work in progress

Dependencies:   FastAnalogIn FastIO USBDevice mbed FastPWM SimpleDMA

Fork of Pinscape_Controller by Mike R

Committer:
mjr
Date:
Mon Aug 18 21:46:10 2014 +0000
Revision:
9:fd65b0a94720
Parent:
8:c732e279ee29
Child:
10:976666ffa4ef
Tweaks to plunger firing detection

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 5:a70c0bce770d 1 /* Copyright 2014 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 5:a70c0bce770d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 5:a70c0bce770d 20 // Pinscape Controller
mjr 5:a70c0bce770d 21 //
mjr 5:a70c0bce770d 22 // "Pinscape" is the name of my custom-built virtual pinball cabinet. I wrote this
mjr 5:a70c0bce770d 23 // software to perform a number of tasks that I needed for my cabinet. It runs on a
mjr 5:a70c0bce770d 24 // Freescale KL25Z microcontroller, which is a small and inexpensive device that
mjr 5:a70c0bce770d 25 // attaches to the host PC via USB and can interface with numerous types of external
mjr 5:a70c0bce770d 26 // hardware.
mjr 5:a70c0bce770d 27 //
mjr 5:a70c0bce770d 28 // I designed the software and hardware in this project especially for Pinscape, but
mjr 5:a70c0bce770d 29 // it uses standard interfaces in Windows and Visual Pinball, so it should be
mjr 5:a70c0bce770d 30 // readily usable in anyone else's VP-based cabinet. I've tried to document the
mjr 5:a70c0bce770d 31 // hardware in enough detail for anyone else to duplicate the entire project, and
mjr 5:a70c0bce770d 32 // the full software is open source.
mjr 5:a70c0bce770d 33 //
mjr 6:cc35eb643e8f 34 // The device appears to the host computer as a USB joystick. This works with the
mjr 6:cc35eb643e8f 35 // standard Windows joystick device drivers, so there's no need to install any
mjr 6:cc35eb643e8f 36 // software on the PC - Windows should recognize it as a joystick when you plug
mjr 6:cc35eb643e8f 37 // it in and shouldn't ask you to install anything. If you bring up the control
mjr 6:cc35eb643e8f 38 // panel for USB Game Controllers, this device will appear as "Pinscape Controller".
mjr 6:cc35eb643e8f 39 // *Don't* do any calibration with the Windows control panel or third-part
mjr 6:cc35eb643e8f 40 // calibration tools. The device calibrates itself automatically for the
mjr 6:cc35eb643e8f 41 // accelerometer data, and has its own special calibration procedure for the
mjr 6:cc35eb643e8f 42 // plunger (see below).
mjr 6:cc35eb643e8f 43 //
mjr 5:a70c0bce770d 44 // The controller provides the following functions. It should be possible to use
mjr 5:a70c0bce770d 45 // any subet of the features without using all of them. External hardware for any
mjr 5:a70c0bce770d 46 // particular function can simply be omitted if that feature isn't needed.
mjr 5:a70c0bce770d 47 //
mjr 5:a70c0bce770d 48 // - Nudge sensing via the KL25Z's on-board accelerometer. Nudge accelerations are
mjr 5:a70c0bce770d 49 // processed into a physics model of a rolling ball, and changes to the ball's
mjr 5:a70c0bce770d 50 // motion are sent to the host computer via the joystick interface. This is designed
mjr 5:a70c0bce770d 51 // especially to work with Visuall Pinball's nudge handling to produce realistic
mjr 5:a70c0bce770d 52 // on-screen results in VP. By doing some physics modeling right on the device,
mjr 5:a70c0bce770d 53 // rather than sending raw accelerometer data to VP, we can produce better results
mjr 5:a70c0bce770d 54 // using our awareness of the real physical parameters of a pinball cabinet.
mjr 5:a70c0bce770d 55 // VP's nudge handling has to be more generic, so it can't make the same sorts
mjr 5:a70c0bce770d 56 // of assumptions that we can about the dynamics of a real cabinet.
mjr 5:a70c0bce770d 57 //
mjr 5:a70c0bce770d 58 // The nudge data reports are compatible with the built-in Windows USB joystick
mjr 5:a70c0bce770d 59 // drivers and with VP's own joystick input scheme, so the nudge sensing is almost
mjr 5:a70c0bce770d 60 // plug-and-play. There are no Windiows drivers to install, and the only VP work
mjr 5:a70c0bce770d 61 // needed is to customize a few global preference settings.
mjr 5:a70c0bce770d 62 //
mjr 5:a70c0bce770d 63 // - Plunger position sensing via an attached TAOS TSL 1410R CCD linear array sensor.
mjr 5:a70c0bce770d 64 // The sensor must be wired to a particular set of I/O ports on the KL25Z, and must
mjr 5:a70c0bce770d 65 // be positioned adjacent to the plunger with proper lighting. The physical and
mjr 5:a70c0bce770d 66 // electronic installation details are desribed in the project documentation. We read
mjr 5:a70c0bce770d 67 // the CCD to determine how far back the plunger is pulled, and report this to Visual
mjr 5:a70c0bce770d 68 // Pinball via the joystick interface. As with the nudge data, this is all nearly
mjr 5:a70c0bce770d 69 // plug-and-play, in that it works with the default Windows USB drivers and works
mjr 5:a70c0bce770d 70 // with the existing VP handling for analog plunger input. A few VP settings are
mjr 5:a70c0bce770d 71 // needed to tell VP to allow the plunger.
mjr 5:a70c0bce770d 72 //
mjr 6:cc35eb643e8f 73 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 74 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 75 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 76 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 6:cc35eb643e8f 77 // sensor or the mechanical plunger, since their alignment might change slightly
mjr 6:cc35eb643e8f 78 // when you put everything back together.) To calibrate, you have to attach a
mjr 6:cc35eb643e8f 79 // momentary switch (e.g., a push-button switch) between one of the KL25Z ground
mjr 6:cc35eb643e8f 80 // pins (e.g., jumper J9 pin 12) and PTE29 (J10 pin 9). Press and hold the
mjr 6:cc35eb643e8f 81 // button for about two seconds - the LED on the KL25Z wlil flash blue while
mjr 6:cc35eb643e8f 82 // you hold the button, and will turn solid blue when you've held it down long
mjr 6:cc35eb643e8f 83 // enough to enter calibration mode. This mode will last about 15 seconds.
mjr 6:cc35eb643e8f 84 // Simply pull the plunger all the way back, hold it for a few moments, and
mjr 6:cc35eb643e8f 85 // gradually return it to the starting position. *Don't* release it - we want
mjr 6:cc35eb643e8f 86 // to measure the maximum retracted position and the rest position, but NOT
mjr 6:cc35eb643e8f 87 // the maximum forward position when the outer barrel spring is compressed.
mjr 6:cc35eb643e8f 88 // After about 15 seconds, the device will save the new calibration settings
mjr 6:cc35eb643e8f 89 // to its flash memory, and the LED will return to the regular "heartbeat"
mjr 6:cc35eb643e8f 90 // flashes. If this is the first time you calibrated, you should observe the
mjr 6:cc35eb643e8f 91 // color of the flashes change from yellow/green to blue/green to indicate
mjr 6:cc35eb643e8f 92 // that the plunger has been calibrated.
mjr 6:cc35eb643e8f 93 //
mjr 6:cc35eb643e8f 94 // Note that while Visual Pinball itself has good native support for analog
mjr 6:cc35eb643e8f 95 // plungers, most of the VP tables in circulation don't implement the necessary
mjr 6:cc35eb643e8f 96 // scripting features to make this work properly. Therefore, you'll have to do
mjr 6:cc35eb643e8f 97 // a little scripting work for each table you download to add the required code
mjr 6:cc35eb643e8f 98 // to that individual table. The work has to be customized for each table, so
mjr 6:cc35eb643e8f 99 // I haven't been able to automate this process, but I have tried to reduce it
mjr 6:cc35eb643e8f 100 // to a relatively simple recipe that I've documented separately.
