work in progress

Dependencies:   FastAnalogIn FastIO USBDevice mbed FastPWM SimpleDMA

Fork of Pinscape_Controller by Mike R

Committer:
mjr
Date:
Wed Apr 01 22:57:31 2015 +0000
Revision:
22:71422c359f2a
Parent:
21:5048e16cc9ef
Child:
23:14f8c5004cd0
Fix preprocessor error

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 5:a70c0bce770d 1 /* Copyright 2014 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 5:a70c0bce770d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 5:a70c0bce770d 20 // Pinscape Controller
mjr 5:a70c0bce770d 21 //
mjr 17:ab3cec0c8bf4 22 // "Pinscape" is the name of my custom-built virtual pinball cabinet, so I call this
mjr 17:ab3cec0c8bf4 23 // software the Pinscape Controller. I wrote it to handle several tasks that I needed
mjr 17:ab3cec0c8bf4 24 // for my cabinet. It runs on a Freescale KL25Z microcontroller, which is a small and
mjr 17:ab3cec0c8bf4 25 // inexpensive device that attaches to the cabinet PC via a USB cable, and can attach
mjr 17:ab3cec0c8bf4 26 // via custom wiring to sensors, buttons, and other devices in the cabinet.
mjr 5:a70c0bce770d 27 //
mjr 17:ab3cec0c8bf4 28 // I designed the software and hardware in this project especially for my own
mjr 17:ab3cec0c8bf4 29 // cabinet, but it uses standard interfaces in Windows and Visual Pinball, so it should
mjr 17:ab3cec0c8bf4 30 // work in any VP-based cabinet, as long as you're using the usual VP software suite.
mjr 17:ab3cec0c8bf4 31 // I've tried to document the hardware in enough detail for anyone else to duplicate
mjr 17:ab3cec0c8bf4 32 // the entire project, and the full software is open source.
mjr 5:a70c0bce770d 33 //
mjr 17:ab3cec0c8bf4 34 // The Freescale board appears to the host PC as a standard USB joystick. This works
mjr 17:ab3cec0c8bf4 35 // with the built-in Windows joystick device drivers, so there's no need to install any
mjr 17:ab3cec0c8bf4 36 // new drivers or other software on the PC. Windows should recognize the Freescale
mjr 17:ab3cec0c8bf4 37 // as a joystick when you plug it into the USB port, and Windows shouldn't ask you to
mjr 17:ab3cec0c8bf4 38 // install any drivers. If you bring up the Windows control panel for USB Game
mjr 17:ab3cec0c8bf4 39 // Controllers, this device will appear as "Pinscape Controller". *Don't* do any
mjr 17:ab3cec0c8bf4 40 // calibration with the Windows control panel or third-part calibration tools. The
mjr 17:ab3cec0c8bf4 41 // software calibrates the accelerometer portion automatically, and has its own special
mjr 17:ab3cec0c8bf4 42 // calibration procedure for the plunger sensor, if you're using that (see below).
mjr 5:a70c0bce770d 43 //
mjr 17:ab3cec0c8bf4 44 // This software provides a whole bunch of separate features. You can use any of these
mjr 17:ab3cec0c8bf4 45 // features individually or all together. If you're not using a particular feature, you
mjr 17:ab3cec0c8bf4 46 // can simply omit the extra wiring and/or hardware for that feature. You can use
mjr 17:ab3cec0c8bf4 47 // the nudging feature by itself without any extra hardware attached, since the
mjr 17:ab3cec0c8bf4 48 // accelerometer is built in to the KL25Z board.
mjr 5:a70c0bce770d 49 //
mjr 17:ab3cec0c8bf4 50 // - Nudge sensing via the KL25Z's on-board accelerometer. Nudging the cabinet
mjr 17:ab3cec0c8bf4 51 // causes small accelerations that the accelerometer can detect; these are sent to
mjr 17:ab3cec0c8bf4 52 // Visual Pinball via the joystick interface so that VP can simulate the effect
mjr 17:ab3cec0c8bf4 53 // of the real physical nudges on its simulated ball. VP has native handling for
mjr 17:ab3cec0c8bf4 54 // this type of input, so all you have to do is set some preferences in VP to tell
mjr 17:ab3cec0c8bf4 55 // it that an accelerometer is attached.
mjr 5:a70c0bce770d 56 //
mjr 5:a70c0bce770d 57 // - Plunger position sensing via an attached TAOS TSL 1410R CCD linear array sensor.
mjr 17:ab3cec0c8bf4 58 // To use this feature, you need to buy the TAOS device (it's not built in to the
mjr 17:ab3cec0c8bf4 59 // KL25Z, obviously), wire it to the KL25Z (5 wire connections between the two
mjr 17:ab3cec0c8bf4 60 // devices are required), and mount the TAOS sensor in your cabinet so that it's
mjr 17:ab3cec0c8bf4 61 // positioned properly to capture images of the physical plunger shooter rod.
mjr 17:ab3cec0c8bf4 62 //
mjr 17:ab3cec0c8bf4 63 // The physical mounting and wiring details are desribed in the project
mjr 17:ab3cec0c8bf4 64 // documentation.
mjr 17:ab3cec0c8bf4 65 //
mjr 17:ab3cec0c8bf4 66 // If the CCD is attached, the software constantly captures images from the CCD
mjr 17:ab3cec0c8bf4 67 // and analyzes them to determine how far back the plunger is pulled. It reports
mjr 17:ab3cec0c8bf4 68 // this to Visual Pinball via the joystick interface. This allows VP to make the
mjr 17:ab3cec0c8bf4 69 // simulated on-screen plunger track the motion of the physical plunger in real
mjr 17:ab3cec0c8bf4 70 // time. As with the nudge data, VP has native handling for the plunger input,
mjr 17:ab3cec0c8bf4 71 // so you just need to set the VP preferences to tell it that an analog plunger
mjr 17:ab3cec0c8bf4 72 // device is attached. One caveat, though: although VP itself has built-in
mjr 17:ab3cec0c8bf4 73 // support for an analog plunger, not all existing tables take advantage of it.
mjr 17:ab3cec0c8bf4 74 // Many existing tables have their own custom plunger scripting that doesn't
mjr 17:ab3cec0c8bf4 75 // cooperate with the VP plunger input. All tables *can* be made to work with
mjr 17:ab3cec0c8bf4 76 // the plunger, and in most cases it only requires some simple script editing,
mjr 17:ab3cec0c8bf4 77 // but in some cases it requires some more extensive surgery.
mjr 5:a70c0bce770d 78 //
mjr 6:cc35eb643e8f 79 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 80 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 81 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 82 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 17:ab3cec0c8bf4 83 // sensor or the mechanical plunger, since their alignment shift change slightly
mjr 17:ab3cec0c8bf4 84 // when you put everything back together.) You can optionally install a
mjr 17:ab3cec0c8bf4 85 // dedicated momentary switch or pushbutton to activate the calibration mode;
mjr 17:ab3cec0c8bf4 86 // this is describe in the project documentation. If you don't want to bother
mjr 17:ab3cec0c8bf4 87 // with the extra button, you can also trigger calibration using the Windows
mjr 17:ab3cec0c8bf4 88 // setup software, which you can find on the Pinscape project page.
mjr 6:cc35eb643e8f 89 //
mjr 17:ab3cec0c8bf4 90 // The calibration procedure is described in the project documentation. Briefly,
mjr 17:ab3cec0c8bf4 91 // when you trigger calibration mode, the software will scan the CCD for about
mjr 17:ab3cec0c8bf4 92 // 15 seconds, during which you should simply pull the physical plunger back
mjr 17:ab3cec0c8bf4 93 // all the way, hold it for a moment, and then slowly return it to the rest
mjr 17:ab3cec0c8bf4 94 // position. (DON'T just release it from the retracted position, since that
mjr 17:ab3cec0c8bf4 95 // let it shoot forward too far. We want to measure the range from the park
mjr 17:ab3cec0c8bf4 96 // position to the fully retracted position only.)
mjr 5:a70c0bce770d 97 //
mjr 13:72dda449c3c0 98 // - Button input wiring. 24 of the KL25Z's GPIO ports are mapped as digital inputs
mjr 13:72dda449c3c0 99 // for buttons and switches. The software reports these as joystick buttons when
mjr 13:72dda449c3c0 100 // it sends reports to the PC. These can be used to wire physical pinball-style
mjr 13:72dda449c3c0 101 // buttons in the cabinet (e.g., flipper buttons, the Start button) and miscellaneous
mjr 13:72dda449c3c0 102 // switches (such as a tilt bob) to the PC. Visual Pinball can use joystick buttons
mjr 13:72dda449c3c0 103 // for input - you just have to assign a VP function to each button using VP's
mjr 13:72dda449c3c0 104 // keyboard options dialog. To wire a button physically, connect one terminal of
mjr 13:72dda449c3c0 105 // the button switch to the KL25Z ground, and connect the other terminal to the
mjr 13:72dda449c3c0 106 // the GPIO port you wish to assign to the button. See the buttonMap[] array
mjr 13:72dda449c3c0 107 // below for the available GPIO ports and their assigned joystick button numbers.
mjr 13:72dda449c3c0 108 // If you're not using a GPIO port, you can just leave it unconnected - the digital
mjr 13:72dda449c3c0 109 // inputs have built-in pull-up resistors, so an unconnected port is the same as
mjr 13:72dda449c3c0 110 // an open switch (an "off" state for the button).
mjr 13:72dda449c3c0 111 //
mjr 5:a70c0bce770d 112 // - LedWiz emulation. The KL25Z can appear to the PC as an LedWiz device, and will
mjr 5:a70c0bce770d 113 // accept and process LedWiz commands from the host. The software can turn digital
mjr 5:a70c0bce770d 114 // output ports on and off, and can set varying PWM intensitiy levels on a subset
mjr 5:a70c0bce770d 115 // of ports. (The KL25Z can only provide 6 PWM ports. Intensity level settings on
mjr 5:a70c0bce770d 116 // other ports is ignored, so non-PWM ports can only be used for simple on/off
mjr 5:a70c0bce770d 117 // devices such as contactors and solenoids.) The KL25Z can only supply 4mA on its
mjr 5:a70c0bce770d 118 // output ports, so external hardware is required to take advantage of the LedWiz
mjr 5:a70c0bce770d 119 // emulation. Many different hardware designs are possible, but there's a simple
mjr 5:a70c0bce770d 120 // reference design in the documentation that uses a Darlington array IC to
mjr 5:a70c0bce770d 121 // increase the output from each port to 500mA (the same level as the LedWiz),
mjr 5:a70c0bce770d 122 // plus an extended design that adds an optocoupler and MOSFET to provide very
mjr 5:a70c0bce770d 123 // high power handling, up to about 45A or 150W, with voltages up to 100V.
mjr 5:a70c0bce770d 124 // That will handle just about any DC device directly (wtihout relays or other
mjr 5:a70c0bce770d 125 // amplifiers), and switches fast enough to support PWM devices.
mjr 5:a70c0bce770d 126 //
mjr 5:a70c0bce770d 127 // The device can report any desired LedWiz unit number to the host, which makes
mjr 5:a70c0bce770d 128 // it possible to use the LedWiz emulation on a machine that also has one or more
mjr 5:a70c0bce770d 129 // actual LedWiz devices intalled. The LedWiz design allows for up to 16 units
mjr 5:a70c0bce770d 130 // to be installed in one machine - each one is invidually addressable by its
mjr 5:a70c0bce770d 131 // distinct unit number.
mjr 5:a70c0bce770d 132 //
mjr 5:a70c0bce770d 133 // The LedWiz emulation features are of course optional. There's no need to
mjr 5:a70c0bce770d 134 // build any of the external port hardware (or attach anything to the output
mjr 5:a70c0bce770d 135 // ports at all) if the LedWiz features aren't needed. Most people won't have
mjr 5:a70c0bce770d 136 // any use for the LedWiz features. I built them mostly as a learning exercise,
mjr 5:a70c0bce770d 137 // but with a slight practical need for a handful of extra ports (I'm using the
mjr 5:a70c0bce770d 138 // cutting-edge 10-contactor setup, so my real LedWiz is full!).
mjr 6:cc35eb643e8f 139 //
mjr 6:cc35eb643e8f 140 // The on-board LED on the KL25Z flashes to indicate the current device status:
mjr 6:cc35eb643e8f 141 //
mjr 6:cc35eb643e8f 142 // two short red flashes = the device is powered but hasn't successfully
mjr 6:cc35eb643e8f 143 // connected to the host via USB (either it's not physically connected
mjr 6:cc35eb643e8f 144 // to the USB port, or there was a problem with the software handshake
mjr 6:cc35eb643e8f 145 // with the USB device driver on the computer)
mjr 6:cc35eb643e8f 146 //
mjr 6:cc35eb643e8f 147 // short red flash = the host computer is in sleep/suspend mode
mjr 6:cc35eb643e8f 148 //
mjr 6:cc35eb643e8f 149 // long red/green = the LedWiz unti number has been changed, so a reset
mjr 6:cc35eb643e8f 150 // is needed. You can simply unplug the device and plug it back in,
mjr 6:cc35eb643e8f 151 // or presss and hold the reset button on the device for a few seconds.
mjr 6:cc35eb643e8f 152 //
mjr 6:cc35eb643e8f 153 // long yellow/green = everything's working, but the plunger hasn't
mjr 6:cc35eb643e8f 154 // been calibrated; follow the calibration procedure described above.
mjr 6:cc35eb643e8f 155 // This flash mode won't appear if the CCD has been disabled. Note
mjr 18:5e890ebd0023 156 // that the device can't tell whether a CCD is physically attached;
mjr 18:5e890ebd0023 157 // if you don't have a CCD attached, you can set the appropriate option
mjr 18:5e890ebd0023 158 // in config.h or use the Windows config tool to disable the CCD
mjr 18:5e890ebd0023 159 // software features.
mjr 6:cc35eb643e8f 160 //
mjr 6:cc35eb643e8f 161 // alternating blue/green = everything's working
mjr 6:cc35eb643e8f 162 //
mjr 6:cc35eb643e8f 163 // Software configuration: you can change option settings by sending special
mjr 6:cc35eb643e8f 164 // USB commands from the PC. I've provided a Windows program for this purpose;
mjr 6:cc35eb643e8f 165 // refer to the documentation for details. For reference, here's the format
mjr 6:cc35eb643e8f 166 // of the USB command for option changes:
mjr 6:cc35eb643e8f 167 //
mjr 6:cc35eb643e8f 168 // length of report = 8 bytes
mjr 6:cc35eb643e8f 169 // byte 0 = 65 (0x41)
mjr 6:cc35eb643e8f 170 // byte 1 = 1 (0x01)
mjr 6:cc35eb643e8f 171 // byte 2 = new LedWiz unit number, 0x01 to 0x0f
mjr 6:cc35eb643e8f 172 // byte 3 = feature enable bit mask:
mjr 6:cc35eb643e8f 173 // 0x01 = enable CCD (default = on)
mjr 9:fd65b0a94720 174 //
mjr 9:fd65b0a94720 175 // Plunger calibration mode: the host can activate plunger calibration mode
mjr 9:fd65b0a94720 176 // by sending this packet. This has the same effect as pressing and holding
mjr 9:fd65b0a94720 177 // the plunger calibration button for two seconds, to allow activating this
mjr 9:fd65b0a94720 178 // mode without attaching a physical button.
mjr 9:fd65b0a94720 179 //
mjr 9:fd65b0a94720 180 // length = 8 bytes
mjr 9:fd65b0a94720 181 // byte 0 = 65 (0x41)
mjr 9:fd65b0a94720 182 // byte 1 = 2 (0x02)
mjr 9:fd65b0a94720 183 //
mjr 10:976666ffa4ef 184 // Exposure reports: the host can request a report of the full set of pixel
mjr 10:976666ffa4ef 185 // values for the next frame by sending this special packet:
mjr 10:976666ffa4ef 186 //
mjr 10:976666ffa4ef 187 // length = 8 bytes
mjr 10:976666ffa4ef 188 // byte 0 = 65 (0x41)
mjr 10:976666ffa4ef 189 // byte 1 = 3 (0x03)
mjr 10:976666ffa4ef 190 //
mjr 10:976666ffa4ef 191 // We'll respond with a series of special reports giving the exposure status.
