work in progress

Dependencies:   FastAnalogIn FastIO USBDevice mbed FastPWM SimpleDMA

Fork of Pinscape_Controller by Mike R

Committer:
mjr
Date:
Fri Feb 27 07:41:29 2015 +0000
Revision:
18:5e890ebd0023
Parent:
17:ab3cec0c8bf4
Child:
19:054f8af32fce
Old debounce about to be removed

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 5:a70c0bce770d 1 /* Copyright 2014 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 5:a70c0bce770d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 5:a70c0bce770d 20 // Pinscape Controller
mjr 5:a70c0bce770d 21 //
mjr 17:ab3cec0c8bf4 22 // "Pinscape" is the name of my custom-built virtual pinball cabinet, so I call this
mjr 17:ab3cec0c8bf4 23 // software the Pinscape Controller. I wrote it to handle several tasks that I needed
mjr 17:ab3cec0c8bf4 24 // for my cabinet. It runs on a Freescale KL25Z microcontroller, which is a small and
mjr 17:ab3cec0c8bf4 25 // inexpensive device that attaches to the cabinet PC via a USB cable, and can attach
mjr 17:ab3cec0c8bf4 26 // via custom wiring to sensors, buttons, and other devices in the cabinet.
mjr 5:a70c0bce770d 27 //
mjr 17:ab3cec0c8bf4 28 // I designed the software and hardware in this project especially for my own
mjr 17:ab3cec0c8bf4 29 // cabinet, but it uses standard interfaces in Windows and Visual Pinball, so it should
mjr 17:ab3cec0c8bf4 30 // work in any VP-based cabinet, as long as you're using the usual VP software suite.
mjr 17:ab3cec0c8bf4 31 // I've tried to document the hardware in enough detail for anyone else to duplicate
mjr 17:ab3cec0c8bf4 32 // the entire project, and the full software is open source.
mjr 5:a70c0bce770d 33 //
mjr 17:ab3cec0c8bf4 34 // The Freescale board appears to the host PC as a standard USB joystick. This works
mjr 17:ab3cec0c8bf4 35 // with the built-in Windows joystick device drivers, so there's no need to install any
mjr 17:ab3cec0c8bf4 36 // new drivers or other software on the PC. Windows should recognize the Freescale
mjr 17:ab3cec0c8bf4 37 // as a joystick when you plug it into the USB port, and Windows shouldn't ask you to
mjr 17:ab3cec0c8bf4 38 // install any drivers. If you bring up the Windows control panel for USB Game
mjr 17:ab3cec0c8bf4 39 // Controllers, this device will appear as "Pinscape Controller". *Don't* do any
mjr 17:ab3cec0c8bf4 40 // calibration with the Windows control panel or third-part calibration tools. The
mjr 17:ab3cec0c8bf4 41 // software calibrates the accelerometer portion automatically, and has its own special
mjr 17:ab3cec0c8bf4 42 // calibration procedure for the plunger sensor, if you're using that (see below).
mjr 5:a70c0bce770d 43 //
mjr 17:ab3cec0c8bf4 44 // This software provides a whole bunch of separate features. You can use any of these
mjr 17:ab3cec0c8bf4 45 // features individually or all together. If you're not using a particular feature, you
mjr 17:ab3cec0c8bf4 46 // can simply omit the extra wiring and/or hardware for that feature. You can use
mjr 17:ab3cec0c8bf4 47 // the nudging feature by itself without any extra hardware attached, since the
mjr 17:ab3cec0c8bf4 48 // accelerometer is built in to the KL25Z board.
mjr 5:a70c0bce770d 49 //
mjr 17:ab3cec0c8bf4 50 // - Nudge sensing via the KL25Z's on-board accelerometer. Nudging the cabinet
mjr 17:ab3cec0c8bf4 51 // causes small accelerations that the accelerometer can detect; these are sent to
mjr 17:ab3cec0c8bf4 52 // Visual Pinball via the joystick interface so that VP can simulate the effect
mjr 17:ab3cec0c8bf4 53 // of the real physical nudges on its simulated ball. VP has native handling for
mjr 17:ab3cec0c8bf4 54 // this type of input, so all you have to do is set some preferences in VP to tell
mjr 17:ab3cec0c8bf4 55 // it that an accelerometer is attached.
mjr 5:a70c0bce770d 56 //
mjr 5:a70c0bce770d 57 // - Plunger position sensing via an attached TAOS TSL 1410R CCD linear array sensor.
mjr 17:ab3cec0c8bf4 58 // To use this feature, you need to buy the TAOS device (it's not built in to the
mjr 17:ab3cec0c8bf4 59 // KL25Z, obviously), wire it to the KL25Z (5 wire connections between the two
mjr 17:ab3cec0c8bf4 60 // devices are required), and mount the TAOS sensor in your cabinet so that it's
mjr 17:ab3cec0c8bf4 61 // positioned properly to capture images of the physical plunger shooter rod.
mjr 17:ab3cec0c8bf4 62 //
mjr 17:ab3cec0c8bf4 63 // The physical mounting and wiring details are desribed in the project
mjr 17:ab3cec0c8bf4 64 // documentation.
mjr 17:ab3cec0c8bf4 65 //
mjr 17:ab3cec0c8bf4 66 // If the CCD is attached, the software constantly captures images from the CCD
mjr 17:ab3cec0c8bf4 67 // and analyzes them to determine how far back the plunger is pulled. It reports
mjr 17:ab3cec0c8bf4 68 // this to Visual Pinball via the joystick interface. This allows VP to make the
mjr 17:ab3cec0c8bf4 69 // simulated on-screen plunger track the motion of the physical plunger in real
mjr 17:ab3cec0c8bf4 70 // time. As with the nudge data, VP has native handling for the plunger input,
mjr 17:ab3cec0c8bf4 71 // so you just need to set the VP preferences to tell it that an analog plunger
mjr 17:ab3cec0c8bf4 72 // device is attached. One caveat, though: although VP itself has built-in
mjr 17:ab3cec0c8bf4 73 // support for an analog plunger, not all existing tables take advantage of it.
mjr 17:ab3cec0c8bf4 74 // Many existing tables have their own custom plunger scripting that doesn't
mjr 17:ab3cec0c8bf4 75 // cooperate with the VP plunger input. All tables *can* be made to work with
mjr 17:ab3cec0c8bf4 76 // the plunger, and in most cases it only requires some simple script editing,
mjr 17:ab3cec0c8bf4 77 // but in some cases it requires some more extensive surgery.
mjr 5:a70c0bce770d 78 //
mjr 6:cc35eb643e8f 79 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 80 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 81 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 82 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 17:ab3cec0c8bf4 83 // sensor or the mechanical plunger, since their alignment shift change slightly
mjr 17:ab3cec0c8bf4 84 // when you put everything back together.) You can optionally install a
mjr 17:ab3cec0c8bf4 85 // dedicated momentary switch or pushbutton to activate the calibration mode;
mjr 17:ab3cec0c8bf4 86 // this is describe in the project documentation. If you don't want to bother
mjr 17:ab3cec0c8bf4 87 // with the extra button, you can also trigger calibration using the Windows
mjr 17:ab3cec0c8bf4 88 // setup software, which you can find on the Pinscape project page.
mjr 6:cc35eb643e8f 89 //
mjr 17:ab3cec0c8bf4 90 // The calibration procedure is described in the project documentation. Briefly,
mjr 17:ab3cec0c8bf4 91 // when you trigger calibration mode, the software will scan the CCD for about
mjr 17:ab3cec0c8bf4 92 // 15 seconds, during which you should simply pull the physical plunger back
mjr 17:ab3cec0c8bf4 93 // all the way, hold it for a moment, and then slowly return it to the rest
mjr 17:ab3cec0c8bf4 94 // position. (DON'T just release it from the retracted position, since that
mjr 17:ab3cec0c8bf4 95 // let it shoot forward too far. We want to measure the range from the park
mjr 17:ab3cec0c8bf4 96 // position to the fully retracted position only.)
mjr 5:a70c0bce770d 97 //
mjr 13:72dda449c3c0 98 // - Button input wiring. 24 of the KL25Z's GPIO ports are mapped as digital inputs
mjr 13:72dda449c3c0 99 // for buttons and switches. The software reports these as joystick buttons when
mjr 13:72dda449c3c0 100 // it sends reports to the PC. These can be used to wire physical pinball-style
mjr 13:72dda449c3c0 101 // buttons in the cabinet (e.g., flipper buttons, the Start button) and miscellaneous
mjr 13:72dda449c3c0 102 // switches (such as a tilt bob) to the PC. Visual Pinball can use joystick buttons
mjr 13:72dda449c3c0 103 // for input - you just have to assign a VP function to each button using VP's
mjr 13:72dda449c3c0 104 // keyboard options dialog. To wire a button physically, connect one terminal of
mjr 13:72dda449c3c0 105 // the button switch to the KL25Z ground, and connect the other terminal to the
mjr 13:72dda449c3c0 106 // the GPIO port you wish to assign to the button. See the buttonMap[] array
mjr 13:72dda449c3c0 107 // below for the available GPIO ports and their assigned joystick button numbers.
mjr 13:72dda449c3c0 108 // If you're not using a GPIO port, you can just leave it unconnected - the digital
mjr 13:72dda449c3c0 109 // inputs have built-in pull-up resistors, so an unconnected port is the same as
mjr 13:72dda449c3c0 110 // an open switch (an "off" state for the button).
mjr 13:72dda449c3c0 111 //
mjr 5:a70c0bce770d 112 // - LedWiz emulation. The KL25Z can appear to the PC as an LedWiz device, and will
mjr 5:a70c0bce770d 113 // accept and process LedWiz commands from the host. The software can turn digital
mjr 5:a70c0bce770d 114 // output ports on and off, and can set varying PWM intensitiy levels on a subset
mjr 5:a70c0bce770d 115 // of ports. (The KL25Z can only provide 6 PWM ports. Intensity level settings on
mjr 5:a70c0bce770d 116 // other ports is ignored, so non-PWM ports can only be used for simple on/off
mjr 5:a70c0bce770d 117 // devices such as contactors and solenoids.) The KL25Z can only supply 4mA on its
mjr 5:a70c0bce770d 118 // output ports, so external hardware is required to take advantage of the LedWiz
mjr 5:a70c0bce770d 119 // emulation. Many different hardware designs are possible, but there's a simple
mjr 5:a70c0bce770d 120 // reference design in the documentation that uses a Darlington array IC to
mjr 5:a70c0bce770d 121 // increase the output from each port to 500mA (the same level as the LedWiz),
mjr 5:a70c0bce770d 122 // plus an extended design that adds an optocoupler and MOSFET to provide very
mjr 5:a70c0bce770d 123 // high power handling, up to about 45A or 150W, with voltages up to 100V.
mjr 5:a70c0bce770d 124 // That will handle just about any DC device directly (wtihout relays or other
mjr 5:a70c0bce770d 125 // amplifiers), and switches fast enough to support PWM devices.
mjr 5:a70c0bce770d 126 //
mjr 5:a70c0bce770d 127 // The device can report any desired LedWiz unit number to the host, which makes
mjr 5:a70c0bce770d 128 // it possible to use the LedWiz emulation on a machine that also has one or more
mjr 5:a70c0bce770d 129 // actual LedWiz devices intalled. The LedWiz design allows for up to 16 units
mjr 5:a70c0bce770d 130 // to be installed in one machine - each one is invidually addressable by its
mjr 5:a70c0bce770d 131 // distinct unit number.
mjr 5:a70c0bce770d 132 //
mjr 5:a70c0bce770d 133 // The LedWiz emulation features are of course optional. There's no need to
mjr 5:a70c0bce770d 134 // build any of the external port hardware (or attach anything to the output
mjr 5:a70c0bce770d 135 // ports at all) if the LedWiz features aren't needed. Most people won't have
mjr 5:a70c0bce770d 136 // any use for the LedWiz features. I built them mostly as a learning exercise,
mjr 5:a70c0bce770d 137 // but with a slight practical need for a handful of extra ports (I'm using the
mjr 5:a70c0bce770d 138 // cutting-edge 10-contactor setup, so my real LedWiz is full!).
mjr 6:cc35eb643e8f 139 //
mjr 6:cc35eb643e8f 140 // The on-board LED on the KL25Z flashes to indicate the current device status:
mjr 6:cc35eb643e8f 141 //
mjr 6:cc35eb643e8f 142 // two short red flashes = the device is powered but hasn't successfully
mjr 6:cc35eb643e8f 143 // connected to the host via USB (either it's not physically connected
mjr 6:cc35eb643e8f 144 // to the USB port, or there was a problem with the software handshake
mjr 6:cc35eb643e8f 145 // with the USB device driver on the computer)
mjr 6:cc35eb643e8f 146 //
mjr 6:cc35eb643e8f 147 // short red flash = the host computer is in sleep/suspend mode
mjr 6:cc35eb643e8f 148 //
mjr 6:cc35eb643e8f 149 // long red/green = the LedWiz unti number has been changed, so a reset
mjr 6:cc35eb643e8f 150 // is needed. You can simply unplug the device and plug it back in,
mjr 6:cc35eb643e8f 151 // or presss and hold the reset button on the device for a few seconds.
mjr 6:cc35eb643e8f 152 //
mjr 6:cc35eb643e8f 153 // long yellow/green = everything's working, but the plunger hasn't
mjr 6:cc35eb643e8f 154 // been calibrated; follow the calibration procedure described above.
mjr 6:cc35eb643e8f 155 // This flash mode won't appear if the CCD has been disabled. Note
mjr 18:5e890ebd0023 156 // that the device can't tell whether a CCD is physically attached;
mjr 18:5e890ebd0023 157 // if you don't have a CCD attached, you can set the appropriate option
mjr 18:5e890ebd0023 158 // in config.h or use the Windows config tool to disable the CCD
mjr 18:5e890ebd0023 159 // software features.
mjr 6:cc35eb643e8f 160 //
mjr 6:cc35eb643e8f 161 // alternating blue/green = everything's working
mjr 6:cc35eb643e8f 162 //
mjr 6:cc35eb643e8f 163 // Software configuration: you can change option settings by sending special
mjr 6:cc35eb643e8f 164 // USB commands from the PC. I've provided a Windows program for this purpose;
mjr 6:cc35eb643e8f 165 // refer to the documentation for details. For reference, here's the format
mjr 6:cc35eb643e8f 166 // of the USB command for option changes:
mjr 6:cc35eb643e8f 167 //
mjr 6:cc35eb643e8f 168 // length of report = 8 bytes
mjr 6:cc35eb643e8f 169 // byte 0 = 65 (0x41)
mjr 6:cc35eb643e8f 170 // byte 1 = 1 (0x01)
mjr 6:cc35eb643e8f 171 // byte 2 = new LedWiz unit number, 0x01 to 0x0f
mjr 6:cc35eb643e8f 172 // byte 3 = feature enable bit mask:
mjr 6:cc35eb643e8f 173 // 0x01 = enable CCD (default = on)
mjr 9:fd65b0a94720 174 //
mjr 9:fd65b0a94720 175 // Plunger calibration mode: the host can activate plunger calibration mode
mjr 9:fd65b0a94720 176 // by sending this packet. This has the same effect as pressing and holding
mjr 9:fd65b0a94720 177 // the plunger calibration button for two seconds, to allow activating this
mjr 9:fd65b0a94720 178 // mode without attaching a physical button.
mjr 9:fd65b0a94720 179 //
mjr 9:fd65b0a94720 180 // length = 8 bytes
mjr 9:fd65b0a94720 181 // byte 0 = 65 (0x41)
mjr 9:fd65b0a94720 182 // byte 1 = 2 (0x02)
mjr 9:fd65b0a94720 183 //
mjr 10:976666ffa4ef 184 // Exposure reports: the host can request a report of the full set of pixel
mjr 10:976666ffa4ef 185 // values for the next frame by sending this special packet:
mjr 10:976666ffa4ef 186 //
mjr 10:976666ffa4ef 187 // length = 8 bytes
mjr 10:976666ffa4ef 188 // byte 0 = 65 (0x41)
mjr 10:976666ffa4ef 189 // byte 1 = 3 (0x03)
mjr 10:976666ffa4ef 190 //
mjr 10:976666ffa4ef 191 // We'll respond with a series of special reports giving the exposure status.