mjr 5:a70c0bce770d 101 //
mjr 5:a70c0bce770d 102 // - In addition to the CCD sensor, a button should be attached (also described in
mjr 5:a70c0bce770d 103 // the project documentation) to activate calibration mode for the plunger. When
mjr 5:a70c0bce770d 104 // calibration mode is activated, the software reads the plunger position for about
mjr 5:a70c0bce770d 105 // 10 seconds when to note the limits of travel, and uses these limits to ensure
mjr 5:a70c0bce770d 106 // accurate reports to VP that properly report the actual position of the physical
mjr 5:a70c0bce770d 107 // plunger. The calibration is stored in non-volatile memory on the KL25Z, so it's
mjr 5:a70c0bce770d 108 // only necessary to calibrate once - the calibration will survive power cycling
mjr 5:a70c0bce770d 109 // and reboots of the PC. It's only necessary to recalibrate if the CCD sensor or
mjr 5:a70c0bce770d 110 // the plunger are removed and reinstalled, since the relative alignment of the
mjr 5:a70c0bce770d 111 // parts could cahnge slightly when reinstalling.
mjr 5:a70c0bce770d 112 //
mjr 5:a70c0bce770d 113 // - LedWiz emulation. The KL25Z can appear to the PC as an LedWiz device, and will
mjr 5:a70c0bce770d 114 // accept and process LedWiz commands from the host. The software can turn digital
mjr 5:a70c0bce770d 115 // output ports on and off, and can set varying PWM intensitiy levels on a subset
mjr 5:a70c0bce770d 116 // of ports. (The KL25Z can only provide 6 PWM ports. Intensity level settings on
mjr 5:a70c0bce770d 117 // other ports is ignored, so non-PWM ports can only be used for simple on/off
mjr 5:a70c0bce770d 118 // devices such as contactors and solenoids.) The KL25Z can only supply 4mA on its
mjr 5:a70c0bce770d 119 // output ports, so external hardware is required to take advantage of the LedWiz
mjr 5:a70c0bce770d 120 // emulation. Many different hardware designs are possible, but there's a simple
mjr 5:a70c0bce770d 121 // reference design in the documentation that uses a Darlington array IC to
mjr 5:a70c0bce770d 122 // increase the output from each port to 500mA (the same level as the LedWiz),
mjr 5:a70c0bce770d 123 // plus an extended design that adds an optocoupler and MOSFET to provide very
mjr 5:a70c0bce770d 124 // high power handling, up to about 45A or 150W, with voltages up to 100V.
mjr 5:a70c0bce770d 125 // That will handle just about any DC device directly (wtihout relays or other
mjr 5:a70c0bce770d 126 // amplifiers), and switches fast enough to support PWM devices.
mjr 5:a70c0bce770d 127 //
mjr 5:a70c0bce770d 128 // The device can report any desired LedWiz unit number to the host, which makes
mjr 5:a70c0bce770d 129 // it possible to use the LedWiz emulation on a machine that also has one or more
mjr 5:a70c0bce770d 130 // actual LedWiz devices intalled. The LedWiz design allows for up to 16 units
mjr 5:a70c0bce770d 131 // to be installed in one machine - each one is invidually addressable by its
mjr 5:a70c0bce770d 132 // distinct unit number.
mjr 5:a70c0bce770d 133 //
mjr 5:a70c0bce770d 134 // The LedWiz emulation features are of course optional. There's no need to
mjr 5:a70c0bce770d 135 // build any of the external port hardware (or attach anything to the output
mjr 5:a70c0bce770d 136 // ports at all) if the LedWiz features aren't needed. Most people won't have
mjr 5:a70c0bce770d 137 // any use for the LedWiz features. I built them mostly as a learning exercise,
mjr 5:a70c0bce770d 138 // but with a slight practical need for a handful of extra ports (I'm using the
mjr 5:a70c0bce770d 139 // cutting-edge 10-contactor setup, so my real LedWiz is full!).
mjr 6:cc35eb643e8f 140 //
mjr 6:cc35eb643e8f 141 // The on-board LED on the KL25Z flashes to indicate the current device status:
mjr 6:cc35eb643e8f 142 //
mjr 6:cc35eb643e8f 143 // two short red flashes = the device is powered but hasn't successfully
mjr 6:cc35eb643e8f 144 // connected to the host via USB (either it's not physically connected
mjr 6:cc35eb643e8f 145 // to the USB port, or there was a problem with the software handshake
mjr 6:cc35eb643e8f 146 // with the USB device driver on the computer)
mjr 6:cc35eb643e8f 147 //
mjr 6:cc35eb643e8f 148 // short red flash = the host computer is in sleep/suspend mode
mjr 6:cc35eb643e8f 149 //
mjr 6:cc35eb643e8f 150 // long red/green = the LedWiz unti number has been changed, so a reset
mjr 6:cc35eb643e8f 151 // is needed. You can simply unplug the device and plug it back in,
mjr 6:cc35eb643e8f 152 // or presss and hold the reset button on the device for a few seconds.
mjr 6:cc35eb643e8f 153 //
mjr 6:cc35eb643e8f 154 // long yellow/green = everything's working, but the plunger hasn't
mjr 6:cc35eb643e8f 155 // been calibrated; follow the calibration procedure described above.
mjr 6:cc35eb643e8f 156 // This flash mode won't appear if the CCD has been disabled. Note
mjr 6:cc35eb643e8f 157 // that the device can't tell whether a CCD is physically attached,
mjr 6:cc35eb643e8f 158 // so you should use the config command to disable the CCD software
mjr 6:cc35eb643e8f 159 // features if you won't be attaching a CCD.
mjr 6:cc35eb643e8f 160 //
mjr 6:cc35eb643e8f 161 // alternating blue/green = everything's working
mjr 6:cc35eb643e8f 162 //
mjr 6:cc35eb643e8f 163 // Software configuration: you can change option settings by sending special
mjr 6:cc35eb643e8f 164 // USB commands from the PC. I've provided a Windows program for this purpose;
mjr 6:cc35eb643e8f 165 // refer to the documentation for details. For reference, here's the format
mjr 6:cc35eb643e8f 166 // of the USB command for option changes:
mjr 6:cc35eb643e8f 167 //
mjr 6:cc35eb643e8f 168 // length of report = 8 bytes
mjr 6:cc35eb643e8f 169 // byte 0 = 65 (0x41)
mjr 6:cc35eb643e8f 170 // byte 1 = 1 (0x01)
mjr 6:cc35eb643e8f 171 // byte 2 = new LedWiz unit number, 0x01 to 0x0f
mjr 6:cc35eb643e8f 172 // byte 3 = feature enable bit mask:
mjr 6:cc35eb643e8f 173 // 0x01 = enable CCD (default = on)
mjr 9:fd65b0a94720 174 //
mjr 9:fd65b0a94720 175 // Plunger calibration mode: the host can activate plunger calibration mode
mjr 9:fd65b0a94720 176 // by sending this packet. This has the same effect as pressing and holding
mjr 9:fd65b0a94720 177 // the plunger calibration button for two seconds, to allow activating this
mjr 9:fd65b0a94720 178 // mode without attaching a physical button.
mjr 9:fd65b0a94720 179 //
mjr 9:fd65b0a94720 180 // length = 8 bytes
mjr 9:fd65b0a94720 181 // byte 0 = 65 (0x41)
mjr 9:fd65b0a94720 182 // byte 1 = 2 (0x02)
mjr 9:fd65b0a94720 183 //
mjr 6:cc35eb643e8f 184
mjr 0:5acbbe3f4cf4 185 #include "mbed.h"
mjr 6:cc35eb643e8f 186 #include "math.h"
mjr 0:5acbbe3f4cf4 187 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 188 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 189 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 190 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 191 #include "crc32.h"
mjr 2:c174f9ee414a 192
mjr 5:a70c0bce770d 193
mjr 5:a70c0bce770d 194 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 195 //
mjr 5:a70c0bce770d 196 // Configuration details
mjr 5:a70c0bce770d 197 //
mjr 2:c174f9ee414a 198
mjr 5:a70c0bce770d 199 // Our USB device vendor ID, product ID, and version.
mjr 5:a70c0bce770d 200 // We use the vendor ID for the LedWiz, so that the PC-side software can
mjr 5:a70c0bce770d 201 // identify us as capable of performing LedWiz commands. The LedWiz uses
mjr 5:a70c0bce770d 202 // a product ID value from 0xF0 to 0xFF; the last four bits identify the
mjr 5:a70c0bce770d 203 // unit number (e.g., product ID 0xF7 means unit #7). This allows multiple
mjr 5:a70c0bce770d 204 // LedWiz units to be installed in a single PC; the software on the PC side
mjr 5:a70c0bce770d 205 // uses the unit number to route commands to the devices attached to each
mjr 5:a70c0bce770d 206 // unit. On the real LedWiz, the unit number must be set in the firmware
mjr 5:a70c0bce770d 207 // at the factory; it's not configurable by the end user. Most LedWiz's
mjr 5:a70c0bce770d 208 // ship with the unit number set to 0, but the vendor will set different
mjr 5:a70c0bce770d 209 // unit numbers if requested at the time of purchase. So if you have a
mjr 5:a70c0bce770d 210 // single LedWiz already installed in your cabinet, and you didn't ask for
mjr 5:a70c0bce770d 211 // a non-default unit number, your existing LedWiz will be unit 0.