mjr 10:976666ffa4ef 192 // Each report has the following structure:
mjr 10:976666ffa4ef 193 //
mjr 10:976666ffa4ef 194 // bytes 0:1 = 11-bit index, with high 5 bits set to 10000. For
mjr 10:976666ffa4ef 195 // example, 0x04 0x80 indicates index 4. This is the
mjr 10:976666ffa4ef 196 // starting pixel number in the report. The first report
mjr 10:976666ffa4ef 197 // will be 0x00 0x80 to indicate pixel #0.
mjr 10:976666ffa4ef 198 // bytes 2:3 = 16-bit unsigned int brightness level of pixel at index
mjr 10:976666ffa4ef 199 // bytes 4:5 = brightness of pixel at index+1
mjr 10:976666ffa4ef 200 // etc for the rest of the packet
mjr 10:976666ffa4ef 201 //
mjr 10:976666ffa4ef 202 // This still has the form of a joystick packet at the USB level, but
mjr 10:976666ffa4ef 203 // can be differentiated by the host via the status bits. It would have
mjr 10:976666ffa4ef 204 // been cleaner to use a different Report ID at the USB level, but this
mjr 10:976666ffa4ef 205 // would have necessitated a different container structure in the report
mjr 10:976666ffa4ef 206 // descriptor, which would have broken LedWiz compatibility. Given that
mjr 10:976666ffa4ef 207 // constraint, we have to re-use the joystick report type, making for
mjr 10:976666ffa4ef 208 // this somewhat kludgey approach.
mjr 6:cc35eb643e8f 209
mjr 0:5acbbe3f4cf4 210 #include "mbed.h"
mjr 6:cc35eb643e8f 211 #include "math.h"
mjr 0:5acbbe3f4cf4 212 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 213 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 214 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 215 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 216 #include "crc32.h"
mjr 2:c174f9ee414a 217
mjr 17:ab3cec0c8bf4 218 // our local configuration file
mjr 21:5048e16cc9ef 219 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 220 #include "config.h"
mjr 17:ab3cec0c8bf4 221
mjr 5:a70c0bce770d 222
mjr 5:a70c0bce770d 223 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 224 // utilities
mjr 17:ab3cec0c8bf4 225
mjr 17:ab3cec0c8bf4 226 // number of elements in an array
mjr 17:ab3cec0c8bf4 227 #define countof(x) (sizeof(x)/sizeof((x)[0]))
mjr 17:ab3cec0c8bf4 228
mjr 17:ab3cec0c8bf4 229
mjr 17:ab3cec0c8bf4 230 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 231 // USB device vendor ID, product ID, and version.
mjr 5:a70c0bce770d 232 //
mjr 5:a70c0bce770d 233 // We use the vendor ID for the LedWiz, so that the PC-side software can
mjr 5:a70c0bce770d 234 // identify us as capable of performing LedWiz commands. The LedWiz uses
mjr 5:a70c0bce770d 235 // a product ID value from 0xF0 to 0xFF; the last four bits identify the
mjr 5:a70c0bce770d 236 // unit number (e.g., product ID 0xF7 means unit #7). This allows multiple
mjr 5:a70c0bce770d 237 // LedWiz units to be installed in a single PC; the software on the PC side
mjr 5:a70c0bce770d 238 // uses the unit number to route commands to the devices attached to each
mjr 5:a70c0bce770d 239 // unit. On the real LedWiz, the unit number must be set in the firmware
mjr 5:a70c0bce770d 240 // at the factory; it's not configurable by the end user. Most LedWiz's
mjr 5:a70c0bce770d 241 // ship with the unit number set to 0, but the vendor will set different
mjr 5:a70c0bce770d 242 // unit numbers if requested at the time of purchase. So if you have a
mjr 5:a70c0bce770d 243 // single LedWiz already installed in your cabinet, and you didn't ask for
mjr 5:a70c0bce770d 244 // a non-default unit number, your existing LedWiz will be unit 0.
mjr 5:a70c0bce770d 245 //
mjr 6:cc35eb643e8f 246 // Note that the USB_PRODUCT_ID value set here omits the unit number. We
mjr 6:cc35eb643e8f 247 // take the unit number from the saved configuration. We provide a
mjr 6:cc35eb643e8f 248 // configuration command that can be sent via the USB connection to change
mjr 6:cc35eb643e8f 249 // the unit number, so that users can select the unit number without having
mjr 6:cc35eb643e8f 250 // to install a different version of the software. We'll combine the base
mjr 6:cc35eb643e8f 251 // product ID here with the unit number to get the actual product ID that
mjr 6:cc35eb643e8f 252 // we send to the USB controller.
mjr 5:a70c0bce770d 253 const uint16_t USB_VENDOR_ID = 0xFAFA;
mjr 6:cc35eb643e8f 254 const uint16_t USB_PRODUCT_ID = 0x00F0;
mjr 6:cc35eb643e8f 255 const uint16_t USB_VERSION_NO = 0x0006;
mjr 0:5acbbe3f4cf4 256
mjr 5:a70c0bce770d 257
mjr 6:cc35eb643e8f 258 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 6:cc35eb643e8f 259 #define JOYMAX 4096
mjr 6:cc35eb643e8f 260
mjr 5:a70c0bce770d 261
mjr 17:ab3cec0c8bf4 262 // --------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 263 //
mjr 21:5048e16cc9ef 264 // Define a symbol to tell us whether any sort of plunger sensor code
mjr 21:5048e16cc9ef 265 // is enabled in this build. Note that this doesn't tell us that a
mjr 21:5048e16cc9ef 266 // plunger device is actually attached or *currently* enabled; it just
mjr 21:5048e16cc9ef 267 // tells us whether or not the code for plunger sensing is enabled in
mjr 21:5048e16cc9ef 268 // the software build. This lets us leave out some unnecessary code
mjr 21:5048e16cc9ef 269 // on installations where no physical plunger is attached.
mjr 17:ab3cec0c8bf4 270 //
mjr 21:5048e16cc9ef 271 const int PLUNGER_CODE_ENABLED =
mjr 21:5048e16cc9ef 272 #if defined(ENABLE_CCD_SENSOR) || defined(ENABLE_POT_SENSOR)
mjr 21:5048e16cc9ef 273 1;
mjr 17:ab3cec0c8bf4 274 #else
mjr 21:5048e16cc9ef 275 0;
mjr 17:ab3cec0c8bf4 276 #endif
mjr 9:fd65b0a94720 277
mjr 17:ab3cec0c8bf4 278 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 279 //
mjr 17:ab3cec0c8bf4 280 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 17:ab3cec0c8bf4 281 //
mjr 17:ab3cec0c8bf4 282 DigitalOut ledR(LED1), ledG(LED2), ledB(LED3);
mjr 17:ab3cec0c8bf4 283
mjr 9:fd65b0a94720 284
mjr 9:fd65b0a94720 285 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 286 //
mjr 5:a70c0bce770d 287 // LedWiz emulation
mjr 5:a70c0bce770d 288 //
mjr 5:a70c0bce770d 289
mjr 0:5acbbe3f4cf4 290 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 291
mjr 6:cc35eb643e8f 292 // LedWiz output pin interface. We create a cover class to virtualize
mjr 6:cc35eb643e8f 293 // digital vs PWM outputs and give them a common interface. The KL25Z
mjr 6:cc35eb643e8f 294 // unfortunately doesn't have enough hardware PWM channels to support
mjr 6:cc35eb643e8f 295 // PWM on all 32 LedWiz outputs, so we provide as many PWM channels as
mjr 6:cc35eb643e8f 296 // we can (10), and fill out the rest of the outputs with plain digital
mjr 6:cc35eb643e8f 297 // outs.
mjr 6:cc35eb643e8f 298 class LwOut
mjr 6:cc35eb643e8f 299 {
mjr 6:cc35eb643e8f 300 public:
mjr 6:cc35eb643e8f 301 virtual void set(float val) = 0;
mjr 6:cc35eb643e8f 302 };
mjr 6:cc35eb643e8f 303 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 304 {
mjr 6:cc35eb643e8f 305 public:
mjr 13:72dda449c3c0 306 LwPwmOut(PinName pin) : p(pin) { prv = -1; }
mjr 13:72dda449c3c0 307 virtual void set(float val)
mjr 13:72dda449c3c0 308 {
mjr 13:72dda449c3c0 309 if (val != prv)
mjr 13:72dda449c3c0 310 p.write(prv = val);
mjr 13:72dda449c3c0 311 }
mjr 6:cc35eb643e8f 312 PwmOut p;
mjr 13:72dda449c3c0 313 float prv;
mjr 6:cc35eb643e8f 314 };
mjr 6:cc35eb643e8f 315 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 316 {
mjr 6:cc35eb643e8f 317 public:
mjr 13:72dda449c3c0 318 LwDigOut(PinName pin) : p(pin) { prv = -1; }
mjr 13:72dda449c3c0 319 virtual void set(float val)
mjr 13:72dda449c3c0 320 {
mjr 13:72dda449c3c0 321 if (val != prv)
mjr 13:72dda449c3c0 322 p.write((prv = val) == 0.0 ? 0 : 1);
mjr 13:72dda449c3c0 323 }
mjr 6:cc35eb643e8f 324 DigitalOut p;
mjr 13:72dda449c3c0 325 float prv;
mjr 6:cc35eb643e8f 326 };
mjr 11:bd9da7088e6e 327 class LwUnusedOut: public LwOut
mjr 11:bd9da7088e6e 328 {
mjr 11:bd9da7088e6e 329 public:
mjr 11:bd9da7088e6e 330 LwUnusedOut() { }
mjr 11:bd9da7088e6e 331 virtual void set(float val) { }
mjr 11:bd9da7088e6e 332 };
mjr 6:cc35eb643e8f 333
mjr 6:cc35eb643e8f 334 // output pin array
mjr 6:cc35eb643e8f 335 static LwOut *lwPin[32];
mjr 6:cc35eb643e8f 336
mjr 6:cc35eb643e8f 337 // initialize the output pin array
mjr 6:cc35eb643e8f 338 void initLwOut()
mjr 6:cc35eb643e8f 339 {
mjr 9:fd65b0a94720 340 for (int i = 0 ; i < countof(lwPin) ; ++i)
mjr 6:cc35eb643e8f 341 {
mjr 11:bd9da7088e6e 342 PinName p = (i < countof(ledWizPortMap) ? ledWizPortMap[i].pin : NC);
mjr 11:bd9da7088e6e 343 if (p == NC)
mjr 11:bd9da7088e6e 344 lwPin[i] = new LwUnusedOut();
mjr 11:bd9da7088e6e 345 else if (ledWizPortMap[i].isPWM)
mjr 11:bd9da7088e6e 346 lwPin[i] = new LwPwmOut(p);
mjr 11:bd9da7088e6e 347 else
mjr 11:bd9da7088e6e 348 lwPin[i] = new LwDigOut(p);
mjr 6:cc35eb643e8f 349 }
mjr 6:cc35eb643e8f 350 }
mjr 6:cc35eb643e8f 351
mjr 0:5acbbe3f4cf4 352 // on/off state for each LedWiz output
mjr 1:d913e0afb2ac 353 static uint8_t wizOn[32];
mjr 0:5acbbe3f4cf4 354
mjr 0:5acbbe3f4cf4 355 // profile (brightness/blink) state for each LedWiz output
mjr 1:d913e0afb2ac 356 static uint8_t wizVal[32] = {
mjr 13:72dda449c3c0 357 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 358 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 359 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 360 48, 48, 48, 48, 48, 48, 48, 48
mjr 0:5acbbe3f4cf4 361 };
mjr 0:5acbbe3f4cf4 362
mjr 1:d913e0afb2ac 363 static float wizState(int idx)
mjr 0:5acbbe3f4cf4 364 {
mjr 13:72dda449c3c0 365 if (wizOn[idx])
mjr 13:72dda449c3c0 366 {
mjr 0:5acbbe3f4cf4 367 // on - map profile brightness state to PWM level
mjr 1:d913e0afb2ac 368 uint8_t val = wizVal[idx];
mjr 13:72dda449c3c0 369 if (val <= 48)
mjr 13:72dda449c3c0 370 {
mjr 15:944bbc29c4dd 371 // PWM brightness/intensity level. Rescale from the LedWiz
mjr 15:944bbc29c4dd 372 // 0..48 integer range to our internal PwmOut 0..1 float range.
mjr 15:944bbc29c4dd 373 // Note that on the actual LedWiz, level 48 is actually about
mjr 15:944bbc29c4dd 374 // 98% on - contrary to the LedWiz documentation, level 49 is
mjr 15:944bbc29c4dd 375 // the true 100% level. (In the documentation, level 49 is
mjr 15:944bbc29c4dd 376 // simply not a valid setting.) Even so, we treat level 48 as
mjr 15:944bbc29c4dd 377 // 100% on to match the documentation. This won't be perfectly
mjr 15:944bbc29c4dd 378 // ocmpatible with the actual LedWiz, but it makes for such a
mjr 15:944bbc29c4dd 379 // small difference in brightness (if the output device is an
mjr 15:944bbc29c4dd 380 // LED, say) that no one should notice. It seems better to
mjr 15:944bbc29c4dd 381 // err in this direction, because while the difference in
mjr 15:944bbc29c4dd 382 // brightness when attached to an LED won't be noticeable, the
mjr 15:944bbc29c4dd 383 // difference in duty cycle when attached to something like a
mjr 15:944bbc29c4dd 384 // contactor *can* be noticeable - anything less than 100%
mjr 15:944bbc29c4dd 385 // can cause a contactor or relay to chatter. There's almost
mjr 15:944bbc29c4dd 386 // never a situation where you'd want values other than 0% and
mjr 15:944bbc29c4dd 387 // 100% for a contactor or relay, so treating level 48 as 100%
mjr 15:944bbc29c4dd 388 // makes us work properly with software that's expecting the
mjr 15:944bbc29c4dd 389 // documented LedWiz behavior and therefore uses level 48 to
mjr 15:944bbc29c4dd 390 // turn a contactor or relay fully on.
mjr 13:72dda449c3c0 391 return val/48.0;
mjr 13:72dda449c3c0 392 }
mjr 13:72dda449c3c0 393 else if (val == 49)
mjr 13:72dda449c3c0 394 {
mjr 15:944bbc29c4dd 395 // 49 is undefined in the LedWiz documentation, but actually
mjr 15:944bbc29c4dd 396 // means 100% on. The documentation says that levels 1-48 are
mjr 15:944bbc29c4dd 397 // the full PWM range, but empirically it appears that the real
mjr 15:944bbc29c4dd 398 // range implemented in the firmware is 1-49. Some software on
mjr 15:944bbc29c4dd 399 // the PC side (notably DOF) is aware of this and uses level 49
mjr 15:944bbc29c4dd 400 // to mean "100% on". To ensure compatibility with existing
mjr 15:944bbc29c4dd 401 // PC-side software, we need to recognize level 49.
mjr 13:72dda449c3c0 402 return 1.0;
mjr 13:72dda449c3c0 403 }
mjr 0:5acbbe3f4cf4 404 else if (val >= 129 && val <= 132)
mjr 13:72dda449c3c0 405 {
mjr 13:72dda449c3c0 406 // Values of 129-132 select different flashing modes. We don't
mjr 13:72dda449c3c0 407 // support any of these. Instead, simply treat them as fully on.
mjr 13:72dda449c3c0 408 // Note that DOF doesn't ever use modes 129-132, as it implements
mjr 13:72dda449c3c0 409 // all flashing modes itself on the host side, so this limitation
mjr 13:72dda449c3c0 410 // won't have any effect on DOF users. You can observe it using
mjr 13:72dda449c3c0 411 // LedBlinky, though.
mjr 13:72dda449c3c0 412 return 1.0;
mjr 13:72dda449c3c0 413 }
mjr 0:5acbbe3f4cf4 414 else
mjr 13:72dda449c3c0 415 {
mjr 13:72dda449c3c0 416 // Other values are undefined in the LedWiz documentation. Hosts
mjr 13:72dda449c3c0 417 // *should* never send undefined values, since whatever behavior an
mjr 13:72dda449c3c0 418 // LedWiz unit exhibits in response is accidental and could change
mjr 13:72dda449c3c0 419 // in a future version. We'll treat all undefined values as equivalent
mjr 13:72dda449c3c0 420 // to 48 (fully on).
mjr 13:72dda449c3c0 421 //
mjr 13:72dda449c3c0 422 // NB: the 49 and 129-132 cases are broken out above for the sake
mjr 13:72dda449c3c0 423 // of documentation. We end up using 1.0 as the return value for
mjr 13:72dda449c3c0 424 // everything outside of the defined 0-48 range, so we could collapse
mjr 13:72dda449c3c0 425 // this whole thing to a single 'else' branch, but I wanted to call
mjr 13:72dda449c3c0 426 // out the specific reasons for handling the settings above as we do.