mjr 10:976666ffa4ef 192 // Each report has the following structure:
mjr 10:976666ffa4ef 193 //
mjr 10:976666ffa4ef 194 // bytes 0:1 = 11-bit index, with high 5 bits set to 10000. For
mjr 10:976666ffa4ef 195 // example, 0x04 0x80 indicates index 4. This is the
mjr 10:976666ffa4ef 196 // starting pixel number in the report. The first report
mjr 10:976666ffa4ef 197 // will be 0x00 0x80 to indicate pixel #0.
mjr 10:976666ffa4ef 198 // bytes 2:3 = 16-bit unsigned int brightness level of pixel at index
mjr 10:976666ffa4ef 199 // bytes 4:5 = brightness of pixel at index+1
mjr 10:976666ffa4ef 200 // etc for the rest of the packet
mjr 10:976666ffa4ef 201 //
mjr 10:976666ffa4ef 202 // This still has the form of a joystick packet at the USB level, but
mjr 10:976666ffa4ef 203 // can be differentiated by the host via the status bits. It would have
mjr 10:976666ffa4ef 204 // been cleaner to use a different Report ID at the USB level, but this
mjr 10:976666ffa4ef 205 // would have necessitated a different container structure in the report
mjr 10:976666ffa4ef 206 // descriptor, which would have broken LedWiz compatibility. Given that
mjr 10:976666ffa4ef 207 // constraint, we have to re-use the joystick report type, making for
mjr 10:976666ffa4ef 208 // this somewhat kludgey approach.
mjr 6:cc35eb643e8f 209
mjr 0:5acbbe3f4cf4 210 #include "mbed.h"
mjr 6:cc35eb643e8f 211 #include "math.h"
mjr 0:5acbbe3f4cf4 212 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 213 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 214 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 215 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 216 #include "crc32.h"
mjr 2:c174f9ee414a 217
mjr 17:ab3cec0c8bf4 218 // our local configuration file
mjr 17:ab3cec0c8bf4 219 #include "config.h"
mjr 17:ab3cec0c8bf4 220
mjr 5:a70c0bce770d 221
mjr 5:a70c0bce770d 222 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 223 // utilities
mjr 17:ab3cec0c8bf4 224
mjr 17:ab3cec0c8bf4 225 // number of elements in an array
mjr 17:ab3cec0c8bf4 226 #define countof(x) (sizeof(x)/sizeof((x)[0]))
mjr 17:ab3cec0c8bf4 227
mjr 17:ab3cec0c8bf4 228
mjr 17:ab3cec0c8bf4 229 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 230 // USB device vendor ID, product ID, and version.
mjr 5:a70c0bce770d 231 //
mjr 5:a70c0bce770d 232 // We use the vendor ID for the LedWiz, so that the PC-side software can
mjr 5:a70c0bce770d 233 // identify us as capable of performing LedWiz commands. The LedWiz uses
mjr 5:a70c0bce770d 234 // a product ID value from 0xF0 to 0xFF; the last four bits identify the
mjr 5:a70c0bce770d 235 // unit number (e.g., product ID 0xF7 means unit #7). This allows multiple
mjr 5:a70c0bce770d 236 // LedWiz units to be installed in a single PC; the software on the PC side
mjr 5:a70c0bce770d 237 // uses the unit number to route commands to the devices attached to each
mjr 5:a70c0bce770d 238 // unit. On the real LedWiz, the unit number must be set in the firmware
mjr 5:a70c0bce770d 239 // at the factory; it's not configurable by the end user. Most LedWiz's
mjr 5:a70c0bce770d 240 // ship with the unit number set to 0, but the vendor will set different
mjr 5:a70c0bce770d 241 // unit numbers if requested at the time of purchase. So if you have a
mjr 5:a70c0bce770d 242 // single LedWiz already installed in your cabinet, and you didn't ask for
mjr 5:a70c0bce770d 243 // a non-default unit number, your existing LedWiz will be unit 0.
mjr 5:a70c0bce770d 244 //
mjr 6:cc35eb643e8f 245 // Note that the USB_PRODUCT_ID value set here omits the unit number. We
mjr 6:cc35eb643e8f 246 // take the unit number from the saved configuration. We provide a
mjr 6:cc35eb643e8f 247 // configuration command that can be sent via the USB connection to change
mjr 6:cc35eb643e8f 248 // the unit number, so that users can select the unit number without having
mjr 6:cc35eb643e8f 249 // to install a different version of the software. We'll combine the base
mjr 6:cc35eb643e8f 250 // product ID here with the unit number to get the actual product ID that
mjr 6:cc35eb643e8f 251 // we send to the USB controller.
mjr 5:a70c0bce770d 252 const uint16_t USB_VENDOR_ID = 0xFAFA;
mjr 6:cc35eb643e8f 253 const uint16_t USB_PRODUCT_ID = 0x00F0;
mjr 6:cc35eb643e8f 254 const uint16_t USB_VERSION_NO = 0x0006;
mjr 0:5acbbe3f4cf4 255
mjr 5:a70c0bce770d 256
mjr 6:cc35eb643e8f 257 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 6:cc35eb643e8f 258 #define JOYMAX 4096
mjr 6:cc35eb643e8f 259
mjr 5:a70c0bce770d 260
mjr 17:ab3cec0c8bf4 261 // --------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 262 //
mjr 17:ab3cec0c8bf4 263 // Potentiometer configuration
mjr 17:ab3cec0c8bf4 264 //
mjr 17:ab3cec0c8bf4 265 #ifdef POT_SENSOR_ENABLED
mjr 17:ab3cec0c8bf4 266 #define IF_POT(x) x
mjr 17:ab3cec0c8bf4 267 #else
mjr 17:ab3cec0c8bf4 268 #define IF_POT(x)
mjr 17:ab3cec0c8bf4 269 #endif
mjr 9:fd65b0a94720 270
mjr 17:ab3cec0c8bf4 271
mjr 17:ab3cec0c8bf4 272 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 273 //
mjr 17:ab3cec0c8bf4 274 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 17:ab3cec0c8bf4 275 //
mjr 17:ab3cec0c8bf4 276 DigitalOut ledR(LED1), ledG(LED2), ledB(LED3);
mjr 17:ab3cec0c8bf4 277
mjr 9:fd65b0a94720 278
mjr 9:fd65b0a94720 279 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 280 //
mjr 5:a70c0bce770d 281 // LedWiz emulation
mjr 5:a70c0bce770d 282 //
mjr 5:a70c0bce770d 283
mjr 0:5acbbe3f4cf4 284 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 285
mjr 6:cc35eb643e8f 286 // LedWiz output pin interface. We create a cover class to virtualize
mjr 6:cc35eb643e8f 287 // digital vs PWM outputs and give them a common interface. The KL25Z
mjr 6:cc35eb643e8f 288 // unfortunately doesn't have enough hardware PWM channels to support
mjr 6:cc35eb643e8f 289 // PWM on all 32 LedWiz outputs, so we provide as many PWM channels as
mjr 6:cc35eb643e8f 290 // we can (10), and fill out the rest of the outputs with plain digital
mjr 6:cc35eb643e8f 291 // outs.
mjr 6:cc35eb643e8f 292 class LwOut
mjr 6:cc35eb643e8f 293 {
mjr 6:cc35eb643e8f 294 public:
mjr 6:cc35eb643e8f 295 virtual void set(float val) = 0;
mjr 6:cc35eb643e8f 296 };
mjr 6:cc35eb643e8f 297 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 298 {
mjr 6:cc35eb643e8f 299 public:
mjr 13:72dda449c3c0 300 LwPwmOut(PinName pin) : p(pin) { prv = -1; }
mjr 13:72dda449c3c0 301 virtual void set(float val)
mjr 13:72dda449c3c0 302 {
mjr 13:72dda449c3c0 303 if (val != prv)
mjr 13:72dda449c3c0 304 p.write(prv = val);
mjr 13:72dda449c3c0 305 }
mjr 6:cc35eb643e8f 306 PwmOut p;
mjr 13:72dda449c3c0 307 float prv;
mjr 6:cc35eb643e8f 308 };
mjr 6:cc35eb643e8f 309 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 310 {
mjr 6:cc35eb643e8f 311 public:
mjr 13:72dda449c3c0 312 LwDigOut(PinName pin) : p(pin) { prv = -1; }
mjr 13:72dda449c3c0 313 virtual void set(float val)
mjr 13:72dda449c3c0 314 {
mjr 13:72dda449c3c0 315 if (val != prv)
mjr 13:72dda449c3c0 316 p.write((prv = val) == 0.0 ? 0 : 1);
mjr 13:72dda449c3c0 317 }
mjr 6:cc35eb643e8f 318 DigitalOut p;
mjr 13:72dda449c3c0 319 float prv;
mjr 6:cc35eb643e8f 320 };
mjr 11:bd9da7088e6e 321 class LwUnusedOut: public LwOut
mjr 11:bd9da7088e6e 322 {
mjr 11:bd9da7088e6e 323 public:
mjr 11:bd9da7088e6e 324 LwUnusedOut() { }
mjr 11:bd9da7088e6e 325 virtual void set(float val) { }
mjr 11:bd9da7088e6e 326 };
mjr 6:cc35eb643e8f 327
mjr 6:cc35eb643e8f 328 // output pin array
mjr 6:cc35eb643e8f 329 static LwOut *lwPin[32];
mjr 6:cc35eb643e8f 330
mjr 6:cc35eb643e8f 331 // initialize the output pin array
mjr 6:cc35eb643e8f 332 void initLwOut()
mjr 6:cc35eb643e8f 333 {
mjr 9:fd65b0a94720 334 for (int i = 0 ; i < countof(lwPin) ; ++i)
mjr 6:cc35eb643e8f 335 {
mjr 11:bd9da7088e6e 336 PinName p = (i < countof(ledWizPortMap) ? ledWizPortMap[i].pin : NC);
mjr 11:bd9da7088e6e 337 if (p == NC)
mjr 11:bd9da7088e6e 338 lwPin[i] = new LwUnusedOut();
mjr 11:bd9da7088e6e 339 else if (ledWizPortMap[i].isPWM)
mjr 11:bd9da7088e6e 340 lwPin[i] = new LwPwmOut(p);
mjr 11:bd9da7088e6e 341 else
mjr 11:bd9da7088e6e 342 lwPin[i] = new LwDigOut(p);
mjr 6:cc35eb643e8f 343 }
mjr 6:cc35eb643e8f 344 }
mjr 6:cc35eb643e8f 345
mjr 0:5acbbe3f4cf4 346 // on/off state for each LedWiz output
mjr 1:d913e0afb2ac 347 static uint8_t wizOn[32];
mjr 0:5acbbe3f4cf4 348
mjr 0:5acbbe3f4cf4 349 // profile (brightness/blink) state for each LedWiz output
mjr 1:d913e0afb2ac 350 static uint8_t wizVal[32] = {
mjr 13:72dda449c3c0 351 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 352 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 353 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 354 48, 48, 48, 48, 48, 48, 48, 48
mjr 0:5acbbe3f4cf4 355 };
mjr 0:5acbbe3f4cf4 356
mjr 1:d913e0afb2ac 357 static float wizState(int idx)
mjr 0:5acbbe3f4cf4 358 {
mjr 13:72dda449c3c0 359 if (wizOn[idx])
mjr 13:72dda449c3c0 360 {
mjr 0:5acbbe3f4cf4 361 // on - map profile brightness state to PWM level
mjr 1:d913e0afb2ac 362 uint8_t val = wizVal[idx];
mjr 13:72dda449c3c0 363 if (val <= 48)
mjr 13:72dda449c3c0 364 {
mjr 15:944bbc29c4dd 365 // PWM brightness/intensity level. Rescale from the LedWiz
mjr 15:944bbc29c4dd 366 // 0..48 integer range to our internal PwmOut 0..1 float range.
mjr 15:944bbc29c4dd 367 // Note that on the actual LedWiz, level 48 is actually about
mjr 15:944bbc29c4dd 368 // 98% on - contrary to the LedWiz documentation, level 49 is
mjr 15:944bbc29c4dd 369 // the true 100% level. (In the documentation, level 49 is
mjr 15:944bbc29c4dd 370 // simply not a valid setting.) Even so, we treat level 48 as
mjr 15:944bbc29c4dd 371 // 100% on to match the documentation. This won't be perfectly
mjr 15:944bbc29c4dd 372 // ocmpatible with the actual LedWiz, but it makes for such a
mjr 15:944bbc29c4dd 373 // small difference in brightness (if the output device is an
mjr 15:944bbc29c4dd 374 // LED, say) that no one should notice. It seems better to
mjr 15:944bbc29c4dd 375 // err in this direction, because while the difference in
mjr 15:944bbc29c4dd 376 // brightness when attached to an LED won't be noticeable, the
mjr 15:944bbc29c4dd 377 // difference in duty cycle when attached to something like a
mjr 15:944bbc29c4dd 378 // contactor *can* be noticeable - anything less than 100%
mjr 15:944bbc29c4dd 379 // can cause a contactor or relay to chatter. There's almost
mjr 15:944bbc29c4dd 380 // never a situation where you'd want values other than 0% and
mjr 15:944bbc29c4dd 381 // 100% for a contactor or relay, so treating level 48 as 100%
mjr 15:944bbc29c4dd 382 // makes us work properly with software that's expecting the
mjr 15:944bbc29c4dd 383 // documented LedWiz behavior and therefore uses level 48 to
mjr 15:944bbc29c4dd 384 // turn a contactor or relay fully on.
mjr 13:72dda449c3c0 385 return val/48.0;
mjr 13:72dda449c3c0 386 }
mjr 13:72dda449c3c0 387 else if (val == 49)
mjr 13:72dda449c3c0 388 {
mjr 15:944bbc29c4dd 389 // 49 is undefined in the LedWiz documentation, but actually
mjr 15:944bbc29c4dd 390 // means 100% on. The documentation says that levels 1-48 are
mjr 15:944bbc29c4dd 391 // the full PWM range, but empirically it appears that the real
mjr 15:944bbc29c4dd 392 // range implemented in the firmware is 1-49. Some software on
mjr 15:944bbc29c4dd 393 // the PC side (notably DOF) is aware of this and uses level 49
mjr 15:944bbc29c4dd 394 // to mean "100% on". To ensure compatibility with existing
mjr 15:944bbc29c4dd 395 // PC-side software, we need to recognize level 49.
mjr 13:72dda449c3c0 396 return 1.0;
mjr 13:72dda449c3c0 397 }
mjr 0:5acbbe3f4cf4 398 else if (val >= 129 && val <= 132)
mjr 13:72dda449c3c0 399 {
mjr 13:72dda449c3c0 400 // Values of 129-132 select different flashing modes. We don't
mjr 13:72dda449c3c0 401 // support any of these. Instead, simply treat them as fully on.
mjr 13:72dda449c3c0 402 // Note that DOF doesn't ever use modes 129-132, as it implements
mjr 13:72dda449c3c0 403 // all flashing modes itself on the host side, so this limitation
mjr 13:72dda449c3c0 404 // won't have any effect on DOF users. You can observe it using
mjr 13:72dda449c3c0 405 // LedBlinky, though.
mjr 13:72dda449c3c0 406 return 1.0;
mjr 13:72dda449c3c0 407 }
mjr 0:5acbbe3f4cf4 408 else
mjr 13:72dda449c3c0 409 {
mjr 13:72dda449c3c0 410 // Other values are undefined in the LedWiz documentation. Hosts
mjr 13:72dda449c3c0 411 // *should* never send undefined values, since whatever behavior an
mjr 13:72dda449c3c0 412 // LedWiz unit exhibits in response is accidental and could change
mjr 13:72dda449c3c0 413 // in a future version. We'll treat all undefined values as equivalent
mjr 13:72dda449c3c0 414 // to 48 (fully on).
mjr 13:72dda449c3c0 415 //
mjr 13:72dda449c3c0 416 // NB: the 49 and 129-132 cases are broken out above for the sake
mjr 13:72dda449c3c0 417 // of documentation. We end up using 1.0 as the return value for
mjr 13:72dda449c3c0 418 // everything outside of the defined 0-48 range, so we could collapse
mjr 13:72dda449c3c0 419 // this whole thing to a single 'else' branch, but I wanted to call
mjr 13:72dda449c3c0 420 // out the specific reasons for handling the settings above as we do.