mjr 5:a70c0bce770d 212 //
mjr 5:a70c0bce770d 213 // We use unit #7 by default. There doesn't seem to be a requirement that
mjr 5:a70c0bce770d 214 // unit numbers be contiguous (DirectOutput Framework and other software
mjr 5:a70c0bce770d 215 // seem happy to have units 0 and 7 installed, without 1-6 existing).
mjr 5:a70c0bce770d 216 // Marking this unit as #7 should work for almost everybody out of the box;
mjr 5:a70c0bce770d 217 // the most common case seems to be to have a single LedWiz installed, and
mjr 5:a70c0bce770d 218 // it's probably extremely rare to more than two.
mjr 6:cc35eb643e8f 219 //
mjr 6:cc35eb643e8f 220 // Note that the USB_PRODUCT_ID value set here omits the unit number. We
mjr 6:cc35eb643e8f 221 // take the unit number from the saved configuration. We provide a
mjr 6:cc35eb643e8f 222 // configuration command that can be sent via the USB connection to change
mjr 6:cc35eb643e8f 223 // the unit number, so that users can select the unit number without having
mjr 6:cc35eb643e8f 224 // to install a different version of the software. We'll combine the base
mjr 6:cc35eb643e8f 225 // product ID here with the unit number to get the actual product ID that
mjr 6:cc35eb643e8f 226 // we send to the USB controller.
mjr 5:a70c0bce770d 227 const uint16_t USB_VENDOR_ID = 0xFAFA;
mjr 6:cc35eb643e8f 228 const uint16_t USB_PRODUCT_ID = 0x00F0;
mjr 6:cc35eb643e8f 229 const uint16_t USB_VERSION_NO = 0x0006;
mjr 6:cc35eb643e8f 230 const uint8_t DEFAULT_LEDWIZ_UNIT_NUMBER = 0x07;
mjr 0:5acbbe3f4cf4 231
mjr 9:fd65b0a94720 232 // Number of pixels we read from the sensor on each frame. This can be
mjr 9:fd65b0a94720 233 // less than the physical pixel count if desired; we'll read every nth
mjr 9:fd65b0a94720 234 // piexl if so. E.g., with a 1280-pixel physical sensor, if npix is 320,
mjr 9:fd65b0a94720 235 // we'll read every 4th pixel. It takes time to read each pixel, so the
mjr 9:fd65b0a94720 236 // fewer pixels we read, the higher the refresh rate we can achieve.
mjr 9:fd65b0a94720 237 // It's therefore better not to read more pixels than we have to.
mjr 9:fd65b0a94720 238 //
mjr 9:fd65b0a94720 239 // VP seems to have an internal resolution in the 8-bit range, so there's
mjr 9:fd65b0a94720 240 // no apparent benefit to reading more than 128-256 pixels when using VP.
mjr 9:fd65b0a94720 241 // Empirically, 160 pixels seems about right. The overall travel of a
mjr 9:fd65b0a94720 242 // standard pinball plunger is about 3", so 160 pixels gives us resolution
mjr 9:fd65b0a94720 243 // of about 1/50". This seems to take full advantage of VP's modeling
mjr 9:fd65b0a94720 244 // ability, and is probably also more precise than a human player's
mjr 9:fd65b0a94720 245 // perception of the plunger position.
mjr 9:fd65b0a94720 246 const int npix = 160;
mjr 9:fd65b0a94720 247
mjr 4:02c7cd7b2183 248 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 4:02c7cd7b2183 249 DigitalOut ledR(LED1), ledG(LED2), ledB(LED3);
mjr 0:5acbbe3f4cf4 250
mjr 1:d913e0afb2ac 251 // calibration button - switch input and LED output
mjr 1:d913e0afb2ac 252 DigitalIn calBtn(PTE29);
mjr 1:d913e0afb2ac 253 DigitalOut calBtnLed(PTE23);
mjr 0:5acbbe3f4cf4 254
mjr 6:cc35eb643e8f 255 // LED-Wiz emulation output pin assignments. The LED-Wiz protocol
mjr 6:cc35eb643e8f 256 // can support up to 32 outputs. The KL25Z can physically provide
mjr 6:cc35eb643e8f 257 // about 48 (in addition to the ports we're already using for the
mjr 6:cc35eb643e8f 258 // CCD sensor and the calibration button), but to stay compatible
mjr 6:cc35eb643e8f 259 // with the LED-Wiz protocol we'll stop at 32.
mjr 6:cc35eb643e8f 260 //
mjr 6:cc35eb643e8f 261 // The LED-Wiz protocol allows setting individual intensity levels
mjr 6:cc35eb643e8f 262 // on all outputs, with 48 levels of intensity. This can be used
mjr 6:cc35eb643e8f 263 // to control lamp brightness and motor speeds, among other things.
mjr 6:cc35eb643e8f 264 // Unfortunately, the KL25Z only has 10 PWM channels, so while we
mjr 6:cc35eb643e8f 265 // can support the full complement of 32 outputs, we can only provide
mjr 6:cc35eb643e8f 266 // PWM dimming/speed control on 10 of them. The remaining outputs
mjr 6:cc35eb643e8f 267 // can only be switched fully on and fully off - we can't support
mjr 6:cc35eb643e8f 268 // dimming on these, so they'll ignore any intensity level setting
mjr 6:cc35eb643e8f 269 // requested by the host. Use these for devices that don't have any
mjr 6:cc35eb643e8f 270 // use for intensity settings anyway, such as contactors and knockers.
mjr 6:cc35eb643e8f 271 //
mjr 6:cc35eb643e8f 272 // The mapping between physical output pins on the KL25Z and the
mjr 6:cc35eb643e8f 273 // assigned LED-Wiz port numbers is essentially arbitrary - you can
mjr 6:cc35eb643e8f 274 // customize this by changing the entries in the array below if you
mjr 6:cc35eb643e8f 275 // wish to rearrange the pins for any reason. Be aware that some
mjr 6:cc35eb643e8f 276 // of the physical outputs are already used for other purposes
mjr 6:cc35eb643e8f 277 // (e.g., some of the GPIO pins on header J10 are used for the
mjr 6:cc35eb643e8f 278 // CCD sensor - but you can of course reassign those as well by
mjr 6:cc35eb643e8f 279 // changing the corresponding declarations elsewhere in this module).
mjr 6:cc35eb643e8f 280 // The assignments we make here have two main objectives: first,
mjr 6:cc35eb643e8f 281 // to group the outputs on headers J1 and J2 (to facilitate neater
mjr 6:cc35eb643e8f 282 // wiring by keeping the output pins together physically), and
mjr 6:cc35eb643e8f 283 // second, to make the physical pin layout match the LED-Wiz port
mjr 6:cc35eb643e8f 284 // numbering order to the extent possible. There's one big wrench
mjr 6:cc35eb643e8f 285 // in the works, though, which is the limited number and discontiguous
mjr 6:cc35eb643e8f 286 // placement of the KL25Z PWM-capable output pins. This prevents
mjr 6:cc35eb643e8f 287 // us from doing the most obvious sequential ordering of the pins,
mjr 6:cc35eb643e8f 288 // so we end up with the outputs arranged into several blocks.
mjr 6:cc35eb643e8f 289 // Hopefully this isn't too confusing; for more detailed rationale,
mjr 6:cc35eb643e8f 290 // read on...