mjr 0:5acbbe3f4cf4 427 return 1.0;
mjr 13:72dda449c3c0 428 }
mjr 0:5acbbe3f4cf4 429 }
mjr 13:72dda449c3c0 430 else
mjr 13:72dda449c3c0 431 {
mjr 13:72dda449c3c0 432 // off - show at 0 intensity
mjr 13:72dda449c3c0 433 return 0.0;
mjr 0:5acbbe3f4cf4 434 }
mjr 0:5acbbe3f4cf4 435 }
mjr 0:5acbbe3f4cf4 436
mjr 1:d913e0afb2ac 437 static void updateWizOuts()
mjr 1:d913e0afb2ac 438 {
mjr 6:cc35eb643e8f 439 for (int i = 0 ; i < 32 ; ++i)
mjr 6:cc35eb643e8f 440 lwPin[i]->set(wizState(i));
mjr 1:d913e0afb2ac 441 }
mjr 1:d913e0afb2ac 442
mjr 11:bd9da7088e6e 443
mjr 11:bd9da7088e6e 444 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 445 //
mjr 11:bd9da7088e6e 446 // Button input
mjr 11:bd9da7088e6e 447 //
mjr 11:bd9da7088e6e 448
mjr 11:bd9da7088e6e 449 // button input map array
mjr 11:bd9da7088e6e 450 DigitalIn *buttonDigIn[32];
mjr 11:bd9da7088e6e 451
mjr 18:5e890ebd0023 452 // button state
mjr 18:5e890ebd0023 453 struct ButtonState
mjr 18:5e890ebd0023 454 {
mjr 18:5e890ebd0023 455 // current on/off state
mjr 18:5e890ebd0023 456 int pressed;
mjr 18:5e890ebd0023 457
mjr 18:5e890ebd0023 458 // Sticky time remaining for current state. When a
mjr 18:5e890ebd0023 459 // state transition occurs, we set this to a debounce
mjr 18:5e890ebd0023 460 // period. Future state transitions will be ignored
mjr 18:5e890ebd0023 461 // until the debounce time elapses.
mjr 18:5e890ebd0023 462 int t;
mjr 18:5e890ebd0023 463 } buttonState[32];
mjr 18:5e890ebd0023 464
mjr 12:669df364a565 465 // timer for button reports
mjr 12:669df364a565 466 static Timer buttonTimer;
mjr 12:669df364a565 467
mjr 11:bd9da7088e6e 468 // initialize the button inputs
mjr 11:bd9da7088e6e 469 void initButtons()
mjr 11:bd9da7088e6e 470 {
mjr 11:bd9da7088e6e 471 // create the digital inputs
mjr 11:bd9da7088e6e 472 for (int i = 0 ; i < countof(buttonDigIn) ; ++i)
mjr 11:bd9da7088e6e 473 {
mjr 11:bd9da7088e6e 474 if (i < countof(buttonMap) && buttonMap[i] != NC)
mjr 11:bd9da7088e6e 475 buttonDigIn[i] = new DigitalIn(buttonMap[i]);
mjr 11:bd9da7088e6e 476 else
mjr 11:bd9da7088e6e 477 buttonDigIn[i] = 0;
mjr 11:bd9da7088e6e 478 }
mjr 12:669df364a565 479
mjr 12:669df364a565 480 // start the button timer
mjr 12:669df364a565 481 buttonTimer.start();
mjr 11:bd9da7088e6e 482 }
mjr 11:bd9da7088e6e 483
mjr 11:bd9da7088e6e 484
mjr 18:5e890ebd0023 485 // read the button input state
mjr 18:5e890ebd0023 486 uint32_t readButtons()
mjr 11:bd9da7088e6e 487 {
mjr 11:bd9da7088e6e 488 // start with all buttons off
mjr 11:bd9da7088e6e 489 uint32_t buttons = 0;
mjr 11:bd9da7088e6e 490
mjr 18:5e890ebd0023 491 // figure the time elapsed since the last scan
mjr 18:5e890ebd0023 492 int dt = buttonTimer.read_ms();
mjr 18:5e890ebd0023 493
mjr 18:5e890ebd0023 494 // reset the timef for the next scan
mjr 18:5e890ebd0023 495 buttonTimer.reset();
mjr 18:5e890ebd0023 496
mjr 11:bd9da7088e6e 497 // scan the button list
mjr 11:bd9da7088e6e 498 uint32_t bit = 1;
mjr 18:5e890ebd0023 499 DigitalIn **di = buttonDigIn;
mjr 18:5e890ebd0023 500 ButtonState *bs = buttonState;
mjr 18:5e890ebd0023 501 for (int i = 0 ; i < countof(buttonDigIn) ; ++i, ++di, ++bs, bit <<= 1)
mjr 11:bd9da7088e6e 502 {
mjr 18:5e890ebd0023 503 // read this button
mjr 18:5e890ebd0023 504 if (*di != 0)
mjr 18:5e890ebd0023 505 {
mjr 18:5e890ebd0023 506 // deduct the elapsed time since the last update
mjr 18:5e890ebd0023 507 // from the button's remaining sticky time
mjr 18:5e890ebd0023 508 bs->t -= dt;
mjr 18:5e890ebd0023 509 if (bs->t < 0)
mjr 18:5e890ebd0023 510 bs->t = 0;
mjr 18:5e890ebd0023 511
mjr 18:5e890ebd0023 512 // If the sticky time has elapsed, note the new physical
mjr 18:5e890ebd0023 513 // state of the button. If we still have sticky time
mjr 18:5e890ebd0023 514 // remaining, ignore the physical state; the last state
mjr 18:5e890ebd0023 515 // change persists until the sticky time elapses so that
mjr 18:5e890ebd0023 516 // we smooth out any "bounce" (electrical transients that
mjr 18:5e890ebd0023 517 // occur when the switch contact is opened or closed).
mjr 18:5e890ebd0023 518 if (bs->t == 0)
mjr 18:5e890ebd0023 519 {
mjr 18:5e890ebd0023 520 // get the new physical state
mjr 18:5e890ebd0023 521 int pressed = !(*di)->read();
mjr 18:5e890ebd0023 522
mjr 18:5e890ebd0023 523 // update the button's logical state if this is a change
mjr 18:5e890ebd0023 524 if (pressed != bs->pressed)
mjr 18:5e890ebd0023 525 {
mjr 18:5e890ebd0023 526 // store the new state
mjr 18:5e890ebd0023 527 bs->pressed = pressed;
mjr 18:5e890ebd0023 528
mjr 18:5e890ebd0023 529 // start a new sticky period for debouncing this
mjr 18:5e890ebd0023 530 // state change
mjr 19:054f8af32fce 531 bs->t = 25;
mjr 18:5e890ebd0023 532 }
mjr 18:5e890ebd0023 533 }
mjr 18:5e890ebd0023 534
mjr 18:5e890ebd0023 535 // if it's pressed, OR its bit into the state
mjr 18:5e890ebd0023 536 if (bs->pressed)
mjr 18:5e890ebd0023 537 buttons |= bit;
mjr 18:5e890ebd0023 538 }
mjr 11:bd9da7088e6e 539 }
mjr 11:bd9da7088e6e 540
mjr 18:5e890ebd0023 541 // return the new button list
mjr 11:bd9da7088e6e 542 return buttons;
mjr 11:bd9da7088e6e 543 }
mjr 11:bd9da7088e6e 544
mjr 5:a70c0bce770d 545 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 546 //
mjr 5:a70c0bce770d 547 // Customization joystick subbclass
mjr 5:a70c0bce770d 548 //
mjr 5:a70c0bce770d 549
mjr 5:a70c0bce770d 550 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 551 {
mjr 5:a70c0bce770d 552 public:
mjr 5:a70c0bce770d 553 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release)
mjr 5:a70c0bce770d 554 : USBJoystick(vendor_id, product_id, product_release, true)
mjr 5:a70c0bce770d 555 {
mjr 5:a70c0bce770d 556 suspended_ = false;
mjr 5:a70c0bce770d 557 }
mjr 5:a70c0bce770d 558
mjr 5:a70c0bce770d 559 // are we connected?
mjr 5:a70c0bce770d 560 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 561
mjr 5:a70c0bce770d 562 // Are we in suspend mode?
mjr 5:a70c0bce770d 563 int isSuspended() const { return suspended_; }
mjr 5:a70c0bce770d 564
mjr 5:a70c0bce770d 565 protected:
mjr 5:a70c0bce770d 566 virtual void suspendStateChanged(unsigned int suspended)
mjr 5:a70c0bce770d 567 { suspended_ = suspended; }
mjr 5:a70c0bce770d 568
mjr 5:a70c0bce770d 569 // are we suspended?
mjr 5:a70c0bce770d 570 int suspended_;
mjr 5:a70c0bce770d 571 };
mjr 5:a70c0bce770d 572
mjr 5:a70c0bce770d 573 // ---------------------------------------------------------------------------
mjr 6:cc35eb643e8f 574 //
mjr 6:cc35eb643e8f 575 // Some simple math service routines
mjr 6:cc35eb643e8f 576 //
mjr 6:cc35eb643e8f 577
mjr 6:cc35eb643e8f 578 inline float square(float x) { return x*x; }
mjr 6:cc35eb643e8f 579 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 6:cc35eb643e8f 580
mjr 6:cc35eb643e8f 581 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 582 //
mjr 5:a70c0bce770d 583 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 584 //
mjr 5:a70c0bce770d 585
mjr 5:a70c0bce770d 586 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 587 //
mjr 5:a70c0bce770d 588 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 589 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 590 // automatic calibration.
mjr 5:a70c0bce770d 591 //
mjr 5:a70c0bce770d 592 // We install an interrupt handler on the accelerometer "data ready"
mjr 6:cc35eb643e8f 593 // interrupt to ensure that we fetch each sample immediately when it
mjr 6:cc35eb643e8f 594 // becomes available. The accelerometer data rate is fiarly high
mjr 6:cc35eb643e8f 595 // (800 Hz), so it's not practical to keep up with it by polling.
mjr 6:cc35eb643e8f 596 // Using an interrupt handler lets us respond quickly and read
mjr 6:cc35eb643e8f 597 // every sample.
mjr 5:a70c0bce770d 598 //
mjr 6:cc35eb643e8f 599 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 600 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 601 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 602 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 603 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 604 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 605 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 606 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 607 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 608 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 609 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 610 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 611 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 612 // of nudging, say).
mjr 5:a70c0bce770d 613 //
mjr 5:a70c0bce770d 614
mjr 17:ab3cec0c8bf4 615 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 616 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 617
mjr 17:ab3cec0c8bf4 618 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 619 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 620 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 621
mjr 17:ab3cec0c8bf4 622 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 623 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 624 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 625 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 626
mjr 17:ab3cec0c8bf4 627
mjr 6:cc35eb643e8f 628 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 629 struct AccHist
mjr 5:a70c0bce770d 630 {
mjr 6:cc35eb643e8f 631 AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 632 void set(float x, float y, AccHist *prv)
mjr 6:cc35eb643e8f 633 {
mjr 6:cc35eb643e8f 634 // save the raw position
mjr 6:cc35eb643e8f 635 this->x = x;
mjr 6:cc35eb643e8f 636 this->y = y;
mjr 6:cc35eb643e8f 637 this->d = distance(prv);
mjr 6:cc35eb643e8f 638 }
mjr 6:cc35eb643e8f 639
mjr 6:cc35eb643e8f 640 // reading for this entry
mjr 5:a70c0bce770d 641 float x, y;
mjr 5:a70c0bce770d 642
mjr 6:cc35eb643e8f 643 // distance from previous entry
mjr 6:cc35eb643e8f 644 float d;
mjr 5:a70c0bce770d 645
mjr 6:cc35eb643e8f 646 // total and count of samples averaged over this period
mjr 6:cc35eb643e8f 647 float xtot, ytot;
mjr 6:cc35eb643e8f 648 int cnt;
mjr 6:cc35eb643e8f 649
mjr 6:cc35eb643e8f 650 void clearAvg() { xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 651 void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; }
mjr 6:cc35eb643e8f 652 float xAvg() const { return xtot/cnt; }
mjr 6:cc35eb643e8f 653 float yAvg() const { return ytot/cnt; }
mjr 5:a70c0bce770d 654
mjr 6:cc35eb643e8f 655 float distance(AccHist *p)
mjr 6:cc35eb643e8f 656 { return sqrt(square(p->x - x) + square(p->y - y)); }
mjr 5:a70c0bce770d 657 };
mjr 5:a70c0bce770d 658
mjr 5:a70c0bce770d 659 // accelerometer wrapper class
mjr 3:3514575d4f86 660 class Accel
mjr 3:3514575d4f86 661 {
mjr 3:3514575d4f86 662 public:
mjr 3:3514575d4f86 663 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin)
mjr 3:3514575d4f86 664 : mma_(sda, scl, i2cAddr), intIn_(irqPin)
mjr 3:3514575d4f86 665 {
mjr 5:a70c0bce770d 666 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 667 irqPin_ = irqPin;
mjr 5:a70c0bce770d 668
mjr 5:a70c0bce770d 669 // reset and initialize
mjr 5:a70c0bce770d 670 reset();
mjr 5:a70c0bce770d 671 }
mjr 5:a70c0bce770d 672
mjr 5:a70c0bce770d 673 void reset()
mjr 5:a70c0bce770d 674 {
mjr 6:cc35eb643e8f 675 // clear the center point
mjr 6:cc35eb643e8f 676 cx_ = cy_ = 0.0;
mjr 6:cc35eb643e8f 677
mjr 6:cc35eb643e8f 678 // start the calibration timer
mjr 5:a70c0bce770d 679 tCenter_.start();
mjr 5:a70c0bce770d 680 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 681
mjr 5:a70c0bce770d 682 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 683 mma_.init();
mjr 6:cc35eb643e8f 684
mjr 6:cc35eb643e8f 685 // set the initial integrated velocity reading to zero
mjr 6:cc35eb643e8f 686 vx_ = vy_ = 0;
mjr 3:3514575d4f86 687
mjr 6:cc35eb643e8f 688 // set up our accelerometer interrupt handling
mjr 6:cc35eb643e8f 689 intIn_.rise(this, &Accel::isr);
mjr 5:a70c0bce770d 690 mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2);
mjr 3:3514575d4f86 691
mjr 3:3514575d4f86 692 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 693 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 694
mjr 3:3514575d4f86 695 // start our timers
mjr 3:3514575d4f86 696 tGet_.start();
mjr 3:3514575d4f86 697 tInt_.start();
mjr 3:3514575d4f86 698 }
mjr 3:3514575d4f86 699
mjr 9:fd65b0a94720 700 void get(int &x, int &y)
mjr 3:3514575d4f86 701 {
mjr 3:3514575d4f86 702 // disable interrupts while manipulating the shared data
mjr 3:3514575d4f86 703 __disable_irq();
mjr 3:3514575d4f86 704
mjr 3:3514575d4f86 705 // read the shared data and store locally for calculations
mjr 6:cc35eb643e8f 706 float ax = ax_, ay = ay_;
mjr 6:cc35eb643e8f 707 float vx = vx_, vy = vy_;
mjr 5:a70c0bce770d 708
mjr 6:cc35eb643e8f 709 // reset the velocity sum for the next run
mjr 6:cc35eb643e8f 710 vx_ = vy_ = 0;
mjr 3:3514575d4f86 711
mjr 3:3514575d4f86 712 // get the time since the last get() sample
mjr 3:3514575d4f86 713 float dt = tGet_.read_us()/1.0e6;
mjr 3:3514575d4f86 714 tGet_.reset();
mjr 3:3514575d4f86 715
mjr 3:3514575d4f86 716 // done manipulating the shared data
mjr 3:3514575d4f86 717 __enable_irq();
mjr 3:3514575d4f86 718
mjr 6:cc35eb643e8f 719 // adjust the readings for the integration time
mjr 6:cc35eb643e8f 720 vx /= dt;
mjr 6:cc35eb643e8f 721 vy /= dt;
mjr 6:cc35eb643e8f 722
mjr 6:cc35eb643e8f 723 // add this sample to the current calibration interval's running total
mjr 6:cc35eb643e8f 724 AccHist *p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 725 p->addAvg(ax, ay);
mjr 6:cc35eb643e8f 726
mjr 5:a70c0bce770d 727 // check for auto-centering every so often
mjr 5:a70c0bce770d 728 if (tCenter_.read_ms() > 1000)
mjr 5:a70c0bce770d 729 {
mjr 5:a70c0bce770d 730 // add the latest raw sample to the history list
mjr 6:cc35eb643e8f 731 AccHist *prv = p;
mjr 5:a70c0bce770d 732 iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv;
mjr 6:cc35eb643e8f 733 p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 734 p->set(ax, ay, prv);
mjr 5:a70c0bce770d 735
mjr 5:a70c0bce770d 736 // if we have a full complement, check for stability
mjr 5:a70c0bce770d 737 if (nAccPrv_ >= maxAccPrv)
mjr 5:a70c0bce770d 738 {
mjr 5:a70c0bce770d 739 // check if we've been stable for all recent samples
mjr 6:cc35eb643e8f 740 static const float accTol = .01;
mjr 6:cc35eb643e8f 741 AccHist *p0 = accPrv_;
mjr 6:cc35eb643e8f 742 if (p0[0].d < accTol
mjr 6:cc35eb643e8f 743 && p0[1].d < accTol
mjr 6:cc35eb643e8f 744 && p0[2].d < accTol
mjr 6:cc35eb643e8f 745 && p0[3].d < accTol
mjr 6:cc35eb643e8f 746 && p0[4].d < accTol)
mjr 5:a70c0bce770d 747 {
mjr 6:cc35eb643e8f 748 // Figure the new calibration point as the average of
mjr 6:cc35eb643e8f 749 // the samples over the rest period
mjr 6:cc35eb643e8f 750 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0;
mjr 6:cc35eb643e8f 751 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0;
mjr 5:a70c0bce770d 752 }
mjr 5:a70c0bce770d 753 }
mjr 5:a70c0bce770d 754 else
mjr 5:a70c0bce770d 755 {
mjr 5:a70c0bce770d 756 // not enough samples yet; just up the count
mjr 5:a70c0bce770d 757 ++nAccPrv_;
mjr 5:a70c0bce770d 758 }
mjr 6:cc35eb643e8f 759
mjr 6:cc35eb643e8f 760 // clear the new item's running totals
mjr 6:cc35eb643e8f 761 p->clearAvg();
mjr 5:a70c0bce770d 762
mjr 5:a70c0bce770d 763 // reset the timer
mjr 5:a70c0bce770d 764 tCenter_.reset();
mjr 5:a70c0bce770d 765 }
mjr 5:a70c0bce770d 766
mjr 6:cc35eb643e8f 767 // report our integrated velocity reading in x,y
mjr 6:cc35eb643e8f 768 x = rawToReport(vx);
mjr 6:cc35eb643e8f 769 y = rawToReport(vy);
mjr 5:a70c0bce770d 770
mjr 6:cc35eb643e8f 771 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 772 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 773 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 774 #endif
mjr 3:3514575d4f86 775 }
mjr 3:3514575d4f86 776
mjr 3:3514575d4f86 777 private:
mjr 6:cc35eb643e8f 778 // adjust a raw acceleration figure to a usb report value
mjr 6:cc35eb643e8f 779 int rawToReport(float v)
mjr 5:a70c0bce770d 780 {
mjr 6:cc35eb643e8f 781 // scale to the joystick report range and round to integer
mjr 6:cc35eb643e8f 782 int i = int(round(v*JOYMAX));
mjr 5:a70c0bce770d 783
mjr 6:cc35eb643e8f 784 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 785 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 786 static const int filter[] = {
mjr 6:cc35eb643e8f 787 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 788 0,
mjr 6:cc35eb643e8f 789 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 790 };
mjr 6:cc35eb643e8f 791 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 792 }
mjr 5:a70c0bce770d 793
mjr 3:3514575d4f86 794 // interrupt handler
mjr 3:3514575d4f86 795 void isr()
mjr 3:3514575d4f86 796 {
mjr 3:3514575d4f86 797 // Read the axes. Note that we have to read all three axes
mjr 3:3514575d4f86 798 // (even though we only really use x and y) in order to clear
mjr 3:3514575d4f86 799 // the "data ready" status bit in the accelerometer. The
mjr 3:3514575d4f86 800 // interrupt only occurs when the "ready" bit transitions from
mjr 3:3514575d4f86 801 // off to on, so we have to make sure it's off.