mjr 0:5acbbe3f4cf4 421 return 1.0;
mjr 13:72dda449c3c0 422 }
mjr 0:5acbbe3f4cf4 423 }
mjr 13:72dda449c3c0 424 else
mjr 13:72dda449c3c0 425 {
mjr 13:72dda449c3c0 426 // off - show at 0 intensity
mjr 13:72dda449c3c0 427 return 0.0;
mjr 0:5acbbe3f4cf4 428 }
mjr 0:5acbbe3f4cf4 429 }
mjr 0:5acbbe3f4cf4 430
mjr 1:d913e0afb2ac 431 static void updateWizOuts()
mjr 1:d913e0afb2ac 432 {
mjr 6:cc35eb643e8f 433 for (int i = 0 ; i < 32 ; ++i)
mjr 6:cc35eb643e8f 434 lwPin[i]->set(wizState(i));
mjr 1:d913e0afb2ac 435 }
mjr 1:d913e0afb2ac 436
mjr 11:bd9da7088e6e 437
mjr 11:bd9da7088e6e 438 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 439 //
mjr 11:bd9da7088e6e 440 // Button input
mjr 11:bd9da7088e6e 441 //
mjr 11:bd9da7088e6e 442
mjr 11:bd9da7088e6e 443 // button input map array
mjr 11:bd9da7088e6e 444 DigitalIn *buttonDigIn[32];
mjr 11:bd9da7088e6e 445
mjr 18:5e890ebd0023 446 // button state
mjr 18:5e890ebd0023 447 struct ButtonState
mjr 18:5e890ebd0023 448 {
mjr 18:5e890ebd0023 449 // current on/off state
mjr 18:5e890ebd0023 450 int pressed;
mjr 18:5e890ebd0023 451
mjr 18:5e890ebd0023 452 // Sticky time remaining for current state. When a
mjr 18:5e890ebd0023 453 // state transition occurs, we set this to a debounce
mjr 18:5e890ebd0023 454 // period. Future state transitions will be ignored
mjr 18:5e890ebd0023 455 // until the debounce time elapses.
mjr 18:5e890ebd0023 456 int t;
mjr 18:5e890ebd0023 457 } buttonState[32];
mjr 18:5e890ebd0023 458
mjr 12:669df364a565 459 // timer for button reports
mjr 12:669df364a565 460 static Timer buttonTimer;
mjr 12:669df364a565 461
mjr 11:bd9da7088e6e 462 // initialize the button inputs
mjr 11:bd9da7088e6e 463 void initButtons()
mjr 11:bd9da7088e6e 464 {
mjr 11:bd9da7088e6e 465 // create the digital inputs
mjr 11:bd9da7088e6e 466 for (int i = 0 ; i < countof(buttonDigIn) ; ++i)
mjr 11:bd9da7088e6e 467 {
mjr 11:bd9da7088e6e 468 if (i < countof(buttonMap) && buttonMap[i] != NC)
mjr 11:bd9da7088e6e 469 buttonDigIn[i] = new DigitalIn(buttonMap[i]);
mjr 11:bd9da7088e6e 470 else
mjr 11:bd9da7088e6e 471 buttonDigIn[i] = 0;
mjr 11:bd9da7088e6e 472 }
mjr 12:669df364a565 473
mjr 12:669df364a565 474 // start the button timer
mjr 12:669df364a565 475 buttonTimer.start();
mjr 11:bd9da7088e6e 476 }
mjr 11:bd9da7088e6e 477
mjr 11:bd9da7088e6e 478
mjr 18:5e890ebd0023 479 // read the button input state
mjr 18:5e890ebd0023 480 uint32_t readButtons()
mjr 11:bd9da7088e6e 481 {
mjr 11:bd9da7088e6e 482 // start with all buttons off
mjr 11:bd9da7088e6e 483 uint32_t buttons = 0;
mjr 11:bd9da7088e6e 484
mjr 18:5e890ebd0023 485 // figure the time elapsed since the last scan
mjr 18:5e890ebd0023 486 int dt = buttonTimer.read_ms();
mjr 18:5e890ebd0023 487
mjr 18:5e890ebd0023 488 // reset the timef for the next scan
mjr 18:5e890ebd0023 489 buttonTimer.reset();
mjr 18:5e890ebd0023 490
mjr 11:bd9da7088e6e 491 // scan the button list
mjr 11:bd9da7088e6e 492 uint32_t bit = 1;
mjr 18:5e890ebd0023 493 DigitalIn **di = buttonDigIn;
mjr 18:5e890ebd0023 494 ButtonState *bs = buttonState;
mjr 18:5e890ebd0023 495 for (int i = 0 ; i < countof(buttonDigIn) ; ++i, ++di, ++bs, bit <<= 1)
mjr 11:bd9da7088e6e 496 {
mjr 18:5e890ebd0023 497 // read this button
mjr 18:5e890ebd0023 498 if (*di != 0)
mjr 18:5e890ebd0023 499 {
mjr 18:5e890ebd0023 500 // deduct the elapsed time since the last update
mjr 18:5e890ebd0023 501 // from the button's remaining sticky time
mjr 18:5e890ebd0023 502 bs->t -= dt;
mjr 18:5e890ebd0023 503 if (bs->t < 0)
mjr 18:5e890ebd0023 504 bs->t = 0;
mjr 18:5e890ebd0023 505
mjr 18:5e890ebd0023 506 // If the sticky time has elapsed, note the new physical
mjr 18:5e890ebd0023 507 // state of the button. If we still have sticky time
mjr 18:5e890ebd0023 508 // remaining, ignore the physical state; the last state
mjr 18:5e890ebd0023 509 // change persists until the sticky time elapses so that
mjr 18:5e890ebd0023 510 // we smooth out any "bounce" (electrical transients that
mjr 18:5e890ebd0023 511 // occur when the switch contact is opened or closed).
mjr 18:5e890ebd0023 512 if (bs->t == 0)
mjr 18:5e890ebd0023 513 {
mjr 18:5e890ebd0023 514 // get the new physical state
mjr 18:5e890ebd0023 515 int pressed = !(*di)->read();
mjr 18:5e890ebd0023 516
mjr 18:5e890ebd0023 517 // update the button's logical state if this is a change
mjr 18:5e890ebd0023 518 if (pressed != bs->pressed)
mjr 18:5e890ebd0023 519 {
mjr 18:5e890ebd0023 520 // store the new state
mjr 18:5e890ebd0023 521 bs->pressed = pressed;
mjr 18:5e890ebd0023 522
mjr 18:5e890ebd0023 523 // start a new sticky period for debouncing this
mjr 18:5e890ebd0023 524 // state change
mjr 18:5e890ebd0023 525 bs->t = 1000;
mjr 18:5e890ebd0023 526 }
mjr 18:5e890ebd0023 527 }
mjr 18:5e890ebd0023 528
mjr 18:5e890ebd0023 529 // if it's pressed, OR its bit into the state
mjr 18:5e890ebd0023 530 if (bs->pressed)
mjr 18:5e890ebd0023 531 buttons |= bit;
mjr 18:5e890ebd0023 532 }
mjr 11:bd9da7088e6e 533 }
mjr 11:bd9da7088e6e 534
mjr 18:5e890ebd0023 535 // return the new button list
mjr 11:bd9da7088e6e 536 return buttons;
mjr 11:bd9da7088e6e 537 }
mjr 11:bd9da7088e6e 538
mjr 18:5e890ebd0023 539 #if 0
mjr 17:ab3cec0c8bf4 540 // Read buttons with debouncing.
mjr 17:ab3cec0c8bf4 541 //
mjr 17:ab3cec0c8bf4 542 // Debouncing is the process of filtering out transients from button
mjr 17:ab3cec0c8bf4 543 // state changes. When an electrical switch is closed or opened, the
mjr 17:ab3cec0c8bf4 544 // signal can have a brief period of instability that makes the switch
mjr 17:ab3cec0c8bf4 545 // appear to turn on and off very rapidly. This is known as "bouncing".
mjr 17:ab3cec0c8bf4 546 //
mjr 17:ab3cec0c8bf4 547 // To remove the transients, we filter the signal by requiring each
mjr 17:ab3cec0c8bf4 548 // change to stick for at least a minimum interval (we use 50ms). We
mjr 17:ab3cec0c8bf4 549 // keep a short recent history of each button's state for this purpose.
mjr 17:ab3cec0c8bf4 550 // If we see a button change state, we ignore the change if we saw the
mjr 17:ab3cec0c8bf4 551 // same button make another change within the same interval.
mjr 11:bd9da7088e6e 552 uint32_t readButtonsDebounced()
mjr 11:bd9da7088e6e 553 {
mjr 11:bd9da7088e6e 554 struct reading {
mjr 17:ab3cec0c8bf4 555 // elapsed time between this reading and the previous reading
mjr 17:ab3cec0c8bf4 556 int dt;
mjr 17:ab3cec0c8bf4 557
mjr 17:ab3cec0c8bf4 558 // Final button state for each button that changed on this
mjr 17:ab3cec0c8bf4 559 // report. OR this with a new report (after applying the
mjr 17:ab3cec0c8bf4 560 // mask 'm') to carry forward the changes that occurred in
mjr 17:ab3cec0c8bf4 561 // this report to the new report.
mjr 17:ab3cec0c8bf4 562 uint32_t b;
mjr 17:ab3cec0c8bf4 563
mjr 17:ab3cec0c8bf4 564 // Change mask at this report. This is a bit mask of the buttons
mjr 18:5e890ebd0023 565 // that changed on this report. AND the NOT of this mask with a
mjr 17:ab3cec0c8bf4 566 // new reading to filter buttons out of the new reading that
mjr 17:ab3cec0c8bf4 567 // changed on this report.
mjr 17:ab3cec0c8bf4 568 uint32_t m;
mjr 11:bd9da7088e6e 569 };
mjr 11:bd9da7088e6e 570 static reading readings[8]; // circular buffer of readings
mjr 11:bd9da7088e6e 571 static int ri = 0; // reading buffer index (next write position)
mjr 17:ab3cec0c8bf4 572 static int bPrv = 0; // immediately previous report
mjr 11:bd9da7088e6e 573
mjr 11:bd9da7088e6e 574 // get the write pointer
mjr 11:bd9da7088e6e 575 reading *r = &readings[ri];
mjr 11:bd9da7088e6e 576
mjr 11:bd9da7088e6e 577 // figure the time since the last reading, and read the raw button state
mjr 17:ab3cec0c8bf4 578 int ms = r->dt = buttonTimer.read_ms();
mjr 17:ab3cec0c8bf4 579 uint32_t b = readButtonsRaw();
mjr 11:bd9da7088e6e 580
mjr 11:bd9da7088e6e 581 // start timing the next interval
mjr 12:669df364a565 582 buttonTimer.reset();
mjr 11:bd9da7088e6e 583
mjr 18:5e890ebd0023 584 // Mask out changes for any buttons that changed state within the
mjr 18:5e890ebd0023 585 // past 50ms. This ensures that each state change sticks for at
mjr 18:5e890ebd0023 586 // least 50ms, which should be long enough to be sure that a change
mjr 18:5e890ebd0023 587 // that reverses a prior change isn't just a transient.
mjr 18:5e890ebd0023 588 for (int i = 1, j = ri - 1 ; i < countof(readings) && ms < 50 ; ++i, --j)
mjr 11:bd9da7088e6e 589 {
mjr 11:bd9da7088e6e 590 // find the next prior reading, wrapping in the circular buffer
mjr 11:bd9da7088e6e 591 if (j < 0)
mjr 11:bd9da7088e6e 592 j = countof(readings) - 1;
mjr 11:bd9da7088e6e 593 reading *rj = &readings[j];
mjr 17:ab3cec0c8bf4 594
mjr 17:ab3cec0c8bf4 595 // For any button that changed state in the prior reading 'rj',
mjr 17:ab3cec0c8bf4 596 // remove any new change and restore it to its 'rj' state.
mjr 18:5e890ebd0023 597 b &= ~rj->m;
mjr 17:ab3cec0c8bf4 598 b |= rj->b;
mjr 17:ab3cec0c8bf4 599
mjr 17:ab3cec0c8bf4 600 // add in the time to the next prior report
mjr 11:bd9da7088e6e 601 ms += rj->dt;
mjr 11:bd9da7088e6e 602 }
mjr 11:bd9da7088e6e 603
mjr 17:ab3cec0c8bf4 604 // figure which buttons changed on this report vs the prior report
mjr 17:ab3cec0c8bf4 605 uint32_t m = b ^ bPrv;
mjr 17:ab3cec0c8bf4 606
mjr 17:ab3cec0c8bf4 607 // save the change mask and changed button vector in our history entry
mjr 18:5e890ebd0023 608 r->m = m;
mjr 17:ab3cec0c8bf4 609 r->b = b & m;
mjr 17:ab3cec0c8bf4 610
mjr 17:ab3cec0c8bf4 611 // save this as the prior report
mjr 17:ab3cec0c8bf4 612 bPrv = b;
mjr 17:ab3cec0c8bf4 613
mjr 11:bd9da7088e6e 614 // advance the write position for next time
mjr 11:bd9da7088e6e 615 ri += 1;
mjr 12:669df364a565 616 if (ri >= countof(readings))
mjr 11:bd9da7088e6e 617 ri = 0;
mjr 11:bd9da7088e6e 618
mjr 11:bd9da7088e6e 619 // return the debounced result
mjr 11:bd9da7088e6e 620 return b;
mjr 11:bd9da7088e6e 621 }
mjr 18:5e890ebd0023 622 #endif
mjr 11:bd9da7088e6e 623
mjr 5:a70c0bce770d 624 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 625 //
mjr 5:a70c0bce770d 626 // Customization joystick subbclass
mjr 5:a70c0bce770d 627 //
mjr 5:a70c0bce770d 628
mjr 5:a70c0bce770d 629 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 630 {
mjr 5:a70c0bce770d 631 public:
mjr 5:a70c0bce770d 632 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release)
mjr 5:a70c0bce770d 633 : USBJoystick(vendor_id, product_id, product_release, true)
mjr 5:a70c0bce770d 634 {
mjr 5:a70c0bce770d 635 suspended_ = false;
mjr 5:a70c0bce770d 636 }
mjr 5:a70c0bce770d 637
mjr 5:a70c0bce770d 638 // are we connected?
mjr 5:a70c0bce770d 639 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 640
mjr 5:a70c0bce770d 641 // Are we in suspend mode?
mjr 5:a70c0bce770d 642 int isSuspended() const { return suspended_; }
mjr 5:a70c0bce770d 643
mjr 5:a70c0bce770d 644 protected:
mjr 5:a70c0bce770d 645 virtual void suspendStateChanged(unsigned int suspended)
mjr 5:a70c0bce770d 646 { suspended_ = suspended; }
mjr 5:a70c0bce770d 647
mjr 5:a70c0bce770d 648 // are we suspended?
mjr 5:a70c0bce770d 649 int suspended_;
mjr 5:a70c0bce770d 650 };
mjr 5:a70c0bce770d 651
mjr 5:a70c0bce770d 652 // ---------------------------------------------------------------------------
mjr 6:cc35eb643e8f 653 //
mjr 6:cc35eb643e8f 654 // Some simple math service routines
mjr 6:cc35eb643e8f 655 //
mjr 6:cc35eb643e8f 656
mjr 6:cc35eb643e8f 657 inline float square(float x) { return x*x; }
mjr 6:cc35eb643e8f 658 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 6:cc35eb643e8f 659
mjr 6:cc35eb643e8f 660 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 661 //
mjr 5:a70c0bce770d 662 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 663 //
mjr 5:a70c0bce770d 664
mjr 5:a70c0bce770d 665 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 666 //
mjr 5:a70c0bce770d 667 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 668 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 669 // automatic calibration.
mjr 5:a70c0bce770d 670 //
mjr 5:a70c0bce770d 671 // We install an interrupt handler on the accelerometer "data ready"
mjr 6:cc35eb643e8f 672 // interrupt to ensure that we fetch each sample immediately when it
mjr 6:cc35eb643e8f 673 // becomes available. The accelerometer data rate is fiarly high
mjr 6:cc35eb643e8f 674 // (800 Hz), so it's not practical to keep up with it by polling.
mjr 6:cc35eb643e8f 675 // Using an interrupt handler lets us respond quickly and read
mjr 6:cc35eb643e8f 676 // every sample.
mjr 5:a70c0bce770d 677 //
mjr 6:cc35eb643e8f 678 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 679 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 680 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 681 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 682 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 683 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 684 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 685 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 686 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 687 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 688 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 689 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 690 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 691 // of nudging, say).