mjr 6:cc35eb643e8f 291 //
mjr 6:cc35eb643e8f 292 // With the LED-Wiz, the host software configuration usually
mjr 6:cc35eb643e8f 293 // assumes that each RGB LED is hooked up to three consecutive ports
mjr 6:cc35eb643e8f 294 // (for the red, green, and blue components, which need to be
mjr 6:cc35eb643e8f 295 // physically wired to separate outputs to allow each color to be
mjr 6:cc35eb643e8f 296 // controlled independently). To facilitate this, we arrange the
mjr 6:cc35eb643e8f 297 // PWM-enabled outputs so that they're grouped together in the
mjr 6:cc35eb643e8f 298 // port numbering scheme. Unfortunately, these outputs aren't
mjr 6:cc35eb643e8f 299 // together in a single group in the physical pin layout, so to
mjr 6:cc35eb643e8f 300 // group them logically in the LED-Wiz port numbering scheme, we
mjr 6:cc35eb643e8f 301 // have to break up the overall numbering scheme into several blocks.
mjr 6:cc35eb643e8f 302 // So our port numbering goes sequentially down each column of
mjr 6:cc35eb643e8f 303 // header pins, but there are several break points where we have
mjr 6:cc35eb643e8f 304 // to interrupt the obvious sequence to keep the PWM pins grouped
mjr 6:cc35eb643e8f 305 // logically.
mjr 6:cc35eb643e8f 306 //
mjr 6:cc35eb643e8f 307 // In the list below, "pin J1-2" refers to pin 2 on header J1 on
mjr 6:cc35eb643e8f 308 // the KL25Z, using the standard pin numbering in the KL25Z
mjr 6:cc35eb643e8f 309 // documentation - this is the physical pin that the port controls.
mjr 6:cc35eb643e8f 310 // "LW port 1" means LED-Wiz port 1 - this is the LED-Wiz port
mjr 6:cc35eb643e8f 311 // number that you use on the PC side (in the DirectOutput config
mjr 6:cc35eb643e8f 312 // file, for example) to address the port. PWM-capable ports are
mjr 6:cc35eb643e8f 313 // marked as such - we group the PWM-capable ports into the first
mjr 6:cc35eb643e8f 314 // 10 LED-Wiz port numbers.
mjr 6:cc35eb643e8f 315 //
mjr 6:cc35eb643e8f 316 struct {
mjr 6:cc35eb643e8f 317 PinName pin;
mjr 6:cc35eb643e8f 318 bool isPWM;
mjr 6:cc35eb643e8f 319 } ledWizPortMap[32] = {
mjr 6:cc35eb643e8f 320 { PTA1, true }, // pin J1-2, LW port 1 (PWM capable - TPM 2.0 = channel 9)
mjr 6:cc35eb643e8f 321 { PTA2, true }, // pin J1-4, LW port 2 (PWM capable - TPM 2.1 = channel 10)
mjr 6:cc35eb643e8f 322 { PTD4, true }, // pin J1-6, LW port 3 (PWM capable - TPM 0.4 = channel 5)
mjr 6:cc35eb643e8f 323 { PTA12, true }, // pin J1-8, LW port 4 (PWM capable - TPM 1.0 = channel 7)
mjr 6:cc35eb643e8f 324 { PTA4, true }, // pin J1-10, LW port 5 (PWM capable - TPM 0.1 = channel 2)
mjr 6:cc35eb643e8f 325 { PTA5, true }, // pin J1-12, LW port 6 (PWM capable - TPM 0.2 = channel 3)
mjr 6:cc35eb643e8f 326 { PTA13, true }, // pin J2-2, LW port 7 (PWM capable - TPM 1.1 = channel 13)
mjr 6:cc35eb643e8f 327 { PTD5, true }, // pin J2-4, LW port 8 (PWM capable - TPM 0.5 = channel 6)
mjr 6:cc35eb643e8f 328 { PTD0, true }, // pin J2-6, LW port 9 (PWM capable - TPM 0.0 = channel 1)
mjr 6:cc35eb643e8f 329 { PTD3, true }, // pin J2-10, LW port 10 (PWM capable - TPM 0.3 = channel 4)
mjr 9:fd65b0a94720 330 { PTD2, false }, // pin J2-8, LW port 11
mjr 9:fd65b0a94720 331 { PTC8, false }, // pin J1-14, LW port 12
mjr 9:fd65b0a94720 332 { PTC9, false }, // pin J1-16, LW port 13
mjr 9:fd65b0a94720 333 { PTC7, false }, // pin J1-1, LW port 14
mjr 9:fd65b0a94720 334 { PTC0, false }, // pin J1-3, LW port 15
mjr 9:fd65b0a94720 335 { PTC3, false }, // pin J1-5, LW port 16
mjr 9:fd65b0a94720 336 { PTC4, false }, // pin J1-7, LW port 17
mjr 9:fd65b0a94720 337 { PTC5, false }, // pin J1-9, LW port 18
mjr 9:fd65b0a94720 338 { PTC6, false }, // pin J1-11, LW port 19
mjr 9:fd65b0a94720 339 { PTC10, false }, // pin J1-13, LW port 20
mjr 9:fd65b0a94720 340 { PTC11, false }, // pin J1-15, LW port 21
mjr 9:fd65b0a94720 341 { PTC12, false }, // pin J2-1, LW port 22
mjr 9:fd65b0a94720 342 { PTC13, false }, // pin J2-3, LW port 23
mjr 9:fd65b0a94720 343 { PTC16, false }, // pin J2-5, LW port 24
mjr 9:fd65b0a94720 344 { PTC17, false }, // pin J2-7, LW port 25
mjr 9:fd65b0a94720 345 { PTA16, false }, // pin J2-9, LW port 26
mjr 9:fd65b0a94720 346 { PTA17, false }, // pin J2-11, LW port 27
mjr 9:fd65b0a94720 347 { PTE31, false }, // pin J2-13, LW port 28
mjr 6:cc35eb643e8f 348 { PTD6, false }, // pin J2-17, LW port 29
mjr 6:cc35eb643e8f 349 { PTD7, false }, // pin J2-19, LW port 30
mjr 6:cc35eb643e8f 350 { PTE0, false }, // pin J2-18, LW port 31
mjr 6:cc35eb643e8f 351 { PTE1, false } // pin J2-20, LW port 32
mjr 6:cc35eb643e8f 352 };
mjr 6:cc35eb643e8f 353
mjr 6:cc35eb643e8f 354
mjr 5:a70c0bce770d 355 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 5:a70c0bce770d 356 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 5:a70c0bce770d 357
mjr 5:a70c0bce770d 358 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 5:a70c0bce770d 359 #define MMA8451_SCL_PIN PTE25
mjr 5:a70c0bce770d 360 #define MMA8451_SDA_PIN PTE24
mjr 5:a70c0bce770d 361
mjr 5:a70c0bce770d 362 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 5:a70c0bce770d 363 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 5:a70c0bce770d 364 // wired on this board to the MMA8451 interrupt controller.
mjr 5:a70c0bce770d 365 #define MMA8451_INT_PIN PTA15
mjr 5:a70c0bce770d 366
mjr 6:cc35eb643e8f 367 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 6:cc35eb643e8f 368 #define JOYMAX 4096
mjr 6:cc35eb643e8f 369
mjr 5:a70c0bce770d 370
mjr 5:a70c0bce770d 371 // ---------------------------------------------------------------------------
mjr 9:fd65b0a94720 372 // utilities
mjr 9:fd65b0a94720 373
mjr 9:fd65b0a94720 374 // number of elements in an array
mjr 9:fd65b0a94720 375 #define countof(x) (sizeof(x)/sizeof((x)[0]))
mjr 9:fd65b0a94720 376
mjr 9:fd65b0a94720 377 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 378 //
mjr 5:a70c0bce770d 379 // LedWiz emulation
mjr 5:a70c0bce770d 380 //
mjr 5:a70c0bce770d 381
mjr 0:5acbbe3f4cf4 382 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 383
mjr 6:cc35eb643e8f 384 // LedWiz output pin interface. We create a cover class to virtualize
mjr 6:cc35eb643e8f 385 // digital vs PWM outputs and give them a common interface. The KL25Z
mjr 6:cc35eb643e8f 386 // unfortunately doesn't have enough hardware PWM channels to support
mjr 6:cc35eb643e8f 387 // PWM on all 32 LedWiz outputs, so we provide as many PWM channels as
mjr 6:cc35eb643e8f 388 // we can (10), and fill out the rest of the outputs with plain digital
mjr 6:cc35eb643e8f 389 // outs.
