); } +// RtosTimer sonarticker; + + struct measurmentdata{ + measurement_t mtype; + float value; + float variance; + } ; + + Mail <measurmentdata, 16> measureMQ; + + Thread updatethread; + void updateloop(); + static void updateloopwrapper(void const *argument){ ((Kalman*)argument)->updateloop(); } + + +}; \ No newline at end of file
diff -r 000000000000 -r fbfafa6bf5f9 Kalman/Sonar/RF12B/RF12B.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Kalman/Sonar/RF12B/RF12B.cpp Fri Apr 20 21:32:24 2012 +0000 @@ -0,0 +1,393 @@ +#include "RF12B.h" + +#include "RF_defs.h" +#include <algorithm> + +//#include "globals.h" + +//DigitalOut DBG2(LED2); +//DigitalOut DBG3(LED3); +//DigitalOut DBG4(LED4); + +RF12B::RF12B(PinName _SDI, + PinName _SDO, + PinName _SCK, + PinName _NCS, + PinName _NIRQ):spi(_SDI, _SDO, _SCK), + NCS(_NCS), NIRQ(_NIRQ), NIRQ_in(_NIRQ){// rfled(LED3) { + + /* SPI frequency, word lenght, polarity and phase */ + spi.format(16,0); + spi.frequency(2000000); + + /* Set ~CS high */ + NCS = 1; + + /* Initialise RF Module */ + init(); + + /* Setup interrupt to happen on falling edge of NIRQ */ + NIRQ.fall(this, &RF12B::rxISR); +} + +/* Returns the packet length if data is available in the receive buffer, 0 otherwise*/ +unsigned int RF12B::available() { + return fifo.size(); +} + +/* Reads a packet of data, with length "size" Returns false if read failed. TODO: make a metafifo to isolate packets*/ +bool RF12B::read(unsigned char* data, unsigned int size) { + if (fifo.size() == 0) { + return false; + } else { + unsigned int i = 0; + while (fifo.size() > 0 && i < size) { + data[i++] = fifo.front(); + fifo.pop(); + } + return true; + } +} + +/* Reads a byte of data from the receive buffer */ +unsigned char RF12B::read() { + if (available()) { + unsigned char data = fifo.front(); + fifo.pop(); + return data; + } else { + return 0xFF; // Error val although could also be data... + } +} + +/* Sends a packet of data to the RF module for transmission TODO: Make asych*/ +void RF12B::write(unsigned char *data, unsigned char length) { + unsigned char crc = 0; + + /* Transmitter mode */ + changeMode(TX); + + writeCmd(0x0000); + send(0xAA); // PREAMBLE + send(0xAA); + send(0xAA); + send(0x2D); // SYNC + send(0xD4); + /* Packet Length */ + send(length); + crc = crc8(crc, length); + send(crc); + crc = crc8(crc, crc); + /* Packet Data */ + for (unsigned char i=0; i<length; i++) { + send(data[i]); + crc = crc8(crc, data[i]); + } + send(crc); + send(0xAA); // DUMMY BYTES + send(0xAA); + send(0xAA); + + /* Back to receiver mode */ + changeMode(RX); + status(); + + +} + +/* Transmit a 1-byte data packet */ +void RF12B::write(unsigned char data) { + write(&data, 1); +} + +void RF12B::write(queue<char> &data, int length) { + char crc = 0; + char length_byte = 0; + + /* -1 means try to transmit everything in the queue */ + if(length == -1) { + length = data.size(); + } + + /* max length of packet is 255 */ + length_byte = min(length, 255); + + /* Transmitter mode */ + changeMode(TX); + + writeCmd(0x0000); + send(0xAA); // PREAMBLE + send(0xAA); + send(0xAA); + send(0x2D); // SYNC + send(0xD4); + /* Packet Length */ + send(length_byte); + crc = crc8(crc, length_byte); + send(crc); + crc = crc8(crc, crc); + /* Packet Data */ + for (char i=0; i<length_byte; i++) { + send(data.front()); + crc = crc8(crc, data.front()); + data.pop(); + } + send(crc); + send(0xAA); // DUMMY BYTES + send(0xAA); + send(0xAA); + + /* Back to receiver mode */ + changeMode(RX); + status(); +} + +/********************************************************************** + * PRIVATE FUNCTIONS + *********************************************************************/ + +/* Initialises the RF12B module */ +void RF12B::init() { + /* writeCmd(0x80E7); //EL,EF,868band,12.0pF + changeMode(RX); + writeCmd(0xA640); //frequency select + writeCmd(0xC647); //4.8kbps + writeCmd(0x94A0); //VDI,FAST,134kHz,0dBm,-103dBm + writeCmd(0xC2AC); //AL,!ml,DIG,DQD4 + writeCmd(0xCA81); //FIFO8,SYNC,!ff,DR + writeCmd(0xCED4); //SYNC=2DD4 + writeCmd(0xC483); //@PWR,NO RSTRIC,!st,!fi,OE,EN + writeCmd(0x9850); //!mp,90kHz,MAX OUT + writeCmd(0xCC17); //OB1, COB0, LPX, Iddy, CDDIT�CBW0 + writeCmd(0xE000); //NOT USED + writeCmd(0xC800); //NOT USED + writeCmd(0xC040); //1.66MHz,2.2V */ + + writeCmd( + RFM_CONFIG_EL | + RFM_CONFIG_EF | + RFM_CONFIG_BAND_433 //| + //RFM_CONFIG_X_11_0pf // meh, using default + ); + + // 2. Power Management Command + // leave everything switched off for now + /* + writeCmd( + RFM_POWER_MANAGEMENT // switch all off + ); + */ + + // 3. Frequency Setting Command + writeCmd( + RFM_FREQUENCY | + RFM_FREQ_433Band(435.7) //I totally made this value up... if someone knows where the sweetspots are in this band, tell me! + ); + + + // 4. Data Rate Command + writeCmd(RFM_DATA_RATE_9600); + + + // 5. Receiver Control Command + writeCmd( + RFM_RX_CONTROL_P20_VDI | + RFM_RX_CONTROL_VDI_FAST | + //RFM_RX_CONTROL_BW(RFM_BAUD_RATE) | + RFM_RX_CONTROL_BW_134 | // CHANGE THIS TO 67 TO IMPROVE RANGE! (though the bitrate must then be below 8kbaud, and fsk modulation changed) + RFM_RX_CONTROL_GAIN_0 | + RFM_RX_CONTROL_RSSI_103 // Might need adjustment. Datasheet says around 10^-5 bit error rate at this level and baudrate. + ); + + // 6. Data Filter Command + writeCmd( + RFM_DATA_FILTER_AL | + RFM_DATA_FILTER_ML | + RFM_DATA_FILTER_DIG //| + //RFM_DATA_FILTER_DQD(4) + ); + + // 7. FIFO and Reset Mode Command + writeCmd( + RFM_FIFO_IT(8) | + RFM_FIFO_DR | + 0x8 //turn on 16bit sync word + ); + + // 8. FIFO Syncword + // Leave as default: 0xD4 + + // 9. Receiver FIFO Read + // when the interupt goes high, (and if we can assume that it was a fifo fill interrupt) we can read a byte using: + // result = RFM_READ_FIFO(); + + // 10. AFC Command + writeCmd( + //RFM_AFC_AUTO_VDI | //Note this might be changed to improve range. Refer to datasheet. + RFM_AFC_AUTO_INDEPENDENT | + RFM_AFC_RANGE_LIMIT_7_8 | + RFM_AFC_EN | + RFM_AFC_OE | + RFM_AFC_FI + ); + + // 11. TX Configuration Control Command + writeCmd( + RFM_TX_CONTROL_MOD_60 | + RFM_TX_CONTROL_POW_0 + ); + + + // 12. PLL Setting Command + writeCmd( + 0xCC77 & ~0x01 // Setting the PLL bandwith, less noise, but max bitrate capped at 86.2 + // I think this will slow down the pll's reaction time. Not sure, check with someone! + ); + + changeMode(RX); + resetRX(); + status(); +} + +/* Write a command to the RF Module */ +unsigned int RF12B::writeCmd(unsigned int cmd) { + NCS = 0; + unsigned int recv = spi.write(cmd); + NCS = 1; + return recv; +} + +/* Sends a byte of data across RF */ +void RF12B::send(unsigned char data) { + while (NIRQ); + writeCmd(0xB800 + data); +} + +/* Change the mode of the RF module to Transmitting or Receiving */ +void RF12B::changeMode(rfmode_t _mode) { + mode = _mode; + if (_mode == TX) { + writeCmd(0x8239); //!er,!ebb,ET,ES,EX,!eb,!ew,DC + } else { /* mode == RX */ + writeCmd(0x8299); //er,!ebb,ET,ES,EX,!eb,!ew,DC + } +} + +/* Interrupt routine for data reception */ +void RF12B::rxISR() { + + //static int cnt = 0; + //printf("%d hits\r\n", cnt); + //cnt++; + + //DBG2 = !