mjr 5:a70c0bce770d 692 //
mjr 5:a70c0bce770d 693
mjr 17:ab3cec0c8bf4 694 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 695 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 696
mjr 17:ab3cec0c8bf4 697 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 698 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 699 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 700
mjr 17:ab3cec0c8bf4 701 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 702 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 703 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 704 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 705
mjr 17:ab3cec0c8bf4 706
mjr 6:cc35eb643e8f 707 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 708 struct AccHist
mjr 5:a70c0bce770d 709 {
mjr 6:cc35eb643e8f 710 AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 711 void set(float x, float y, AccHist *prv)
mjr 6:cc35eb643e8f 712 {
mjr 6:cc35eb643e8f 713 // save the raw position
mjr 6:cc35eb643e8f 714 this->x = x;
mjr 6:cc35eb643e8f 715 this->y = y;
mjr 6:cc35eb643e8f 716 this->d = distance(prv);
mjr 6:cc35eb643e8f 717 }
mjr 6:cc35eb643e8f 718
mjr 6:cc35eb643e8f 719 // reading for this entry
mjr 5:a70c0bce770d 720 float x, y;
mjr 5:a70c0bce770d 721
mjr 6:cc35eb643e8f 722 // distance from previous entry
mjr 6:cc35eb643e8f 723 float d;
mjr 5:a70c0bce770d 724
mjr 6:cc35eb643e8f 725 // total and count of samples averaged over this period
mjr 6:cc35eb643e8f 726 float xtot, ytot;
mjr 6:cc35eb643e8f 727 int cnt;
mjr 6:cc35eb643e8f 728
mjr 6:cc35eb643e8f 729 void clearAvg() { xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 730 void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; }
mjr 6:cc35eb643e8f 731 float xAvg() const { return xtot/cnt; }
mjr 6:cc35eb643e8f 732 float yAvg() const { return ytot/cnt; }
mjr 5:a70c0bce770d 733
mjr 6:cc35eb643e8f 734 float distance(AccHist *p)
mjr 6:cc35eb643e8f 735 { return sqrt(square(p->x - x) + square(p->y - y)); }
mjr 5:a70c0bce770d 736 };
mjr 5:a70c0bce770d 737
mjr 5:a70c0bce770d 738 // accelerometer wrapper class
mjr 3:3514575d4f86 739 class Accel
mjr 3:3514575d4f86 740 {
mjr 3:3514575d4f86 741 public:
mjr 3:3514575d4f86 742 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin)
mjr 3:3514575d4f86 743 : mma_(sda, scl, i2cAddr), intIn_(irqPin)
mjr 3:3514575d4f86 744 {
mjr 5:a70c0bce770d 745 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 746 irqPin_ = irqPin;
mjr 5:a70c0bce770d 747
mjr 5:a70c0bce770d 748 // reset and initialize
mjr 5:a70c0bce770d 749 reset();
mjr 5:a70c0bce770d 750 }
mjr 5:a70c0bce770d 751
mjr 5:a70c0bce770d 752 void reset()
mjr 5:a70c0bce770d 753 {
mjr 6:cc35eb643e8f 754 // clear the center point
mjr 6:cc35eb643e8f 755 cx_ = cy_ = 0.0;
mjr 6:cc35eb643e8f 756
mjr 6:cc35eb643e8f 757 // start the calibration timer
mjr 5:a70c0bce770d 758 tCenter_.start();
mjr 5:a70c0bce770d 759 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 760
mjr 5:a70c0bce770d 761 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 762 mma_.init();
mjr 6:cc35eb643e8f 763
mjr 6:cc35eb643e8f 764 // set the initial integrated velocity reading to zero
mjr 6:cc35eb643e8f 765 vx_ = vy_ = 0;
mjr 3:3514575d4f86 766
mjr 6:cc35eb643e8f 767 // set up our accelerometer interrupt handling
mjr 6:cc35eb643e8f 768 intIn_.rise(this, &Accel::isr);
mjr 5:a70c0bce770d 769 mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2);
mjr 3:3514575d4f86 770
mjr 3:3514575d4f86 771 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 772 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 773
mjr 3:3514575d4f86 774 // start our timers
mjr 3:3514575d4f86 775 tGet_.start();
mjr 3:3514575d4f86 776 tInt_.start();
mjr 3:3514575d4f86 777 }
mjr 3:3514575d4f86 778
mjr 9:fd65b0a94720 779 void get(int &x, int &y)
mjr 3:3514575d4f86 780 {
mjr 3:3514575d4f86 781 // disable interrupts while manipulating the shared data
mjr 3:3514575d4f86 782 __disable_irq();
mjr 3:3514575d4f86 783
mjr 3:3514575d4f86 784 // read the shared data and store locally for calculations
mjr 6:cc35eb643e8f 785 float ax = ax_, ay = ay_;
mjr 6:cc35eb643e8f 786 float vx = vx_, vy = vy_;
mjr 5:a70c0bce770d 787
mjr 6:cc35eb643e8f 788 // reset the velocity sum for the next run
mjr 6:cc35eb643e8f 789 vx_ = vy_ = 0;
mjr 3:3514575d4f86 790
mjr 3:3514575d4f86 791 // get the time since the last get() sample
mjr 3:3514575d4f86 792 float dt = tGet_.read_us()/1.0e6;
mjr 3:3514575d4f86 793 tGet_.reset();
mjr 3:3514575d4f86 794
mjr 3:3514575d4f86 795 // done manipulating the shared data
mjr 3:3514575d4f86 796 __enable_irq();
mjr 3:3514575d4f86 797
mjr 6:cc35eb643e8f 798 // adjust the readings for the integration time
mjr 6:cc35eb643e8f 799 vx /= dt;
mjr 6:cc35eb643e8f 800 vy /= dt;
mjr 6:cc35eb643e8f 801
mjr 6:cc35eb643e8f 802 // add this sample to the current calibration interval's running total
mjr 6:cc35eb643e8f 803 AccHist *p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 804 p->addAvg(ax, ay);
mjr 6:cc35eb643e8f 805
mjr 5:a70c0bce770d 806 // check for auto-centering every so often
mjr 5:a70c0bce770d 807 if (tCenter_.read_ms() > 1000)
mjr 5:a70c0bce770d 808 {
mjr 5:a70c0bce770d 809 // add the latest raw sample to the history list
mjr 6:cc35eb643e8f 810 AccHist *prv = p;
mjr 5:a70c0bce770d 811 iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv;
mjr 6:cc35eb643e8f 812 p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 813 p->set(ax, ay, prv);
mjr 5:a70c0bce770d 814
mjr 5:a70c0bce770d 815 // if we have a full complement, check for stability
mjr 5:a70c0bce770d 816 if (nAccPrv_ >= maxAccPrv)
mjr 5:a70c0bce770d 817 {
mjr 5:a70c0bce770d 818 // check if we've been stable for all recent samples
mjr 6:cc35eb643e8f 819 static const float accTol = .01;
mjr 6:cc35eb643e8f 820 AccHist *p0 = accPrv_;
mjr 6:cc35eb643e8f 821 if (p0[0].d < accTol
mjr 6:cc35eb643e8f 822 && p0[1].d < accTol
mjr 6:cc35eb643e8f 823 && p0[2].d < accTol
mjr 6:cc35eb643e8f 824 && p0[3].d < accTol
mjr 6:cc35eb643e8f 825 && p0[4].d < accTol)
mjr 5:a70c0bce770d 826 {
mjr 6:cc35eb643e8f 827 // Figure the new calibration point as the average of
mjr 6:cc35eb643e8f 828 // the samples over the rest period
mjr 6:cc35eb643e8f 829 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0;
mjr 6:cc35eb643e8f 830 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0;
mjr 5:a70c0bce770d 831 }
mjr 5:a70c0bce770d 832 }
mjr 5:a70c0bce770d 833 else
mjr 5:a70c0bce770d 834 {
mjr 5:a70c0bce770d 835 // not enough samples yet; just up the count
mjr 5:a70c0bce770d 836 ++nAccPrv_;
mjr 5:a70c0bce770d 837 }
mjr 6:cc35eb643e8f 838
mjr 6:cc35eb643e8f 839 // clear the new item's running totals
mjr 6:cc35eb643e8f 840 p->clearAvg();
mjr 5:a70c0bce770d 841
mjr 5:a70c0bce770d 842 // reset the timer
mjr 5:a70c0bce770d 843 tCenter_.reset();
mjr 5:a70c0bce770d 844 }
mjr 5:a70c0bce770d 845
mjr 6:cc35eb643e8f 846 // report our integrated velocity reading in x,y
mjr 6:cc35eb643e8f 847 x = rawToReport(vx);
mjr 6:cc35eb643e8f 848 y = rawToReport(vy);
mjr 5:a70c0bce770d 849
mjr 6:cc35eb643e8f 850 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 851 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 852 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 853 #endif
mjr 3:3514575d4f86 854 }
mjr 3:3514575d4f86 855
mjr 3:3514575d4f86 856 private:
mjr 6:cc35eb643e8f 857 // adjust a raw acceleration figure to a usb report value
mjr 6:cc35eb643e8f 858 int rawToReport(float v)
mjr 5:a70c0bce770d 859 {
mjr 6:cc35eb643e8f 860 // scale to the joystick report range and round to integer
mjr 6:cc35eb643e8f 861 int i = int(round(v*JOYMAX));
mjr 5:a70c0bce770d 862
mjr 6:cc35eb643e8f 863 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 864 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 865 static const int filter[] = {
mjr 6:cc35eb643e8f 866 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 867 0,
mjr 6:cc35eb643e8f 868 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 869 };
mjr 6:cc35eb643e8f 870 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 871 }
mjr 5:a70c0bce770d 872
mjr 3:3514575d4f86 873 // interrupt handler
mjr 3:3514575d4f86 874 void isr()
mjr 3:3514575d4f86 875 {
mjr 3:3514575d4f86 876 // Read the axes. Note that we have to read all three axes
mjr 3:3514575d4f86 877 // (even though we only really use x and y) in order to clear
mjr 3:3514575d4f86 878 // the "data ready" status bit in the accelerometer. The
mjr 3:3514575d4f86 879 // interrupt only occurs when the "ready" bit transitions from
mjr 3:3514575d4f86 880 // off to on, so we have to make sure it's off.
mjr 5:a70c0bce770d 881 float x, y, z;
mjr 5:a70c0bce770d 882 mma_.getAccXYZ(x, y, z);
mjr 3:3514575d4f86 883
mjr 3:3514575d4f86 884 // calculate the time since the last interrupt
mjr 3:3514575d4f86 885 float dt = tInt_.read_us()/1.0e6;
mjr 3:3514575d4f86 886 tInt_.reset();
mjr 6:cc35eb643e8f 887
mjr 6:cc35eb643e8f 888 // integrate the time slice from the previous reading to this reading
mjr 6:cc35eb643e8f 889 vx_ += (x + ax_ - 2*cx_)*dt/2;
mjr 6:cc35eb643e8f 890 vy_ += (y + ay_ - 2*cy_)*dt/2;
mjr 3:3514575d4f86 891
mjr 6:cc35eb643e8f 892 // store the updates
mjr 6:cc35eb643e8f 893 ax_ = x;
mjr 6:cc35eb643e8f 894 ay_ = y;
mjr 6:cc35eb643e8f 895 az_ = z;
mjr 3:3514575d4f86 896 }
mjr 3:3514575d4f86 897
mjr 3:3514575d4f86 898 // underlying accelerometer object
mjr 3:3514575d4f86 899 MMA8451Q mma_;
mjr 3:3514575d4f86 900
mjr 5:a70c0bce770d 901 // last raw acceleration readings
mjr 6:cc35eb643e8f 902 float ax_, ay_, az_;
mjr 5:a70c0bce770d 903
mjr 6:cc35eb643e8f 904 // integrated velocity reading since last get()
mjr 6:cc35eb643e8f 905 float vx_, vy_;
mjr 6:cc35eb643e8f 906
mjr 3:3514575d4f86 907 // timer for measuring time between get() samples
mjr 3:3514575d4f86 908 Timer tGet_;
mjr 3:3514575d4f86 909
mjr 3:3514575d4f86 910 // timer for measuring time between interrupts
mjr 3:3514575d4f86 911 Timer tInt_;
mjr 5:a70c0bce770d 912
mjr 6:cc35eb643e8f 913 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 914 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 915 // at rest.
mjr 6:cc35eb643e8f 916 float cx_, cy_;
mjr 5:a70c0bce770d 917
mjr 5:a70c0bce770d 918 // timer for atuo-centering
mjr 5:a70c0bce770d 919 Timer tCenter_;
mjr 6:cc35eb643e8f 920
mjr 6:cc35eb643e8f 921 // Auto-centering history. This is a separate history list that
mjr 6:cc35eb643e8f 922 // records results spaced out sparesely over time, so that we can
mjr 6:cc35eb643e8f 923 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 924 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 925 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 926 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 927 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 928 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 929 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 930 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 931 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 932 // accelerometer measurement bias (e.g., from temperature changes).
mjr 5:a70c0bce770d 933 int iAccPrv_, nAccPrv_;
mjr 5:a70c0bce770d 934 static const int maxAccPrv = 5;
mjr 6:cc35eb643e8f 935 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 936
mjr 5:a70c0bce770d 937 // interurupt pin name
mjr 5:a70c0bce770d 938 PinName irqPin_;
mjr 5:a70c0bce770d 939
mjr 5:a70c0bce770d 940 // interrupt router
mjr 5:a70c0bce770d 941 InterruptIn intIn_;
mjr 3:3514575d4f86 942 };
mjr 3:3514575d4f86 943
mjr 5:a70c0bce770d 944
mjr 5:a70c0bce770d 945 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 946 //
mjr 14:df700b22ca08 947 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 948 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 949 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 950 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 951 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 952 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 953 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 954 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 955 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 956 //
mjr 14:df700b22ca08 957 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 958 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 959 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 960 //
mjr 5:a70c0bce770d 961 void clear_i2c()
mjr 5:a70c0bce770d 962 {
mjr 5:a70c0bce770d 963 // assume a general-purpose output pin to the I2C clock
mjr 5:a70c0bce770d 964 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 965 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 966
mjr 5:a70c0bce770d 967 // clock the SCL 9 times
mjr 5:a70c0bce770d 968 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 969 {
mjr 5:a70c0bce770d 970 scl = 1;
mjr 5:a70c0bce770d 971 wait_us(20);
mjr 5:a70c0bce770d 972 scl = 0;
mjr 5:a70c0bce770d 973 wait_us(20);
mjr 5:a70c0bce770d 974 }
mjr 5:a70c0bce770d 975 }
mjr 14:df700b22ca08 976
mjr 14:df700b22ca08 977 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 978 //
mjr 17:ab3cec0c8bf4 979 // Include the appropriate plunger sensor definition. This will define a
mjr 17:ab3cec0c8bf4 980 // class called PlungerSensor, with a standard interface that we use in
mjr 17:ab3cec0c8bf4 981 // the main loop below. This is *kind of* like a virtual class interface,
mjr 17:ab3cec0c8bf4 982 // but it actually defines the methods statically, which is a little more
mjr 17:ab3cec0c8bf4 983 // efficient at run-time. There's no need for a true virtual interface
mjr 17:ab3cec0c8bf4 984 // because we don't need to be able to change sensor types on the fly.
mjr 17:ab3cec0c8bf4 985 //
mjr 17:ab3cec0c8bf4 986
mjr 17:ab3cec0c8bf4 987 #ifdef ENABLE_CCD_SENSOR
mjr 17:ab3cec0c8bf4 988 #include "ccdSensor.h"
mjr 17:ab3cec0c8bf4 989 #elif ENABLE_POT_SENSOR
mjr 17:ab3cec0c8bf4 990 #include "potSensor.h"
mjr 17:ab3cec0c8bf4 991 #else
mjr 17:ab3cec0c8bf4 992 #include "nullSensor.h"
mjr 17:ab3cec0c8bf4 993 #endif
mjr 17:ab3cec0c8bf4 994
mjr 17:ab3cec0c8bf4 995
mjr 17:ab3cec0c8bf4 996 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 997 //
mjr 17:ab3cec0c8bf4 998 // Non-volatile memory (NVM)
mjr 17:ab3cec0c8bf4 999 //
mjr 17:ab3cec0c8bf4 1000
mjr 17:ab3cec0c8bf4 1001 // Structure defining our NVM storage layout. We store a small
mjr 17:ab3cec0c8bf4 1002 // amount of persistent data in flash memory to retain calibration
mjr 17:ab3cec0c8bf4 1003 // data when powered off.