mjr 5:a70c0bce770d 802 float x, y, z;
mjr 5:a70c0bce770d 803 mma_.getAccXYZ(x, y, z);
mjr 3:3514575d4f86 804
mjr 3:3514575d4f86 805 // calculate the time since the last interrupt
mjr 3:3514575d4f86 806 float dt = tInt_.read_us()/1.0e6;
mjr 3:3514575d4f86 807 tInt_.reset();
mjr 6:cc35eb643e8f 808
mjr 6:cc35eb643e8f 809 // integrate the time slice from the previous reading to this reading
mjr 6:cc35eb643e8f 810 vx_ += (x + ax_ - 2*cx_)*dt/2;
mjr 6:cc35eb643e8f 811 vy_ += (y + ay_ - 2*cy_)*dt/2;
mjr 3:3514575d4f86 812
mjr 6:cc35eb643e8f 813 // store the updates
mjr 6:cc35eb643e8f 814 ax_ = x;
mjr 6:cc35eb643e8f 815 ay_ = y;
mjr 6:cc35eb643e8f 816 az_ = z;
mjr 3:3514575d4f86 817 }
mjr 3:3514575d4f86 818
mjr 3:3514575d4f86 819 // underlying accelerometer object
mjr 3:3514575d4f86 820 MMA8451Q mma_;
mjr 3:3514575d4f86 821
mjr 5:a70c0bce770d 822 // last raw acceleration readings
mjr 6:cc35eb643e8f 823 float ax_, ay_, az_;
mjr 5:a70c0bce770d 824
mjr 6:cc35eb643e8f 825 // integrated velocity reading since last get()
mjr 6:cc35eb643e8f 826 float vx_, vy_;
mjr 6:cc35eb643e8f 827
mjr 3:3514575d4f86 828 // timer for measuring time between get() samples
mjr 3:3514575d4f86 829 Timer tGet_;
mjr 3:3514575d4f86 830
mjr 3:3514575d4f86 831 // timer for measuring time between interrupts
mjr 3:3514575d4f86 832 Timer tInt_;
mjr 5:a70c0bce770d 833
mjr 6:cc35eb643e8f 834 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 835 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 836 // at rest.
mjr 6:cc35eb643e8f 837 float cx_, cy_;
mjr 5:a70c0bce770d 838
mjr 5:a70c0bce770d 839 // timer for atuo-centering
mjr 5:a70c0bce770d 840 Timer tCenter_;
mjr 6:cc35eb643e8f 841
mjr 6:cc35eb643e8f 842 // Auto-centering history. This is a separate history list that
mjr 6:cc35eb643e8f 843 // records results spaced out sparesely over time, so that we can
mjr 6:cc35eb643e8f 844 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 845 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 846 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 847 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 848 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 849 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 850 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 851 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 852 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 853 // accelerometer measurement bias (e.g., from temperature changes).
mjr 5:a70c0bce770d 854 int iAccPrv_, nAccPrv_;
mjr 5:a70c0bce770d 855 static const int maxAccPrv = 5;
mjr 6:cc35eb643e8f 856 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 857
mjr 5:a70c0bce770d 858 // interurupt pin name
mjr 5:a70c0bce770d 859 PinName irqPin_;
mjr 5:a70c0bce770d 860
mjr 5:a70c0bce770d 861 // interrupt router
mjr 5:a70c0bce770d 862 InterruptIn intIn_;
mjr 3:3514575d4f86 863 };
mjr 3:3514575d4f86 864
mjr 5:a70c0bce770d 865
mjr 5:a70c0bce770d 866 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 867 //
mjr 14:df700b22ca08 868 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 869 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 870 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 871 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 872 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 873 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 874 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 875 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 876 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 877 //
mjr 14:df700b22ca08 878 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 879 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 880 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 881 //
mjr 5:a70c0bce770d 882 void clear_i2c()
mjr 5:a70c0bce770d 883 {
mjr 5:a70c0bce770d 884 // assume a general-purpose output pin to the I2C clock
mjr 5:a70c0bce770d 885 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 886 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 887
mjr 5:a70c0bce770d 888 // clock the SCL 9 times
mjr 5:a70c0bce770d 889 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 890 {
mjr 5:a70c0bce770d 891 scl = 1;
mjr 5:a70c0bce770d 892 wait_us(20);
mjr 5:a70c0bce770d 893 scl = 0;
mjr 5:a70c0bce770d 894 wait_us(20);
mjr 5:a70c0bce770d 895 }
mjr 5:a70c0bce770d 896 }
mjr 14:df700b22ca08 897
mjr 14:df700b22ca08 898 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 899 //
mjr 17:ab3cec0c8bf4 900 // Include the appropriate plunger sensor definition. This will define a
mjr 17:ab3cec0c8bf4 901 // class called PlungerSensor, with a standard interface that we use in
mjr 17:ab3cec0c8bf4 902 // the main loop below. This is *kind of* like a virtual class interface,
mjr 17:ab3cec0c8bf4 903 // but it actually defines the methods statically, which is a little more
mjr 17:ab3cec0c8bf4 904 // efficient at run-time. There's no need for a true virtual interface
mjr 17:ab3cec0c8bf4 905 // because we don't need to be able to change sensor types on the fly.
mjr 17:ab3cec0c8bf4 906 //
mjr 17:ab3cec0c8bf4 907
mjr 22:71422c359f2a 908 #if defined(ENABLE_CCD_SENSOR)
mjr 17:ab3cec0c8bf4 909 #include "ccdSensor.h"
mjr 22:71422c359f2a 910 #elif defined(ENABLE_POT_SENSOR)
mjr 17:ab3cec0c8bf4 911 #include "potSensor.h"
mjr 17:ab3cec0c8bf4 912 #else
mjr 17:ab3cec0c8bf4 913 #include "nullSensor.h"
mjr 17:ab3cec0c8bf4 914 #endif
mjr 17:ab3cec0c8bf4 915
mjr 17:ab3cec0c8bf4 916
mjr 17:ab3cec0c8bf4 917 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 918 //
mjr 17:ab3cec0c8bf4 919 // Non-volatile memory (NVM)
mjr 17:ab3cec0c8bf4 920 //
mjr 17:ab3cec0c8bf4 921
mjr 17:ab3cec0c8bf4 922 // Structure defining our NVM storage layout. We store a small
mjr 17:ab3cec0c8bf4 923 // amount of persistent data in flash memory to retain calibration
mjr 17:ab3cec0c8bf4 924 // data when powered off.
mjr 17:ab3cec0c8bf4 925 struct NVM
mjr 17:ab3cec0c8bf4 926 {
mjr 17:ab3cec0c8bf4 927 // checksum - we use this to determine if the flash record
mjr 17:ab3cec0c8bf4 928 // has been properly initialized
mjr 17:ab3cec0c8bf4 929 uint32_t checksum;
mjr 17:ab3cec0c8bf4 930
mjr 17:ab3cec0c8bf4 931 // signature value
mjr 17:ab3cec0c8bf4 932 static const uint32_t SIGNATURE = 0x4D4A522A;
mjr 17:ab3cec0c8bf4 933 static const uint16_t VERSION = 0x0003;
mjr 17:ab3cec0c8bf4 934
mjr 17:ab3cec0c8bf4 935 // Is the data structure valid? We test the signature and
mjr 17:ab3cec0c8bf4 936 // checksum to determine if we've been properly stored.
mjr 17:ab3cec0c8bf4 937 int valid() const
mjr 17:ab3cec0c8bf4 938 {
mjr 17:ab3cec0c8bf4 939 return (d.sig == SIGNATURE
mjr 17:ab3cec0c8bf4 940 && d.vsn == VERSION
mjr 17:ab3cec0c8bf4 941 && d.sz == sizeof(NVM)
mjr 17:ab3cec0c8bf4 942 && checksum == CRC32(&d, sizeof(d)));
mjr 17:ab3cec0c8bf4 943 }
mjr 17:ab3cec0c8bf4 944
mjr 17:ab3cec0c8bf4 945 // save to non-volatile memory
mjr 17:ab3cec0c8bf4 946 void save(FreescaleIAP &iap, int addr)
mjr 17:ab3cec0c8bf4 947 {
mjr 17:ab3cec0c8bf4 948 // update the checksum and structure size
mjr 17:ab3cec0c8bf4 949 checksum = CRC32(&d, sizeof(d));
mjr 17:ab3cec0c8bf4 950 d.sz = sizeof(NVM);
mjr 17:ab3cec0c8bf4 951
mjr 17:ab3cec0c8bf4 952 // erase the sector
mjr 17:ab3cec0c8bf4 953 iap.erase_sector(addr);
mjr 17:ab3cec0c8bf4 954
mjr 17:ab3cec0c8bf4 955 // save the data
mjr 17:ab3cec0c8bf4 956 iap.program_flash(addr, this, sizeof(*this));
mjr 17:ab3cec0c8bf4 957 }
mjr 17:ab3cec0c8bf4 958
mjr 17:ab3cec0c8bf4 959 // reset calibration data for calibration mode
mjr 17:ab3cec0c8bf4 960 void resetPlunger()
mjr 17:ab3cec0c8bf4 961 {
mjr 17:ab3cec0c8bf4 962 // set extremes for the calibration data
mjr 17:ab3cec0c8bf4 963 d.plungerMax = 0;
mjr 17:ab3cec0c8bf4 964 d.plungerZero = npix;
mjr 17:ab3cec0c8bf4 965 d.plungerMin = npix;
mjr 17:ab3cec0c8bf4 966 }
mjr 17:ab3cec0c8bf4 967
mjr 17:ab3cec0c8bf4 968 // stored data (excluding the checksum)
mjr 17:ab3cec0c8bf4 969 struct
mjr 17:ab3cec0c8bf4 970 {
mjr 17:ab3cec0c8bf4 971 // Signature, structure version, and structure size - further verification
mjr 17:ab3cec0c8bf4 972 // that we have valid initialized data. The size is a simple proxy for a
mjr 17:ab3cec0c8bf4 973 // structure version, as the most common type of change to the structure as
mjr 17:ab3cec0c8bf4 974 // the software evolves will be the addition of new elements. We also
mjr 17:ab3cec0c8bf4 975 // provide an explicit version number that we can update manually if we
mjr 17:ab3cec0c8bf4 976 // make any changes that don't affect the structure size but would affect
mjr 17:ab3cec0c8bf4 977 // compatibility with a saved record (e.g., swapping two existing elements).
mjr 17:ab3cec0c8bf4 978 uint32_t sig;
mjr 17:ab3cec0c8bf4 979 uint16_t vsn;
mjr 17:ab3cec0c8bf4 980 int sz;
mjr 17:ab3cec0c8bf4 981
mjr 17:ab3cec0c8bf4 982 // has the plunger been manually calibrated?
mjr 17:ab3cec0c8bf4 983 int plungerCal;
mjr 17:ab3cec0c8bf4 984
mjr 17:ab3cec0c8bf4 985 // Plunger calibration min, zero, and max. The zero point is the
mjr 17:ab3cec0c8bf4 986 // rest position (aka park position), where it's in equilibrium between
mjr 17:ab3cec0c8bf4 987 // the main spring and the barrel spring. It can travel a small distance
mjr 17:ab3cec0c8bf4 988 // forward of the rest position, because the barrel spring can be
mjr 17:ab3cec0c8bf4 989 // compressed by the user pushing on the plunger or by the momentum
mjr 17:ab3cec0c8bf4 990 // of a release motion. The minimum is the maximum forward point where
mjr 17:ab3cec0c8bf4 991 // the barrel spring can't be compressed any further.
mjr 17:ab3cec0c8bf4 992 int plungerMin;
mjr 17:ab3cec0c8bf4 993 int plungerZero;
mjr 17:ab3cec0c8bf4 994 int plungerMax;
mjr 17:ab3cec0c8bf4 995
mjr 17:ab3cec0c8bf4 996 // is the plunger sensor enabled?
mjr 17:ab3cec0c8bf4 997 int plungerEnabled;
mjr 17:ab3cec0c8bf4 998
mjr 17:ab3cec0c8bf4 999 // LedWiz unit number
mjr 17:ab3cec0c8bf4 1000 uint8_t ledWizUnitNo;
mjr 17:ab3cec0c8bf4 1001 } d;
mjr 17:ab3cec0c8bf4 1002 };
mjr 17:ab3cec0c8bf4 1003
mjr 17:ab3cec0c8bf4 1004
mjr 17:ab3cec0c8bf4 1005 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 1006 //
mjr 5:a70c0bce770d 1007 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 1008 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 1009 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 1010 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 1011 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 1012 // port outputs.