mjr 6:cc35eb643e8f 390 class LwOut
mjr 6:cc35eb643e8f 391 {
mjr 6:cc35eb643e8f 392 public:
mjr 6:cc35eb643e8f 393 virtual void set(float val) = 0;
mjr 6:cc35eb643e8f 394 };
mjr 6:cc35eb643e8f 395 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 396 {
mjr 6:cc35eb643e8f 397 public:
mjr 6:cc35eb643e8f 398 LwPwmOut(PinName pin) : p(pin) { }
mjr 6:cc35eb643e8f 399 virtual void set(float val) { p = val; }
mjr 6:cc35eb643e8f 400 PwmOut p;
mjr 6:cc35eb643e8f 401 };
mjr 6:cc35eb643e8f 402 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 403 {
mjr 6:cc35eb643e8f 404 public:
mjr 6:cc35eb643e8f 405 LwDigOut(PinName pin) : p(pin) { }
mjr 6:cc35eb643e8f 406 virtual void set(float val) { p = val; }
mjr 6:cc35eb643e8f 407 DigitalOut p;
mjr 6:cc35eb643e8f 408 };
mjr 6:cc35eb643e8f 409
mjr 6:cc35eb643e8f 410 // output pin array
mjr 6:cc35eb643e8f 411 static LwOut *lwPin[32];
mjr 6:cc35eb643e8f 412
mjr 6:cc35eb643e8f 413 // initialize the output pin array
mjr 6:cc35eb643e8f 414 void initLwOut()
mjr 6:cc35eb643e8f 415 {
mjr 9:fd65b0a94720 416 for (int i = 0 ; i < countof(lwPin) ; ++i)
mjr 6:cc35eb643e8f 417 {
mjr 6:cc35eb643e8f 418 PinName p = ledWizPortMap[i].pin;
mjr 6:cc35eb643e8f 419 lwPin[i] = (ledWizPortMap[i].isPWM
mjr 6:cc35eb643e8f 420 ? (LwOut *)new LwPwmOut(p)
mjr 6:cc35eb643e8f 421 : (LwOut *)new LwDigOut(p));
mjr 6:cc35eb643e8f 422 }
mjr 6:cc35eb643e8f 423 }
mjr 6:cc35eb643e8f 424
mjr 0:5acbbe3f4cf4 425 // on/off state for each LedWiz output
mjr 1:d913e0afb2ac 426 static uint8_t wizOn[32];
mjr 0:5acbbe3f4cf4 427
mjr 0:5acbbe3f4cf4 428 // profile (brightness/blink) state for each LedWiz output
mjr 1:d913e0afb2ac 429 static uint8_t wizVal[32] = {
mjr 0:5acbbe3f4cf4 430 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 431 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 432 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 433 0, 0, 0, 0, 0, 0, 0, 0
mjr 0:5acbbe3f4cf4 434 };
mjr 0:5acbbe3f4cf4 435
mjr 1:d913e0afb2ac 436 static float wizState(int idx)
mjr 0:5acbbe3f4cf4 437 {
mjr 1:d913e0afb2ac 438 if (wizOn[idx]) {
mjr 0:5acbbe3f4cf4 439 // on - map profile brightness state to PWM level
mjr 1:d913e0afb2ac 440 uint8_t val = wizVal[idx];
mjr 0:5acbbe3f4cf4 441 if (val >= 1 && val <= 48)
mjr 0:5acbbe3f4cf4 442 return 1.0 - val/48.0;
mjr 0:5acbbe3f4cf4 443 else if (val >= 129 && val <= 132)
mjr 0:5acbbe3f4cf4 444 return 0.0;
mjr 0:5acbbe3f4cf4 445 else
mjr 0:5acbbe3f4cf4 446 return 1.0;
mjr 0:5acbbe3f4cf4 447 }
mjr 0:5acbbe3f4cf4 448 else {
mjr 0:5acbbe3f4cf4 449 // off
mjr 0:5acbbe3f4cf4 450 return 1.0;
mjr 0:5acbbe3f4cf4 451 }
mjr 0:5acbbe3f4cf4 452 }
mjr 0:5acbbe3f4cf4 453
mjr 1:d913e0afb2ac 454 static void updateWizOuts()
mjr 1:d913e0afb2ac 455 {
mjr 6:cc35eb643e8f 456 for (int i = 0 ; i < 32 ; ++i)
mjr 6:cc35eb643e8f 457 lwPin[i]->set(wizState(i));
mjr 1:d913e0afb2ac 458 }
mjr 1:d913e0afb2ac 459
mjr 5:a70c0bce770d 460 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 461 //
mjr 5:a70c0bce770d 462 // Non-volatile memory (NVM)
mjr 5:a70c0bce770d 463 //
mjr 0:5acbbe3f4cf4 464
mjr 5:a70c0bce770d 465 // Structure defining our NVM storage layout. We store a small
mjr 2:c174f9ee414a 466 // amount of persistent data in flash memory to retain calibration
mjr 5:a70c0bce770d 467 // data when powered off.
mjr 2:c174f9ee414a 468 struct NVM
mjr 2:c174f9ee414a 469 {
mjr 2:c174f9ee414a 470 // checksum - we use this to determine if the flash record
mjr 6:cc35eb643e8f 471 // has been properly initialized
mjr 2:c174f9ee414a 472 uint32_t checksum;
mjr 2:c174f9ee414a 473
mjr 2:c174f9ee414a 474 // signature value
mjr 2:c174f9ee414a 475 static const uint32_t SIGNATURE = 0x4D4A522A;
mjr 6:cc35eb643e8f 476 static const uint16_t VERSION = 0x0003;
mjr 6:cc35eb643e8f 477
mjr 6:cc35eb643e8f 478 // Is the data structure valid? We test the signature and
mjr 6:cc35eb643e8f 479 // checksum to determine if we've been properly stored.
mjr 6:cc35eb643e8f 480 int valid() const
mjr 6:cc35eb643e8f 481 {
mjr 6:cc35eb643e8f 482 return (d.sig == SIGNATURE
mjr 6:cc35eb643e8f 483 && d.vsn == VERSION
mjr 6:cc35eb643e8f 484 && d.sz == sizeof(NVM)
mjr 6:cc35eb643e8f 485 && checksum == CRC32(&d, sizeof(d)));
mjr 6:cc35eb643e8f 486 }
mjr 6:cc35eb643e8f 487
mjr 6:cc35eb643e8f 488 // save to non-volatile memory
mjr 6:cc35eb643e8f 489 void save(FreescaleIAP &iap, int addr)
mjr 6:cc35eb643e8f 490 {
mjr 6:cc35eb643e8f 491 // update the checksum and structure size
mjr 6:cc35eb643e8f 492 checksum = CRC32(&d, sizeof(d));
mjr 6:cc35eb643e8f 493 d.sz = sizeof(NVM);
mjr 6:cc35eb643e8f 494
mjr 6:cc35eb643e8f 495 // erase the sector
mjr 6:cc35eb643e8f 496 iap.erase_sector(addr);
mjr 6:cc35eb643e8f 497
mjr 6:cc35eb643e8f 498 // save the data
mjr 6:cc35eb643e8f 499 iap.program_flash(addr, this, sizeof(*this));
mjr 6:cc35eb643e8f 500 }
mjr 2:c174f9ee414a 501
mjr 9:fd65b0a94720 502 // reset calibration data for calibration mode
mjr 9:fd65b0a94720 503 void resetPlunger()
mjr 9:fd65b0a94720 504 {
mjr 9:fd65b0a94720 505 // set extremes for the calibration data
mjr 9:fd65b0a94720 506 d.plungerMax = 0;
mjr 9:fd65b0a94720 507 d.plungerZero = npix;
mjr 9:fd65b0a94720 508 d.plungerMin = npix;
mjr 9:fd65b0a94720 509 }
mjr 9:fd65b0a94720 510
mjr 2:c174f9ee414a 511 // stored data (excluding the checksum)
mjr 2:c174f9ee414a 512 struct
mjr 2:c174f9ee414a 513 {
mjr 6:cc35eb643e8f 514 // Signature, structure version, and structure size - further verification
mjr 6:cc35eb643e8f 515 // that we have valid initialized data. The size is a simple proxy for a
mjr 6:cc35eb643e8f 516 // structure version, as the most common type of change to the structure as
mjr 6:cc35eb643e8f 517 // the software evolves will be the addition of new elements. We also
mjr 6:cc35eb643e8f 518 // provide an explicit version number that we can update manually if we
mjr 6:cc35eb643e8f 519 // make any changes that don't affect the structure size but would affect
mjr 6:cc35eb643e8f 520 // compatibility with a saved record (e.g., swapping two existing elements).
