WIZnetInterface

Dependents:   Smart_LED_WIZwiki-W7500

Fork of WIZnetInterface by WIZnet

arch/int/W7500x_toe.cpp

Committer:
embeddist
Date:
2015-06-15
Revision:
3:f8c6efc8bf83
Parent:
2:26df0dc6e227
Child:
8:4c02de1dbf3a

File content as of revision 3:f8c6efc8bf83:

/* Copyright (C) 2012 mbed.org, MIT License
 *
 * and associated documentation files (the "Software"), to deal in the Software without restriction,
 * including without limitation the rights to use, copy, modify, merge, publish, distribute,
 * sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all copies or
 * substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */
#include "eth_arch.h"
#ifdef USE_W7500

#include "mbed.h"
#include "mbed_debug.h"
#include "DNSClient.h"


/*
 * MDIO via GPIO
 * mdio via gpio is supported and related functions as follows.
 *  - mdio_init(),mdio_read(),mdio_write()
 *  - input_MDIO(),output_MDIO(),turnaroud_MDIO(),idle_MDIO()
 * called by ethernet_link() and ethernet_set_link()
 */
#define MDIO    		GPIO_Pin_14
#define MDC     		GPIO_Pin_15
#define GPIO_MDC        GPIOB
#define PHY_ADDR_IP101G 0x07 
#define PHY_ADDR 		PHY_ADDR_IP101G
#define SVAL 			0x2 //right shift val = 2 
#define PHYREG_CONTROL  0x0 //Control Register address (Contorl basic register)
#define PHYREG_STATUS   0x1 //Status Register address (Status basic register)
#define CNTL_DUPLEX     (0x01ul<< 7)
#define CNTL_AUTONEGO   (0x01ul<<11)
#define CNTL_SPEED      (0x01ul<<12)
#define MDC_WAIT        (1)
void mdio_init(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin_MDC, uint16_t GPIO_Pin_MDIO);
void mdio_write(GPIO_TypeDef* GPIOx, uint32_t PhyRegAddr, uint32_t val);
uint32_t mdio_read(GPIO_TypeDef* GPIOx, uint32_t PhyRegAddr);

WIZnet_Chip* WIZnet_Chip::inst;

WIZnet_Chip::WIZnet_Chip()
{
	inst = this;
	mdio_init(GPIO_MDC, MDC, MDIO);
}

// Set the IP
bool WIZnet_Chip::setip()
{
	reg_wr<uint32_t>(SIPR, ip);
	reg_wr<uint32_t>(GAR, gateway);
	reg_wr<uint32_t>(SUBR, netmask);
	return true;
}

bool WIZnet_Chip::setProtocol(int socket, Protocol p)
{
	if (socket < 0) {
		return false;
	}
	sreg<uint8_t>(socket, Sn_MR, p);
	return true;
}

bool WIZnet_Chip::connect(int socket, const char * host, int port, int timeout_ms)
{
	if (socket < 0) {
		return false;
	}
	sreg<uint8_t>(socket, Sn_MR, TCP);
	scmd(socket, OPEN);
	sreg_ip(socket, Sn_DIPR, host);
	sreg<uint16_t>(socket, Sn_DPORT, port);
	sreg<uint16_t>(socket, Sn_PORT, new_port());
	scmd(socket, CONNECT);
	Timer t;
	t.reset();
	t.start();
	while(!is_connected(socket)) {
		if (t.read_ms() > timeout_ms) {
			return false;
		}
	}
	return true;
}

bool WIZnet_Chip::gethostbyname(const char* host, uint32_t* ip)
{
	uint32_t addr = str_to_ip(host);
	char buf[17];
	snprintf(buf, sizeof(buf), "%d.%d.%d.%d", 
			(uint8_t)((addr>>24)&0xff), 
			(uint8_t)((addr>>16)&0xff), 
			(uint8_t)((addr>>8)&0xff), 
			(uint8_t)(addr&0xff));
	if (strcmp(buf, host) == 0) {
		*ip = addr;
		return true;
	}
	DNSClient client;
	if(client.lookup(host)) {
		*ip = client.ip;
		return true;
	}
	return false;
}