mjr 17:ab3cec0c8bf4 1004 struct NVM
mjr 17:ab3cec0c8bf4 1005 {
mjr 17:ab3cec0c8bf4 1006 // checksum - we use this to determine if the flash record
mjr 17:ab3cec0c8bf4 1007 // has been properly initialized
mjr 17:ab3cec0c8bf4 1008 uint32_t checksum;
mjr 17:ab3cec0c8bf4 1009
mjr 17:ab3cec0c8bf4 1010 // signature value
mjr 17:ab3cec0c8bf4 1011 static const uint32_t SIGNATURE = 0x4D4A522A;
mjr 17:ab3cec0c8bf4 1012 static const uint16_t VERSION = 0x0003;
mjr 17:ab3cec0c8bf4 1013
mjr 17:ab3cec0c8bf4 1014 // Is the data structure valid? We test the signature and
mjr 17:ab3cec0c8bf4 1015 // checksum to determine if we've been properly stored.
mjr 17:ab3cec0c8bf4 1016 int valid() const
mjr 17:ab3cec0c8bf4 1017 {
mjr 17:ab3cec0c8bf4 1018 return (d.sig == SIGNATURE
mjr 17:ab3cec0c8bf4 1019 && d.vsn == VERSION
mjr 17:ab3cec0c8bf4 1020 && d.sz == sizeof(NVM)
mjr 17:ab3cec0c8bf4 1021 && checksum == CRC32(&d, sizeof(d)));
mjr 17:ab3cec0c8bf4 1022 }
mjr 17:ab3cec0c8bf4 1023
mjr 17:ab3cec0c8bf4 1024 // save to non-volatile memory
mjr 17:ab3cec0c8bf4 1025 void save(FreescaleIAP &iap, int addr)
mjr 17:ab3cec0c8bf4 1026 {
mjr 17:ab3cec0c8bf4 1027 // update the checksum and structure size
mjr 17:ab3cec0c8bf4 1028 checksum = CRC32(&d, sizeof(d));
mjr 17:ab3cec0c8bf4 1029 d.sz = sizeof(NVM);
mjr 17:ab3cec0c8bf4 1030
mjr 17:ab3cec0c8bf4 1031 // erase the sector
mjr 17:ab3cec0c8bf4 1032 iap.erase_sector(addr);
mjr 17:ab3cec0c8bf4 1033
mjr 17:ab3cec0c8bf4 1034 // save the data
mjr 17:ab3cec0c8bf4 1035 iap.program_flash(addr, this, sizeof(*this));
mjr 17:ab3cec0c8bf4 1036 }
mjr 17:ab3cec0c8bf4 1037
mjr 17:ab3cec0c8bf4 1038 // reset calibration data for calibration mode
mjr 17:ab3cec0c8bf4 1039 void resetPlunger()
mjr 17:ab3cec0c8bf4 1040 {
mjr 17:ab3cec0c8bf4 1041 // set extremes for the calibration data
mjr 17:ab3cec0c8bf4 1042 d.plungerMax = 0;
mjr 17:ab3cec0c8bf4 1043 d.plungerZero = npix;
mjr 17:ab3cec0c8bf4 1044 d.plungerMin = npix;
mjr 17:ab3cec0c8bf4 1045 }
mjr 17:ab3cec0c8bf4 1046
mjr 17:ab3cec0c8bf4 1047 // stored data (excluding the checksum)
mjr 17:ab3cec0c8bf4 1048 struct
mjr 17:ab3cec0c8bf4 1049 {
mjr 17:ab3cec0c8bf4 1050 // Signature, structure version, and structure size - further verification
mjr 17:ab3cec0c8bf4 1051 // that we have valid initialized data. The size is a simple proxy for a
mjr 17:ab3cec0c8bf4 1052 // structure version, as the most common type of change to the structure as
mjr 17:ab3cec0c8bf4 1053 // the software evolves will be the addition of new elements. We also
mjr 17:ab3cec0c8bf4 1054 // provide an explicit version number that we can update manually if we
mjr 17:ab3cec0c8bf4 1055 // make any changes that don't affect the structure size but would affect
mjr 17:ab3cec0c8bf4 1056 // compatibility with a saved record (e.g., swapping two existing elements).
mjr 17:ab3cec0c8bf4 1057 uint32_t sig;
mjr 17:ab3cec0c8bf4 1058 uint16_t vsn;
mjr 17:ab3cec0c8bf4 1059 int sz;
mjr 17:ab3cec0c8bf4 1060
mjr 17:ab3cec0c8bf4 1061 // has the plunger been manually calibrated?
mjr 17:ab3cec0c8bf4 1062 int plungerCal;
mjr 17:ab3cec0c8bf4 1063
mjr 17:ab3cec0c8bf4 1064 // Plunger calibration min, zero, and max. The zero point is the
mjr 17:ab3cec0c8bf4 1065 // rest position (aka park position), where it's in equilibrium between
mjr 17:ab3cec0c8bf4 1066 // the main spring and the barrel spring. It can travel a small distance
mjr 17:ab3cec0c8bf4 1067 // forward of the rest position, because the barrel spring can be
mjr 17:ab3cec0c8bf4 1068 // compressed by the user pushing on the plunger or by the momentum
mjr 17:ab3cec0c8bf4 1069 // of a release motion. The minimum is the maximum forward point where
mjr 17:ab3cec0c8bf4 1070 // the barrel spring can't be compressed any further.
mjr 17:ab3cec0c8bf4 1071 int plungerMin;
mjr 17:ab3cec0c8bf4 1072 int plungerZero;
mjr 17:ab3cec0c8bf4 1073 int plungerMax;
mjr 17:ab3cec0c8bf4 1074
mjr 17:ab3cec0c8bf4 1075 // is the plunger sensor enabled?
mjr 17:ab3cec0c8bf4 1076 int plungerEnabled;
mjr 17:ab3cec0c8bf4 1077
mjr 17:ab3cec0c8bf4 1078 // LedWiz unit number
mjr 17:ab3cec0c8bf4 1079 uint8_t ledWizUnitNo;
mjr 17:ab3cec0c8bf4 1080 } d;
mjr 17:ab3cec0c8bf4 1081 };
mjr 17:ab3cec0c8bf4 1082
mjr 17:ab3cec0c8bf4 1083
mjr 17:ab3cec0c8bf4 1084 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 1085 //
mjr 5:a70c0bce770d 1086 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 1087 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 1088 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 1089 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 1090 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 1091 // port outputs.
mjr 5:a70c0bce770d 1092 //
mjr 0:5acbbe3f4cf4 1093 int main(void)
mjr 0:5acbbe3f4cf4 1094 {
mjr 1:d913e0afb2ac 1095 // turn off our on-board indicator LED
mjr 4:02c7cd7b2183 1096 ledR = 1;
mjr 4:02c7cd7b2183 1097 ledG = 1;
mjr 4:02c7cd7b2183 1098 ledB = 1;
mjr 1:d913e0afb2ac 1099
mjr 6:cc35eb643e8f 1100 // initialize the LedWiz ports
mjr 6:cc35eb643e8f 1101 initLwOut();
mjr 6:cc35eb643e8f 1102
mjr 11:bd9da7088e6e 1103 // initialize the button input ports
mjr 11:bd9da7088e6e 1104 initButtons();
mjr 11:bd9da7088e6e 1105
mjr 6:cc35eb643e8f 1106 // we don't need a reset yet
mjr 6:cc35eb643e8f 1107 bool needReset = false;
mjr 6:cc35eb643e8f 1108
mjr 5:a70c0bce770d 1109 // clear the I2C bus for the accelerometer
mjr 5:a70c0bce770d 1110 clear_i2c();
mjr 5:a70c0bce770d 1111
mjr 2:c174f9ee414a 1112 // set up a flash memory controller
mjr 2:c174f9ee414a 1113 FreescaleIAP iap;
mjr 2:c174f9ee414a 1114
mjr 2:c174f9ee414a 1115 // use the last sector of flash for our non-volatile memory structure
mjr 2:c174f9ee414a 1116 int flash_addr = (iap.flash_size() - SECTOR_SIZE);
mjr 2:c174f9ee414a 1117 NVM *flash = (NVM *)flash_addr;
mjr 2:c174f9ee414a 1118 NVM cfg;
mjr 2:c174f9ee414a 1119
mjr 2:c174f9ee414a 1120 // check for valid flash
mjr 6:cc35eb643e8f 1121 bool flash_valid = flash->valid();
mjr 2:c174f9ee414a 1122
mjr 2:c174f9ee414a 1123 // if the flash is valid, load it; otherwise initialize to defaults
mjr 2:c174f9ee414a 1124 if (flash_valid) {
mjr 2:c174f9ee414a 1125 memcpy(&cfg, flash, sizeof(cfg));
mjr 6:cc35eb643e8f 1126 printf("Flash restored: plunger cal=%d, min=%d, zero=%d, max=%d\r\n",
mjr 6:cc35eb643e8f 1127 cfg.d.plungerCal, cfg.d.plungerMin, cfg.d.plungerZero, cfg.d.plungerMax);
mjr 2:c174f9ee414a 1128 }
mjr 2:c174f9ee414a 1129 else {
mjr 2:c174f9ee414a 1130 printf("Factory reset\r\n");
mjr 2:c174f9ee414a 1131 cfg.d.sig = cfg.SIGNATURE;
mjr 2:c174f9ee414a 1132 cfg.d.vsn = cfg.VERSION;
mjr 6:cc35eb643e8f 1133 cfg.d.plungerCal = 0;
mjr 17:ab3cec0c8bf4 1134 cfg.d.plungerMin = 0; // assume we can go all the way forward...
mjr 17:ab3cec0c8bf4 1135 cfg.d.plungerMax = npix; // ...and all the way back
mjr 17:ab3cec0c8bf4 1136 cfg.d.plungerZero = npix/6; // the rest position is usually around 1/2" back
mjr 6:cc35eb643e8f 1137 cfg.d.ledWizUnitNo = DEFAULT_LEDWIZ_UNIT_NUMBER;
mjr 17:ab3cec0c8bf4 1138 cfg.d.plungerEnabled = true;
mjr 2:c174f9ee414a 1139 }
mjr 1:d913e0afb2ac 1140
mjr 6:cc35eb643e8f 1141 // Create the joystick USB client. Note that we use the LedWiz unit
mjr 6:cc35eb643e8f 1142 // number from the saved configuration.
mjr 6:cc35eb643e8f 1143 MyUSBJoystick js(
mjr 6:cc35eb643e8f 1144 USB_VENDOR_ID,
mjr 6:cc35eb643e8f 1145 USB_PRODUCT_ID | cfg.d.ledWizUnitNo,
mjr 6:cc35eb643e8f 1146 USB_VERSION_NO);
mjr 17:ab3cec0c8bf4 1147
mjr 17:ab3cec0c8bf4 1148 // last report timer - we use this to throttle reports, since VP
mjr 17:ab3cec0c8bf4 1149 // doesn't want to hear from us more than about every 10ms
mjr 17:ab3cec0c8bf4 1150 Timer reportTimer;
mjr 17:ab3cec0c8bf4 1151 reportTimer.start();
mjr 17:ab3cec0c8bf4 1152
mjr 17:ab3cec0c8bf4 1153 // initialize the calibration buttons, if present
mjr 17:ab3cec0c8bf4 1154 DigitalIn *calBtn = (CAL_BUTTON_PIN == NC ? 0 : new DigitalIn(CAL_BUTTON_PIN));
mjr 17:ab3cec0c8bf4 1155 DigitalOut *calBtnLed = (CAL_BUTTON_LED == NC ? 0 : new DigitalOut(CAL_BUTTON_LED));
mjr 6:cc35eb643e8f 1156
mjr 1:d913e0afb2ac 1157 // plunger calibration button debounce timer
mjr 1:d913e0afb2ac 1158 Timer calBtnTimer;
mjr 1:d913e0afb2ac 1159 calBtnTimer.start();
mjr 1:d913e0afb2ac 1160 int calBtnLit = false;
mjr 1:d913e0afb2ac 1161
mjr 1:d913e0afb2ac 1162 // Calibration button state:
mjr 1:d913e0afb2ac 1163 // 0 = not pushed
mjr 1:d913e0afb2ac 1164 // 1 = pushed, not yet debounced
mjr 1:d913e0afb2ac 1165 // 2 = pushed, debounced, waiting for hold time
mjr 1:d913e0afb2ac 1166 // 3 = pushed, hold time completed - in calibration mode
mjr 1:d913e0afb2ac 1167 int calBtnState = 0;
mjr 1:d913e0afb2ac 1168
mjr 1:d913e0afb2ac 1169 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 1170 Timer hbTimer;
mjr 1:d913e0afb2ac 1171 hbTimer.start();
mjr 1:d913e0afb2ac 1172 int hb = 0;
mjr 5:a70c0bce770d 1173 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 1174
mjr 1:d913e0afb2ac 1175 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 1176 Timer acTimer;
mjr 1:d913e0afb2ac 1177 acTimer.start();
mjr 1:d913e0afb2ac 1178
mjr 0:5acbbe3f4cf4 1179 // create the accelerometer object
mjr 5:a70c0bce770d 1180 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS, MMA8451_INT_PIN);
mjr 0:5acbbe3f4cf4 1181
mjr 17:ab3cec0c8bf4 1182 // last accelerometer report, in joystick units (we report the nudge
mjr 17:ab3cec0c8bf4 1183 // acceleration via the joystick x & y axes, per the VP convention)
mjr 17:ab3cec0c8bf4 1184 int x = 0, y = 0;
mjr 17:ab3cec0c8bf4 1185
mjr 17:ab3cec0c8bf4 1186 // create our plunger sensor object
mjr 17:ab3cec0c8bf4 1187 PlungerSensor plungerSensor;
mjr 17:ab3cec0c8bf4 1188
mjr 17:ab3cec0c8bf4 1189 // last plunger report position, in 'npix' normalized pixel units
mjr 17:ab3cec0c8bf4 1190 int pos = 0;
mjr 17:ab3cec0c8bf4 1191
mjr 17:ab3cec0c8bf4 1192 // last plunger report, in joystick units (we report the plunger as the
mjr 17:ab3cec0c8bf4 1193 // "z" axis of the joystick, per the VP convention)
mjr 17:ab3cec0c8bf4 1194 int z = 0;
mjr 17:ab3cec0c8bf4 1195
mjr 17:ab3cec0c8bf4 1196 // most recent prior plunger readings, for tracking release events(z0 is
mjr 17:ab3cec0c8bf4 1197 // reading just before the last one we reported, z1 is the one before that,
mjr 17:ab3cec0c8bf4 1198 // z2 the next before that)
mjr 17:ab3cec0c8bf4 1199 int z0 = 0, z1 = 0, z2 = 0;
mjr 17:ab3cec0c8bf4 1200
mjr 17:ab3cec0c8bf4 1201 // Simulated "bounce" position when firing. We model the bounce off of
mjr 17:ab3cec0c8bf4 1202 // the barrel spring when the plunger is released as proportional to the
mjr 17:ab3cec0c8bf4 1203 // distance it was retracted just before being released.
mjr 17:ab3cec0c8bf4 1204 int zBounce = 0;
mjr 2:c174f9ee414a 1205
mjr 17:ab3cec0c8bf4 1206 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 17:ab3cec0c8bf4 1207 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 17:ab3cec0c8bf4 1208 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 17:ab3cec0c8bf4 1209 // back and releases the plunger, or simply pushes on the plunger from
mjr 17:ab3cec0c8bf4 1210 // the rest position. This allows the plunger to be used in lieu of a
mjr 17:ab3cec0c8bf4 1211 // physical Launch Ball button for tables that don't have plungers.
mjr 17:ab3cec0c8bf4 1212 //
mjr 17:ab3cec0c8bf4 1213 // States:
mjr 17:ab3cec0c8bf4 1214 // 0 = default
mjr 17:ab3cec0c8bf4 1215 // 1 = cocked (plunger has been pulled back about 1" from state 0)
mjr 17:ab3cec0c8bf4 1216 // 2 = uncocked (plunger is pulled back less than 1" from state 1)
mjr 17:ab3cec0c8bf4 1217 // 3 = launching (plunger has been released from state 1 or 2, or
mjr 17:ab3cec0c8bf4 1218 // pushed forward about 1/4" from state 0)
mjr 17:ab3cec0c8bf4 1219 // 4 = launching, plunger is no longer pushed forward
mjr 17:ab3cec0c8bf4 1220 int lbState = 0;
mjr 6:cc35eb643e8f 1221
mjr 17:ab3cec0c8bf4 1222 // Time since last lbState transition. Some of the states are time-
mjr 17:ab3cec0c8bf4 1223 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 17:ab3cec0c8bf4 1224 // we remain in this state for more than a few milliseconds, since
mjr 17:ab3cec0c8bf4 1225 // it indicates that the plunger is being slowly returned to rest
mjr 17:ab3cec0c8bf4 1226 // rather than released. In the "launching" state, we need to release
mjr 17:ab3cec0c8bf4 1227 // the Launch Ball button after a moment, and we need to wait for
mjr 17:ab3cec0c8bf4 1228 // the plunger to come to rest before returning to state 0.