(cnt%3); + //DBG3 = !((cnt+1)%3); + //DBG4 = !((cnt+2)%3); + + unsigned int data = 0; + static int i = -2; + static unsigned char packet_length = 0; + static unsigned char crc = 0; + + //Loop while interrupt is asserted + while (!NIRQ_in && mode == RX) { + + // Grab the packet's length byte + if (i == -2) { + data = writeCmd(0x0000); + if ( (data&0x8000) ) { + data = writeCmd(0xB000); + packet_length = (data&0x00FF); + crc = crc8(crc, packet_length); + i++; + } + } + + //If we exhaust the interrupt, exit + if (NIRQ_in) + break; + + // Check that packet length was correct + if (i == -1) { + data = writeCmd(0x0000); + if ( (data&0x8000) ) { + data = writeCmd(0xB000); + unsigned char crcofsize = (data&0x00FF); + if (crcofsize != crc) { + //It was wrong, start over + i = -2; + packet_length = 0; + crc = 0; + //temp = queue<unsigned char>(); + resetRX(); + } else { + crc = crc8(crc, crcofsize); + i++; + } + } + } + + //If we exhaust the interrupt, exit + if (NIRQ_in) + break; + + // Grab the packet's data + if (i >= 0 && i < packet_length) { + data = writeCmd(0x0000); + if ( (data&0x8000) ) { + data = writeCmd(0xB000); + //temp.push(data&0x00FF); + crc = crc8(crc, (unsigned char)(data&0x00FF)); + i++; + } + } + + //If we exhaust the interrupt, exit + if (NIRQ_in) + break; + + if (i >= packet_length) { + data = writeCmd(0x0000); + if ( (data&0x8000) ) { + data = writeCmd(0xB000); + if ((unsigned char)(data & 0x00FF) == crc) { + //If the checksum is correct, add our data to the end of the output buffer + //while (!temp.empty()) { + // fifo.push(temp.front()); + // temp.pop(); + //} + } + + // Tell RF Module we are finished, and clean up + i = -2; + packet_length = 0; + crc = 0; + //temp = queue<unsigned char>(); + resetRX(); + } + } + } +} + +unsigned int RF12B::status() { + return writeCmd(0x0000); +} + +/* Tell the RF Module this packet is received and wait for the next */ +void RF12B::resetRX() { + writeCmd(0xCA81); + writeCmd(0xCA83); +}; + +/* Calculate CRC8 */ +unsigned char RF12B::crc8(unsigned char crc, unsigned char data) { + crc = crc ^ data; + for (int i = 0; i < 8; i++) { + if (crc & 0x01) { + crc = (crc >> 1) ^ 0x8C; + } else { + crc >>= 1; + } + } + return crc; +} \ No newline at end of file
diff -r 000000000000 -r fbfafa6bf5f9 Kalman/Sonar/RF12B/RF12B.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Kalman/Sonar/RF12B/RF12B.h Fri Apr 20 21:32:24 2012 +0000 @@ -0,0 +1,75 @@ +#ifndef _RF12B_H +#define _RF12B_H + +#include "mbed.h" +#include <queue> + +enum rfmode_t{RX, TX}; + +class RF12B { +public: + /* Constructor */ + RF12B(PinName SDI, + PinName SDO, + PinName SCK, + PinName NCS, + PinName NIRQ); + + + /* Reads a packet of data. Returns false if read failed. Use available() to check how much space to allocate for buffer */ + bool read(unsigned char* data, unsigned int size); + + /* Reads a byte of data from the receive buffer + Returns 0xFF if there is no data */ + unsigned char read(); + + /* Transmits a packet of data */ + void write(unsigned char* data, unsigned char length); + void write(unsigned char data); /* 1-byte packet */ + void write(std::queue<char> &data, int length = -1); /* sends a whole queue */ + + /* Returns the packet length if data is available in the receive buffer, 0 otherwise*/ + unsigned int available(); + +protected: + /* Receive FIFO buffer */ + std::queue<unsigned char> fifo; + std::queue<unsigned char> temp; //for storing stuff mid-packet + + /* SPI module */ + SPI spi; + + /* Other digital pins */ + DigitalOut NCS; + InterruptIn NIRQ; + DigitalIn NIRQ_in; + //DigitalOut rfled; + + rfmode_t mode; + + /* Initialises the RF12B module */ + void init(); + + /* Write a command to the RF Module */ + unsigned int writeCmd(unsigned int cmd); + + /* Sends a byte of data across RF */ + void send(unsigned char data); + + /* Switch module between receive and transmit modes */ + void changeMode(rfmode_t mode); + + /* Interrupt routine for data reception */ + void rxISR(); + + /* Tell the RF Module this packet is received and wait for the next */ + void resetRX(); + + /* Return the RF Module Status word */ + unsigned int status(); + + /* Calculate CRC8 */ + unsigned char crc8(unsigned char crc, unsigned char data); +}; + +#endif /* _RF12B_H */ \ No newline at end of file
diff -r 000000000000 -r fbfafa6bf5f9 Kalman/Sonar/RF12B/RFSerial.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Kalman/Sonar/RF12B/RFSerial.cpp Fri Apr 20 21:32:24 2012 +0000 @@ -0,0 +1,25 @@ + +/* Constructor */ +#include "RFSerial.h" + +RFSerial::RFSerial(PinName _SDI, + PinName _SDO, + PinName _SCK, + PinName _NCS, + PinName _NIRQ) +:RF12B(_SDI, _SDO, _SCK, _NCS, _NIRQ) { + +} + +// Stream implementation functions +int RFSerial::_putc(int value) { + RF12B::write((unsigned char) value); + return value; +} +int RFSerial::_getc() { + if(available()) { + return RF12B::read(); + } else { + return EOF; + } +} \ No newline at end of file
diff -r 000000000000 -r fbfafa6bf5f9 Kalman/Sonar/RF12B/RFSerial.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Kalman/Sonar/RF12B/RFSerial.h Fri Apr 20 21:32:24 2012 +0000 @@ -0,0 +1,17 @@ +#include "mbed.h" +#include "RF12B.h" + +class RFSerial : public Stream, public RF12B { +public: + /* Constructor */ + RFSerial(PinName _SDI, + PinName _SDO, + PinName _SCK, + PinName _NCS, + PinName _NIRQ); + +protected: + // Stream implementation functions + virtual int _putc(int value); + virtual int _getc(); +}; \ No newline at end of file
diff -r 000000000000 -r fbfafa6bf5f9 Kalman/Sonar/RF12B/RF_defs.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Kalman/Sonar/RF12B/RF_defs.h Fri Apr 20 21:32:24 2012 +0000 @@ -0,0 +1,478 @@ +/* + * Open HR20 + * + * target: ATmega169 @ 4 MHz in Honnywell Rondostat HR20E + * + * compiler: WinAVR-20071221 + * avr-libc 1.6.0 + * GCC 4.2.2 + * + * copyright: 2008 Dario Carluccio (hr20-at-carluccio-dot-de) + * 2008 Jiri Dobry (jdobry-at-centrum-dot-cz) + * 2008 Mario Fischer (MarioFischer-at-gmx-dot-net) + * 2007 Michael Smola (Michael-dot-Smola-at-gmx-dot-net) + * + * license: This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU Library General Public + * License as published by the Free Software Foundation; either + * version 2 of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see http:*www.gnu.org/licenses + */ + +/* + * \file rfm.h + * \brief functions to control the RFM12 Radio Transceiver Module + * \author Mario Fischer <MarioFischer-at-gmx-dot-net>; Michael Smola <Michael-dot-Smola-at-gmx-dot-net> + * \date $Date: 2010/04/17 17:57:02 $ + * $Rev: 260 $ + */ + + +//#pragma once // multi-iclude prevention. gcc knows this pragma +#ifndef rfm_H +#define rfm_H + + +#define RFM_SPI_16(OUTVAL) rfm_spi16(OUTVAL) //<! a function that gets a uint16_t (clocked out value) and returns a uint16_t (clocked in value) + +#define RFM_CLK_OUTPUT 0 + +/* +#define RFM_TESTPIN_INIT +#define RFM_TESTPIN_ON +#define RFM_TESTPIN_OFF +#define RFM_TESTPIN_TOG + +#define RFM_CONFIG_DISABLE 0x00 //<! RFM_CONFIG_*** are combinable flags, what the RFM shold do +#define RFM_CONFIG_BROADCASTSTATUS 0x01 //<! Flag that enables the