mjr 5:a70c0bce770d 1013 //
mjr 0:5acbbe3f4cf4 1014 int main(void)
mjr 0:5acbbe3f4cf4 1015 {
mjr 1:d913e0afb2ac 1016 // turn off our on-board indicator LED
mjr 4:02c7cd7b2183 1017 ledR = 1;
mjr 4:02c7cd7b2183 1018 ledG = 1;
mjr 4:02c7cd7b2183 1019 ledB = 1;
mjr 1:d913e0afb2ac 1020
mjr 6:cc35eb643e8f 1021 // initialize the LedWiz ports
mjr 6:cc35eb643e8f 1022 initLwOut();
mjr 6:cc35eb643e8f 1023
mjr 11:bd9da7088e6e 1024 // initialize the button input ports
mjr 11:bd9da7088e6e 1025 initButtons();
mjr 11:bd9da7088e6e 1026
mjr 6:cc35eb643e8f 1027 // we don't need a reset yet
mjr 6:cc35eb643e8f 1028 bool needReset = false;
mjr 6:cc35eb643e8f 1029
mjr 5:a70c0bce770d 1030 // clear the I2C bus for the accelerometer
mjr 5:a70c0bce770d 1031 clear_i2c();
mjr 5:a70c0bce770d 1032
mjr 2:c174f9ee414a 1033 // set up a flash memory controller
mjr 2:c174f9ee414a 1034 FreescaleIAP iap;
mjr 2:c174f9ee414a 1035
mjr 2:c174f9ee414a 1036 // use the last sector of flash for our non-volatile memory structure
mjr 2:c174f9ee414a 1037 int flash_addr = (iap.flash_size() - SECTOR_SIZE);
mjr 2:c174f9ee414a 1038 NVM *flash = (NVM *)flash_addr;
mjr 2:c174f9ee414a 1039 NVM cfg;
mjr 2:c174f9ee414a 1040
mjr 2:c174f9ee414a 1041 // check for valid flash
mjr 6:cc35eb643e8f 1042 bool flash_valid = flash->valid();
mjr 2:c174f9ee414a 1043
mjr 2:c174f9ee414a 1044 // if the flash is valid, load it; otherwise initialize to defaults
mjr 2:c174f9ee414a 1045 if (flash_valid) {
mjr 2:c174f9ee414a 1046 memcpy(&cfg, flash, sizeof(cfg));
mjr 6:cc35eb643e8f 1047 printf("Flash restored: plunger cal=%d, min=%d, zero=%d, max=%d\r\n",
mjr 6:cc35eb643e8f 1048 cfg.d.plungerCal, cfg.d.plungerMin, cfg.d.plungerZero, cfg.d.plungerMax);
mjr 2:c174f9ee414a 1049 }
mjr 2:c174f9ee414a 1050 else {
mjr 2:c174f9ee414a 1051 printf("Factory reset\r\n");
mjr 2:c174f9ee414a 1052 cfg.d.sig = cfg.SIGNATURE;
mjr 2:c174f9ee414a 1053 cfg.d.vsn = cfg.VERSION;
mjr 6:cc35eb643e8f 1054 cfg.d.plungerCal = 0;
mjr 17:ab3cec0c8bf4 1055 cfg.d.plungerMin = 0; // assume we can go all the way forward...
mjr 17:ab3cec0c8bf4 1056 cfg.d.plungerMax = npix; // ...and all the way back
mjr 17:ab3cec0c8bf4 1057 cfg.d.plungerZero = npix/6; // the rest position is usually around 1/2" back
mjr 21:5048e16cc9ef 1058 cfg.d.ledWizUnitNo = DEFAULT_LEDWIZ_UNIT_NUMBER - 1; // unit numbering starts from 0 internally
mjr 21:5048e16cc9ef 1059 cfg.d.plungerEnabled = PLUNGER_CODE_ENABLED;
mjr 2:c174f9ee414a 1060 }
mjr 1:d913e0afb2ac 1061
mjr 6:cc35eb643e8f 1062 // Create the joystick USB client. Note that we use the LedWiz unit
mjr 6:cc35eb643e8f 1063 // number from the saved configuration.
mjr 6:cc35eb643e8f 1064 MyUSBJoystick js(
mjr 6:cc35eb643e8f 1065 USB_VENDOR_ID,
mjr 6:cc35eb643e8f 1066 USB_PRODUCT_ID | cfg.d.ledWizUnitNo,
mjr 6:cc35eb643e8f 1067 USB_VERSION_NO);
mjr 17:ab3cec0c8bf4 1068
mjr 17:ab3cec0c8bf4 1069 // last report timer - we use this to throttle reports, since VP
mjr 17:ab3cec0c8bf4 1070 // doesn't want to hear from us more than about every 10ms
mjr 17:ab3cec0c8bf4 1071 Timer reportTimer;
mjr 17:ab3cec0c8bf4 1072 reportTimer.start();
mjr 17:ab3cec0c8bf4 1073
mjr 17:ab3cec0c8bf4 1074 // initialize the calibration buttons, if present
mjr 17:ab3cec0c8bf4 1075 DigitalIn *calBtn = (CAL_BUTTON_PIN == NC ? 0 : new DigitalIn(CAL_BUTTON_PIN));
mjr 17:ab3cec0c8bf4 1076 DigitalOut *calBtnLed = (CAL_BUTTON_LED == NC ? 0 : new DigitalOut(CAL_BUTTON_LED));
mjr 6:cc35eb643e8f 1077
mjr 1:d913e0afb2ac 1078 // plunger calibration button debounce timer
mjr 1:d913e0afb2ac 1079 Timer calBtnTimer;
mjr 1:d913e0afb2ac 1080 calBtnTimer.start();
mjr 1:d913e0afb2ac 1081 int calBtnLit = false;
mjr 1:d913e0afb2ac 1082
mjr 1:d913e0afb2ac 1083 // Calibration button state:
mjr 1:d913e0afb2ac 1084 // 0 = not pushed
mjr 1:d913e0afb2ac 1085 // 1 = pushed, not yet debounced
mjr 1:d913e0afb2ac 1086 // 2 = pushed, debounced, waiting for hold time
mjr 1:d913e0afb2ac 1087 // 3 = pushed, hold time completed - in calibration mode
mjr 1:d913e0afb2ac 1088 int calBtnState = 0;
mjr 1:d913e0afb2ac 1089
mjr 1:d913e0afb2ac 1090 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 1091 Timer hbTimer;
mjr 1:d913e0afb2ac 1092 hbTimer.start();
mjr 1:d913e0afb2ac 1093 int hb = 0;
mjr 5:a70c0bce770d 1094 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 1095
mjr 1:d913e0afb2ac 1096 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 1097 Timer acTimer;
mjr 1:d913e0afb2ac 1098 acTimer.start();
mjr 1:d913e0afb2ac 1099
mjr 0:5acbbe3f4cf4 1100 // create the accelerometer object
mjr 5:a70c0bce770d 1101 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS, MMA8451_INT_PIN);
mjr 0:5acbbe3f4cf4 1102
mjr 21:5048e16cc9ef 1103 #ifdef ENABLE_JOYSTICK
mjr 17:ab3cec0c8bf4 1104 // last accelerometer report, in joystick units (we report the nudge
mjr 17:ab3cec0c8bf4 1105 // acceleration via the joystick x & y axes, per the VP convention)
mjr 17:ab3cec0c8bf4 1106 int x = 0, y = 0;
mjr 17:ab3cec0c8bf4 1107
mjr 21:5048e16cc9ef 1108 // flag: send a pixel dump after the next read
mjr 21:5048e16cc9ef 1109 bool reportPix = false;
mjr 21:5048e16cc9ef 1110 #endif
mjr 21:5048e16cc9ef 1111
mjr 17:ab3cec0c8bf4 1112 // create our plunger sensor object
mjr 17:ab3cec0c8bf4 1113 PlungerSensor plungerSensor;
mjr 17:ab3cec0c8bf4 1114
mjr 17:ab3cec0c8bf4 1115 // last plunger report position, in 'npix' normalized pixel units
mjr 17:ab3cec0c8bf4 1116 int pos = 0;
mjr 17:ab3cec0c8bf4 1117
mjr 17:ab3cec0c8bf4 1118 // last plunger report, in joystick units (we report the plunger as the
mjr 17:ab3cec0c8bf4 1119 // "z" axis of the joystick, per the VP convention)
mjr 17:ab3cec0c8bf4 1120 int z = 0;
mjr 17:ab3cec0c8bf4 1121
mjr 17:ab3cec0c8bf4 1122 // most recent prior plunger readings, for tracking release events(z0 is
mjr 17:ab3cec0c8bf4 1123 // reading just before the last one we reported, z1 is the one before that,
mjr 17:ab3cec0c8bf4 1124 // z2 the next before that)
mjr 17:ab3cec0c8bf4 1125 int z0 = 0, z1 = 0, z2 = 0;
mjr 17:ab3cec0c8bf4 1126
mjr 17:ab3cec0c8bf4 1127 // Simulated "bounce" position when firing. We model the bounce off of
mjr 17:ab3cec0c8bf4 1128 // the barrel spring when the plunger is released as proportional to the
mjr 17:ab3cec0c8bf4 1129 // distance it was retracted just before being released.
mjr 17:ab3cec0c8bf4 1130 int zBounce = 0;
mjr 2:c174f9ee414a 1131
mjr 17:ab3cec0c8bf4 1132 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 17:ab3cec0c8bf4 1133 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 17:ab3cec0c8bf4 1134 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 17:ab3cec0c8bf4 1135 // back and releases the plunger, or simply pushes on the plunger from
mjr 17:ab3cec0c8bf4 1136 // the rest position. This allows the plunger to be used in lieu of a
mjr 17:ab3cec0c8bf4 1137 // physical Launch Ball button for tables that don't have plungers.
mjr 17:ab3cec0c8bf4 1138 //
mjr 17:ab3cec0c8bf4 1139 // States:
mjr 17:ab3cec0c8bf4 1140 // 0 = default
mjr 17:ab3cec0c8bf4 1141 // 1 = cocked (plunger has been pulled back about 1" from state 0)
mjr 17:ab3cec0c8bf4 1142 // 2 = uncocked (plunger is pulled back less than 1" from state 1)
mjr 21:5048e16cc9ef 1143 // 3 = launching, plunger is forward beyond park position
mjr 21:5048e16cc9ef 1144 // 4 = launching, plunger is behind park position
mjr 21:5048e16cc9ef 1145 // 5 = pressed and holding (plunger has been pressed forward beyond
mjr 21:5048e16cc9ef 1146 // the park position from state 0)
mjr 17:ab3cec0c8bf4 1147 int lbState = 0;
mjr 6:cc35eb643e8f 1148
mjr 17:ab3cec0c8bf4 1149 // Time since last lbState transition. Some of the states are time-
mjr 17:ab3cec0c8bf4 1150 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 17:ab3cec0c8bf4 1151 // we remain in this state for more than a few milliseconds, since
mjr 17:ab3cec0c8bf4 1152 // it indicates that the plunger is being slowly returned to rest
mjr 17:ab3cec0c8bf4 1153 // rather than released. In the "launching" state, we need to release
mjr 17:ab3cec0c8bf4 1154 // the Launch Ball button after a moment, and we need to wait for
mjr 17:ab3cec0c8bf4 1155 // the plunger to come to rest before returning to state 0.
mjr 17:ab3cec0c8bf4 1156 Timer lbTimer;
mjr 17:ab3cec0c8bf4 1157 lbTimer.start();
mjr 17:ab3cec0c8bf4 1158
mjr 18:5e890ebd0023 1159 // Launch Ball simulated push timer. We start this when we simulate
mjr 18:5e890ebd0023 1160 // the button push, and turn off the simulated button when enough time
mjr 18:5e890ebd0023 1161 // has elapsed.
mjr 18:5e890ebd0023 1162 Timer lbBtnTimer;
mjr 18:5e890ebd0023 1163
mjr 17:ab3cec0c8bf4 1164 // Simulated button states. This is a vector of button states
mjr 17:ab3cec0c8bf4 1165 // for the simulated buttons. We combine this with the physical
mjr 17:ab3cec0c8bf4 1166 // button states on each USB joystick report, so we will report
mjr 17:ab3cec0c8bf4 1167 // a button as pressed if either the physical button is being pressed
mjr 17:ab3cec0c8bf4 1168 // or we're simulating a press on the button. This is used for the
mjr 17:ab3cec0c8bf4 1169 // simulated Launch Ball button.
mjr 17:ab3cec0c8bf4 1170 uint32_t simButtons = 0;
mjr 6:cc35eb643e8f 1171
mjr 6:cc35eb643e8f 1172 // Firing in progress: we set this when we detect the start of rapid
mjr 6:cc35eb643e8f 1173 // plunger movement from a retracted position towards the rest position.
mjr 17:ab3cec0c8bf4 1174 //
mjr 17:ab3cec0c8bf4 1175 // When we detect a firing event, we send VP a series of synthetic
mjr 17:ab3cec0c8bf4 1176 // reports simulating the idealized plunger motion. The actual physical
mjr 17:ab3cec0c8bf4 1177 // motion is much too fast to report to VP; in the time between two USB
mjr 17:ab3cec0c8bf4 1178 // reports, the plunger can shoot all the way forward, rebound off of
mjr 17:ab3cec0c8bf4 1179 // the barrel spring, bounce back part way, and bounce forward again,
mjr 17:ab3cec0c8bf4 1180 // or even do all of this more than once. This means that sampling the
mjr 17:ab3cec0c8bf4 1181 // physical motion at the USB report rate would create a misleading
mjr 17:ab3cec0c8bf4 1182 // picture of the plunger motion, since our samples would catch the
mjr 17:ab3cec0c8bf4 1183 // plunger at random points in this oscillating motion. From the
mjr 17:ab3cec0c8bf4 1184 // user's perspective, the physical action that occurred is simply that
mjr 17:ab3cec0c8bf4 1185 // the plunger was released from a particular distance, so it's this
mjr 17:ab3cec0c8bf4 1186 // high-level event that we want to convey to VP. To do this, we
mjr 17:ab3cec0c8bf4 1187 // synthesize a series of reports to convey an idealized version of
mjr 17:ab3cec0c8bf4 1188 // the release motion that's perfectly synchronized to the VP reports.
mjr 17:ab3cec0c8bf4 1189 // Essentially we pretend that our USB position samples are exactly
mjr 17:ab3cec0c8bf4 1190 // aligned in time with (1) the point of retraction just before the
mjr 17:ab3cec0c8bf4 1191 // user released the plunger, (2) the point of maximum forward motion
mjr 17:ab3cec0c8bf4 1192 // just after the user released the plunger (the point of maximum
mjr 17:ab3cec0c8bf4 1193 // compression as the plunger bounces off of the barrel spring), and
mjr 17:ab3cec0c8bf4 1194 // (3) the plunger coming to rest at the park position. This series
mjr 17:ab3cec0c8bf4 1195 // of reports is synthetic in the sense that it's not what we actually
mjr 17:ab3cec0c8bf4 1196 // see on the CCD at the times of these reports - the true plunger
mjr 17:ab3cec0c8bf4 1197 // position is oscillating at high speed during this period. But at
mjr 17:ab3cec0c8bf4 1198 // the same time it conveys a more faithful picture of the true physical
mjr 17:ab3cec0c8bf4 1199 // motion to VP, and allows VP to reproduce the true physical motion
mjr 17:ab3cec0c8bf4 1200 // more faithfully in its simulation model, by correcting for the
mjr 17:ab3cec0c8bf4 1201 // relatively low sampling rate in the communication path between the
mjr 17:ab3cec0c8bf4 1202 // real plunger and VP's model plunger.
mjr 17:ab3cec0c8bf4 1203 //
mjr 17:ab3cec0c8bf4 1204 // If 'firing' is non-zero, it's the index of our current report in
mjr 17:ab3cec0c8bf4 1205 // the synthetic firing report series.