mjr 17:ab3cec0c8bf4 1229 Timer lbTimer;
mjr 17:ab3cec0c8bf4 1230 lbTimer.start();
mjr 17:ab3cec0c8bf4 1231
mjr 18:5e890ebd0023 1232 // Launch Ball simulated push timer. We start this when we simulate
mjr 18:5e890ebd0023 1233 // the button push, and turn off the simulated button when enough time
mjr 18:5e890ebd0023 1234 // has elapsed.
mjr 18:5e890ebd0023 1235 Timer lbBtnTimer;
mjr 18:5e890ebd0023 1236
mjr 17:ab3cec0c8bf4 1237 // Simulated button states. This is a vector of button states
mjr 17:ab3cec0c8bf4 1238 // for the simulated buttons. We combine this with the physical
mjr 17:ab3cec0c8bf4 1239 // button states on each USB joystick report, so we will report
mjr 17:ab3cec0c8bf4 1240 // a button as pressed if either the physical button is being pressed
mjr 17:ab3cec0c8bf4 1241 // or we're simulating a press on the button. This is used for the
mjr 17:ab3cec0c8bf4 1242 // simulated Launch Ball button.
mjr 17:ab3cec0c8bf4 1243 uint32_t simButtons = 0;
mjr 6:cc35eb643e8f 1244
mjr 6:cc35eb643e8f 1245 // Firing in progress: we set this when we detect the start of rapid
mjr 6:cc35eb643e8f 1246 // plunger movement from a retracted position towards the rest position.
mjr 17:ab3cec0c8bf4 1247 //
mjr 17:ab3cec0c8bf4 1248 // When we detect a firing event, we send VP a series of synthetic
mjr 17:ab3cec0c8bf4 1249 // reports simulating the idealized plunger motion. The actual physical
mjr 17:ab3cec0c8bf4 1250 // motion is much too fast to report to VP; in the time between two USB
mjr 17:ab3cec0c8bf4 1251 // reports, the plunger can shoot all the way forward, rebound off of
mjr 17:ab3cec0c8bf4 1252 // the barrel spring, bounce back part way, and bounce forward again,
mjr 17:ab3cec0c8bf4 1253 // or even do all of this more than once. This means that sampling the
mjr 17:ab3cec0c8bf4 1254 // physical motion at the USB report rate would create a misleading
mjr 17:ab3cec0c8bf4 1255 // picture of the plunger motion, since our samples would catch the
mjr 17:ab3cec0c8bf4 1256 // plunger at random points in this oscillating motion. From the
mjr 17:ab3cec0c8bf4 1257 // user's perspective, the physical action that occurred is simply that
mjr 17:ab3cec0c8bf4 1258 // the plunger was released from a particular distance, so it's this
mjr 17:ab3cec0c8bf4 1259 // high-level event that we want to convey to VP. To do this, we
mjr 17:ab3cec0c8bf4 1260 // synthesize a series of reports to convey an idealized version of
mjr 17:ab3cec0c8bf4 1261 // the release motion that's perfectly synchronized to the VP reports.
mjr 17:ab3cec0c8bf4 1262 // Essentially we pretend that our USB position samples are exactly
mjr 17:ab3cec0c8bf4 1263 // aligned in time with (1) the point of retraction just before the
mjr 17:ab3cec0c8bf4 1264 // user released the plunger, (2) the point of maximum forward motion
mjr 17:ab3cec0c8bf4 1265 // just after the user released the plunger (the point of maximum
mjr 17:ab3cec0c8bf4 1266 // compression as the plunger bounces off of the barrel spring), and
mjr 17:ab3cec0c8bf4 1267 // (3) the plunger coming to rest at the park position. This series
mjr 17:ab3cec0c8bf4 1268 // of reports is synthetic in the sense that it's not what we actually
mjr 17:ab3cec0c8bf4 1269 // see on the CCD at the times of these reports - the true plunger
mjr 17:ab3cec0c8bf4 1270 // position is oscillating at high speed during this period. But at
mjr 17:ab3cec0c8bf4 1271 // the same time it conveys a more faithful picture of the true physical
mjr 17:ab3cec0c8bf4 1272 // motion to VP, and allows VP to reproduce the true physical motion
mjr 17:ab3cec0c8bf4 1273 // more faithfully in its simulation model, by correcting for the
mjr 17:ab3cec0c8bf4 1274 // relatively low sampling rate in the communication path between the
mjr 17:ab3cec0c8bf4 1275 // real plunger and VP's model plunger.
mjr 17:ab3cec0c8bf4 1276 //
mjr 17:ab3cec0c8bf4 1277 // If 'firing' is non-zero, it's the index of our current report in
mjr 17:ab3cec0c8bf4 1278 // the synthetic firing report series.
mjr 9:fd65b0a94720 1279 int firing = 0;
mjr 2:c174f9ee414a 1280
mjr 2:c174f9ee414a 1281 // start the first CCD integration cycle
mjr 17:ab3cec0c8bf4 1282 plungerSensor.init();
mjr 9:fd65b0a94720 1283
mjr 9:fd65b0a94720 1284 // Device status. We report this on each update so that the host config
mjr 9:fd65b0a94720 1285 // tool can detect our current settings. This is a bit mask consisting
mjr 9:fd65b0a94720 1286 // of these bits:
mjr 9:fd65b0a94720 1287 // 0x01 -> plunger sensor enabled
mjr 17:ab3cec0c8bf4 1288 uint16_t statusFlags = (cfg.d.plungerEnabled ? 0x01 : 0x00);
mjr 10:976666ffa4ef 1289
mjr 10:976666ffa4ef 1290 // flag: send a pixel dump after the next read
mjr 10:976666ffa4ef 1291 bool reportPix = false;
mjr 1:d913e0afb2ac 1292
mjr 1:d913e0afb2ac 1293 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 1294 // host requests
mjr 0:5acbbe3f4cf4 1295 for (;;)
mjr 0:5acbbe3f4cf4 1296 {
mjr 18:5e890ebd0023 1297 // Look for an incoming report. Process a few input reports in
mjr 18:5e890ebd0023 1298 // a row, but stop after a few so that a barrage of inputs won't
mjr 18:5e890ebd0023 1299 // starve our output event processing.
mjr 0:5acbbe3f4cf4 1300 HID_REPORT report;
mjr 18:5e890ebd0023 1301 for (int rr = 0 ; rr < 4 && js.readNB(&report) ; ++rr)
mjr 0:5acbbe3f4cf4 1302 {
mjr 6:cc35eb643e8f 1303 // all Led-Wiz reports are 8 bytes exactly
mjr 6:cc35eb643e8f 1304 if (report.length == 8)
mjr 1:d913e0afb2ac 1305 {
mjr 6:cc35eb643e8f 1306 uint8_t *data = report.data;
mjr 6:cc35eb643e8f 1307 if (data[0] == 64)
mjr 0:5acbbe3f4cf4 1308 {
mjr 6:cc35eb643e8f 1309 // LWZ-SBA - first four bytes are bit-packed on/off flags
mjr 6:cc35eb643e8f 1310 // for the outputs; 5th byte is the pulse speed (0-7)
mjr 6:cc35eb643e8f 1311 //printf("LWZ-SBA %02x %02x %02x %02x ; %02x\r\n",
mjr 6:cc35eb643e8f 1312 // data[1], data[2], data[3], data[4], data[5]);
mjr 0:5acbbe3f4cf4 1313
mjr 6:cc35eb643e8f 1314 // update all on/off states
mjr 6:cc35eb643e8f 1315 for (int i = 0, bit = 1, ri = 1 ; i < 32 ; ++i, bit <<= 1)
mjr 6:cc35eb643e8f 1316 {
mjr 6:cc35eb643e8f 1317 if (bit == 0x100) {
mjr 6:cc35eb643e8f 1318 bit = 1;
mjr 6:cc35eb643e8f 1319 ++ri;
mjr 6:cc35eb643e8f 1320 }
mjr 6:cc35eb643e8f 1321 wizOn[i] = ((data[ri] & bit) != 0);
mjr 6:cc35eb643e8f 1322 }
mjr 6:cc35eb643e8f 1323
mjr 6:cc35eb643e8f 1324 // update the physical outputs
mjr 1:d913e0afb2ac 1325 updateWizOuts();
mjr 6:cc35eb643e8f 1326
mjr 6:cc35eb643e8f 1327 // reset the PBA counter
mjr 6:cc35eb643e8f 1328 pbaIdx = 0;
mjr 6:cc35eb643e8f 1329 }
mjr 6:cc35eb643e8f 1330 else if (data[0] == 65)
mjr 6:cc35eb643e8f 1331 {
mjr 6:cc35eb643e8f 1332 // Private control message. This isn't an LedWiz message - it's
mjr 6:cc35eb643e8f 1333 // an extension for this device. 65 is an invalid PBA setting,
mjr 6:cc35eb643e8f 1334 // and isn't used for any other LedWiz message, so we appropriate
mjr 6:cc35eb643e8f 1335 // it for our own private use. The first byte specifies the
mjr 6:cc35eb643e8f 1336 // message type.
mjr 6:cc35eb643e8f 1337 if (data[1] == 1)
mjr 6:cc35eb643e8f 1338 {
mjr 9:fd65b0a94720 1339 // 1 = Set Configuration:
mjr 6:cc35eb643e8f 1340 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 6:cc35eb643e8f 1341 // data[3] = feature enable bit mask:
mjr 6:cc35eb643e8f 1342 // 0x01 = enable CCD
mjr 6:cc35eb643e8f 1343
mjr 6:cc35eb643e8f 1344 // we'll need a reset if the LedWiz unit number is changing
mjr 6:cc35eb643e8f 1345 uint8_t newUnitNo = data[2] & 0x0f;
mjr 6:cc35eb643e8f 1346 needReset |= (newUnitNo != cfg.d.ledWizUnitNo);
mjr 6:cc35eb643e8f 1347
mjr 6:cc35eb643e8f 1348 // set the configuration parameters from the message
mjr 6:cc35eb643e8f 1349 cfg.d.ledWizUnitNo = newUnitNo;
mjr 17:ab3cec0c8bf4 1350 cfg.d.plungerEnabled = data[3] & 0x01;
mjr 6:cc35eb643e8f 1351
mjr 9:fd65b0a94720 1352 // update the status flags
mjr 9:fd65b0a94720 1353 statusFlags = (statusFlags & ~0x01) | (data[3] & 0x01);
mjr 9:fd65b0a94720 1354
mjr 9:fd65b0a94720 1355 // if the ccd is no longer enabled, use 0 for z reports
mjr 17:ab3cec0c8bf4 1356 if (!cfg.d.plungerEnabled)
mjr 9:fd65b0a94720 1357 z = 0;
mjr 9:fd65b0a94720 1358
mjr 6:cc35eb643e8f 1359 // save the configuration
mjr 6:cc35eb643e8f 1360 cfg.save(iap, flash_addr);
mjr 6:cc35eb643e8f 1361 }
mjr 9:fd65b0a94720 1362 else if (data[1] == 2)
mjr 9:fd65b0a94720 1363 {
mjr 9:fd65b0a94720 1364 // 2 = Calibrate plunger
mjr 9:fd65b0a94720 1365 // (No parameters)
mjr 9:fd65b0a94720 1366
mjr 9:fd65b0a94720 1367 // enter calibration mode
mjr 9:fd65b0a94720 1368 calBtnState = 3;
mjr 9:fd65b0a94720 1369 calBtnTimer.reset();
mjr 9:fd65b0a94720 1370 cfg.resetPlunger();
mjr 9:fd65b0a94720 1371 }
mjr 10:976666ffa4ef 1372 else if (data[1] == 3)
mjr 10:976666ffa4ef 1373 {
mjr 10:976666ffa4ef 1374 // 3 = pixel dump
mjr 10:976666ffa4ef 1375 // (No parameters)
mjr 10:976666ffa4ef 1376 reportPix = true;
mjr 10:976666ffa4ef 1377
mjr 10:976666ffa4ef 1378 // show purple until we finish sending the report
mjr 10:976666ffa4ef 1379 ledR = 0;
mjr 10:976666ffa4ef 1380 ledB = 0;
mjr 10:976666ffa4ef 1381 ledG = 1;
mjr 10:976666ffa4ef 1382 }
mjr 6:cc35eb643e8f 1383 }
mjr 6:cc35eb643e8f 1384 else
mjr 6:cc35eb643e8f 1385 {
mjr 6:cc35eb643e8f 1386 // LWZ-PBA - full state dump; each byte is one output
mjr 6:cc35eb643e8f 1387 // in the current bank. pbaIdx keeps track of the bank;
mjr 6:cc35eb643e8f 1388 // this is incremented implicitly by each PBA message.
mjr 6:cc35eb643e8f 1389 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 6:cc35eb643e8f 1390 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 6:cc35eb643e8f 1391
mjr 6:cc35eb643e8f 1392 // update all output profile settings
mjr 6:cc35eb643e8f 1393 for (int i = 0 ; i < 8 ; ++i)
mjr 6:cc35eb643e8f 1394 wizVal[pbaIdx + i] = data[i];
mjr 6:cc35eb643e8f 1395
mjr 6:cc35eb643e8f 1396 // update the physical LED state if this is the last bank
mjr 6:cc35eb643e8f 1397 if (pbaIdx == 24)
mjr 13:72dda449c3c0 1398 {
mjr 6:cc35eb643e8f 1399 updateWizOuts();
mjr 13:72dda449c3c0 1400 pbaIdx = 0;
mjr 13:72dda449c3c0 1401 }
mjr 13:72dda449c3c0 1402 else
mjr 13:72dda449c3c0 1403 pbaIdx += 8;
mjr 6:cc35eb643e8f 1404 }
mjr 0:5acbbe3f4cf4 1405 }
mjr 0:5acbbe3f4cf4 1406 }
mjr 1:d913e0afb2ac 1407
mjr 1:d913e0afb2ac 1408 // check for plunger calibration
mjr 17:ab3cec0c8bf4 1409 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 1410 {
mjr 1:d913e0afb2ac 1411 // check the state
mjr 1:d913e0afb2ac 1412 switch (calBtnState)
mjr 0:5acbbe3f4cf4 1413 {
mjr 1:d913e0afb2ac 1414 case 0:
mjr 1:d913e0afb2ac 1415 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 1416 calBtnTimer.reset();
mjr 1:d913e0afb2ac 1417 calBtnState = 1;
mjr 1:d913e0afb2ac 1418 break;
mjr 1:d913e0afb2ac 1419
mjr 1:d913e0afb2ac 1420 case 1:
mjr 1:d913e0afb2ac 1421 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 1422 // passed, start the hold period
mjr 9:fd65b0a94720 1423 if (calBtnTimer.read_ms() > 50)
mjr 1:d913e0afb2ac 1424 calBtnState = 2;
mjr 1:d913e0afb2ac 1425 break;
mjr 1:d913e0afb2ac 1426
mjr 1:d913e0afb2ac 1427 case 2:
mjr 1:d913e0afb2ac 1428 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 1429 // for the entire hold period, move to calibration mode
mjr 9:fd65b0a94720 1430 if (calBtnTimer.read_ms() > 2050)
mjr 1:d913e0afb2ac 1431 {
mjr 1:d913e0afb2ac 1432 // enter calibration mode
mjr 1:d913e0afb2ac 1433 calBtnState = 3;
mjr 9:fd65b0a94720 1434 calBtnTimer.reset();
mjr 9:fd65b0a94720 1435 cfg.resetPlunger();
mjr 1:d913e0afb2ac 1436 }
mjr 1:d913e0afb2ac 1437 break;
mjr 2:c174f9ee414a 1438
mjr 2:c174f9ee414a 1439 case 3:
mjr 9:fd65b0a94720 1440 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 1441 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 1442 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 1443 break;
mjr 0:5acbbe3f4cf4 1444 }
mjr 0:5acbbe3f4cf4 1445 }
mjr 1:d913e0afb2ac 1446 else
mjr 1:d913e0afb2ac 1447 {
mjr 2:c174f9ee414a 1448 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 1449 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 1450 // and save the results to flash.