HR20's status broadcast every minute + +#define RFM_CONFIG_ENABLEALL 0xff +*/ + + +/////////////////////////////////////////////////////////////////////////////// +// +// RFM status bits +// +/////////////////////////////////////////////////////////////////////////////// + +// Interrupt bits, latched //////////////////////////////////////////////////// + +#define RFM_STATUS_FFIT 0x8000 // RX FIFO reached the progr. number of bits + // Cleared by any FIFO read method + +#define RFM_STATUS_RGIT 0x8000 // TX register is ready to receive + // Cleared by TX write + +#define RFM_STATUS_POR 0x4000 // Power On reset + // Cleared by read status + +#define RFM_STATUS_RGUR 0x2000 // TX register underrun, register over write + // Cleared by read status + +#define RFM_STATUS_FFOV 0x2000 // RX FIFO overflow + // Cleared by read status + +#define RFM_STATUS_WKUP 0x1000 // Wake up timer overflow + // Cleared by read status + +#define RFM_STATUS_EXT 0x0800 // Interupt changed to low + // Cleared by read status + +#define RFM_STATUS_LBD 0x0400 // Low battery detect + +// Status bits //////////////////////////////////////////////////////////////// + +#define RFM_STATUS_FFEM 0x0200 // FIFO is empty +#define RFM_STATUS_ATS 0x0100 // TX mode: Strong enough RF signal +#define RFM_STATUS_RSSI 0x0100 // RX mode: signal strength above programmed limit +#define RFM_STATUS_DQD 0x0080 // Data Quality detector output +#define RFM_STATUS_CRL 0x0040 // Clock recovery lock +#define RFM_STATUS_ATGL 0x0020 // Toggling in each AFC cycle + +/////////////////////////////////////////////////////////////////////////////// +// +// 1. Configuration Setting Command +// +/////////////////////////////////////////////////////////////////////////////// + +#define RFM_CONFIG 0x8000 + +#define RFM_CONFIG_EL 0x8080 // Enable TX Register +#define RFM_CONFIG_EF 0x8040 // Enable RX FIFO buffer +#define RFM_CONFIG_BAND_315 0x8000 // Frequency band +#define RFM_CONFIG_BAND_433 0x8010 +#define RFM_CONFIG_BAND_868 0x8020 +#define RFM_CONFIG_BAND_915 0x8030 +#define RFM_CONFIG_X_8_5pf 0x8000 // Crystal Load Capacitor +#define RFM_CONFIG_X_9_0pf 0x8001 +#define RFM_CONFIG_X_9_5pf 0x8002 +#define RFM_CONFIG_X_10_0pf 0x8003 +#define RFM_CONFIG_X_10_5pf 0x8004 +#define RFM_CONFIG_X_11_0pf 0x8005 +#define RFM_CONFIG_X_11_5pf 0x8006 +#define RFM_CONFIG_X_12_0pf 0x8007 +#define RFM_CONFIG_X_12_5pf 0x8008 +#define RFM_CONFIG_X_13_0pf 0x8009 +#define RFM_CONFIG_X_13_5pf 0x800A +#define RFM_CONFIG_X_14_0pf 0x800B +#define RFM_CONFIG_X_14_5pf 0x800C +#define RFM_CONFIG_X_15_0pf 0x800D +#define RFM_CONFIG_X_15_5pf 0x800E +#define RFM_CONFIG_X_16_0pf 0x800F + +/////////////////////////////////////////////////////////////////////////////// +// +// 2. Power Management Command +// +/////////////////////////////////////////////////////////////////////////////// + +#define RFM_POWER_MANAGEMENT 0x8200 + +#define RFM_POWER_MANAGEMENT_ER 0x8280 // Enable receiver +#define RFM_POWER_MANAGEMENT_EBB 0x8240 // Enable base band block +#define RFM_POWER_MANAGEMENT_ET 0x8220 // Enable transmitter +#define RFM_POWER_MANAGEMENT_ES 0x8210 // Enable synthesizer +#define RFM_POWER_MANAGEMENT_EX 0x8208 // Enable crystal oscillator +#define RFM_POWER_MANAGEMENT_EB 0x8204 // Enable low battery detector +#define RFM_POWER_MANAGEMENT_EW 0x8202 // Enable wake-up timer +#define RFM_POWER_MANAGEMENT_DC 0x8201 // Disable clock output of CLK pin + +#ifndef RFM_CLK_OUTPUT + #error RFM_CLK_OUTPUT must be defined to 0 or 1 +#endif +#if RFM_CLK_OUTPUT + #define RFM_TX_ON_PRE() RFM_SPI_16( \ + RFM_POWER_MANAGEMENT_ES | \ + RFM_POWER_MANAGEMENT_EX ) + #define RFM_TX_ON() RFM_SPI_16( \ + RFM_POWER_MANAGEMENT_ET | \ + RFM_POWER_MANAGEMENT_ES | \ + RFM_POWER_MANAGEMENT_EX ) + #define RFM_RX_ON() RFM_SPI_16( \ + RFM_POWER_MANAGEMENT_ER | \ + RFM_POWER_MANAGEMENT_EBB | \ + RFM_POWER_MANAGEMENT_ES | \ + RFM_POWER_MANAGEMENT_EX ) + #define RFM_OFF() RFM_SPI_16( \ + RFM_POWER_MANAGEMENT_EX ) +#else + #define RFM_TX_ON_PRE() RFM_SPI_16( \ + RFM_POWER_MANAGEMENT_DC | \ + RFM_POWER_MANAGEMENT_ES | \ + RFM_POWER_MANAGEMENT_EX ) + #define RFM_TX_ON() RFM_SPI_16( \ + RFM_POWER_MANAGEMENT_DC | \ + RFM_POWER_MANAGEMENT_ET | \ + RFM_POWER_MANAGEMENT_ES | \ + RFM_POWER_MANAGEMENT_EX ) + #define RFM_RX_ON() RFM_SPI_16( \ + RFM_POWER_MANAGEMENT_DC | \ + RFM_POWER_MANAGEMENT_ER | \ + RFM_POWER_MANAGEMENT_EBB | \ + RFM_POWER_MANAGEMENT_ES | \ + RFM_POWER_MANAGEMENT_EX ) + #define RFM_OFF() RFM_SPI_16(RFM_POWER_MANAGEMENT_DC) +#endif +/////////////////////////////////////////////////////////////////////////////// +// +// 3. Frequency Setting Command +// +/////////////////////////////////////////////////////////////////////////////// + +#define RFM_FREQUENCY 0xA000 + +#define RFM_FREQ_315Band(v) (uint16_t)((v/10.0-31)*4000) +#define RFM_FREQ_433Band(v) (uint16_t)((v/10.0-43)*4000) +#define RFM_FREQ_868Band(v) (uint16_t)((v/20.0-43)*4000) +#define RFM_FREQ_915Band(v) (uint16_t)((v/30.0-30)*4000) + +/////////////////////////////////////////////////////////////////////////////// +// +// 4. Data Rate Command +// +///////////////////////////////////////////////////////////////////////////////// + +#define RFM_BAUD_RATE 9600 + +#define RFM_DATA_RATE 0xC600 + +#define RFM_DATA_RATE_CS 0xC680 +#define RFM_DATA_RATE_4800 0xC647 +#define RFM_DATA_RATE_9600 0xC623 +#define RFM_DATA_RATE_19200 0xC611 +#define RFM_DATA_RATE_38400 0xC608 +#define RFM_DATA_RATE_57600 0xC605 + +#define RFM_SET_DATARATE(baud) ( ((baud)<5400) ? (RFM_DATA_RATE_CS|((43104/(baud))-1)) : (RFM_DATA_RATE|((344828UL/(baud))-1)) ) + +/////////////////////////////////////////////////////////////////////////////// +// +// 5. Receiver Control Command +// +/////////////////////////////////////////////////////////////////////////////// + +#define RFM_RX_CONTROL 0x9000 + +#define RFM_RX_CONTROL_P20_INT 0x9000 // Pin20 = ExternalInt +#define RFM_RX_CONTROL_P20_VDI 0x9400 // Pin20 = VDI out + +#define RFM_RX_CONTROL_VDI_FAST 0x9000 // fast VDI Response time +#define RFM_RX_CONTROL_VDI_MED 0x9100 // medium +#define RFM_RX_CONTROL_VDI_SLOW 0x9200 // slow +#define RFM_RX_CONTROL_VDI_ON 0x9300 // Always on + +#define RFM_RX_CONTROL_BW_400 0x9020 // bandwidth 400kHz +#define RFM_RX_CONTROL_BW_340 0x9040 // bandwidth 340kHz +#define RFM_RX_CONTROL_BW_270 0x9060 // bandwidth 270kHz +#define RFM_RX_CONTROL_BW_200 0x9080 // bandwidth 200kHz +#define RFM_RX_CONTROL_BW_134 0x90A0 // bandwidth 134kHz +#define RFM_RX_CONTROL_BW_67 0x90C0 // bandwidth 67kHz + +#define RFM_RX_CONTROL_GAIN_0 0x9000 // LNA gain 0db +#define RFM_RX_CONTROL_GAIN_6 0x9008 // LNA gain -6db +#define RFM_RX_CONTROL_GAIN_14 0x9010 // LNA gain -14db +#define RFM_RX_CONTROL_GAIN_20 0x9018 // LNA gain -20db + +#define RFM_RX_CONTROL_RSSI_103 0x9000 // DRSSI threshold -103dbm +#define RFM_RX_CONTROL_RSSI_97 0x9001 // DRSSI threshold -97dbm +#define RFM_RX_CONTROL_RSSI_91 0x9002 // DRSSI threshold -91dbm +#define RFM_RX_CONTROL_RSSI_85 0x9003 // DRSSI threshold -85dbm +#define RFM_RX_CONTROL_RSSI_79 0x9004 // DRSSI threshold -79dbm +#define RFM_RX_CONTROL_RSSI_73 0x9005 // DRSSI threshold -73dbm +//#define RFM_RX_CONTROL_RSSI_67 0x9006 // DRSSI threshold -67dbm // RF12B reserved +//#define RFM_RX_CONTROL_RSSI_61 0x9007 // DRSSI threshold -61dbm // RF12B reserved + +#define RFM_RX_CONTROL_BW(baud) (((baud)<8000) ? \ + RFM_RX_CONTROL_BW_67 : \ + ( \ + ((baud)<30000) ? \ + RFM_RX_CONTROL_BW_134 : \ + RFM_RX_CONTROL_BW_200 \ + )) + +/////////////////////////////////////////////////////////////////////////////// +// +// 6. Data Filter Command +// +/////////////////////////////////////////////////////////////////////////////// + +#define RFM_DATA_FILTER 0xC228 + +#define RFM_DATA_FILTER_AL 0xC2A8 // clock recovery auto-lock +#define RFM_DATA_FILTER_ML 0xC268 // clock recovery fast mode +#define RFM_DATA_FILTER_DIG 0xC228 // data filter type digital +#define RFM_DATA_FILTER_ANALOG 0xC238 // data filter type analog +#define RFM_DATA_FILTER_DQD(level) (RFM_DATA_FILTER | (level & 0x7)) + +/////////////////////////////////////////////////////////////////////////////// +// +// 7. FIFO and Reset Mode Command +// +/////////////////////////////////////////////////////////////////////////////// + +#define RFM_FIFO 0xCA00 + +#define RFM_FIFO_AL 0xCA04 // FIFO Start condition sync-word/always +#define RFM_FIFO_FF 0xCA02 // Enable FIFO fill +#define RFM_FIFO_DR 0xCA01 // Disable hi sens reset mode +#define RFM_FIFO_IT(level) (RFM_FIFO | (( (level) & 0xF)<<4)) + +#define RFM_FIFO_OFF() RFM_SPI_16(RFM_FIFO_IT(8) | RFM_FIFO_DR) +#define RFM_FIFO_ON() RFM_SPI_16(RFM_FIFO_IT(8) | RFM_FIFO_FF | RFM_FIFO_DR) + +///////////////////////////////////////////////////////////////////////////// +// +// 8. Receiver FIFO Read +// +///////////////////////////////////////////////////////////////////////////// + +#define RFM_READ_FIFO() (RFM_SPI_16(0xB000) & 0xFF) + +///////////////////////////////////////////////////////////////////////////// +// +// 9. AFC Command +// +///////////////////////////////////////////////////////////////////////////// + +#define RFM_AFC 0xC400 + +#define RFM_AFC_EN 0xC401 +#define RFM_AFC_OE 0xC402 +#define RFM_AFC_FI 0xC404 +#define RFM_AFC_ST 0xC408 + +// Limits the value of the frequency offset register to the next values: + +#define RFM_AFC_RANGE_LIMIT_NO 0xC400 // 0: No restriction +#define RFM_AFC_RANGE_LIMIT_15_16 0xC410 // 1: +15 fres to -16 fres +#define RFM_AFC_RANGE_LIMIT_7_8 0xC420 // 2: +7 fres to -8 fres +#define RFM_AFC_RANGE_LIMIT_3_4 0xC430 // 3: +3 fres to -4 fres + +// fres=2.5 kHz in 315MHz and 433MHz Bands +// fres=5.0 kHz in 868MHz Band +// fres=7.5 kHz in 915MHz Band + +#define RFM_AFC_AUTO_OFF 0xC400 // 0: Auto mode off (Strobe is controlled by microcontroller) +#define RFM_AFC_AUTO_ONCE 0xC440 // 1: Runs only once after each power-up +#define RFM_AFC_AUTO_VDI 0xC480 // 2: Keep the foffset only during receiving(VDI=high) +#define RFM_AFC_AUTO_INDEPENDENT 0xC4C0 // 3: Keep the foffset value independently trom the state of the VDI signal + +/////////////////////////////////////////////////////////////////////////////// +// +// 10. TX Configuration Control Command +// +/////////////////////////////////////////////////////////////////////////////// + +#define RFM_TX_CONTROL 0x9800 + +#define RFM_TX_CONTROL_POW_0 0x9800 +#define RFM_TX_CONTROL_POW_3 0x9801 +#define RFM_TX_CONTROL_POW_6 0x9802 +#define RFM_TX_CONTROL_POW_9 0x9803 +#define RFM_TX_CONTROL_POW_12 0x9804 +#define RFM_TX_CONTROL_POW_15 0x9805 +#define RFM_TX_CONTROL_POW_18 0x9806 +#define RFM_TX_CONTROL_POW_21 0x9807 +#define RFM_TX_CONTROL_MOD_15 0x9800 +#define RFM_TX_CONTROL_MOD_30 0x9810 +#define RFM_TX_CONTROL_MOD_45 0x9820 +#define RFM_TX_CONTROL_MOD_60 0x9830 +#define RFM_TX_CONTROL_MOD_75 0x9840 +#define RFM_TX_CONTROL_MOD_90 0x9850 +#define RFM_TX_CONTROL_MOD_105 0x9860 +#define RFM_TX_CONTROL_MOD_120 0x9870 +#define RFM_TX_CONTROL_MOD_135 0x9880 +#define RFM_TX_CONTROL_MOD_150 0x9890 +#define RFM_TX_CONTROL_MOD_165 0x98A0 +#define RFM_TX_CONTROL_MOD_180 0x98B0 +#define RFM_TX_CONTROL_MOD_195 0x98C0 +#define RFM_TX_CONTROL_MOD_210 0x98D0 +#define RFM_TX_CONTROL_MOD_225 0x98E0 +#define RFM_TX_CONTROL_MOD_240 0x98F0 +#define RFM_TX_CONTROL_MP 0x9900 + +#define RFM_TX_CONTROL_MOD(baud) (((baud)<8000) ? \ + RFM_TX_CONTROL_MOD_45 : \ + ( \ + ((baud)<20000) ? \ + RFM_TX_CONTROL_MOD_60 : \ + ( \ + ((baud)<30000) ? \ + RFM_TX_CONTROL_MOD_75 : \ + ( \ + ((baud)<40000) ? \ + RFM_TX_CONTROL_MOD_90 : \ + RFM_TX_CONTROL_MOD_120 \ + ) \ + ) \ + )) + +///////////////////////////////////////////////////////////////////////////// +// +// 11. Transmitter Register Write Command +// +///////////////////////////////////////////////////////////////////////////// + +//#define RFM_WRITE(byte) RFM_SPI_16(0xB800 | ((byte) & 0xFF)) +#define RFM_WRITE(byte) RFM_SPI_16(0xB800 | (byte) ) + +/////////////////////////////////////////////////////////////////////////////// +// +// 12. Wake-up Timer Command +// +/////////////////////////////////////////////////////////////////////////////// + +#define RFM_WAKEUP_TIMER 0xE000 +#define RFM_WAKEUP_SET(time) RFM_SPI_16(RFM_WAKEUP_TIMER | (time)) + +#define RFM_WAKEUP_480s (RFM_WAKEUP_TIMER |(11 << 8)| 234) +#define RFM_WAKEUP_240s (RFM_WAKEUP_TIMER |(10 << 8)| 234) +#define RFM_WAKEUP_120s (RFM_WAKEUP_TIMER |(9 << 8)| 234) +#define RFM_WAKEUP_119s (RFM_WAKEUP_TIMER |(9 << 8)| 232) + +#define RFM_WAKEUP_60s (RFM_WAKEUP_TIMER |(8 << 8) | 235) +#define RFM_WAKEUP_59s (RFM_WAKEUP_TIMER |(8 << 8) | 230) + +#define RFM_WAKEUP_30s (RFM_WAKEUP_TIMER |(7 << 8) | 235) +#define RFM_WAKEUP_29s (RFM_WAKEUP_TIMER |(7 << 8) | 227) + +#define RFM_WAKEUP_8s (RFM_WAKEUP_TIMER |(5 << 8) | 250) +#define RFM_WAKEUP_7s (RFM_WAKEUP_TIMER |(5 << 8) | 219) +#define RFM_WAKEUP_6s (RFM_WAKEUP_TIMER |(6 << 8) | 94) +#define RFM_WAKEUP_5s (RFM_WAKEUP_TIMER |(5 << 8) | 156) +#define RFM_WAKEUP_4s (RFM_WAKEUP_TIMER |(5 << 8) | 125) +#define RFM_WAKEUP_1s (RFM_WAKEUP_TIMER |(2 << 8) | 250) +#define RFM_WAKEUP_900ms (RFM_WAKEUP_TIMER |(2 << 8) | 225) +#define RFM_WAKEUP_800ms (RFM_WAKEUP_TIMER |(2 << 8) | 200) +#define RFM_WAKEUP_700ms (RFM_WAKEUP_TIMER |(2 << 8) | 175) +#define RFM_WAKEUP_600ms (RFM_WAKEUP_TIMER |(2 << 8) | 150) +#define RFM_WAKEUP_500ms (RFM_WAKEUP_TIMER |(2 << 8) | 125) +#define RFM_WAKEUP_400ms (RFM_WAKEUP_TIMER |(2 << 8) | 100) +#define RFM_WAKEUP_300ms (RFM_WAKEUP_TIMER |(2 << 8) | 75) +#define RFM_WAKEUP_200ms (RFM_WAKEUP_TIMER |(2 << 8) | 50) +#define RFM_WAKEUP_100ms (RFM_WAKEUP_TIMER |(2 << 8) | 25) + +/////////////////////////////////////////////////////////////////////////////// +// +// 13. Low Duty-Cycle Command +// +/////////////////////////////////////////////////////////////////////////////// + +#define RFM_LOW_DUTY_CYCLE 0xC800 + +/////////////////////////////////////////////////////////////////////////////// +// +// 14. Low Battery Detector Command +// +/////////////////////////////////////////////////////////////////////////////// + +#define RFM_LOW_BATT_DETECT 0xC000 +#define RFM_LOW_BATT_DETECT_D_1MHZ 0xC000 +#define RFM_LOW_BATT_DETECT_D_1_25MHZ 0xC020 +#define RFM_LOW_BATT_DETECT_D_1_66MHZ 0xC040 +#define RFM_LOW_BATT_DETECT_D_2MHZ 0xC060 +#define RFM_LOW_BATT_DETECT_D_2_5MHZ 0xC080 +#define RFM_LOW_BATT_DETECT_D_3_33MHZ 0xC0A0 +#define RFM_LOW_BATT_DETECT_D_5MHZ 0xC0C0 +#define RFM_LOW_BATT_DETECT_D_10MHZ 0xC0E0 + +/////////////////////////////////////////////////////////////////////////////// +// +// 15. Status Read Command +// +/////////////////////////////////////////////////////////////////////////////// + +#define RFM_READ_STATUS() RFM_SPI_16(0x0000) +#define RFM_READ_STATUS_FFIT() SPI_1 (0x00) +#define RFM_READ_STATUS_RGIT RFM_READ_STATUS_FFIT + +/////////////////////////////////////////////////////////////////////////////// + +// RFM air protocol flags: + +#define RFMPROTO_FLAGS_BITASK_PACKETTYPE 0b11000000 //!