mjr 9:fd65b0a94720 1206 int firing = 0;
mjr 2:c174f9ee414a 1207
mjr 2:c174f9ee414a 1208 // start the first CCD integration cycle
mjr 17:ab3cec0c8bf4 1209 plungerSensor.init();
mjr 9:fd65b0a94720 1210
mjr 9:fd65b0a94720 1211 // Device status. We report this on each update so that the host config
mjr 9:fd65b0a94720 1212 // tool can detect our current settings. This is a bit mask consisting
mjr 9:fd65b0a94720 1213 // of these bits:
mjr 9:fd65b0a94720 1214 // 0x01 -> plunger sensor enabled
mjr 17:ab3cec0c8bf4 1215 uint16_t statusFlags = (cfg.d.plungerEnabled ? 0x01 : 0x00);
mjr 10:976666ffa4ef 1216
mjr 1:d913e0afb2ac 1217 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 1218 // host requests
mjr 0:5acbbe3f4cf4 1219 for (;;)
mjr 0:5acbbe3f4cf4 1220 {
mjr 18:5e890ebd0023 1221 // Look for an incoming report. Process a few input reports in
mjr 18:5e890ebd0023 1222 // a row, but stop after a few so that a barrage of inputs won't
mjr 20:4c43877327ab 1223 // starve our output event processing. Also, pause briefly between
mjr 20:4c43877327ab 1224 // reads; allowing reads to occur back-to-back seems to occasionally
mjr 20:4c43877327ab 1225 // stall the USB pipeline (for reasons unknown; I'd fix the underlying
mjr 20:4c43877327ab 1226 // problem if I knew what it was).
mjr 0:5acbbe3f4cf4 1227 HID_REPORT report;
mjr 20:4c43877327ab 1228 for (int rr = 0 ; rr < 4 && js.readNB(&report) ; ++rr, wait_ms(1))
mjr 0:5acbbe3f4cf4 1229 {
mjr 6:cc35eb643e8f 1230 // all Led-Wiz reports are 8 bytes exactly
mjr 6:cc35eb643e8f 1231 if (report.length == 8)
mjr 1:d913e0afb2ac 1232 {
mjr 6:cc35eb643e8f 1233 uint8_t *data = report.data;
mjr 6:cc35eb643e8f 1234 if (data[0] == 64)
mjr 0:5acbbe3f4cf4 1235 {
mjr 6:cc35eb643e8f 1236 // LWZ-SBA - first four bytes are bit-packed on/off flags
mjr 6:cc35eb643e8f 1237 // for the outputs; 5th byte is the pulse speed (0-7)
mjr 6:cc35eb643e8f 1238 //printf("LWZ-SBA %02x %02x %02x %02x ; %02x\r\n",
mjr 6:cc35eb643e8f 1239 // data[1], data[2], data[3], data[4], data[5]);
mjr 0:5acbbe3f4cf4 1240
mjr 6:cc35eb643e8f 1241 // update all on/off states
mjr 6:cc35eb643e8f 1242 for (int i = 0, bit = 1, ri = 1 ; i < 32 ; ++i, bit <<= 1)
mjr 6:cc35eb643e8f 1243 {
mjr 6:cc35eb643e8f 1244 if (bit == 0x100) {
mjr 6:cc35eb643e8f 1245 bit = 1;
mjr 6:cc35eb643e8f 1246 ++ri;
mjr 6:cc35eb643e8f 1247 }
mjr 6:cc35eb643e8f 1248 wizOn[i] = ((data[ri] & bit) != 0);
mjr 6:cc35eb643e8f 1249 }
mjr 6:cc35eb643e8f 1250
mjr 6:cc35eb643e8f 1251 // update the physical outputs
mjr 1:d913e0afb2ac 1252 updateWizOuts();
mjr 6:cc35eb643e8f 1253
mjr 6:cc35eb643e8f 1254 // reset the PBA counter
mjr 6:cc35eb643e8f 1255 pbaIdx = 0;
mjr 6:cc35eb643e8f 1256 }
mjr 6:cc35eb643e8f 1257 else if (data[0] == 65)
mjr 6:cc35eb643e8f 1258 {
mjr 6:cc35eb643e8f 1259 // Private control message. This isn't an LedWiz message - it's
mjr 6:cc35eb643e8f 1260 // an extension for this device. 65 is an invalid PBA setting,
mjr 6:cc35eb643e8f 1261 // and isn't used for any other LedWiz message, so we appropriate
mjr 6:cc35eb643e8f 1262 // it for our own private use. The first byte specifies the
mjr 6:cc35eb643e8f 1263 // message type.
mjr 6:cc35eb643e8f 1264 if (data[1] == 1)
mjr 6:cc35eb643e8f 1265 {
mjr 9:fd65b0a94720 1266 // 1 = Set Configuration:
mjr 6:cc35eb643e8f 1267 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 6:cc35eb643e8f 1268 // data[3] = feature enable bit mask:
mjr 21:5048e16cc9ef 1269 // 0x01 = enable plunger sensor
mjr 6:cc35eb643e8f 1270
mjr 6:cc35eb643e8f 1271 // we'll need a reset if the LedWiz unit number is changing
mjr 6:cc35eb643e8f 1272 uint8_t newUnitNo = data[2] & 0x0f;
mjr 6:cc35eb643e8f 1273 needReset |= (newUnitNo != cfg.d.ledWizUnitNo);
mjr 6:cc35eb643e8f 1274
mjr 6:cc35eb643e8f 1275 // set the configuration parameters from the message
mjr 6:cc35eb643e8f 1276 cfg.d.ledWizUnitNo = newUnitNo;
mjr 17:ab3cec0c8bf4 1277 cfg.d.plungerEnabled = data[3] & 0x01;
mjr 6:cc35eb643e8f 1278
mjr 9:fd65b0a94720 1279 // update the status flags
mjr 9:fd65b0a94720 1280 statusFlags = (statusFlags & ~0x01) | (data[3] & 0x01);
mjr 9:fd65b0a94720 1281
mjr 9:fd65b0a94720 1282 // if the ccd is no longer enabled, use 0 for z reports
mjr 17:ab3cec0c8bf4 1283 if (!cfg.d.plungerEnabled)
mjr 9:fd65b0a94720 1284 z = 0;
mjr 9:fd65b0a94720 1285
mjr 6:cc35eb643e8f 1286 // save the configuration
mjr 6:cc35eb643e8f 1287 cfg.save(iap, flash_addr);
mjr 6:cc35eb643e8f 1288 }
mjr 21:5048e16cc9ef 1289 #ifdef ENABLE_JOYSTICK
mjr 9:fd65b0a94720 1290 else if (data[1] == 2)
mjr 9:fd65b0a94720 1291 {
mjr 9:fd65b0a94720 1292 // 2 = Calibrate plunger
mjr 9:fd65b0a94720 1293 // (No parameters)
mjr 9:fd65b0a94720 1294
mjr 9:fd65b0a94720 1295 // enter calibration mode
mjr 9:fd65b0a94720 1296 calBtnState = 3;
mjr 9:fd65b0a94720 1297 calBtnTimer.reset();
mjr 9:fd65b0a94720 1298 cfg.resetPlunger();
mjr 9:fd65b0a94720 1299 }
mjr 10:976666ffa4ef 1300 else if (data[1] == 3)
mjr 10:976666ffa4ef 1301 {
mjr 10:976666ffa4ef 1302 // 3 = pixel dump
mjr 10:976666ffa4ef 1303 // (No parameters)
mjr 10:976666ffa4ef 1304 reportPix = true;
mjr 10:976666ffa4ef 1305
mjr 10:976666ffa4ef 1306 // show purple until we finish sending the report
mjr 10:976666ffa4ef 1307 ledR = 0;
mjr 10:976666ffa4ef 1308 ledB = 0;
mjr 10:976666ffa4ef 1309 ledG = 1;
mjr 10:976666ffa4ef 1310 }
mjr 21:5048e16cc9ef 1311 #endif // ENABLE_JOYSTICK
mjr 6:cc35eb643e8f 1312 }
mjr 6:cc35eb643e8f 1313 else
mjr 6:cc35eb643e8f 1314 {
mjr 6:cc35eb643e8f 1315 // LWZ-PBA - full state dump; each byte is one output
mjr 6:cc35eb643e8f 1316 // in the current bank. pbaIdx keeps track of the bank;
mjr 6:cc35eb643e8f 1317 // this is incremented implicitly by each PBA message.
mjr 6:cc35eb643e8f 1318 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 6:cc35eb643e8f 1319 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 6:cc35eb643e8f 1320
mjr 6:cc35eb643e8f 1321 // update all output profile settings
mjr 6:cc35eb643e8f 1322 for (int i = 0 ; i < 8 ; ++i)
mjr 6:cc35eb643e8f 1323 wizVal[pbaIdx + i] = data[i];
mjr 6:cc35eb643e8f 1324
mjr 6:cc35eb643e8f 1325 // update the physical LED state if this is the last bank
mjr 6:cc35eb643e8f 1326 if (pbaIdx == 24)
mjr 13:72dda449c3c0 1327 {
mjr 6:cc35eb643e8f 1328 updateWizOuts();
mjr 13:72dda449c3c0 1329 pbaIdx = 0;
mjr 13:72dda449c3c0 1330 }
mjr 13:72dda449c3c0 1331 else
mjr 13:72dda449c3c0 1332 pbaIdx += 8;
mjr 6:cc35eb643e8f 1333 }
mjr 0:5acbbe3f4cf4 1334 }
mjr 0:5acbbe3f4cf4 1335 }
mjr 1:d913e0afb2ac 1336
mjr 1:d913e0afb2ac 1337 // check for plunger calibration
mjr 17:ab3cec0c8bf4 1338 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 1339 {
mjr 1:d913e0afb2ac 1340 // check the state
mjr 1:d913e0afb2ac 1341 switch (calBtnState)
mjr 0:5acbbe3f4cf4 1342 {
mjr 1:d913e0afb2ac 1343 case 0:
mjr 1:d913e0afb2ac 1344 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 1345 calBtnTimer.reset();
mjr 1:d913e0afb2ac 1346 calBtnState = 1;
mjr 1:d913e0afb2ac 1347 break;
mjr 1:d913e0afb2ac 1348
mjr 1:d913e0afb2ac 1349 case 1:
mjr 1:d913e0afb2ac 1350 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 1351 // passed, start the hold period
mjr 9:fd65b0a94720 1352 if (calBtnTimer.read_ms() > 50)
mjr 1:d913e0afb2ac 1353 calBtnState = 2;
mjr 1:d913e0afb2ac 1354 break;
mjr 1:d913e0afb2ac 1355
mjr 1:d913e0afb2ac 1356 case 2:
mjr 1:d913e0afb2ac 1357 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 1358 // for the entire hold period, move to calibration mode
mjr 9:fd65b0a94720 1359 if (calBtnTimer.read_ms() > 2050)
mjr 1:d913e0afb2ac 1360 {
mjr 1:d913e0afb2ac 1361 // enter calibration mode
mjr 1:d913e0afb2ac 1362 calBtnState = 3;
mjr 9:fd65b0a94720 1363 calBtnTimer.reset();
mjr 9:fd65b0a94720 1364 cfg.resetPlunger();
mjr 1:d913e0afb2ac 1365 }
mjr 1:d913e0afb2ac 1366 break;
mjr 2:c174f9ee414a 1367
mjr 2:c174f9ee414a 1368 case 3:
mjr 9:fd65b0a94720 1369 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 1370 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 1371 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 1372 break;
mjr 0:5acbbe3f4cf4 1373 }
mjr 0:5acbbe3f4cf4 1374 }
mjr 1:d913e0afb2ac 1375 else
mjr 1:d913e0afb2ac 1376 {
mjr 2:c174f9ee414a 1377 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 1378 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 1379 // and save the results to flash.
mjr 2:c174f9ee414a 1380 //
mjr 2:c174f9ee414a 1381 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 1382 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 1383 // mode, it simply cancels the attempt.
mjr 9:fd65b0a94720 1384 if (calBtnState == 3 && calBtnTimer.read_ms() > 15000)
mjr 2:c174f9ee414a 1385 {
mjr 2:c174f9ee414a 1386 // exit calibration mode
mjr 1:d913e0afb2ac 1387 calBtnState = 0;
mjr 2:c174f9ee414a 1388
mjr 6:cc35eb643e8f 1389 // save the updated configuration
mjr 6:cc35eb643e8f 1390 cfg.d.plungerCal = 1;
mjr 6:cc35eb643e8f 1391 cfg.save(iap, flash_addr);
mjr 2:c174f9ee414a 1392
mjr 2:c174f9ee414a 1393 // the flash state is now valid
mjr 2:c174f9ee414a 1394 flash_valid = true;
mjr 2:c174f9ee414a 1395 }
mjr 2:c174f9ee414a 1396 else if (calBtnState != 3)
mjr 2:c174f9ee414a 1397 {
mjr 2:c174f9ee414a 1398 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 1399 calBtnState = 0;
mjr 2:c174f9ee414a 1400 }
mjr 1:d913e0afb2ac 1401 }
mjr 1:d913e0afb2ac 1402
mjr 1:d913e0afb2ac 1403 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 1404 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 1405 switch (calBtnState)
mjr 0:5acbbe3f4cf4 1406 {
mjr 1:d913e0afb2ac 1407 case 2:
mjr 1:d913e0afb2ac 1408 // in the hold period - flash the light
mjr 9:fd65b0a94720 1409 newCalBtnLit = ((calBtnTimer.read_ms()/250) & 1);
mjr 1:d913e0afb2ac 1410 break;
mjr 1:d913e0afb2ac 1411
mjr 1:d913e0afb2ac 1412 case 3:
mjr 1:d913e0afb2ac 1413 // calibration mode - show steady on
mjr 1:d913e0afb2ac 1414 newCalBtnLit = true;
mjr 1:d913e0afb2ac 1415 break;
mjr 1:d913e0afb2ac 1416
mjr 1:d913e0afb2ac 1417 default:
mjr 1:d913e0afb2ac 1418 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 1419 newCalBtnLit = false;
mjr 1:d913e0afb2ac 1420 break;
mjr 1:d913e0afb2ac 1421 }
mjr 3:3514575d4f86 1422
mjr 3:3514575d4f86 1423 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 1424 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 1425 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 1426 {
mjr 1:d913e0afb2ac 1427 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 1428 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 1429 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 1430 calBtnLed->write(1);
mjr 4:02c7cd7b2183 1431 ledR = 1;
mjr 4:02c7cd7b2183 1432 ledG = 1;
mjr 9:fd65b0a94720 1433 ledB = 0;
mjr 2:c174f9ee414a 1434 }
mjr 2:c174f9ee414a 1435 else {
mjr 17:ab3cec0c8bf4 1436 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 1437 calBtnLed->write(0);
mjr 4:02c7cd7b2183 1438 ledR = 1;
mjr 4:02c7cd7b2183 1439 ledG = 1;
mjr 9:fd65b0a94720 1440 ledB = 1;
mjr 2:c174f9ee414a 1441 }
mjr 1:d913e0afb2ac 1442 }
mjr 1:d913e0afb2ac 1443
mjr 17:ab3cec0c8bf4 1444 // If the plunger is enabled, and we're not already in a firing event,
mjr 17:ab3cec0c8bf4 1445 // and the last plunger reading had the plunger pulled back at least
mjr 17:ab3cec0c8bf4 1446 // a bit, watch for plunger release events until it's time for our next
mjr 17:ab3cec0c8bf4 1447 // USB report.
mjr 17:ab3cec0c8bf4 1448 if (!firing && cfg.d.plungerEnabled && z >= JOYMAX/6)
mjr 17:ab3cec0c8bf4 1449 {
mjr 17:ab3cec0c8bf4 1450 // monitor the plunger until it's time for our next report
mjr 17:ab3cec0c8bf4 1451 while (reportTimer.read_ms() < 15)
mjr 17:ab3cec0c8bf4 1452 {
mjr 17:ab3cec0c8bf4 1453 // do a fast low-res scan; if it's at or past the zero point,
mjr 17:ab3cec0c8bf4 1454 // start a firing event
mjr 17:ab3cec0c8bf4 1455 if (plungerSensor.lowResScan() <= cfg.d.plungerZero)
mjr 17:ab3cec0c8bf4 1456 firing = 1;
mjr 17:ab3cec0c8bf4 1457 }
mjr 17:ab3cec0c8bf4 1458 }
mjr 17:ab3cec0c8bf4 1459
mjr 6:cc35eb643e8f 1460 // read the plunger sensor, if it's enabled
mjr 17:ab3cec0c8bf4 1461 if (cfg.d.plungerEnabled)
mjr 6:cc35eb643e8f 1462 {
mjr 6:cc35eb643e8f 1463 // start with the previous reading, in case we don't have a
mjr 6:cc35eb643e8f 1464 // clear result on this frame
mjr 6:cc35eb643e8f 1465 int znew = z;
mjr 17:ab3cec0c8bf4 1466 if (plungerSensor.highResScan(pos))
mjr 6:cc35eb643e8f 1467 {
mjr 17:ab3cec0c8bf4 1468 // We got a new reading. If we're in calibration mode, use it
mjr 17:ab3cec0c8bf4 1469 // to figure the new calibration, otherwise adjust the new reading
mjr 17:ab3cec0c8bf4 1470 // for the established calibration.