mjr 2:c174f9ee414a 521 uint32_t sig;
mjr 2:c174f9ee414a 522 uint16_t vsn;
mjr 6:cc35eb643e8f 523 int sz;
mjr 2:c174f9ee414a 524
mjr 6:cc35eb643e8f 525 // has the plunger been manually calibrated?
mjr 6:cc35eb643e8f 526 int plungerCal;
mjr 6:cc35eb643e8f 527
mjr 2:c174f9ee414a 528 // plunger calibration min and max
mjr 2:c174f9ee414a 529 int plungerMin;
mjr 6:cc35eb643e8f 530 int plungerZero;
mjr 2:c174f9ee414a 531 int plungerMax;
mjr 6:cc35eb643e8f 532
mjr 6:cc35eb643e8f 533 // is the CCD enabled?
mjr 6:cc35eb643e8f 534 int ccdEnabled;
mjr 6:cc35eb643e8f 535
mjr 6:cc35eb643e8f 536 // LedWiz unit number
mjr 6:cc35eb643e8f 537 uint8_t ledWizUnitNo;
mjr 2:c174f9ee414a 538 } d;
mjr 2:c174f9ee414a 539 };
mjr 2:c174f9ee414a 540
mjr 5:a70c0bce770d 541
mjr 5:a70c0bce770d 542 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 543 //
mjr 5:a70c0bce770d 544 // Customization joystick subbclass
mjr 5:a70c0bce770d 545 //
mjr 5:a70c0bce770d 546
mjr 5:a70c0bce770d 547 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 548 {
mjr 5:a70c0bce770d 549 public:
mjr 5:a70c0bce770d 550 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release)
mjr 5:a70c0bce770d 551 : USBJoystick(vendor_id, product_id, product_release, true)
mjr 5:a70c0bce770d 552 {
mjr 5:a70c0bce770d 553 suspended_ = false;
mjr 5:a70c0bce770d 554 }
mjr 5:a70c0bce770d 555
mjr 5:a70c0bce770d 556 // are we connected?
mjr 5:a70c0bce770d 557 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 558
mjr 5:a70c0bce770d 559 // Are we in suspend mode?
mjr 5:a70c0bce770d 560 int isSuspended() const { return suspended_; }
mjr 5:a70c0bce770d 561
mjr 5:a70c0bce770d 562 protected:
mjr 5:a70c0bce770d 563 virtual void suspendStateChanged(unsigned int suspended)
mjr 5:a70c0bce770d 564 { suspended_ = suspended; }
mjr 5:a70c0bce770d 565
mjr 5:a70c0bce770d 566 // are we suspended?
mjr 5:a70c0bce770d 567 int suspended_;
mjr 5:a70c0bce770d 568 };
mjr 5:a70c0bce770d 569
mjr 5:a70c0bce770d 570 // ---------------------------------------------------------------------------
mjr 6:cc35eb643e8f 571 //
mjr 6:cc35eb643e8f 572 // Some simple math service routines
mjr 6:cc35eb643e8f 573 //
mjr 6:cc35eb643e8f 574
mjr 6:cc35eb643e8f 575 inline float square(float x) { return x*x; }
mjr 6:cc35eb643e8f 576 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 6:cc35eb643e8f 577
mjr 6:cc35eb643e8f 578 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 579 //
mjr 5:a70c0bce770d 580 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 581 //
mjr 5:a70c0bce770d 582
mjr 5:a70c0bce770d 583 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 584 //
mjr 5:a70c0bce770d 585 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 586 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 587 // automatic calibration.
mjr 5:a70c0bce770d 588 //
mjr 5:a70c0bce770d 589 // We install an interrupt handler on the accelerometer "data ready"
mjr 6:cc35eb643e8f 590 // interrupt to ensure that we fetch each sample immediately when it
mjr 6:cc35eb643e8f 591 // becomes available. The accelerometer data rate is fiarly high
mjr 6:cc35eb643e8f 592 // (800 Hz), so it's not practical to keep up with it by polling.
mjr 6:cc35eb643e8f 593 // Using an interrupt handler lets us respond quickly and read
mjr 6:cc35eb643e8f 594 // every sample.
mjr 5:a70c0bce770d 595 //
mjr 6:cc35eb643e8f 596 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 597 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 598 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 599 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 600 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 601 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 602 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 603 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 604 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 605 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 606 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 607 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 608 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 609 // of nudging, say).
mjr 5:a70c0bce770d 610 //
mjr 5:a70c0bce770d 611
mjr 6:cc35eb643e8f 612 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 613 struct AccHist
mjr 5:a70c0bce770d 614 {
mjr 6:cc35eb643e8f 615 AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 616 void set(float x, float y, AccHist *prv)
mjr 6:cc35eb643e8f 617 {
mjr 6:cc35eb643e8f 618 // save the raw position
mjr 6:cc35eb643e8f 619 this->x = x;
mjr 6:cc35eb643e8f 620 this->y = y;
mjr 6:cc35eb643e8f 621 this->d = distance(prv);
mjr 6:cc35eb643e8f 622 }
mjr 6:cc35eb643e8f 623
mjr 6:cc35eb643e8f 624 // reading for this entry
mjr 5:a70c0bce770d 625 float x, y;
mjr 5:a70c0bce770d 626
mjr 6:cc35eb643e8f 627 // distance from previous entry
mjr 6:cc35eb643e8f 628 float d;
mjr 5:a70c0bce770d 629
mjr 6:cc35eb643e8f 630 // total and count of samples averaged over this period
mjr 6:cc35eb643e8f 631 float xtot, ytot;
mjr 6:cc35eb643e8f 632 int cnt;
mjr 6:cc35eb643e8f 633
mjr 6:cc35eb643e8f 634 void clearAvg() { xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 635 void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; }
mjr 6:cc35eb643e8f 636 float xAvg() const { return xtot/cnt; }
mjr 6:cc35eb643e8f 637 float yAvg() const { return ytot/cnt; }
mjr 5:a70c0bce770d 638
mjr 6:cc35eb643e8f 639 float distance(AccHist *p)
mjr 6:cc35eb643e8f 640 { return sqrt(square(p->x - x) + square(p->y - y)); }
mjr 5:a70c0bce770d 641 };
mjr 5:a70c0bce770d 642
mjr 5:a70c0bce770d 643 // accelerometer wrapper class
mjr 3:3514575d4f86 644 class Accel
mjr 3:3514575d4f86 645 {
mjr 3:3514575d4f86 646 public:
mjr 3:3514575d4f86 647 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin)
mjr 3:3514575d4f86 648 : mma_(sda, scl, i2cAddr), intIn_(irqPin)
mjr 3:3514575d4f86 649 {
mjr 5:a70c0bce770d 650 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 651 irqPin_ = irqPin;
mjr 5:a70c0bce770d 652
mjr 5:a70c0bce770d 653 // reset and initialize
mjr 5:a70c0bce770d 654 reset();
mjr 5:a70c0bce770d 655 }
mjr 5:a70c0bce770d 656
mjr 5:a70c0bce770d 657 void reset()
mjr 5:a70c0bce770d 658 {
mjr 6:cc35eb643e8f 659 // clear the center point
mjr 6:cc35eb643e8f 660 cx_ = cy_ = 0.0;
mjr 6:cc35eb643e8f 661
mjr 6:cc35eb643e8f 662 // start the calibration timer
mjr 5:a70c0bce770d 663 tCenter_.start();
mjr 5:a70c0bce770d 664 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 665
mjr 5:a70c0bce770d 666 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 667 mma_.init();
mjr 6:cc35eb643e8f 668
mjr 6:cc35eb643e8f 669 // set the initial integrated velocity reading to zero
mjr 6:cc35eb643e8f 670 vx_ = vy_ = 0;
mjr 3:3514575d4f86 671
mjr 6:cc35eb643e8f 672 // set up our accelerometer interrupt handling