< the uppermost 2 bits of the flags field encode the packettype +#define RFMPROTO_FLAGS_PACKETTYPE_BROADCAST 0b00000000 //!< broadcast packettype (message from hr20, protocol; step 1) +#define RFMPROTO_FLAGS_PACKETTYPE_COMMAND 0b01000000 //!< command packettype (message to hr20, protocol; step 2) +#define RFMPROTO_FLAGS_PACKETTYPE_REPLY 0b10000000 //!< reply packettype (message from hr20, protocol; step 3) +#define RFMPROTO_FLAGS_PACKETTYPE_SPECIAL 0b11000000 //!< currently unused packettype + +#define RFMPROTO_FLAGS_BITASK_DEVICETYPE 0b00011111 //!< the lowermost 5 bytes denote the device type. this way other sensors and actors may coexist +#define RFMPROTO_FLAGS_DEVICETYPE_OPENHR20 0b00010100 //!< topen HR20 device type. 10100 is for decimal 20 + +#define RFMPROTO_IS_PACKETTYPE_BROADCAST(FLAGS) ( RFMPROTO_FLAGS_PACKETTYPE_BROADCAST == ((FLAGS) & RFMPROTO_FLAGS_BITASK_PACKETTYPE) ) +#define RFMPROTO_IS_PACKETTYPE_COMMAND(FLAGS) ( RFMPROTO_FLAGS_PACKETTYPE_COMMAND == ((FLAGS) & RFMPROTO_FLAGS_BITASK_PACKETTYPE) ) +#define RFMPROTO_IS_PACKETTYPE_REPLY(FLAGS) ( RFMPROTO_FLAGS_PACKETTYPE_REPLY == ((FLAGS) & RFMPROTO_FLAGS_BITASK_PACKETTYPE) ) +#define RFMPROTO_IS_PACKETTYPE_SPECIAL(FLAGS) ( RFMPROTO_FLAGS_PACKETTYPE_SPECIAL == ((FLAGS) & RFMPROTO_FLAGS_BITASK_PACKETTYPE) ) +#define RFMPROTO_IS_DEVICETYPE_OPENHR20(FLAGS) ( RFMPROTO_FLAGS_DEVICETYPE_OPENHR20 == ((FLAGS) & RFMPROTO_FLAGS_BITASK_DEVICETYPE) ) + +/////////////////////////////////////////////////////////////////////////////// + +#endif \ No newline at end of file
diff -r 000000000000 -r fbfafa6bf5f9 Kalman/Sonar/RFSRF05.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Kalman/Sonar/RFSRF05.cpp Fri Apr 20 21:32:24 2012 +0000 @@ -0,0 +1,139 @@ + +#include "RFSRF05.h" +#include "mbed.h" +#include "globals.h" + +RFSRF05::RFSRF05(PinName trigger, + PinName echo0, + PinName echo1, + PinName echo2, + PinName echo3, + PinName echo4, + PinName echo5, + PinName SDI, + PinName SDO, + PinName SCK, + PinName NCS, + PinName NIRQ) + : _rf(SDI,SDO,SCK,NCS,NIRQ), + _trigger(trigger), + _echo0(echo0), + _echo1(echo1), + _echo2(echo2), + _echo3(echo3), + _echo4(echo4), + _echo5(echo5) { + + // initialises codes + _code[0] = CODE0; + _code[1] = CODE1; + _code[2] = CODE2; + + //set callback execute to true + ValidPulse = false; + + // Attach interrupts + _echo0.rise(this, &RFSRF05::_rising); + _echo0.fall(this, &RFSRF05::_falling); + _echo1.fall(this, &RFSRF05::_falling); + _echo2.fall(this, &RFSRF05::_falling); + _echo3.fall(this, &RFSRF05::_falling); + _echo4.fall(this, &RFSRF05::_falling); + _echo5.fall(this, &RFSRF05::_falling); + + + //init callabck function + callbackfunc = NULL; + callbackobj = NULL; + mcallbackfunc = NULL; + + // innitialises beacon counter + _beacon_counter = 0; + + //Interrupts every 50ms + _ticker.attach(this, &RFSRF05::_startRange, 0.05); +} + + +void RFSRF05::_startRange() { + + //printf("Srange\r\r"); + + // increments counter + _beacon_counter = (_beacon_counter + 1) % 3; + + + // set flags + ValidPulse = false; + expValidPulse = true; + + // writes code to RF port + _rf.write(_code[_beacon_counter]); + + + + // send a trigger pulse, 10uS long + _trigger = 1; + wait_us (10); + _trigger = 0; + +} + + +// Clear and start the timer at the begining of the echo pulse +void RFSRF05::_rising(void) { + + _timer.reset(); + _timer.start(); + + //Set callback execute to ture + if (expValidPulse) { + ValidPulse = true; + expValidPulse = false; + } +} + +// Stop and read the timer at the end of the pulse +void RFSRF05::_falling(void) { + _timer.stop(); + + if (ValidPulse) { + //printf("Validpulse trig!\r\n"); + ValidPulse = false; + + //Calucate distance + _dist[_beacon_counter] = _timer.read_us()/2.9 + 300; + + if (callbackfunc) + (*callbackfunc)(_beacon_counter, _dist[_beacon_counter]); + + if (callbackobj && mcallbackfunc) + (callbackobj->*mcallbackfunc)(_beacon_counter, _dist[_beacon_counter], sonarvariance); + + } + +} + +float RFSRF05::read0() { + // returns distance + return (_dist[0]); +} + +float RFSRF05::read1() { + // returns distance + return (_dist[1]); +} + +float RFSRF05::read2() { + // returns distance + return (_dist[2]); +} + +float RFSRF05::read(unsigned int beaconnum) { + // returns distance + return (_dist[beaconnum]); +} + +//SRF05::operator float() { +// return read(); +//}
diff -r 000000000000 -r fbfafa6bf5f9 Kalman/Sonar/RFSRF05.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Kalman/Sonar/RFSRF05.h Fri Apr 20 21:32:24 2012 +0000 @@ -0,0 +1,91 @@ + +#ifndef MBED_RFSRF05_H +#define MBED_RFSRF05_H + +#include "mbed.h" +#include "RF12B.h" + +#define CODE0 0x22 +#define CODE1 0x44 +#define CODE2 0x88 + +/* SAMPLE IMPLEMENTATION! +RFSRF05 my_srf(p13,p21,p22,p23,p24,p25,p26,p5,p6,p7,p8,p9); + + +void callbinmain(int num, float dist) { + //Here is where you deal with your brand new reading ;D +} + +int main() { + pc.printf("Hello World of RobotSonar!\r\n"); + my_srf.callbackfunc = callbinmain; + + while (1); +} + + */ + +class DummyCT; + +class RFSRF05 { +public: + + RFSRF05( + PinName trigger, + PinName echo0, + PinName echo1, + PinName echo2, + PinName echo3, + PinName echo4, + PinName echo5, + PinName SDI, + PinName SDO, + PinName SCK, + PinName NCS, + PinName NIRQ); + + /** A non-blocking function that will return the last measurement + * + * @returns floating point representation of distance in mm + */ + float read0(); + float read1(); + float read2(); + float read(unsigned int beaconnum); + + + /** A assigns a callback function when a new reading is available **/ + void (*callbackfunc)(int beaconnum, float distance); + DummyCT* callbackobj; + void (DummyCT::*mcallbackfunc)(int beaconnum, float distance, float variance); + + //triggers a read + + + /** A short hand way of using the read function */ + //operator float(); + +private : + RF12B _rf; + DigitalOut _trigger; + InterruptIn _echo0; + InterruptIn _echo1; + InterruptIn _echo2; + InterruptIn _echo3; + InterruptIn _echo4; + InterruptIn _echo5; + Timer _timer; + Ticker _ticker; + void _startRange(); + void _rising (void); + void _falling (void); + float _dist[3]; + char _code[3]; + int _beacon_counter; + bool ValidPulse; + bool expValidPulse; + +}; + +#endif
diff -r 000000000000 -r fbfafa6bf5f9 Kalman/tvmet.lib --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Kalman/tvmet.lib Fri Apr 20 21:32:24 2012 +0000 @@ -0,0 +1,1 @@ +http://mbed.org/users/madcowswe/code/tvmet/#feb4117d16d8