mjr 17:ab3cec0c8bf4 1471 if (calBtnState == 3)
mjr 6:cc35eb643e8f 1472 {
mjr 17:ab3cec0c8bf4 1473 // Calibration mode. If this reading is outside of the current
mjr 17:ab3cec0c8bf4 1474 // calibration bounds, expand the bounds.
mjr 17:ab3cec0c8bf4 1475 if (pos < cfg.d.plungerMin)
mjr 17:ab3cec0c8bf4 1476 cfg.d.plungerMin = pos;
mjr 17:ab3cec0c8bf4 1477 if (pos < cfg.d.plungerZero)
mjr 17:ab3cec0c8bf4 1478 cfg.d.plungerZero = pos;
mjr 17:ab3cec0c8bf4 1479 if (pos > cfg.d.plungerMax)
mjr 17:ab3cec0c8bf4 1480 cfg.d.plungerMax = pos;
mjr 6:cc35eb643e8f 1481
mjr 17:ab3cec0c8bf4 1482 // normalize to the full physical range while calibrating
mjr 17:ab3cec0c8bf4 1483 znew = int(round(float(pos)/npix * JOYMAX));
mjr 17:ab3cec0c8bf4 1484 }
mjr 17:ab3cec0c8bf4 1485 else
mjr 17:ab3cec0c8bf4 1486 {
mjr 17:ab3cec0c8bf4 1487 // Not in calibration mode, so normalize the new reading to the
mjr 17:ab3cec0c8bf4 1488 // established calibration range.
mjr 17:ab3cec0c8bf4 1489 //
mjr 17:ab3cec0c8bf4 1490 // Note that negative values are allowed. Zero represents the
mjr 17:ab3cec0c8bf4 1491 // "park" position, where the plunger sits when at rest. A mechanical
mjr 17:ab3cec0c8bf4 1492 // plunger has a smmall amount of travel in the "push" direction,
mjr 17:ab3cec0c8bf4 1493 // since the barrel spring can be compressed slightly. Negative
mjr 17:ab3cec0c8bf4 1494 // values represent travel in the push direction.
mjr 17:ab3cec0c8bf4 1495 if (pos > cfg.d.plungerMax)
mjr 17:ab3cec0c8bf4 1496 pos = cfg.d.plungerMax;
mjr 17:ab3cec0c8bf4 1497 znew = int(round(float(pos - cfg.d.plungerZero)
mjr 17:ab3cec0c8bf4 1498 / (cfg.d.plungerMax - cfg.d.plungerZero + 1) * JOYMAX));
mjr 6:cc35eb643e8f 1499 }
mjr 6:cc35eb643e8f 1500 }
mjr 7:100a25f8bf56 1501
mjr 17:ab3cec0c8bf4 1502 // If we're not already in a firing event, check to see if the
mjr 17:ab3cec0c8bf4 1503 // new position is forward of the last report. If it is, a firing
mjr 17:ab3cec0c8bf4 1504 // event might have started during the high-res scan. This might
mjr 17:ab3cec0c8bf4 1505 // seem unlikely given that the scan only takes about 5ms, but that
mjr 17:ab3cec0c8bf4 1506 // 5ms represents about 25-30% of our total time between reports,
mjr 17:ab3cec0c8bf4 1507 // there's about a 1 in 4 chance that a release starts during a
mjr 17:ab3cec0c8bf4 1508 // scan.
mjr 17:ab3cec0c8bf4 1509 if (!firing && z0 > 0 && znew < z0)
mjr 17:ab3cec0c8bf4 1510 {
mjr 17:ab3cec0c8bf4 1511 // The plunger has moved forward since the previous report.
mjr 17:ab3cec0c8bf4 1512 // Watch it for a few more ms to see if we can get a stable
mjr 17:ab3cec0c8bf4 1513 // new position.
mjr 17:ab3cec0c8bf4 1514 int pos1 = plungerSensor.lowResScan();
mjr 17:ab3cec0c8bf4 1515 Timer tw;
mjr 17:ab3cec0c8bf4 1516 tw.start();
mjr 17:ab3cec0c8bf4 1517 while (tw.read_ms() < 6)
mjr 17:ab3cec0c8bf4 1518 {
mjr 17:ab3cec0c8bf4 1519 // if we've crossed the rest position, it's a firing event
mjr 17:ab3cec0c8bf4 1520 if (pos1 < cfg.d.plungerZero)
mjr 17:ab3cec0c8bf4 1521 {
mjr 17:ab3cec0c8bf4 1522 firing = 1;
mjr 17:ab3cec0c8bf4 1523 break;
mjr 17:ab3cec0c8bf4 1524 }
mjr 17:ab3cec0c8bf4 1525
mjr 17:ab3cec0c8bf4 1526 // read the new position
mjr 17:ab3cec0c8bf4 1527 int pos2 = plungerSensor.lowResScan();
mjr 17:ab3cec0c8bf4 1528
mjr 17:ab3cec0c8bf4 1529 // if it's stable, stop looping
mjr 17:ab3cec0c8bf4 1530 if (abs(pos2 - pos1) < int(npix/(3.2*8)))
mjr 17:ab3cec0c8bf4 1531 break;
mjr 17:ab3cec0c8bf4 1532
mjr 17:ab3cec0c8bf4 1533 // the new reading is now the prior reading
mjr 17:ab3cec0c8bf4 1534 pos1 = pos2;
mjr 17:ab3cec0c8bf4 1535 }
mjr 17:ab3cec0c8bf4 1536 }
mjr 17:ab3cec0c8bf4 1537
mjr 17:ab3cec0c8bf4 1538 // Check for a simulated Launch Ball button press, if enabled
mjr 18:5e890ebd0023 1539 if (ZBLaunchBallPort != 0)
mjr 17:ab3cec0c8bf4 1540 {
mjr 18:5e890ebd0023 1541 const int cockThreshold = JOYMAX/3;
mjr 18:5e890ebd0023 1542 const int pushThreshold = int(-JOYMAX/3 * LaunchBallPushDistance);
mjr 17:ab3cec0c8bf4 1543 int newState = lbState;
mjr 17:ab3cec0c8bf4 1544 switch (lbState)
mjr 17:ab3cec0c8bf4 1545 {
mjr 17:ab3cec0c8bf4 1546 case 0:
mjr 17:ab3cec0c8bf4 1547 // Base state. If the plunger is pulled back by an inch
mjr 17:ab3cec0c8bf4 1548 // or more, go to "cocked" state. If the plunger is pushed
mjr 21:5048e16cc9ef 1549 // forward by 1/4" or more, go to "pressed" state.
mjr 18:5e890ebd0023 1550 if (znew >= cockThreshold)
mjr 17:ab3cec0c8bf4 1551 newState = 1;
mjr 18:5e890ebd0023 1552 else if (znew <= pushThreshold)
mjr 21:5048e16cc9ef 1553 newState = 5;
mjr 17:ab3cec0c8bf4 1554 break;
mjr 17:ab3cec0c8bf4 1555
mjr 17:ab3cec0c8bf4 1556 case 1:
mjr 17:ab3cec0c8bf4 1557 // Cocked state. If a firing event is now in progress,
mjr 17:ab3cec0c8bf4 1558 // go to "launch" state. Otherwise, if the plunger is less
mjr 17:ab3cec0c8bf4 1559 // than 1" retracted, go to "uncocked" state - the player
mjr 17:ab3cec0c8bf4 1560 // might be slowly returning the plunger to rest so as not
mjr 17:ab3cec0c8bf4 1561 // to trigger a launch.
mjr 17:ab3cec0c8bf4 1562 if (firing || znew <= 0)
mjr 17:ab3cec0c8bf4 1563 newState = 3;
mjr 18:5e890ebd0023 1564 else if (znew < cockThreshold)
mjr 17:ab3cec0c8bf4 1565 newState = 2;
mjr 17:ab3cec0c8bf4 1566 break;
mjr 17:ab3cec0c8bf4 1567
mjr 17:ab3cec0c8bf4 1568 case 2:
mjr 17:ab3cec0c8bf4 1569 // Uncocked state. If the plunger is more than an inch
mjr 17:ab3cec0c8bf4 1570 // retracted, return to cocked state. If we've been in
mjr 17:ab3cec0c8bf4 1571 // the uncocked state for more than half a second, return
mjr 18:5e890ebd0023 1572 // to the base state. This allows the user to return the
mjr 18:5e890ebd0023 1573 // plunger to rest without triggering a launch, by moving
mjr 18:5e890ebd0023 1574 // it at manual speed to the rest position rather than
mjr 18:5e890ebd0023 1575 // releasing it.
mjr 18:5e890ebd0023 1576 if (znew >= cockThreshold)
mjr 17:ab3cec0c8bf4 1577 newState = 1;
mjr 17:ab3cec0c8bf4 1578 else if (lbTimer.read_ms() > 500)
mjr 17:ab3cec0c8bf4 1579 newState = 0;
mjr 17:ab3cec0c8bf4 1580 break;
mjr 17:ab3cec0c8bf4 1581
mjr 17:ab3cec0c8bf4 1582 case 3:
mjr 17:ab3cec0c8bf4 1583 // Launch state. If the plunger is no longer pushed
mjr 17:ab3cec0c8bf4 1584 // forward, switch to launch rest state.
mjr 18:5e890ebd0023 1585 if (znew >= 0)
mjr 17:ab3cec0c8bf4 1586 newState = 4;
mjr 17:ab3cec0c8bf4 1587 break;
mjr 17:ab3cec0c8bf4 1588
mjr 17:ab3cec0c8bf4 1589 case 4:
mjr 17:ab3cec0c8bf4 1590 // Launch rest state. If the plunger is pushed forward
mjr 17:ab3cec0c8bf4 1591 // again, switch back to launch state. If not, and we've
mjr 17:ab3cec0c8bf4 1592 // been in this state for at least 200ms, return to the
mjr 17:ab3cec0c8bf4 1593 // default state.
mjr 18:5e890ebd0023 1594 if (znew <= pushThreshold)
mjr 17:ab3cec0c8bf4 1595 newState = 3;
mjr 17:ab3cec0c8bf4 1596 else if (lbTimer.read_ms() > 200)
mjr 17:ab3cec0c8bf4 1597 newState = 0;
mjr 17:ab3cec0c8bf4 1598 break;
mjr 21:5048e16cc9ef 1599
mjr 21:5048e16cc9ef 1600 case 5:
mjr 21:5048e16cc9ef 1601 // Press-and-Hold state. If the plunger is no longer pushed
mjr 21:5048e16cc9ef 1602 // forward, AND it's been at least 50ms since we generated
mjr 21:5048e16cc9ef 1603 // the simulated Launch Ball button press, return to the base
mjr 21:5048e16cc9ef 1604 // state. The minimum time is to ensure that VP has a chance
mjr 21:5048e16cc9ef 1605 // to see the button press and to avoid transient key bounce
mjr 21:5048e16cc9ef 1606 // effects when the plunger position is right on the threshold.
mjr 21:5048e16cc9ef 1607 if (znew > pushThreshold && lbTimer.read_ms() > 50)
mjr 21:5048e16cc9ef 1608 newState = 0;
mjr 21:5048e16cc9ef 1609 break;
mjr 17:ab3cec0c8bf4 1610 }
mjr 17:ab3cec0c8bf4 1611
mjr 17:ab3cec0c8bf4 1612 // change states if desired
mjr 18:5e890ebd0023 1613 const uint32_t lbButtonBit = (1 << (LaunchBallButton - 1));
mjr 17:ab3cec0c8bf4 1614 if (newState != lbState)
mjr 17:ab3cec0c8bf4 1615 {
mjr 21:5048e16cc9ef 1616 // If we're entering Launch state OR we're entering the
mjr 21:5048e16cc9ef 1617 // Press-and-Hold state, AND the ZB Launch Ball LedWiz signal
mjr 21:5048e16cc9ef 1618 // is turned on, simulate a Launch Ball button press.
mjr 21:5048e16cc9ef 1619 if (((newState == 3 && lbState != 4) || newState == 5)
mjr 21:5048e16cc9ef 1620 && wizOn[ZBLaunchBallPort-1])
mjr 18:5e890ebd0023 1621 {
mjr 18:5e890ebd0023 1622 lbBtnTimer.reset();
mjr 18:5e890ebd0023 1623 lbBtnTimer.start();
mjr 18:5e890ebd0023 1624 simButtons |= lbButtonBit;
mjr 18:5e890ebd0023 1625 }
mjr 21:5048e16cc9ef 1626
mjr 17:ab3cec0c8bf4 1627 // if we're switching to state 0, release the button
mjr 17:ab3cec0c8bf4 1628 if (newState == 0)
mjr 17:ab3cec0c8bf4 1629 simButtons &= ~(1 << (LaunchBallButton - 1));
mjr 17:ab3cec0c8bf4 1630
mjr 17:ab3cec0c8bf4 1631 // switch to the new state
mjr 17:ab3cec0c8bf4 1632 lbState = newState;
mjr 17:ab3cec0c8bf4 1633
mjr 17:ab3cec0c8bf4 1634 // start timing in the new state
mjr 17:ab3cec0c8bf4 1635 lbTimer.reset();
mjr 17:ab3cec0c8bf4 1636 }
mjr 21:5048e16cc9ef 1637
mjr 21:5048e16cc9ef 1638 // If the Launch Ball button press is in effect, but the
mjr 21:5048e16cc9ef 1639 // ZB Launch Ball LedWiz signal is no longer turned on, turn
mjr 21:5048e16cc9ef 1640 // off the button.
mjr 21:5048e16cc9ef 1641 //
mjr 21:5048e16cc9ef 1642 // If we're in one of the Launch states (state #3 or #4),
mjr 21:5048e16cc9ef 1643 // and the button has been on for long enough, turn it off.
mjr 21:5048e16cc9ef 1644 // The Launch mode is triggered by a pull-and-release gesture.
mjr 21:5048e16cc9ef 1645 // From the user's perspective, this is just a single gesture
mjr 21:5048e16cc9ef 1646 // that should trigger just one momentary press on the Launch
mjr 21:5048e16cc9ef 1647 // Ball button. Physically, though, the plunger usually
mjr 21:5048e16cc9ef 1648 // bounces back and forth for 500ms or so before coming to
mjr 21:5048e16cc9ef 1649 // rest after this gesture. That's what the whole state
mjr 21:5048e16cc9ef 1650 // #3-#4 business is all about - we stay in this pair of
mjr 21:5048e16cc9ef 1651 // states until the plunger comes to rest. As long as we're
mjr 21:5048e16cc9ef 1652 // in these states, we won't send duplicate button presses.
mjr 21:5048e16cc9ef 1653 // But we also don't want the one button press to continue
mjr 21:5048e16cc9ef 1654 // the whole time, so we'll time it out now.
mjr 21:5048e16cc9ef 1655 //
mjr 21:5048e16cc9ef 1656 // (This could be written as one big 'if' condition, but
mjr 21:5048e16cc9ef 1657 // I'm breaking it out verbosely like this to make it easier
mjr 21:5048e16cc9ef 1658 // for human readers such as myself to comprehend the logic.)