mjr 2:c174f9ee414a 1451 //
mjr 2:c174f9ee414a 1452 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 1453 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 1454 // mode, it simply cancels the attempt.
mjr 9:fd65b0a94720 1455 if (calBtnState == 3 && calBtnTimer.read_ms() > 15000)
mjr 2:c174f9ee414a 1456 {
mjr 2:c174f9ee414a 1457 // exit calibration mode
mjr 1:d913e0afb2ac 1458 calBtnState = 0;
mjr 2:c174f9ee414a 1459
mjr 6:cc35eb643e8f 1460 // save the updated configuration
mjr 6:cc35eb643e8f 1461 cfg.d.plungerCal = 1;
mjr 6:cc35eb643e8f 1462 cfg.save(iap, flash_addr);
mjr 2:c174f9ee414a 1463
mjr 2:c174f9ee414a 1464 // the flash state is now valid
mjr 2:c174f9ee414a 1465 flash_valid = true;
mjr 2:c174f9ee414a 1466 }
mjr 2:c174f9ee414a 1467 else if (calBtnState != 3)
mjr 2:c174f9ee414a 1468 {
mjr 2:c174f9ee414a 1469 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 1470 calBtnState = 0;
mjr 2:c174f9ee414a 1471 }
mjr 1:d913e0afb2ac 1472 }
mjr 1:d913e0afb2ac 1473
mjr 1:d913e0afb2ac 1474 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 1475 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 1476 switch (calBtnState)
mjr 0:5acbbe3f4cf4 1477 {
mjr 1:d913e0afb2ac 1478 case 2:
mjr 1:d913e0afb2ac 1479 // in the hold period - flash the light
mjr 9:fd65b0a94720 1480 newCalBtnLit = ((calBtnTimer.read_ms()/250) & 1);
mjr 1:d913e0afb2ac 1481 break;
mjr 1:d913e0afb2ac 1482
mjr 1:d913e0afb2ac 1483 case 3:
mjr 1:d913e0afb2ac 1484 // calibration mode - show steady on
mjr 1:d913e0afb2ac 1485 newCalBtnLit = true;
mjr 1:d913e0afb2ac 1486 break;
mjr 1:d913e0afb2ac 1487
mjr 1:d913e0afb2ac 1488 default:
mjr 1:d913e0afb2ac 1489 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 1490 newCalBtnLit = false;
mjr 1:d913e0afb2ac 1491 break;
mjr 1:d913e0afb2ac 1492 }
mjr 3:3514575d4f86 1493
mjr 3:3514575d4f86 1494 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 1495 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 1496 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 1497 {
mjr 1:d913e0afb2ac 1498 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 1499 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 1500 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 1501 calBtnLed->write(1);
mjr 4:02c7cd7b2183 1502 ledR = 1;
mjr 4:02c7cd7b2183 1503 ledG = 1;
mjr 9:fd65b0a94720 1504 ledB = 0;
mjr 2:c174f9ee414a 1505 }
mjr 2:c174f9ee414a 1506 else {
mjr 17:ab3cec0c8bf4 1507 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 1508 calBtnLed->write(0);
mjr 4:02c7cd7b2183 1509 ledR = 1;
mjr 4:02c7cd7b2183 1510 ledG = 1;
mjr 9:fd65b0a94720 1511 ledB = 1;
mjr 2:c174f9ee414a 1512 }
mjr 1:d913e0afb2ac 1513 }
mjr 1:d913e0afb2ac 1514
mjr 17:ab3cec0c8bf4 1515 // If the plunger is enabled, and we're not already in a firing event,
mjr 17:ab3cec0c8bf4 1516 // and the last plunger reading had the plunger pulled back at least
mjr 17:ab3cec0c8bf4 1517 // a bit, watch for plunger release events until it's time for our next
mjr 17:ab3cec0c8bf4 1518 // USB report.
mjr 17:ab3cec0c8bf4 1519 if (!firing && cfg.d.plungerEnabled && z >= JOYMAX/6)
mjr 17:ab3cec0c8bf4 1520 {
mjr 17:ab3cec0c8bf4 1521 // monitor the plunger until it's time for our next report
mjr 17:ab3cec0c8bf4 1522 while (reportTimer.read_ms() < 15)
mjr 17:ab3cec0c8bf4 1523 {
mjr 17:ab3cec0c8bf4 1524 // do a fast low-res scan; if it's at or past the zero point,
mjr 17:ab3cec0c8bf4 1525 // start a firing event
mjr 17:ab3cec0c8bf4 1526 if (plungerSensor.lowResScan() <= cfg.d.plungerZero)
mjr 17:ab3cec0c8bf4 1527 firing = 1;
mjr 17:ab3cec0c8bf4 1528 }
mjr 17:ab3cec0c8bf4 1529 }
mjr 17:ab3cec0c8bf4 1530
mjr 6:cc35eb643e8f 1531 // read the plunger sensor, if it's enabled
mjr 17:ab3cec0c8bf4 1532 if (cfg.d.plungerEnabled)
mjr 6:cc35eb643e8f 1533 {
mjr 6:cc35eb643e8f 1534 // start with the previous reading, in case we don't have a
mjr 6:cc35eb643e8f 1535 // clear result on this frame
mjr 6:cc35eb643e8f 1536 int znew = z;
mjr 17:ab3cec0c8bf4 1537 if (plungerSensor.highResScan(pos))
mjr 6:cc35eb643e8f 1538 {
mjr 17:ab3cec0c8bf4 1539 // We got a new reading. If we're in calibration mode, use it
mjr 17:ab3cec0c8bf4 1540 // to figure the new calibration, otherwise adjust the new reading
mjr 17:ab3cec0c8bf4 1541 // for the established calibration.
mjr 17:ab3cec0c8bf4 1542 if (calBtnState == 3)
mjr 6:cc35eb643e8f 1543 {
mjr 17:ab3cec0c8bf4 1544 // Calibration mode. If this reading is outside of the current
mjr 17:ab3cec0c8bf4 1545 // calibration bounds, expand the bounds.
mjr 17:ab3cec0c8bf4 1546 if (pos < cfg.d.plungerMin)
mjr 17:ab3cec0c8bf4 1547 cfg.d.plungerMin = pos;
mjr 17:ab3cec0c8bf4 1548 if (pos < cfg.d.plungerZero)
mjr 17:ab3cec0c8bf4 1549 cfg.d.plungerZero = pos;
mjr 17:ab3cec0c8bf4 1550 if (pos > cfg.d.plungerMax)
mjr 17:ab3cec0c8bf4 1551 cfg.d.plungerMax = pos;
mjr 6:cc35eb643e8f 1552
mjr 17:ab3cec0c8bf4 1553 // normalize to the full physical range while calibrating
mjr 17:ab3cec0c8bf4 1554 znew = int(round(float(pos)/npix * JOYMAX));
mjr 17:ab3cec0c8bf4 1555 }
mjr 17:ab3cec0c8bf4 1556 else
mjr 17:ab3cec0c8bf4 1557 {
mjr 17:ab3cec0c8bf4 1558 // Not in calibration mode, so normalize the new reading to the
mjr 17:ab3cec0c8bf4 1559 // established calibration range.
mjr 17:ab3cec0c8bf4 1560 //
mjr 17:ab3cec0c8bf4 1561 // Note that negative values are allowed. Zero represents the
mjr 17:ab3cec0c8bf4 1562 // "park" position, where the plunger sits when at rest. A mechanical
mjr 17:ab3cec0c8bf4 1563 // plunger has a smmall amount of travel in the "push" direction,
mjr 17:ab3cec0c8bf4 1564 // since the barrel spring can be compressed slightly. Negative
mjr 17:ab3cec0c8bf4 1565 // values represent travel in the push direction.
mjr 17:ab3cec0c8bf4 1566 if (pos > cfg.d.plungerMax)
mjr 17:ab3cec0c8bf4 1567 pos = cfg.d.plungerMax;
mjr 17:ab3cec0c8bf4 1568 znew = int(round(float(pos - cfg.d.plungerZero)
mjr 17:ab3cec0c8bf4 1569 / (cfg.d.plungerMax - cfg.d.plungerZero + 1) * JOYMAX));
mjr 6:cc35eb643e8f 1570 }
mjr 6:cc35eb643e8f 1571 }
mjr 7:100a25f8bf56 1572
mjr 17:ab3cec0c8bf4 1573 // If we're not already in a firing event, check to see if the
mjr 17:ab3cec0c8bf4 1574 // new position is forward of the last report. If it is, a firing
mjr 17:ab3cec0c8bf4 1575 // event might have started during the high-res scan. This might
mjr 17:ab3cec0c8bf4 1576 // seem unlikely given that the scan only takes about 5ms, but that
mjr 17:ab3cec0c8bf4 1577 // 5ms represents about 25-30% of our total time between reports,
mjr 17:ab3cec0c8bf4 1578 // there's about a 1 in 4 chance that a release starts during a
mjr 17:ab3cec0c8bf4 1579 // scan.
mjr 17:ab3cec0c8bf4 1580 if (!firing && z0 > 0 && znew < z0)
mjr 17:ab3cec0c8bf4 1581 {
mjr 17:ab3cec0c8bf4 1582 // The plunger has moved forward since the previous report.
mjr 17:ab3cec0c8bf4 1583 // Watch it for a few more ms to see if we can get a stable
mjr 17:ab3cec0c8bf4 1584 // new position.
mjr 17:ab3cec0c8bf4 1585 int pos1 = plungerSensor.lowResScan();
mjr 17:ab3cec0c8bf4 1586 Timer tw;
mjr 17:ab3cec0c8bf4 1587 tw.start();
mjr 17:ab3cec0c8bf4 1588 while (tw.read_ms() < 6)
mjr 17:ab3cec0c8bf4 1589 {
mjr 17:ab3cec0c8bf4 1590 // if we've crossed the rest position, it's a firing event
mjr 17:ab3cec0c8bf4 1591 if (pos1 < cfg.d.plungerZero)
mjr 17:ab3cec0c8bf4 1592 {
mjr 17:ab3cec0c8bf4 1593 firing = 1;
mjr 17:ab3cec0c8bf4 1594 break;
mjr 17:ab3cec0c8bf4 1595 }
mjr 17:ab3cec0c8bf4 1596
mjr 17:ab3cec0c8bf4 1597 // read the new position
mjr 17:ab3cec0c8bf4 1598 int pos2 = plungerSensor.lowResScan();
mjr 17:ab3cec0c8bf4 1599
mjr 17:ab3cec0c8bf4 1600 // if it's stable, stop looping
mjr 17:ab3cec0c8bf4 1601 if (abs(pos2 - pos1) < int(npix/(3.2*8)))
mjr 17:ab3cec0c8bf4 1602 break;
mjr 17:ab3cec0c8bf4 1603
mjr 17:ab3cec0c8bf4 1604 // the new reading is now the prior reading
mjr 17:ab3cec0c8bf4 1605 pos1 = pos2;
mjr 17:ab3cec0c8bf4 1606 }
mjr 17:ab3cec0c8bf4 1607 }
mjr 17:ab3cec0c8bf4 1608
mjr 17:ab3cec0c8bf4 1609 // Check for a simulated Launch Ball button press, if enabled
mjr 18:5e890ebd0023 1610 if (ZBLaunchBallPort != 0)
mjr 17:ab3cec0c8bf4 1611 {
mjr 18:5e890ebd0023 1612 const int cockThreshold = JOYMAX/3;
mjr 18:5e890ebd0023 1613 const int pushThreshold = int(-JOYMAX/3 * LaunchBallPushDistance);
mjr 17:ab3cec0c8bf4 1614 int newState = lbState;
mjr 17:ab3cec0c8bf4 1615 switch (lbState)
mjr 17:ab3cec0c8bf4 1616 {
mjr 17:ab3cec0c8bf4 1617 case 0:
mjr 17:ab3cec0c8bf4 1618 // Base state. If the plunger is pulled back by an inch
mjr 17:ab3cec0c8bf4 1619 // or more, go to "cocked" state. If the plunger is pushed
mjr 17:ab3cec0c8bf4 1620 // forward by 1/4" or more, go to "launch" state.
mjr 18:5e890ebd0023 1621 if (znew >= cockThreshold)
mjr 17:ab3cec0c8bf4 1622 newState = 1;
mjr 18:5e890ebd0023 1623 else if (znew <= pushThreshold)
mjr 17:ab3cec0c8bf4 1624 newState = 3;
mjr 17:ab3cec0c8bf4 1625 break;
mjr 17:ab3cec0c8bf4 1626
mjr 17:ab3cec0c8bf4 1627 case 1:
mjr 17:ab3cec0c8bf4 1628 // Cocked state. If a firing event is now in progress,
mjr 17:ab3cec0c8bf4 1629 // go to "launch" state. Otherwise, if the plunger is less
mjr 17:ab3cec0c8bf4 1630 // than 1" retracted, go to "uncocked" state - the player
mjr 17:ab3cec0c8bf4 1631 // might be slowly returning the plunger to rest so as not
mjr 17:ab3cec0c8bf4 1632 // to trigger a launch.
mjr 17:ab3cec0c8bf4 1633 if (firing || znew <= 0)
mjr 17:ab3cec0c8bf4 1634 newState = 3;
mjr 18:5e890ebd0023 1635 else if (znew < cockThreshold)
mjr 17:ab3cec0c8bf4 1636 newState = 2;
mjr 17:ab3cec0c8bf4 1637 break;
mjr 17:ab3cec0c8bf4 1638
mjr 17:ab3cec0c8bf4 1639 case 2:
mjr 17:ab3cec0c8bf4 1640 // Uncocked state. If the plunger is more than an inch
mjr 17:ab3cec0c8bf4 1641 // retracted, return to cocked state. If we've been in
mjr 17:ab3cec0c8bf4 1642 // the uncocked state for more than half a second, return
mjr 18:5e890ebd0023 1643 // to the base state. This allows the user to return the
mjr 18:5e890ebd0023 1644 // plunger to rest without triggering a launch, by moving
mjr 18:5e890ebd0023 1645 // it at manual speed to the rest position rather than
mjr 18:5e890ebd0023 1646 // releasing it.
mjr 18:5e890ebd0023 1647 if (znew >= cockThreshold)
mjr 17:ab3cec0c8bf4 1648 newState = 1;
mjr 17:ab3cec0c8bf4 1649 else if (lbTimer.read_ms() > 500)
mjr 17:ab3cec0c8bf4 1650 newState = 0;
mjr 17:ab3cec0c8bf4 1651 break;
mjr 17:ab3cec0c8bf4 1652
mjr 17:ab3cec0c8bf4 1653 case 3:
mjr 17:ab3cec0c8bf4 1654 // Launch state. If the plunger is no longer pushed
mjr 17:ab3cec0c8bf4 1655 // forward, switch to launch rest state.
mjr 18:5e890ebd0023 1656 if (znew >= 0)
mjr 17:ab3cec0c8bf4 1657 newState = 4;
mjr 17:ab3cec0c8bf4 1658 break;
mjr 17:ab3cec0c8bf4 1659
mjr 17:ab3cec0c8bf4 1660 case 4:
mjr 17:ab3cec0c8bf4 1661 // Launch rest state. If the plunger is pushed forward
mjr 17:ab3cec0c8bf4 1662 // again, switch back to launch state. If not, and we've
mjr 17:ab3cec0c8bf4 1663 // been in this state for at least 200ms, return to the
mjr 17:ab3cec0c8bf4 1664 // default state.