bool WIZnet_Chip::is_connected(int socket)
{
	/*
	   if (sreg<uint8_t>(socket, Sn_SR) == SOCK_ESTABLISHED) {
	   return true;
	   }
	 */
	uint8_t tmpSn_SR;
	tmpSn_SR = sreg<uint8_t>(socket, Sn_SR);
	// packet sending is possible, when state is SOCK_CLOSE_WAIT.
	if ((tmpSn_SR == SOCK_ESTABLISHED) || (tmpSn_SR == SOCK_CLOSE_WAIT)) {
		return true;
	}
	return false;
}
// Reset the chip & set the buffer
void WIZnet_Chip::reset()
{
	/* S/W Reset PHY */
	mdio_write(GPIO_MDC, PHYREG_CONTROL, 0x8000);
	wait_ms(10);//for S/W reset
	wait_ms(10);//for MDC I/F RDY

	/* S/W Reset WZTOE */
	reg_wr<uint8_t>(MR, MR_RST);
	// set PAD strengh and pull-up for TXD[3:0] and TXE 
#ifdef __DEF_USED_IC101AG__ //For using IC+101AG
	*(volatile uint32_t *)(0x41003068) = 0x64; //TXD0 
	*(volatile uint32_t *)(0x4100306C) = 0x64; //TXD1
	*(volatile uint32_t *)(0x41003070) = 0x64; //TXD2
	*(volatile uint32_t *)(0x41003074) = 0x64; //TXD3
	*(volatile uint32_t *)(0x41003050) = 0x64; //TXE
#endif	
	// set ticker counter
	reg_wr<uint32_t>(TIC100US, (SystemCoreClock/10000));
	// write MAC address inside the WZTOE MAC address register
	reg_wr_mac(SHAR, mac);
	/*
	 * set RX and TX buffer size
	 * for (int socket = 0; socket < MAX_SOCK_NUM; socket++) {
	 * 	sreg<uint8_t>(socket, Sn_RXBUF_SIZE, 2);
	 * 	sreg<uint8_t>(socket, Sn_TXBUF_SIZE, 2);
	 * }
	 */
}


bool WIZnet_Chip::close(int socket)
{
	if (socket < 0) {
		return false;
	}
	// if SOCK_CLOSED, return
	if (sreg<uint8_t>(socket, Sn_SR) == SOCK_CLOSED) {
		return true;
	}
	// if SOCK_ESTABLISHED, send FIN-Packet to peer 
	if (sreg<uint8_t>(socket, Sn_MR) == TCP) {
		scmd(socket, DISCON);
	}
	// close socket
	scmd(socket, CLOSE);
	// clear Socket Interrupt Register
	sreg<uint8_t>(socket, Sn_ICR, 0xff);
	return true;
}

int WIZnet_Chip::wait_readable(int socket, int wait_time_ms, int req_size)
{
	if (socket < 0) {
		return -1;
	}
	Timer t;
	t.reset();
	t.start();
	while(1) {
		int size = sreg<uint16_t>(socket, Sn_RX_RSR);
		if (size > req_size) {
			return size;
		}
		if (wait_time_ms != (-1) && t.read_ms() > wait_time_ms) {
			break;
		}
	}
	return -1;
}

int WIZnet_Chip::wait_writeable(int socket, int wait_time_ms, int req_size)
{
	if (socket < 0) {
		return -1;
	}
	Timer t;
	t.reset();
	t.start();
	while(1) {
		int size = sreg<uint16_t>(socket, Sn_TX_FSR);
		if (size > req_size) {
			return size;
		}
		if (wait_time_ms != (-1) && t.read_ms() > wait_time_ms) {
			break;
		}
	}
	return -1;
}

int WIZnet_Chip::send(int socket, const char * str, int len)
{
	if (socket < 0) {
		return -1;
	}

	uint16_t ptr = sreg<uint16_t>(socket, Sn_TX_WR);
	uint32_t sn_tx_base = W7500x_TXMEM_BASE + (uint32_t)(socket<<18); 

	for(int i=0; i<len; i++)
		*(volatile uint8_t *)(sn_tx_base + ((ptr+i)&0xFFFF)) = str[i];

	sreg<uint16_t>(socket, Sn_TX_WR, ptr + len);
	scmd(socket, SEND);