mjr 6:cc35eb643e8f 673 intIn_.rise(this, &Accel::isr);
mjr 5:a70c0bce770d 674 mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2);
mjr 3:3514575d4f86 675
mjr 3:3514575d4f86 676 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 677 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 678
mjr 3:3514575d4f86 679 // start our timers
mjr 3:3514575d4f86 680 tGet_.start();
mjr 3:3514575d4f86 681 tInt_.start();
mjr 3:3514575d4f86 682 }
mjr 3:3514575d4f86 683
mjr 9:fd65b0a94720 684 void get(int &x, int &y)
mjr 3:3514575d4f86 685 {
mjr 3:3514575d4f86 686 // disable interrupts while manipulating the shared data
mjr 3:3514575d4f86 687 __disable_irq();
mjr 3:3514575d4f86 688
mjr 3:3514575d4f86 689 // read the shared data and store locally for calculations
mjr 6:cc35eb643e8f 690 float ax = ax_, ay = ay_;
mjr 6:cc35eb643e8f 691 float vx = vx_, vy = vy_;
mjr 5:a70c0bce770d 692
mjr 6:cc35eb643e8f 693 // reset the velocity sum for the next run
mjr 6:cc35eb643e8f 694 vx_ = vy_ = 0;
mjr 3:3514575d4f86 695
mjr 3:3514575d4f86 696 // get the time since the last get() sample
mjr 3:3514575d4f86 697 float dt = tGet_.read_us()/1.0e6;
mjr 3:3514575d4f86 698 tGet_.reset();
mjr 3:3514575d4f86 699
mjr 3:3514575d4f86 700 // done manipulating the shared data
mjr 3:3514575d4f86 701 __enable_irq();
mjr 3:3514575d4f86 702
mjr 6:cc35eb643e8f 703 // adjust the readings for the integration time
mjr 6:cc35eb643e8f 704 vx /= dt;
mjr 6:cc35eb643e8f 705 vy /= dt;
mjr 6:cc35eb643e8f 706
mjr 6:cc35eb643e8f 707 // add this sample to the current calibration interval's running total
mjr 6:cc35eb643e8f 708 AccHist *p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 709 p->addAvg(ax, ay);
mjr 6:cc35eb643e8f 710
mjr 5:a70c0bce770d 711 // check for auto-centering every so often
mjr 5:a70c0bce770d 712 if (tCenter_.read_ms() > 1000)
mjr 5:a70c0bce770d 713 {
mjr 5:a70c0bce770d 714 // add the latest raw sample to the history list
mjr 6:cc35eb643e8f 715 AccHist *prv = p;
mjr 5:a70c0bce770d 716 iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv;
mjr 6:cc35eb643e8f 717 p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 718 p->set(ax, ay, prv);
mjr 5:a70c0bce770d 719
mjr 5:a70c0bce770d 720 // if we have a full complement, check for stability
mjr 5:a70c0bce770d 721 if (nAccPrv_ >= maxAccPrv)
mjr 5:a70c0bce770d 722 {
mjr 5:a70c0bce770d 723 // check if we've been stable for all recent samples
mjr 6:cc35eb643e8f 724 static const float accTol = .01;
mjr 6:cc35eb643e8f 725 AccHist *p0 = accPrv_;
mjr 6:cc35eb643e8f 726 if (p0[0].d < accTol
mjr 6:cc35eb643e8f 727 && p0[1].d < accTol
mjr 6:cc35eb643e8f 728 && p0[2].d < accTol
mjr 6:cc35eb643e8f 729 && p0[3].d < accTol
mjr 6:cc35eb643e8f 730 && p0[4].d < accTol)
mjr 5:a70c0bce770d 731 {
mjr 6:cc35eb643e8f 732 // Figure the new calibration point as the average of
mjr 6:cc35eb643e8f 733 // the samples over the rest period
mjr 6:cc35eb643e8f 734 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0;
mjr 6:cc35eb643e8f 735 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0;
mjr 5:a70c0bce770d 736 }
mjr 5:a70c0bce770d 737 }
mjr 5:a70c0bce770d 738 else
mjr 5:a70c0bce770d 739 {
mjr 5:a70c0bce770d 740 // not enough samples yet; just up the count
mjr 5:a70c0bce770d 741 ++nAccPrv_;
mjr 5:a70c0bce770d 742 }
mjr 6:cc35eb643e8f 743
mjr 6:cc35eb643e8f 744 // clear the new item's running totals
mjr 6:cc35eb643e8f 745 p->clearAvg();
mjr 5:a70c0bce770d 746
mjr 5:a70c0bce770d 747 // reset the timer
mjr 5:a70c0bce770d 748 tCenter_.reset();
mjr 5:a70c0bce770d 749 }
mjr 5:a70c0bce770d 750
mjr 6:cc35eb643e8f 751 // report our integrated velocity reading in x,y
mjr 6:cc35eb643e8f 752 x = rawToReport(vx);
mjr 6:cc35eb643e8f 753 y = rawToReport(vy);
mjr 5:a70c0bce770d 754
mjr 6:cc35eb643e8f 755 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 756 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 757 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 758 #endif
mjr 3:3514575d4f86 759 }
mjr 3:3514575d4f86 760
mjr 3:3514575d4f86 761 private:
mjr 6:cc35eb643e8f 762 // adjust a raw acceleration figure to a usb report value
mjr 6:cc35eb643e8f 763 int rawToReport(float v)
mjr 5:a70c0bce770d 764 {
mjr 6:cc35eb643e8f 765 // scale to the joystick report range and round to integer
mjr 6:cc35eb643e8f 766 int i = int(round(v*JOYMAX));
mjr 5:a70c0bce770d 767
mjr 6:cc35eb643e8f 768 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 769 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 770 static const int filter[] = {
mjr 6:cc35eb643e8f 771 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 772 0,
mjr 6:cc35eb643e8f 773 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 774 };
mjr 6:cc35eb643e8f 775 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 776 }
mjr 5:a70c0bce770d 777
mjr 3:3514575d4f86 778 // interrupt handler
mjr 3:3514575d4f86 779 void isr()
mjr 3:3514575d4f86 780 {
mjr 3:3514575d4f86 781 // Read the axes. Note that we have to read all three axes
mjr 3:3514575d4f86 782 // (even though we only really use x and y) in order to clear
mjr 3:3514575d4f86 783 // the "data ready" status bit in the accelerometer. The
mjr 3:3514575d4f86 784 // interrupt only occurs when the "ready" bit transitions from
mjr 3:3514575d4f86 785 // off to on, so we have to make sure it's off.
mjr 5:a70c0bce770d 786 float x, y, z;
mjr 5:a70c0bce770d 787 mma_.getAccXYZ(x, y, z);
mjr 3:3514575d4f86 788
mjr 3:3514575d4f86 789 // calculate the time since the last interrupt
mjr 3:3514575d4f86 790 float dt = tInt_.read_us()/1.0e6;
mjr 3:3514575d4f86 791 tInt_.reset();
mjr 6:cc35eb643e8f 792
mjr 6:cc35eb643e8f 793 // integrate the time slice from the previous reading to this reading
mjr 6:cc35eb643e8f 794 vx_ += (x + ax_ - 2*cx_)*dt/2;
mjr 6:cc35eb643e8f 795 vy_ += (y + ay_ - 2*cy_)*dt/2;
mjr 3:3514575d4f86 796
mjr 6:cc35eb643e8f 797 // store the updates
mjr 6:cc35eb643e8f 798 ax_ = x;
mjr 6:cc35eb643e8f 799 ay_ = y;
mjr 6:cc35eb643e8f 800 az_ = z;
mjr 3:3514575d4f86 801 }
mjr 3:3514575d4f86 802
mjr 3:3514575d4f86 803 // underlying accelerometer object
mjr 3:3514575d4f86 804 MMA8451Q mma_;
mjr 3:3514575d4f86 805
mjr 5:a70c0bce770d 806 // last raw acceleration readings
mjr 6:cc35eb643e8f 807 float ax_, ay_, az_;
mjr 5:a70c0bce770d 808
mjr 6:cc35eb643e8f 809 // integrated velocity reading since last get()
mjr 6:cc35eb643e8f 810 float vx_, vy_;
mjr 6:cc35eb643e8f 811
mjr 3:3514575d4f86 812 // timer for measuring time between get() samples
mjr 3:3514575d4f86 813 Timer tGet_;
mjr 3:3514575d4f86 814
mjr 3:3514575d4f86 815 // timer for measuring time between interrupts
mjr 3:3514575d4f86 816 Timer tInt_;
mjr 5:a70c0bce770d 817
mjr 6:cc35eb643e8f 818 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 819 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 820 // at rest.