mjr 21:5048e16cc9ef 1659 if ((simButtons & lbButtonBit) != 0)
mjr 18:5e890ebd0023 1660 {
mjr 21:5048e16cc9ef 1661 int turnOff = false;
mjr 21:5048e16cc9ef 1662
mjr 21:5048e16cc9ef 1663 // turn it off if the ZB Launch Ball signal is off
mjr 21:5048e16cc9ef 1664 if (!wizOn[ZBLaunchBallPort-1])
mjr 21:5048e16cc9ef 1665 turnOff = true;
mjr 21:5048e16cc9ef 1666
mjr 21:5048e16cc9ef 1667 // also turn it off if we're in state 3 or 4 ("Launch"),
mjr 21:5048e16cc9ef 1668 // and the button has been on long enough
mjr 21:5048e16cc9ef 1669 if ((lbState == 3 || lbState == 4) && lbBtnTimer.read_ms() > 250)
mjr 21:5048e16cc9ef 1670 turnOff = true;
mjr 21:5048e16cc9ef 1671
mjr 21:5048e16cc9ef 1672 // if we decided to turn off the button, do so
mjr 21:5048e16cc9ef 1673 if (turnOff)
mjr 21:5048e16cc9ef 1674 {
mjr 21:5048e16cc9ef 1675 lbBtnTimer.stop();
mjr 21:5048e16cc9ef 1676 simButtons &= ~lbButtonBit;
mjr 21:5048e16cc9ef 1677 }
mjr 18:5e890ebd0023 1678 }
mjr 17:ab3cec0c8bf4 1679 }
mjr 17:ab3cec0c8bf4 1680
mjr 17:ab3cec0c8bf4 1681 // If a firing event is in progress, generate synthetic reports to
mjr 17:ab3cec0c8bf4 1682 // describe an idealized version of the plunger motion to VP rather
mjr 17:ab3cec0c8bf4 1683 // than reporting the actual physical plunger position.
mjr 6:cc35eb643e8f 1684 //
mjr 17:ab3cec0c8bf4 1685 // We use the synthetic reports during a release event because the
mjr 17:ab3cec0c8bf4 1686 // physical plunger motion when released is too fast for VP to track.
mjr 17:ab3cec0c8bf4 1687 // VP only syncs its internal physics model with the outside world
mjr 17:ab3cec0c8bf4 1688 // about every 10ms. In that amount of time, the plunger moves
mjr 17:ab3cec0c8bf4 1689 // fast enough when released that it can shoot all the way forward,
mjr 17:ab3cec0c8bf4 1690 // bounce off of the barrel spring, and rebound part of the way
mjr 17:ab3cec0c8bf4 1691 // back. The result is the classic analog-to-digital problem of
mjr 17:ab3cec0c8bf4 1692 // sample aliasing. If we happen to time our sample during the
mjr 17:ab3cec0c8bf4 1693 // release motion so that we catch the plunger at the peak of a
mjr 17:ab3cec0c8bf4 1694 // bounce, the digital signal incorrectly looks like the plunger
mjr 17:ab3cec0c8bf4 1695 // is moving slowly forward - VP thinks we went from fully
mjr 17:ab3cec0c8bf4 1696 // retracted to half retracted in the sample interval, whereas
mjr 17:ab3cec0c8bf4 1697 // we actually traveled all the way forward and half way back,
mjr 17:ab3cec0c8bf4 1698 // so the speed VP infers is about 1/3 of the actual speed.
mjr 9:fd65b0a94720 1699 //
mjr 17:ab3cec0c8bf4 1700 // To correct this, we take advantage of our ability to sample
mjr 17:ab3cec0c8bf4 1701 // the CCD image several times in the course of a VP report. If
mjr 17:ab3cec0c8bf4 1702 // we catch the plunger near the origin after we've seen it
mjr 17:ab3cec0c8bf4 1703 // retracted, we go into Release Event mode. During this mode,
mjr 17:ab3cec0c8bf4 1704 // we stop reporting the true physical plunger position, and
mjr 17:ab3cec0c8bf4 1705 // instead report an idealized pattern: we report the plunger
mjr 17:ab3cec0c8bf4 1706 // immediately shooting forward to a position in front of the
mjr 17:ab3cec0c8bf4 1707 // park position that's in proportion to how far back the plunger
mjr 17:ab3cec0c8bf4 1708 // was just before the release, and we then report it stationary
mjr 17:ab3cec0c8bf4 1709 // at the park position. We continue to report the stationary
mjr 17:ab3cec0c8bf4 1710 // park position until the actual physical plunger motion has
mjr 17:ab3cec0c8bf4 1711 // stabilized on a new position. We then exit Release Event
mjr 17:ab3cec0c8bf4 1712 // mode and return to reporting the true physical position.
mjr 17:ab3cec0c8bf4 1713 if (firing)
mjr 6:cc35eb643e8f 1714 {
mjr 17:ab3cec0c8bf4 1715 // Firing in progress. Keep reporting the park position
mjr 17:ab3cec0c8bf4 1716 // until the physical plunger position comes to rest.
mjr 17:ab3cec0c8bf4 1717 const int restTol = JOYMAX/24;
mjr 17:ab3cec0c8bf4 1718 if (firing == 1)
mjr 6:cc35eb643e8f 1719 {
mjr 17:ab3cec0c8bf4 1720 // For the first couple of frames, show the plunger shooting
mjr 17:ab3cec0c8bf4 1721 // forward past the zero point, to simulate the momentum carrying
mjr 17:ab3cec0c8bf4 1722 // it forward to bounce off of the barrel spring. Show the
mjr 17:ab3cec0c8bf4 1723 // bounce as proportional to the distance it was retracted
mjr 17:ab3cec0c8bf4 1724 // in the prior report.
mjr 17:ab3cec0c8bf4 1725 z = zBounce = -z0/6;
mjr 17:ab3cec0c8bf4 1726 ++firing;
mjr 6:cc35eb643e8f 1727 }
mjr 17:ab3cec0c8bf4 1728 else if (firing == 2)
mjr 9:fd65b0a94720 1729 {
mjr 17:ab3cec0c8bf4 1730 // second frame - keep the bounce a little longer
mjr 17:ab3cec0c8bf4 1731 z = zBounce;
mjr 17:ab3cec0c8bf4 1732 ++firing;
mjr 17:ab3cec0c8bf4 1733 }
mjr 17:ab3cec0c8bf4 1734 else if (firing > 4
mjr 17:ab3cec0c8bf4 1735 && abs(znew - z0) < restTol
mjr 17:ab3cec0c8bf4 1736 && abs(znew - z1) < restTol
mjr 17:ab3cec0c8bf4 1737 && abs(znew - z2) < restTol)
mjr 17:ab3cec0c8bf4 1738 {
mjr 17:ab3cec0c8bf4 1739 // The physical plunger has come to rest. Exit firing
mjr 17:ab3cec0c8bf4 1740 // mode and resume reporting the actual position.
mjr 17:ab3cec0c8bf4 1741 firing = false;
mjr 17:ab3cec0c8bf4 1742 z = znew;
mjr 9:fd65b0a94720 1743 }
mjr 9:fd65b0a94720 1744 else
mjr 9:fd65b0a94720 1745 {
mjr 17:ab3cec0c8bf4 1746 // until the physical plunger comes to rest, simply
mjr 17:ab3cec0c8bf4 1747 // report the park position
mjr 9:fd65b0a94720 1748 z = 0;
mjr 17:ab3cec0c8bf4 1749 ++firing;
mjr 9:fd65b0a94720 1750 }
mjr 6:cc35eb643e8f 1751 }
mjr 6:cc35eb643e8f 1752 else
mjr 6:cc35eb643e8f 1753 {
mjr 17:ab3cec0c8bf4 1754 // not in firing mode - report the true physical position
mjr 17:ab3cec0c8bf4 1755 z = znew;
mjr 6:cc35eb643e8f 1756 }
mjr 17:ab3cec0c8bf4 1757
mjr 17:ab3cec0c8bf4 1758 // shift the new reading into the recent history buffer
mjr 6:cc35eb643e8f 1759 z2 = z1;
mjr 6:cc35eb643e8f 1760 z1 = z0;
mjr 6:cc35eb643e8f 1761 z0 = znew;
mjr 2:c174f9ee414a 1762 }
mjr 6:cc35eb643e8f 1763
mjr 11:bd9da7088e6e 1764 // update the buttons
mjr 18:5e890ebd0023 1765 uint32_t buttons = readButtons();
mjr 17:ab3cec0c8bf4 1766
mjr 21:5048e16cc9ef 1767 #ifdef ENABLE_JOYSTICK
mjr 17:ab3cec0c8bf4 1768 // If it's been long enough since our last USB status report,
mjr 17:ab3cec0c8bf4 1769 // send the new report. We throttle the report rate because
mjr 17:ab3cec0c8bf4 1770 // it can overwhelm the PC side if we report too frequently.
mjr 17:ab3cec0c8bf4 1771 // VP only wants to sync with the real world in 10ms intervals,
mjr 17:ab3cec0c8bf4 1772 // so reporting more frequently only creates i/o overhead
mjr 17:ab3cec0c8bf4 1773 // without doing anything to improve the simulation.
mjr 17:ab3cec0c8bf4 1774 if (reportTimer.read_ms() > 15)
mjr 17:ab3cec0c8bf4 1775 {
mjr 17:ab3cec0c8bf4 1776 // read the accelerometer
mjr 17:ab3cec0c8bf4 1777 int xa, ya;
mjr 17:ab3cec0c8bf4 1778 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 1779
mjr 17:ab3cec0c8bf4 1780 // confine the results to our joystick axis range
mjr 17:ab3cec0c8bf4 1781 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 17:ab3cec0c8bf4 1782 if (xa > JOYMAX) xa = JOYMAX;
mjr 17:ab3cec0c8bf4 1783 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 17:ab3cec0c8bf4 1784 if (ya > JOYMAX) ya = JOYMAX;
mjr 17:ab3cec0c8bf4 1785
mjr 17:ab3cec0c8bf4 1786 // store the updated accelerometer coordinates
mjr 17:ab3cec0c8bf4 1787 x = xa;
mjr 17:ab3cec0c8bf4 1788 y = ya;
mjr 17:ab3cec0c8bf4 1789
mjr 21:5048e16cc9ef 1790 // Report the current plunger position UNLESS the ZB Launch Ball
mjr 21:5048e16cc9ef 1791 // signal is on, in which case just report a constant 0 value.
mjr 21:5048e16cc9ef 1792 // ZB Launch Ball turns off the plunger position because it
mjr 21:5048e16cc9ef 1793 // tells us that the table has a Launch Ball button instead of
mjr 21:5048e16cc9ef 1794 // a traditional plunger.
mjr 21:5048e16cc9ef 1795 int zrep = (ZBLaunchBallPort != 0 && wizOn[ZBLaunchBallPort-1] ? 0 : z);
mjr 21:5048e16cc9ef 1796
mjr 17:ab3cec0c8bf4 1797 // Send the status report. Note that the nominal x and y axes
mjr 17:ab3cec0c8bf4 1798 // are reversed - this makes it more intuitive to set up in VP.
mjr 17:ab3cec0c8bf4 1799 // If we mount the Freesale card flat on the floor of the cabinet
mjr 17:ab3cec0c8bf4 1800 // with the USB connectors facing the front of the cabinet, this
mjr 17:ab3cec0c8bf4 1801 // arrangement of our nominal axes aligns with VP's standard
mjr 17:ab3cec0c8bf4 1802 // setting, so that we can configure VP with X Axis = X on the
mjr 17:ab3cec0c8bf4 1803 // joystick and Y Axis = Y on the joystick.
mjr 21:5048e16cc9ef 1804 js.update(y, x, zrep, buttons | simButtons, statusFlags);
mjr 17:ab3cec0c8bf4 1805
mjr 17:ab3cec0c8bf4 1806 // we've just started a new report interval, so reset the timer
mjr 17:ab3cec0c8bf4 1807 reportTimer.reset();
mjr 17:ab3cec0c8bf4 1808 }
mjr 21:5048e16cc9ef 1809
mjr 10:976666ffa4ef 1810 // If we're in pixel dump mode, report all pixel exposure values
mjr 10:976666ffa4ef 1811 if (reportPix)
mjr 10:976666ffa4ef 1812 {
mjr 17:ab3cec0c8bf4 1813 // send the report
mjr 17:ab3cec0c8bf4 1814 plungerSensor.sendExposureReport(js);
mjr 17:ab3cec0c8bf4 1815
mjr 10:976666ffa4ef 1816 // we have satisfied this request
mjr 10:976666ffa4ef 1817 reportPix = false;
mjr 10:976666ffa4ef 1818 }
mjr 10:976666ffa4ef 1819
mjr 21:5048e16cc9ef 1820 #else // ENABLE_JOYSTICK
mjr 21:5048e16cc9ef 1821 // We're a secondary controller, with no joystick reporting. Send
mjr 21:5048e16cc9ef 1822 // a generic status report to the host periodically for the sake of
mjr 21:5048e16cc9ef 1823 // the Windows config tool.
mjr 21:5048e16cc9ef 1824 if (reportTimer.read_ms() > 200)
mjr 21:5048e16cc9ef 1825 {
mjr 21:5048e16cc9ef 1826 js.updateStatus(0);
mjr 21:5048e16cc9ef 1827 }
mjr 21:5048e16cc9ef 1828
mjr 21:5048e16cc9ef 1829 #endif // ENABLE_JOYSTICK
mjr 21:5048e16cc9ef 1830
mjr 6:cc35eb643e8f 1831 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 1832 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 1833 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 1834 #endif
mjr 6:cc35eb643e8f 1835
mjr 6:cc35eb643e8f 1836 // provide a visual status indication on the on-board LED
mjr 5:a70c0bce770d 1837 if (calBtnState < 2 && hbTimer.read_ms() > 1000)
mjr 1:d913e0afb2ac 1838 {
mjr 5:a70c0bce770d 1839 if (js.isSuspended() || !js.isConnected())
mjr 2:c174f9ee414a 1840 {
mjr 5:a70c0bce770d 1841 // suspended - turn off the LED
mjr 4:02c7cd7b2183 1842 ledR = 1;
mjr 4:02c7cd7b2183 1843 ledG = 1;
mjr 4:02c7cd7b2183 1844 ledB = 1;
mjr 5:a70c0bce770d 1845
mjr 5:a70c0bce770d 1846 // show a status flash every so often
mjr 5:a70c0bce770d 1847 if (hbcnt % 3 == 0)
mjr 5:a70c0bce770d 1848 {
mjr 6:cc35eb643e8f 1849 // disconnected = red/red flash; suspended = red
mjr 5:a70c0bce770d 1850 for (int n = js.isConnected() ? 1 : 2 ; n > 0 ; --n)
mjr 5:a70c0bce770d 1851 {
mjr 5:a70c0bce770d 1852 ledR = 0;
mjr 5:a70c0bce770d 1853 wait(0.05);
mjr 5:a70c0bce770d 1854 ledR = 1;
mjr 5:a70c0bce770d 1855 wait(0.25);
mjr 5:a70c0bce770d 1856 }
mjr 5:a70c0bce770d 1857 }
mjr 2:c174f9ee414a 1858 }
mjr 6:cc35eb643e8f 1859 else if (needReset)
mjr 2:c174f9ee414a 1860 {
mjr 6:cc35eb643e8f 1861 // connected, need to reset due to changes in config parameters -
mjr 6:cc35eb643e8f 1862 // flash red/green
mjr 6:cc35eb643e8f 1863 hb = !hb;
mjr 6:cc35eb643e8f 1864 ledR = (hb ? 0 : 1);
mjr 6:cc35eb643e8f 1865 ledG = (hb ? 1 : 0);
mjr 6:cc35eb643e8f 1866 ledB = 0;
mjr 6:cc35eb643e8f 1867 }
mjr 17:ab3cec0c8bf4 1868 else if (cfg.d.plungerEnabled && !cfg.d.plungerCal)
mjr 6:cc35eb643e8f 1869 {
mjr 6:cc35eb643e8f 1870 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 1871 hb = !hb;
mjr 6:cc35eb643e8f 1872 ledR = (hb ? 0 : 1);
mjr 6:cc35eb643e8f 1873 ledG = 0;
mjr 6:cc35eb643e8f 1874 ledB = 1;
mjr 6:cc35eb643e8f 1875 }
mjr 6:cc35eb643e8f 1876 else
mjr 6:cc35eb643e8f 1877 {
mjr 6:cc35eb643e8f 1878 // connected - flash blue/green
mjr 2:c174f9ee414a 1879 hb = !hb;
mjr 4:02c7cd7b2183 1880 ledR = 1;
mjr 4:02c7cd7b2183 1881 ledG = (hb ? 0 : 1);
mjr 4:02c7cd7b2183 1882 ledB = (hb ? 1 : 0);
mjr 2:c174f9ee414a 1883 }
mjr 1:d913e0afb2ac 1884
mjr 1:d913e0afb2ac 1885 // reset the heartbeat timer
mjr 1:d913e0afb2ac 1886 hbTimer.reset();
mjr 5:a70c0bce770d 1887 ++hbcnt;
mjr 1:d913e0afb2ac 1888 }
mjr 1:d913e0afb2ac 1889 }
mjr 0:5acbbe3f4cf4 1890 }