	uint8_t tmp_Sn_IR;
	while (( (tmp_Sn_IR = sreg<uint8_t>(socket, Sn_IR)) & INT_SEND_OK) != INT_SEND_OK) {
		// @Jul.10, 2014 fix contant name, and udp sendto function.
		switch (sreg<uint8_t>(socket, Sn_SR)) {
			case SOCK_CLOSED :
				close(socket);
				return 0;
				//break;
			case SOCK_UDP :
				// ARP timeout is possible.
				if ((tmp_Sn_IR & INT_TIMEOUT) == INT_TIMEOUT) {
					sreg<uint8_t>(socket, Sn_ICR, INT_TIMEOUT);
					return 0;
				}
				break;
			default :
				break;
		}
	}

	sreg<uint8_t>(socket, Sn_ICR, INT_SEND_OK);

	return len;
}

int WIZnet_Chip::recv(int socket, char* buf, int len)
{
	if (socket < 0) {
		return -1;
	}
	uint16_t ptr = sreg<uint16_t>(socket, Sn_RX_RD);
	uint32_t sn_rx_base = W7500x_RXMEM_BASE + (uint32_t)(socket<<18); 

	for(int i=0; i<len; i++)
		buf[i] = *(volatile uint8_t *)(sn_rx_base + ((ptr+i)&0xFFFF));

	sreg<uint16_t>(socket, Sn_RX_RD, ptr + len);
	scmd(socket, RECV);

	return len;
}

int WIZnet_Chip::new_socket()
{
	for(int s = 0; s < MAX_SOCK_NUM; s++) {
		if (sreg<uint8_t>(s, Sn_SR) == SOCK_CLOSED) {
			return s;
		}
	}
	return -1;
}

uint16_t WIZnet_Chip::new_port()
{
	uint16_t port = rand();
	port |= 49152;
	return port;
}

bool WIZnet_Chip::link(int wait_time_ms)
{
	Timer t;
	t.reset();
	t.start();
	while(1) {
		int is_link = ethernet_link();
		printf("is_link:%d\r\n", is_link);
		if (is_link) {
			return true;
		}
		if (wait_time_ms != (-1) && t.read_ms() > wait_time_ms) {
			break;
		}
	}
	return 0;
}

void WIZnet_Chip::set_link(PHYMode phymode)
{
	int speed = -1;
	int duplex = 0;

	switch(phymode) {
		case AutoNegotiate : speed = -1; duplex = 0; break;
		case HalfDuplex10  : speed = 0;  duplex = 0; break;
		case FullDuplex10  : speed = 0;  duplex = 1; break;
		case HalfDuplex100 : speed = 1;  duplex = 0; break;
		case FullDuplex100 : speed = 1;  duplex = 1; break;
	}

	ethernet_set_link(speed, duplex);
}

uint32_t str_to_ip(const char* str)
{
	uint32_t ip = 0;
	char* p = (char*)str;
	for(int i = 0; i < 4; i++) {
		ip |= atoi(p);
		p = strchr(p, '.');
		if (p == NULL) {
			break;
		}
		ip <<= 8;
		p++;
	}
	return ip;
}

void printfBytes(char* str, uint8_t* buf, int len)
{
	printf("%s %d:", str, len);
	for(int i = 0; i < len; i++) {
		printf(" %02x", buf[i]);
	}
	printf("\n");
}

void printHex(uint8_t* buf, int len)
{
	for(int i = 0; i < len; i++) {
		if ((i%16) == 0) {
			printf("%p", buf+i);
		}
		printf(" %02x", buf[i]);
		if ((i%16) == 15) {
			printf("\n");
		}
	}
	printf("\n");
}

void debug_hex(uint8_t* buf, int len)
{
	for(int i = 0; i < len; i++) {
		if ((i%16) == 0) {
			debug("%p", buf+i);
		}
		debug(" %02x", buf[i]);
		if ((i%16) == 15) {
			debug("\n");
		}
	}
	debug("\n");
}

void WIZnet_Chip::scmd(int socket, Command cmd)
{
	sreg<uint8_t>(socket, Sn_CR, cmd);
	while(sreg<uint8_t>(socket, Sn_CR));
}