diff -r 000000000000 -r fbfafa6bf5f9 TSH.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/TSH.h Fri Apr 20 21:32:24 2012 +0000 @@ -0,0 +1,62 @@ +#ifndef TSH_H +#define TSH_H + +#include "rtos.h" + +//Thread Safe Hardware + +class TSI2C : public I2C { +public: + + TSI2C( PinName sda, + PinName scl, + const char* name=NULL ) + : I2C(sda, scl, name) { } + + + int read( int address, + char* data, + int length, + bool repeated = false ) { + + rlock.lock(); + int retval = I2C::read(address, data, length, repeated); + rlock.unlock(); + + return retval; + } + + int read(int ack) { + rlock.lock(); + int retval = I2C::read(ack); + rlock.unlock(); + + return retval; + } + + int write( int address, + const char* data, + int length, + bool repeated = false ) { + + wlock.lock(); + int retval = I2C::write(address, data, length, repeated); + wlock.unlock(); + + return retval; + } + + int write(int data) { + wlock.lock(); + int retval = I2C::write(data); + wlock.unlock(); + + return retval; + } + +private: + Mutex rlock; + Mutex wlock; +}; + +#endif \ No newline at end of file
diff -r 000000000000 -r fbfafa6bf5f9 geometryfuncs.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/geometryfuncs.h Fri Apr 20 21:32:24 2012 +0000 @@ -0,0 +1,28 @@ +#ifndef GEOMETRYFUNCS_H +#define GEOMETRYFUNCS_H + +#include <tvmet/Matrix.h> + +template <typename T> +Matrix <T, 2, 2> Rotmatrix(T theta) { + Matrix <T, 2, 2> outmatrix; + outmatrix = cos(theta), -sin(theta), + sin(theta), cos(theta); + return outmatrix; +} + +// rectifies angle to range -PI to PI +template <typename T> +T rectifyAng (T ang_in) { + ang_in -= (floor(ang_in/(2*PI)))*2*PI; + if (ang_in < -PI) { + ang_in += 2*PI; + } + if (ang_in > PI) { + ang_in -= 2*PI; + } + + return ang_in; +} + +#endif //GEOMETRYFUNCS_H \ No newline at end of file
diff -r 000000000000 -r fbfafa6bf5f9 globals.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/globals.h Fri Apr 20 21:32:24 2012 +0000 @@ -0,0 +1,63 @@ +#ifndef GLOBALS_H +#define GLOBALS_H + +#include "mbed.h" + +#define PI 3.14159265 + +//Robot constants +//const int encoderRevCount = 1856; +//const int wheelmm = 314; +//const int robotCircumference = 1256; + +//Robot constants in mm +const int robot_width = 260; +const int encoderRevCount = 360; +const int wheelmm = 226; +const int robotCircumference = 816; + +//Robot movement constants +const float fwdvarperunit = 0.005; //1 std dev = 7% //NEEDS TO BE MEASURED AGAIN! +const float varperang = 3E-5; //around 1 degree stddev per 180 turn +const float xyvarpertime = 0.001; //(very poorly) accounts for hitting things +const float angvarpertime = 0.001; + +//sonar constants +static const float sonarvariance = 0.005; + +//Arena constants +struct pos { + int x; + int y; +}; +const pos beaconpos[] = {{3000, 1000},{0,0}, {0,2000}}; + +//System constants +const int PREDICTPERIOD = 20; //ms + +//High speed serial port +extern Serial pc; + +//I2C mutex +//extern Mutex i2c_rlock; +//extern Mutex i2c_wlock; + + +// IR angle calc +#define RELI_BOUND_LOW 4 +#define RELI_BOUND_HIGH 25 + +// Localization estimate tolerences +#define POSITION_TOR 50 +#define ANGLE_TOR 0.15 + +// motion control +#define MOVE_SPEED 30 +#define MAX_STEP_RATIO 0.10 //maximum change in the speed +//#define TRACK_RATE 10 // +- rate for each wheel when tracking + +// Task suspend periods +#define IR_TURRET_PERIOD 200 +#define MOTION_UPDATE_PERIOD 20 + +#endif \ No newline at end of file
diff -r 000000000000 -r fbfafa6bf5f9 main.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/main.cpp Fri Apr 20 21:32:24 2012 +0000 @@ -0,0 +1,379 @@ +#include "mbed.h" +#include "rtos.h" +#include "TSH.h" +#include "Kalman.h" +#include "globals.h" +#include "motors.h" +#include "math.h" +#include "system.h" +#include "geometryfuncs.h" + +//#include <iostream> + +//Interface declaration +//I2C i2c(p28, p27); // sda, scl +TSI2C i2c(p28, p27); +Serial pc(USBTX, USBRX); // tx, rx +Serial IRturret(p13, p14); + +DigitalOut OLED1(LED1); +DigitalOut OLED2(LED2); +DigitalOut OLED3(LED3); +DigitalOut OLED4(LED4); + +Motors motors(i2c); +Kalman kalman(motors); + +float targetX = 1000, targetY = 1000, targetTheta = 0; + +// bytes packing/unpacking for IR turret serial comm +union IRValue_t { + float IR_floats[3]; + int IR_ints[3]; + unsigned char IR_chars[12]; +} IRValues; + +char Alignment_char[4] = {0xFF,0xFE,0xFD,0xFC}; +int Alignment_ptr = 0; +bool data_flag = false; +int buff_pointer = 0; +bool angleInit = false; +float angleOffset = 0; + +void vIRValueISR (void); +void vKalmanInit(void); + +//TODO mutex on kalman state, and on motor commands (i.e. on the i2c bus) +//NOTE! Recieving data with RF12B now DISABLED due to interferance with rtos! + + +void vMotorThread(void const *argument); +void vPrintState(void const *argument); +void ai_thread (void const *argument); +void motion_thread(void const *argument); + + +float getAngle (float x, float y); +void getIRValue(void const *argument); + +// Thread pointers +Thread *AI_Thread_Ptr; +Thread *Motion_Thread_Ptr; + +Mutex targetlock; +bool flag_terminate = false; + +float temp = 0; + +//Main loop +int main() { + pc.baud(115200); + IRturret.baud(115200); + IRturret.format(8,Serial::Odd,1); + IRturret.attach(&vIRValueISR,Serial::RxIrq); + vKalmanInit(); + + //Thread tMotorThread(vMotorThread,NULL,osPriorityNormal,256); + Thread tUpdateState(vPrintState,NULL,osPriorityNormal,1024); + + Thread thr_AI(ai_thread,NULL,osPriorityNormal,1024); + Thread thr_motion(motion_thread,NULL,osPriorityNormal,1024); + AI_Thread_Ptr = &thr_AI; + Motion_Thread_Ptr = &thr_motion; + + //measure cpu usage. output updated once per second to symbol cpupercent + //Thread mCPUthread(measureCPUidle, NULL, osPriorityIdle, 1024); //check if stack overflow with such a small staack + + + pc.printf("We got to main! ;D\r\n"); + + //REMEMBERT TO PUT PULL UP RESISTORS ON I2C!!!!!!!!!!!!!! + while (1) { + // do nothing + Thread::wait(osWaitForever); + } +} + + +void vMotorThread(void const *argument) { + motors.resetEncoders(); + while (1) { + motors.setSpeed(20,20); + Thread::wait(2000); + motors.stop(); + Thread::wait(5000); + motors.setSpeed(-20,-20); + Thread::wait(2000); + motors.stop(); + Thread::wait(5000); + motors.setSpeed(-20,20); + Thread::wait(2000); + motors.stop(); + Thread::wait(5000); + motors.setSpeed(20,-20); + Thread::wait(2000); + motors.stop(); + Thread::wait(5000); + } +} + + + +void vPrintState(void const *argument) { + float state[3]; + float SonarMeasures[3]; + float IRMeasures[3]; + + + while (1) { + kalman.statelock.lock(); + state[0] = kalman.X(0); + state[1] = kalman.X(1); + state[2] = kalman.X(2); + SonarMeasures[0] = kalman.SonarMeasures[0]; + SonarMeasures[1] = kalman.SonarMeasures[1]; + SonarMeasures[2] = kalman.SonarMeasures[2]; + IRMeasures[0] = kalman.IRMeasures[0]; + IRMeasures[1] = kalman.IRMeasures[1]; + IRMeasures[2] = kalman.IRMeasures[2]; + kalman.statelock.unlock(); + pc.printf("\r\n"); + pc.printf("current: %0.4f %0.4f %0.4f \r\n", state[0], state[1],state[2]); + pc.printf("Sonar: %0.4f %0.4f %0.4f \r\n",SonarMeasures[0],SonarMeasures[1],SonarMeasures[2]); + pc.printf("IR : %0.4f %0.4f %0.4f \r\n",IRMeasures[0]*180/PI,IRMeasures[1]*180/PI,IRMeasures[2]*180/PI); + pc.printf("Angle_Offset: %0.4f \r\n",angleOffset*180/PI); + Thread::wait(100); + } +} + + +// AI thread ------------------------------------ +void ai_thread (void const *argument) { + // goes to the mid + Thread::signal_wait(0x01); + targetlock.lock(); + targetX = 1500; + targetY = 1000; + targetTheta = PI/2; + targetlock.unlock(); + + // left roll + Thread::signal_wait(0x01); + targetlock.lock(); + targetX = 500; + targetY = 1700; + targetTheta = PI/2; + targetlock.unlock(); + + // mid + Thread::signal_wait(0x01); + targetlock.lock(); + targetX = 1500; + targetY = 1000; + targetTheta = PI/2; + targetlock.unlock(); + + // map + Thread::signal_wait(0x01); + targetlock.lock(); + targetX = 1500; + targetY = 1700; + targetTheta = PI/2; + targetlock.unlock(); + + // mid + Thread::signal_wait(0x01); + targetlock.lock(); + targetX = 1500; + targetY = 1000; + targetTheta = -PI/2; + targetlock.unlock(); + + // home + Thread::signal_wait(0x01); + targetlock.lock(); + targetX = 500; + targetY = 500; + targetTheta = 0; + targetlock.unlock(); + + Thread::signal_wait(0x01); + flag_terminate = true; + //OLED3 = true; + + while (true) { + Thread::wait(osWaitForever); + } +} + +// motion control thread ------------------------ +void motion_thread(void const *argument) { + motors.resetEncoders(); + motors.setSpeed(MOVE_SPEED/2,MOVE_SPEED/2); + Thread::wait(1000); + motors.stop(); + (*AI_Thread_Ptr).signal_set(0x01); + + + + float currX, currY,currTheta; + float speedL,speedR; + float diffDir,diffSpeed; + float lastdiffSpeed = 0; + + while (1) { + if (flag_terminate) { + terminate(); + } + + // get kalman localization estimate ------------------------ + kalman.statelock.lock(); + currX = kalman.X(0)*1000.0f; + currY = kalman.X(1)*1000.0f; + currTheta = kalman.X(2); + kalman.statelock.unlock(); + + + // check if target reached ---------------------------------- + if ( ( abs(currX - targetX) < POSITION_TOR ) + &&( abs(currY - targetY) < POSITION_TOR ) + ) { + + diffDir = rectifyAng(currTheta - targetTheta); + diffSpeed = diffDir / PI; + + if (abs(diffDir) > ANGLE_TOR) { + if (abs(diffSpeed) < 0.5) { + diffSpeed = 0.5*diffSpeed/abs(diffSpeed); + } + motors.setSpeed( int(diffSpeed*MOVE_SPEED), -int(diffSpeed*MOVE_SPEED)); + + + } else { + motors.stop(); + Thread::wait(4000); + (*AI_Thread_Ptr).signal_set(0x01); + } + } + + // adjust motion to reach target ---------------------------- + else { + + // calc direction to target + float targetDir = atan2(targetY - currY, targetX - currX); + + + diffDir = rectifyAng(currTheta - targetDir); + diffSpeed = diffDir / PI; + + if (abs(diffDir) > ANGLE_TOR*2) { + if (abs(diffSpeed) < 0.5) { + diffSpeed = 0.5*diffSpeed/abs(diffSpeed); + } + motors.setSpeed( int(diffSpeed*MOVE_SPEED), -int(diffSpeed*MOVE_SPEED)); + } else { + + + if (abs(diffSpeed-lastdiffSpeed) > MAX_STEP_RATIO ) { + if (diffSpeed-lastdiffSpeed >= 0) { + diffSpeed = lastdiffSpeed + MAX_STEP_RATIO; + } else { + diffSpeed = lastdiffSpeed - MAX_STEP_RATIO; + } + } + lastdiffSpeed = diffSpeed; + + // calculte the motor speeds + if (diffSpeed <= 0) { + speedL = (1-2*abs(diffSpeed))*MOVE_SPEED; + speedR = MOVE_SPEED; + + } else { + speedR = (1-2*abs(diffSpeed))*MOVE_SPEED; + speedL = MOVE_SPEED; + } + + motors.setSpeed( int(speedL), int(speedR)); + } + } + + // wait + Thread::wait(MOTION_UPDATE_PERIOD); + } +} + +void vIRValueISR (void) { + + OLED3 = !OLED3; + // A workaround for mbed UART ISR bug + // Clear the RBR flag to make sure the interrupt doesn't loop + // UART3 for the port on pins 9/10, UART2 for pins 28/27, and UART1 for pins 13/14. + // UART0 for USB UART + unsigned char RBR = LPC_UART1->RBR; + + + if (!data_flag) { // look for alignment bytes + if (RBR == Alignment_char[Alignment_ptr]) { + Alignment_ptr ++; + } + if (Alignment_ptr >= 4) { + Alignment_ptr = 0; + data_flag = true; // set the dataflag + } + } else { // fetch data bytes + IRValues.IR_chars[buff_pointer] = RBR; + buff_pointer ++; + if (buff_pointer >= 12) { + buff_pointer = 0; + data_flag = false; // dessert the dataflag + if (angleInit) { + kalman.runupdate(Kalman::measurement_t(IRValues.IR_ints[0]+3),rectifyAng(IRValues.IR_floats[1]+angleOffset),IRValues.IR_floats[2]); + } else { + kalman.runupdate(Kalman::measurement_t(IRValues.IR_ints[0]+3),IRValues.IR_floats[1],IRValues.IR_floats[2]); + } + } + + } +} + +void vKalmanInit(void) { + float SonarMeasures[3]; + float IRMeasures[3]; + int beacon_cnt = 0; + wait(1); + IRturret.attach(NULL,Serial::RxIrq); + kalman.statelock.lock(); + SonarMeasures[0] = kalman.SonarMeasures[0]*1000.0f; + SonarMeasures[1] = kalman.SonarMeasures[1]*1000.0f; + SonarMeasures[2] = kalman.SonarMeasures[2]*1000.0f; + IRMeasures[0] = kalman.IRMeasures[0]; + IRMeasures[1] = kalman.IRMeasures[1]; + IRMeasures[2] = kalman.IRMeasures[2]; + kalman.statelock.unlock(); + //printf("0: %0.4f, 1: %0.4f, 2: %0.4f \n\r", IRMeasures[0]*180/PI, IRMeasures[1]*180/PI, IRMeasures[2]*180/PI); + float d = beaconpos[2].y - beaconpos[1].y; + float i = beaconpos[0].y - beaconpos[1].y; + float j = beaconpos[0].x - beaconpos[1].x; + float y_coor = (SonarMeasures[1]*SonarMeasures[1]- SonarMeasures[2]*SonarMeasures[2] + d*d) / (2*d); + float x_coor = (SonarMeasures[1]*SonarMeasures[1] - SonarMeasures[0]*SonarMeasures[0] + i*i + j*j)/(2*j) - i*y_coor/j; + angleOffset = 0; + for (int i = 0; i < 3; i++) { + float angle_est = atan2(beaconpos[i].y - y_coor,beaconpos[i].x - x_coor); + if (IRMeasures[i] != 0){ + beacon_cnt ++; + float angle_temp = angle_est - IRMeasures[i]; + angle_temp -= (floor(angle_temp/(2*PI)))*2*PI; + angleOffset += angle_temp; + } + } + angleOffset = angleOffset/float(beacon_cnt); + //printf("\n\r"); + angleInit = true; + kalman.statelock.lock(); + kalman.X(0) = x_coor/1000.0f; + kalman.X(1) = y_coor/1000.0f; + kalman.X(2) = 0; + kalman.statelock.unlock(); + //printf("x: %0.4f, y: %0.4f, offset: %0.4f \n\r", x_coor, y_coor, angleOffset*180/PI); + IRturret.attach(&vIRValueISR,Serial::RxIrq); +} \ No newline at end of file
diff -r 000000000000 -r fbfafa6bf5f9 mbed.bld --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/mbed.bld Fri Apr 20 21:32:24 2012 +0000 @@ -0,0 +1,1 @@ +http://mbed.org/users/mbed_official/code/mbed/builds/7495d544864f