mjr 18:5e890ebd0023 1665 if (znew <= pushThreshold)
mjr 17:ab3cec0c8bf4 1666 newState = 3;
mjr 17:ab3cec0c8bf4 1667 else if (lbTimer.read_ms() > 200)
mjr 17:ab3cec0c8bf4 1668 newState = 0;
mjr 17:ab3cec0c8bf4 1669 break;
mjr 17:ab3cec0c8bf4 1670 }
mjr 17:ab3cec0c8bf4 1671
mjr 17:ab3cec0c8bf4 1672 // change states if desired
mjr 18:5e890ebd0023 1673 const uint32_t lbButtonBit = (1 << (LaunchBallButton - 1));
mjr 17:ab3cec0c8bf4 1674 if (newState != lbState)
mjr 17:ab3cec0c8bf4 1675 {
mjr 18:5e890ebd0023 1676 // if we're entering Launch state, and the ZB Launch Ball
mjr 18:5e890ebd0023 1677 // LedWiz signal is turned on, simulate a Launch Ball button
mjr 18:5e890ebd0023 1678 // press
mjr 18:5e890ebd0023 1679 if (newState == 3 && lbState != 4 && wizOn[ZBLaunchBallPort-1])
mjr 18:5e890ebd0023 1680 {
mjr 18:5e890ebd0023 1681 lbBtnTimer.reset();
mjr 18:5e890ebd0023 1682 lbBtnTimer.start();
mjr 18:5e890ebd0023 1683 simButtons |= lbButtonBit;
mjr 18:5e890ebd0023 1684 }
mjr 17:ab3cec0c8bf4 1685
mjr 17:ab3cec0c8bf4 1686 // if we're switching to state 0, release the button
mjr 17:ab3cec0c8bf4 1687 if (newState == 0)
mjr 17:ab3cec0c8bf4 1688 simButtons &= ~(1 << (LaunchBallButton - 1));
mjr 17:ab3cec0c8bf4 1689
mjr 17:ab3cec0c8bf4 1690 // switch to the new state
mjr 17:ab3cec0c8bf4 1691 lbState = newState;
mjr 17:ab3cec0c8bf4 1692
mjr 17:ab3cec0c8bf4 1693 // start timing in the new state
mjr 17:ab3cec0c8bf4 1694 lbTimer.reset();
mjr 17:ab3cec0c8bf4 1695 }
mjr 18:5e890ebd0023 1696
mjr 18:5e890ebd0023 1697 // if the simulated Launch Ball button press is in effect,
mjr 18:5e890ebd0023 1698 // and either it's been in effect too long or the ZB Launch
mjr 18:5e890ebd0023 1699 // Ball signal is no longer active, turn off the button
mjr 18:5e890ebd0023 1700 if ((simButtons & lbButtonBit) != 0
mjr 18:5e890ebd0023 1701 && (!wizOn[ZBLaunchBallPort-1] || lbBtnTimer.read_ms() > 250))
mjr 18:5e890ebd0023 1702 {
mjr 18:5e890ebd0023 1703 lbBtnTimer.stop();
mjr 18:5e890ebd0023 1704 simButtons &= ~lbButtonBit;
mjr 18:5e890ebd0023 1705 }
mjr 18:5e890ebd0023 1706
mjr 17:ab3cec0c8bf4 1707 }
mjr 17:ab3cec0c8bf4 1708
mjr 17:ab3cec0c8bf4 1709 // If a firing event is in progress, generate synthetic reports to
mjr 17:ab3cec0c8bf4 1710 // describe an idealized version of the plunger motion to VP rather
mjr 17:ab3cec0c8bf4 1711 // than reporting the actual physical plunger position.
mjr 6:cc35eb643e8f 1712 //
mjr 17:ab3cec0c8bf4 1713 // We use the synthetic reports during a release event because the
mjr 17:ab3cec0c8bf4 1714 // physical plunger motion when released is too fast for VP to track.
mjr 17:ab3cec0c8bf4 1715 // VP only syncs its internal physics model with the outside world
mjr 17:ab3cec0c8bf4 1716 // about every 10ms. In that amount of time, the plunger moves
mjr 17:ab3cec0c8bf4 1717 // fast enough when released that it can shoot all the way forward,
mjr 17:ab3cec0c8bf4 1718 // bounce off of the barrel spring, and rebound part of the way
mjr 17:ab3cec0c8bf4 1719 // back. The result is the classic analog-to-digital problem of
mjr 17:ab3cec0c8bf4 1720 // sample aliasing. If we happen to time our sample during the
mjr 17:ab3cec0c8bf4 1721 // release motion so that we catch the plunger at the peak of a
mjr 17:ab3cec0c8bf4 1722 // bounce, the digital signal incorrectly looks like the plunger
mjr 17:ab3cec0c8bf4 1723 // is moving slowly forward - VP thinks we went from fully
mjr 17:ab3cec0c8bf4 1724 // retracted to half retracted in the sample interval, whereas
mjr 17:ab3cec0c8bf4 1725 // we actually traveled all the way forward and half way back,
mjr 17:ab3cec0c8bf4 1726 // so the speed VP infers is about 1/3 of the actual speed.
mjr 9:fd65b0a94720 1727 //
mjr 17:ab3cec0c8bf4 1728 // To correct this, we take advantage of our ability to sample
mjr 17:ab3cec0c8bf4 1729 // the CCD image several times in the course of a VP report. If
mjr 17:ab3cec0c8bf4 1730 // we catch the plunger near the origin after we've seen it
mjr 17:ab3cec0c8bf4 1731 // retracted, we go into Release Event mode. During this mode,
mjr 17:ab3cec0c8bf4 1732 // we stop reporting the true physical plunger position, and
mjr 17:ab3cec0c8bf4 1733 // instead report an idealized pattern: we report the plunger
mjr 17:ab3cec0c8bf4 1734 // immediately shooting forward to a position in front of the
mjr 17:ab3cec0c8bf4 1735 // park position that's in proportion to how far back the plunger
mjr 17:ab3cec0c8bf4 1736 // was just before the release, and we then report it stationary
mjr 17:ab3cec0c8bf4 1737 // at the park position. We continue to report the stationary
mjr 17:ab3cec0c8bf4 1738 // park position until the actual physical plunger motion has
mjr 17:ab3cec0c8bf4 1739 // stabilized on a new position. We then exit Release Event
mjr 17:ab3cec0c8bf4 1740 // mode and return to reporting the true physical position.
mjr 17:ab3cec0c8bf4 1741 if (firing)
mjr 6:cc35eb643e8f 1742 {
mjr 17:ab3cec0c8bf4 1743 // Firing in progress. Keep reporting the park position
mjr 17:ab3cec0c8bf4 1744 // until the physical plunger position comes to rest.
mjr 17:ab3cec0c8bf4 1745 const int restTol = JOYMAX/24;
mjr 17:ab3cec0c8bf4 1746 if (firing == 1)
mjr 6:cc35eb643e8f 1747 {
mjr 17:ab3cec0c8bf4 1748 // For the first couple of frames, show the plunger shooting
mjr 17:ab3cec0c8bf4 1749 // forward past the zero point, to simulate the momentum carrying
mjr 17:ab3cec0c8bf4 1750 // it forward to bounce off of the barrel spring. Show the
mjr 17:ab3cec0c8bf4 1751 // bounce as proportional to the distance it was retracted
mjr 17:ab3cec0c8bf4 1752 // in the prior report.
mjr 17:ab3cec0c8bf4 1753 z = zBounce = -z0/6;
mjr 17:ab3cec0c8bf4 1754 ++firing;
mjr 6:cc35eb643e8f 1755 }
mjr 17:ab3cec0c8bf4 1756 else if (firing == 2)
mjr 9:fd65b0a94720 1757 {
mjr 17:ab3cec0c8bf4 1758 // second frame - keep the bounce a little longer
mjr 17:ab3cec0c8bf4 1759 z = zBounce;
mjr 17:ab3cec0c8bf4 1760 ++firing;
mjr 17:ab3cec0c8bf4 1761 }
mjr 17:ab3cec0c8bf4 1762 else if (firing > 4
mjr 17:ab3cec0c8bf4 1763 && abs(znew - z0) < restTol
mjr 17:ab3cec0c8bf4 1764 && abs(znew - z1) < restTol
mjr 17:ab3cec0c8bf4 1765 && abs(znew - z2) < restTol)
mjr 17:ab3cec0c8bf4 1766 {
mjr 17:ab3cec0c8bf4 1767 // The physical plunger has come to rest. Exit firing
mjr 17:ab3cec0c8bf4 1768 // mode and resume reporting the actual position.
mjr 17:ab3cec0c8bf4 1769 firing = false;
mjr 17:ab3cec0c8bf4 1770 z = znew;
mjr 9:fd65b0a94720 1771 }
mjr 9:fd65b0a94720 1772 else
mjr 9:fd65b0a94720 1773 {
mjr 17:ab3cec0c8bf4 1774 // until the physical plunger comes to rest, simply
mjr 17:ab3cec0c8bf4 1775 // report the park position
mjr 9:fd65b0a94720 1776 z = 0;
mjr 17:ab3cec0c8bf4 1777 ++firing;
mjr 9:fd65b0a94720 1778 }
mjr 6:cc35eb643e8f 1779 }
mjr 6:cc35eb643e8f 1780 else
mjr 6:cc35eb643e8f 1781 {
mjr 17:ab3cec0c8bf4 1782 // not in firing mode - report the true physical position
mjr 17:ab3cec0c8bf4 1783 z = znew;
mjr 6:cc35eb643e8f 1784 }
mjr 17:ab3cec0c8bf4 1785
mjr 17:ab3cec0c8bf4 1786 // shift the new reading into the recent history buffer
mjr 6:cc35eb643e8f 1787 z2 = z1;
mjr 6:cc35eb643e8f 1788 z1 = z0;
mjr 6:cc35eb643e8f 1789 z0 = znew;
mjr 2:c174f9ee414a 1790 }
mjr 6:cc35eb643e8f 1791
mjr 11:bd9da7088e6e 1792 // update the buttons
mjr 18:5e890ebd0023 1793 uint32_t buttons = readButtons();
mjr 17:ab3cec0c8bf4 1794
mjr 17:ab3cec0c8bf4 1795 // If it's been long enough since our last USB status report,
mjr 17:ab3cec0c8bf4 1796 // send the new report. We throttle the report rate because
mjr 17:ab3cec0c8bf4 1797 // it can overwhelm the PC side if we report too frequently.
mjr 17:ab3cec0c8bf4 1798 // VP only wants to sync with the real world in 10ms intervals,
mjr 17:ab3cec0c8bf4 1799 // so reporting more frequently only creates i/o overhead
mjr 17:ab3cec0c8bf4 1800 // without doing anything to improve the simulation.
mjr 17:ab3cec0c8bf4 1801 if (reportTimer.read_ms() > 15)
mjr 17:ab3cec0c8bf4 1802 {
mjr 17:ab3cec0c8bf4 1803 // read the accelerometer
mjr 17:ab3cec0c8bf4 1804 int xa, ya;
mjr 17:ab3cec0c8bf4 1805 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 1806
mjr 17:ab3cec0c8bf4 1807 // confine the results to our joystick axis range
mjr 17:ab3cec0c8bf4 1808 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 17:ab3cec0c8bf4 1809 if (xa > JOYMAX) xa = JOYMAX;
mjr 17:ab3cec0c8bf4 1810 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 17:ab3cec0c8bf4 1811 if (ya > JOYMAX) ya = JOYMAX;
mjr 17:ab3cec0c8bf4 1812
mjr 17:ab3cec0c8bf4 1813 // store the updated accelerometer coordinates
mjr 17:ab3cec0c8bf4 1814 x = xa;
mjr 17:ab3cec0c8bf4 1815 y = ya;
mjr 17:ab3cec0c8bf4 1816
mjr 17:ab3cec0c8bf4 1817 // Send the status report. Note that the nominal x and y axes
mjr 17:ab3cec0c8bf4 1818 // are reversed - this makes it more intuitive to set up in VP.
mjr 17:ab3cec0c8bf4 1819 // If we mount the Freesale card flat on the floor of the cabinet
mjr 17:ab3cec0c8bf4 1820 // with the USB connectors facing the front of the cabinet, this
mjr 17:ab3cec0c8bf4 1821 // arrangement of our nominal axes aligns with VP's standard
mjr 17:ab3cec0c8bf4 1822 // setting, so that we can configure VP with X Axis = X on the
mjr 17:ab3cec0c8bf4 1823 // joystick and Y Axis = Y on the joystick.
mjr 17:ab3cec0c8bf4 1824 js.update(y, x, z, buttons | simButtons, statusFlags);
mjr 17:ab3cec0c8bf4 1825
mjr 17:ab3cec0c8bf4 1826 // we've just started a new report interval, so reset the timer
mjr 17:ab3cec0c8bf4 1827 reportTimer.reset();
mjr 17:ab3cec0c8bf4 1828 }
mjr 1:d913e0afb2ac 1829
mjr 10:976666ffa4ef 1830 // If we're in pixel dump mode, report all pixel exposure values
mjr 10:976666ffa4ef 1831 if (reportPix)
mjr 10:976666ffa4ef 1832 {
mjr 17:ab3cec0c8bf4 1833 // send the report
mjr 17:ab3cec0c8bf4 1834 plungerSensor.sendExposureReport(js);
mjr 17:ab3cec0c8bf4 1835
mjr 10:976666ffa4ef 1836 // we have satisfied this request
mjr 10:976666ffa4ef 1837 reportPix = false;
mjr 10:976666ffa4ef 1838 }
mjr 10:976666ffa4ef 1839
mjr 6:cc35eb643e8f 1840 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 1841 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 1842 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 1843 #endif
mjr 6:cc35eb643e8f 1844
mjr 6:cc35eb643e8f 1845 // provide a visual status indication on the on-board LED
mjr 5:a70c0bce770d 1846 if (calBtnState < 2 && hbTimer.read_ms() > 1000)
mjr 1:d913e0afb2ac 1847 {
mjr 5:a70c0bce770d 1848 if (js.isSuspended() || !js.isConnected())
mjr 2:c174f9ee414a 1849 {
mjr 5:a70c0bce770d 1850 // suspended - turn off the LED
mjr 4:02c7cd7b2183 1851 ledR = 1;
mjr 4:02c7cd7b2183 1852 ledG = 1;
mjr 4:02c7cd7b2183 1853 ledB = 1;
mjr 5:a70c0bce770d 1854
mjr 5:a70c0bce770d 1855 // show a status flash every so often
mjr 5:a70c0bce770d 1856 if (hbcnt % 3 == 0)
mjr 5:a70c0bce770d 1857 {
mjr 6:cc35eb643e8f 1858 // disconnected = red/red flash; suspended = red
mjr 5:a70c0bce770d 1859 for (int n = js.isConnected() ? 1 : 2 ; n > 0 ; --n)
mjr 5:a70c0bce770d 1860 {
mjr 5:a70c0bce770d 1861 ledR = 0;
mjr 5:a70c0bce770d 1862 wait(0.05);
mjr 5:a70c0bce770d 1863 ledR = 1;
mjr 5:a70c0bce770d 1864 wait(0.25);
mjr 5:a70c0bce770d 1865 }
mjr 5:a70c0bce770d 1866 }
mjr 2:c174f9ee414a 1867 }
mjr 6:cc35eb643e8f 1868 else if (needReset)
mjr 2:c174f9ee414a 1869 {
mjr 6:cc35eb643e8f 1870 // connected, need to reset due to changes in config parameters -
mjr 6:cc35eb643e8f 1871 // flash red/green
mjr 6:cc35eb643e8f 1872 hb = !hb;
mjr 6:cc35eb643e8f 1873 ledR = (hb ? 0 : 1);
mjr 6:cc35eb643e8f 1874 ledG = (hb ? 1 : 0);
mjr 6:cc35eb643e8f 1875 ledB = 0;
mjr 6:cc35eb643e8f 1876 }
mjr 17:ab3cec0c8bf4 1877 else if (cfg.d.plungerEnabled && !cfg.d.plungerCal)
mjr 6:cc35eb643e8f 1878 {
mjr 6:cc35eb643e8f 1879 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 1880 hb = !hb;
mjr 6:cc35eb643e8f 1881 ledR = (hb ? 0 : 1);
mjr 6:cc35eb643e8f 1882 ledG = 0;
mjr 6:cc35eb643e8f 1883 ledB = 1;
mjr 6:cc35eb643e8f 1884 }
mjr 6:cc35eb643e8f 1885 else
mjr 6:cc35eb643e8f 1886 {
mjr 6:cc35eb643e8f 1887 // connected - flash blue/green
mjr 2:c174f9ee414a 1888 hb = !hb;
mjr 4:02c7cd7b2183 1889 ledR = 1;
mjr 4:02c7cd7b2183 1890 ledG = (hb ? 0 : 1);
mjr 4:02c7cd7b2183 1891 ledB = (hb ? 1 : 0);
mjr 2:c174f9ee414a 1892 }
mjr 1:d913e0afb2ac 1893
mjr 1:d913e0afb2ac 1894 // reset the heartbeat timer
mjr 1:d913e0afb2ac 1895 hbTimer.reset();
mjr 5:a70c0bce770d 1896 ++hbcnt;
mjr 1:d913e0afb2ac 1897 }
mjr 1:d913e0afb2ac 1898 }
mjr 0:5acbbe3f4cf4 1899 }