void mdio_init(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin_MDC, uint16_t GPIO_Pin_MDIO)
{
	/* Set GPIOs for MDIO and MDC */
	GPIO_InitTypeDef MDIO_InitDef;  
	HAL_PAD_AFConfig(PAD_PB, GPIO_Pin_MDIO, PAD_AF1);  
	HAL_PAD_AFConfig(PAD_PB, GPIO_Pin_MDC, PAD_AF1);  
	MDIO_InitDef.GPIO_Pin = GPIO_Pin_MDC | GPIO_Pin_MDIO;
	MDIO_InitDef.GPIO_Mode = GPIO_Mode_OUT;
	HAL_GPIO_Init(GPIOx, &MDIO_InitDef);
}

void output_MDIO(GPIO_TypeDef* GPIOx, uint32_t val, uint32_t n)
{
	for(val <<= (32-n); n; val<<=1, n--)
	{
		if(val & 0x80000000)
			HAL_GPIO_SetBits(GPIOx, MDIO); 
		else
			HAL_GPIO_ResetBits(GPIOx, MDIO);

		wait_ms(MDC_WAIT);
		HAL_GPIO_SetBits(GPIOx, MDC); 
		wait_ms(MDC_WAIT);
		HAL_GPIO_ResetBits(GPIOx, MDC);
	}
}

uint32_t input_MDIO( GPIO_TypeDef* GPIOx )
{
	uint32_t i, val=0; 
	for(i=0; i<16; i++)
	{
		val <<=1;
		HAL_GPIO_SetBits(GPIOx, MDC); 
		wait_ms(MDC_WAIT);
		HAL_GPIO_ResetBits(GPIOx, MDC);
		wait_ms(MDC_WAIT);
		val |= HAL_GPIO_ReadInputDataBit(GPIOx, MDIO);
	}
	return (val);
}

void turnaround_MDIO( GPIO_TypeDef* GPIOx)
{
	GPIOx->OUTENCLR = MDIO ;
	HAL_GPIO_SetBits(GPIOx, MDC); 
	wait_ms(MDC_WAIT);
	HAL_GPIO_ResetBits(GPIOx, MDC);
	wait_ms(MDC_WAIT);
}

void idle_MDIO( GPIO_TypeDef* GPIOx )
{
	GPIOx->OUTENSET = MDIO ;
	HAL_GPIO_SetBits(GPIOx,MDC); 
	wait_ms(MDC_WAIT);
	HAL_GPIO_ResetBits(GPIOx, MDC);
	wait_ms(MDC_WAIT);
}

uint32_t mdio_read(GPIO_TypeDef* GPIOx, uint32_t PhyRegAddr)
{
	output_MDIO(GPIOx, 0xFFFFFFFF, 32);
	output_MDIO(GPIOx, 0x06, 4);
	output_MDIO(GPIOx, PHY_ADDR, 5);
	output_MDIO(GPIOx, PhyRegAddr, 5);
	turnaround_MDIO(GPIOx);
	uint32_t val = input_MDIO(GPIOx );
	idle_MDIO(GPIOx);
	return val;
}

void mdio_write(GPIO_TypeDef* GPIOx, uint32_t PhyRegAddr, uint32_t val)
{
	output_MDIO(GPIOx, 0xFFFFFFFF, 32);
	output_MDIO(GPIOx, 0x05, 4);
	output_MDIO(GPIOx, PHY_ADDR, 5);
	output_MDIO(GPIOx, PhyRegAddr, 5);
	output_MDIO(GPIOx, 0x02, 2);
	output_MDIO(GPIOx, val, 16);
	idle_MDIO(GPIOx);
}

int ethernet_link(void) {
	return ((mdio_read(GPIO_MDC, PHYREG_STATUS)>>SVAL)&0x01); 
}

void ethernet_set_link(int speed, int duplex) {
	uint32_t val=0;
	if((speed < 0) || (speed > 1)) {
		val = CNTL_AUTONEGO; 
	} else {
		val = ((CNTL_SPEED&(speed<<11))|(CNTL_DUPLEX&(duplex<<7))); 
	}
	mdio_write(GPIO_MDC, PHYREG_CONTROL, val);
}
#endif