diff -r 000000000000 -r fbfafa6bf5f9 motors.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/motors.cpp Fri Apr 20 21:32:24 2012 +0000 @@ -0,0 +1,179 @@ +/********************************************************************** + * @file motors.cpp + * @purpose Eurobot 2012 - Secondary Robot MD25 Interface + * @version 0.2 + * @date 4th April 2012 + * @author Crispian Poon + * @email pooncg@gmail.com + ______________________________________________________________________ + + Setup information: + 1. Put pull up 2.2k resistors to +3.3v on I2C SCL and SDA + 2. Connect P28 SDA to MD25 yellow cable, P27 SCL to MD25 blue cable + + **********************************************************************/ + +#include "mbed.h" +#include "motors.h" +#include "globals.h" +#include "TSH.h" + +Motors::Motors(TSI2C &i2cin) : i2c(i2cin) { + +} + +//*************************************************************************************** +//Secondary robot specific instructions +//*************************************************************************************** + +void Motors::move(int distance, int speed) { + //resetEncoders(); TODO use kalman as feedback instead! + + int tempEndEncoder = 0; + int startEncoderCount = 0; + + tempEndEncoder = distanceToEncoder(abs(distance)); + startEncoderCount = getEncoder1(); + + setSpeed(getSignOfInt(distance) * speed); + + while (abs(getEncoder1() - startEncoderCount) < tempEndEncoder) { + setSpeed(getSignOfInt(distance) * speed); + } + + //resetEncoders(); + stop(); +} + +void Motors::turn(int angle, int speed) { + //resetEncoders(); TODO use kalman as feedback instead! + int tempDistance = int((float(angle) / 360) * float(robotCircumference)); + int tempEndEncoder = 0; + int startEncoderCount = 0; + + tempEndEncoder = distanceToEncoder(abs(tempDistance)); + startEncoderCount = getEncoder1(); + setSpeed(getSignOfInt(tempDistance) * speed, -getSignOfInt(tempDistance) * speed); + + while (abs(getEncoder1() - startEncoderCount) < tempEndEncoder) { + setSpeed(getSignOfInt(tempDistance) * speed,-getSignOfInt(tempDistance) * speed); + + } + + //resetEncoders(); + stop(); +} + +//*************************************************************************************** +//Secondary robot specific helper functions +//*************************************************************************************** + + +int Motors::getSignOfInt(int direction) { + + direction = (direction < 0); + + switch (direction) { + case 1: + return -1; + case 0: + return 1; + } + + return 0; +} + +// returns distance in mm. +float Motors::encoderToDistance(int encoder) { + return (float(encoder) / float(encoderRevCount)) * wheelmm; +} + +int Motors::distanceToEncoder(float distance) { + return int((distance / float(wheelmm)) * encoderRevCount); +} + + +//*************************************************************************************** +//MD25 instructions +//*************************************************************************************** + +void Motors::stop() { + sendCommand(cmdSetMotor1, 0); + sendCommand(cmdSetMotor2, 0); +} + +void Motors::setSpeed(int speed) { + setMode(1); + ///sendCommand(cmdByte, 0x30); + sendCommand(cmdSetMotor1, speed); + sendCommand(cmdSetMotor2, speed); +} + +void Motors::setSpeed(int speed1, int speed2) { + setMode(1), + // sendCommand(cmdByte, 0x30); + sendCommand(cmdSetMotor1, speed1); + sendCommand(cmdSetMotor2, speed2); +} + +void Motors::setMode(int mode) { + sendCommand(cmdSetMode, mode); +} + +void Motors::resetEncoders() { + sendCommand(cmdByte, cmdResetEncoders); +} + +int Motors::getEncoder1() { + return get4Bytes(cmdGetEncoder1); +} + +int Motors::getEncoder2() { + return get4Bytes(cmdGetEncoder2); +} + +void Motors::disableAcceleration() { + sendCommand(cmdByte, cmdDisableAcceleration); +} + + + +//*************************************************************************************** +//Abstract MD25 communication methods and functions +//*************************************************************************************** + +int Motors::get4Bytes(char command) { + long tempWord = 0; + char cmd[4]; + + //i2c request + sendCommand(command); + + //i2c read data back + i2c.read(md25Address, cmd, 4);// Request 4 bytes from MD25 + + //FIXED 22FEB2012 CRISPIAN Taken 0.07 delay off. + + //First byte is largest, shift 4 bytes into tempWord + tempWord += cmd[0] << 24; + tempWord += cmd[1] << 16; + tempWord += cmd[2] << 8; + tempWord += cmd[3] ; + + return tempWord; +} + +void Motors::sendCommand(char command) { + char buffer[1]; + buffer[0] = command; + i2c.write(md25Address, &buffer[0], 1); +} + +void Motors::sendCommand(char command1, char command2 ) { + + char buffer[2]; + buffer[0] = command1; + buffer[1] = command2; + + i2c.write(md25Address, &buffer[0], 2); +} \ No newline at end of file
diff -r 000000000000 -r fbfafa6bf5f9 motors.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/motors.h Fri Apr 20 21:32:24 2012 +0000 @@ -0,0 +1,47 @@ +#ifndef MOTORS_H +#define MOTORS_H + +#include "mbed.h" +#include "TSH.h" + +class Motors { +public: + Motors(TSI2C &i2cin);//, Mutex ); + //Motors(I2C &i2cin); + + //Functions declaration + void disableAcceleration(); + void resetEncoders(); + int getEncoder1(); + int getEncoder2(); + void move(int distance, int speed); + void turn(int angle, int speed); + int getSignOfInt(int direction); + void stop(); + void setSpeed(int speed); + void setSpeed(int speed1, int speed2); + void setMode(int mode); + float encoderToDistance(int encoder); + int distanceToEncoder(float distance); + void sendCommand(char command); + void sendCommand(char command1, char command2 ); + int get4Bytes(char command); + + +private: + I2C& i2c; + //Mutex& + + //Constants declaration + static const int md25Address = 0xB0; + static const char cmdSetMotor1 = 0x00; + static const char cmdSetMotor2 = 0x01; + static const char cmdByte = 0x10; + static const char cmdSetMode = 0x0F; + static const char cmdResetEncoders = 0x20; + static const char cmdGetEncoder1 = 0x02; + static const char cmdGetEncoder2 = 0x06; + static const char cmdDisableAcceleration = 0x30; +}; + +#endif
diff -r 000000000000 -r fbfafa6bf5f9 system.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/system.cpp Fri Apr 20 21:32:24 2012 +0000 @@ -0,0 +1,17 @@ +#include "system.h" + +float cpupercent; //defining the extern +void measureCPUidle (void const* arg) { + + Timer timer; + cpupercent = 0; //defined in system.h + + while(1) { + timer.reset(); + timer.start(); + wait(1); // looks like wait uses a RTC + + int thistime = timer.read_us()-1000000; + cpupercent = thistime; + } +} \ No newline at end of file
diff -r 000000000000 -r fbfafa6bf5f9 system.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/system.h Fri Apr 20 21:32:24 2012 +0000 @@ -0,0 +1,42 @@ + +#ifndef SYSTEM_H +#define SYSTEM_H + +#include "globals.h" +#include "rtos.h" + +//a type which is a pointer to a rtos thread function +typedef void (*tfuncptr_t)(void const *argument); + +//--------------------- +//Signal ticker stuff +#define SIGTICKARGS(thread, signal) \ + (tfuncptr_t) (&Signalsetter::callback), osTimerPeriodic, (void*)(new Signalsetter(thread, signal)) + +class Signalsetter { +public: + Signalsetter(Thread& inthread, int insignal) : + thread(inthread) { + signal = insignal; + //pc.printf("ptr saved as %#x \r\n", (int)(&(inthread))); + } + + static void callback(void* thisin) { + + Signalsetter* fthis = (Signalsetter*)thisin; + //pc.printf("callback will signal thread object at %#x \r\n", (int)(&(fthis->thread))); + fthis->thread.signal_set(fthis->signal); + //delete fthis; //this is useful for single fire tickers! + } + +private: + Thread& thread; + int signal; +}; + +//--------------------- +//cpu usage measurement function +extern float cpupercent; +void measureCPUidle (void const* arg); + +#endif