mjr 6:cc35eb643e8f 821 float cx_, cy_;
mjr 5:a70c0bce770d 822
mjr 5:a70c0bce770d 823 // timer for atuo-centering
mjr 5:a70c0bce770d 824 Timer tCenter_;
mjr 6:cc35eb643e8f 825
mjr 6:cc35eb643e8f 826 // Auto-centering history. This is a separate history list that
mjr 6:cc35eb643e8f 827 // records results spaced out sparesely over time, so that we can
mjr 6:cc35eb643e8f 828 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 829 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 830 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 831 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 832 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 833 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 834 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 835 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 836 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 837 // accelerometer measurement bias (e.g., from temperature changes).
mjr 5:a70c0bce770d 838 int iAccPrv_, nAccPrv_;
mjr 5:a70c0bce770d 839 static const int maxAccPrv = 5;
mjr 6:cc35eb643e8f 840 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 841
mjr 5:a70c0bce770d 842 // interurupt pin name
mjr 5:a70c0bce770d 843 PinName irqPin_;
mjr 5:a70c0bce770d 844
mjr 5:a70c0bce770d 845 // interrupt router
mjr 5:a70c0bce770d 846 InterruptIn intIn_;
mjr 3:3514575d4f86 847 };
mjr 3:3514575d4f86 848
mjr 5:a70c0bce770d 849
mjr 5:a70c0bce770d 850 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 851 //
mjr 5:a70c0bce770d 852 // Clear the I2C bus for the MMA8451!. This seems necessary some of the time
mjr 5:a70c0bce770d 853 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 854 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 855 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 5:a70c0bce770d 856 // the SCL line is supposed to clear this conidtion.
mjr 5:a70c0bce770d 857 //
mjr 5:a70c0bce770d 858 void clear_i2c()
mjr 5:a70c0bce770d 859 {
mjr 5:a70c0bce770d 860 // assume a general-purpose output pin to the I2C clock
mjr 5:a70c0bce770d 861 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 862 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 863
mjr 5:a70c0bce770d 864 // clock the SCL 9 times
mjr 5:a70c0bce770d 865 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 866 {
mjr 5:a70c0bce770d 867 scl = 1;
mjr 5:a70c0bce770d 868 wait_us(20);
mjr 5:a70c0bce770d 869 scl = 0;
mjr 5:a70c0bce770d 870 wait_us(20);
mjr 5:a70c0bce770d 871 }
mjr 5:a70c0bce770d 872 }
mjr 5:a70c0bce770d 873
mjr 5:a70c0bce770d 874 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 875 //
mjr 5:a70c0bce770d 876 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 877 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 878 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 879 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 880 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 881 // port outputs.
mjr 5:a70c0bce770d 882 //
mjr 0:5acbbe3f4cf4 883 int main(void)
mjr 0:5acbbe3f4cf4 884 {
mjr 1:d913e0afb2ac 885 // turn off our on-board indicator LED
mjr 4:02c7cd7b2183 886 ledR = 1;
mjr 4:02c7cd7b2183 887 ledG = 1;
mjr 4:02c7cd7b2183 888 ledB = 1;
mjr 1:d913e0afb2ac 889
mjr 6:cc35eb643e8f 890 // initialize the LedWiz ports
mjr 6:cc35eb643e8f 891 initLwOut();
mjr 6:cc35eb643e8f 892
mjr 6:cc35eb643e8f 893 // we don't need a reset yet
mjr 6:cc35eb643e8f 894 bool needReset = false;
mjr 6:cc35eb643e8f 895
mjr 5:a70c0bce770d 896 // clear the I2C bus for the accelerometer
mjr 5:a70c0bce770d 897 clear_i2c();
mjr 5:a70c0bce770d 898
mjr 2:c174f9ee414a 899 // set up a flash memory controller
mjr 2:c174f9ee414a 900 FreescaleIAP iap;
mjr 2:c174f9ee414a 901
mjr 2:c174f9ee414a 902 // use the last sector of flash for our non-volatile memory structure
mjr 2:c174f9ee414a 903 int flash_addr = (iap.flash_size() - SECTOR_SIZE);
mjr 2:c174f9ee414a 904 NVM *flash = (NVM *)flash_addr;
mjr 2:c174f9ee414a 905 NVM cfg;
mjr 2:c174f9ee414a 906
mjr 2:c174f9ee414a 907 // check for valid flash
mjr 6:cc35eb643e8f 908 bool flash_valid = flash->valid();
mjr 2:c174f9ee414a 909
mjr 2:c174f9ee414a 910 // if the flash is valid, load it; otherwise initialize to defaults
mjr 2:c174f9ee414a 911 if (flash_valid) {
mjr 2:c174f9ee414a 912 memcpy(&cfg, flash, sizeof(cfg));
mjr 6:cc35eb643e8f 913 printf("Flash restored: plunger cal=%d, min=%d, zero=%d, max=%d\r\n",
mjr 6:cc35eb643e8f 914 cfg.d.plungerCal, cfg.d.plungerMin, cfg.d.plungerZero, cfg.d.plungerMax);
mjr 2:c174f9ee414a 915 }
mjr 2:c174f9ee414a 916 else {
mjr 2:c174f9ee414a 917 printf("Factory reset\r\n");
mjr 2:c174f9ee414a 918 cfg.d.sig = cfg.SIGNATURE;
mjr 2:c174f9ee414a 919 cfg.d.vsn = cfg.VERSION;
mjr 6:cc35eb643e8f 920 cfg.d.plungerCal = 0;
mjr 6:cc35eb643e8f 921 cfg.d.plungerZero = 0;
mjr 2:c174f9ee414a 922 cfg.d.plungerMin = 0;
mjr 2:c174f9ee414a 923 cfg.d.plungerMax = npix;
mjr 6:cc35eb643e8f 924 cfg.d.ledWizUnitNo = DEFAULT_LEDWIZ_UNIT_NUMBER;
mjr 6:cc35eb643e8f 925 cfg.d.ccdEnabled = true;
mjr 2:c174f9ee414a 926 }
mjr 1:d913e0afb2ac 927
mjr 6:cc35eb643e8f 928 // Create the joystick USB client. Note that we use the LedWiz unit
mjr 6:cc35eb643e8f 929 // number from the saved configuration.
mjr 6:cc35eb643e8f 930 MyUSBJoystick js(
mjr 6:cc35eb643e8f 931 USB_VENDOR_ID,
mjr 6:cc35eb643e8f 932 USB_PRODUCT_ID | cfg.d.ledWizUnitNo,
mjr 6:cc35eb643e8f 933 USB_VERSION_NO);
mjr 6:cc35eb643e8f 934
mjr 1:d913e0afb2ac 935 // plunger calibration button debounce timer
mjr 1:d913e0afb2ac 936 Timer calBtnTimer;
mjr 1:d913e0afb2ac 937 calBtnTimer.start();
mjr 1:d913e0afb2ac 938 int calBtnLit = false;
mjr 1:d913e0afb2ac 939
mjr 1:d913e0afb2ac 940 // Calibration button state:
mjr 1:d913e0afb2ac 941 // 0 = not pushed
mjr 1:d913e0afb2ac 942 // 1 = pushed, not yet debounced
mjr 1:d913e0afb2ac 943 // 2 = pushed, debounced, waiting for hold time
mjr 1:d913e0afb2ac 944 // 3 = pushed, hold time completed - in calibration mode
mjr 1:d913e0afb2ac 945 int calBtnState = 0;
mjr 1:d913e0afb2ac 946
mjr 1:d913e0afb2ac 947 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 948 Timer hbTimer;
mjr 1:d913e0afb2ac 949 hbTimer.start();
mjr 1:d913e0afb2ac 950 int hb = 0;
mjr 5:a70c0bce770d 951 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 952
mjr 1:d913e0afb2ac 953 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 954 Timer acTimer;
mjr 1:d913e0afb2ac 955 acTimer.start();
mjr 1:d913e0afb2ac 956
mjr 0:5acbbe3f4cf4 957 // create the accelerometer object
mjr 5:a70c0bce770d 958 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS, MMA8451_INT_PIN);
mjr 0:5acbbe3f4cf4 959
mjr 0:5acbbe3f4cf4 960 // create the CCD array object
mjr 1:d913e0afb2ac 961 TSL1410R ccd(PTE20, PTE21, PTB0);
mjr 2:c174f9ee414a 962
mjr 1:d913e0afb2ac 963 // last accelerometer report, in mouse coordinates
mjr 6:cc35eb643e8f 964 int x = 0, y = 0, z = 0;
mjr 6:cc35eb643e8f 965
mjr 6:cc35eb643e8f 966 // previous two plunger readings, for "debouncing" the results (z0 is
mjr 6:cc35eb643e8f 967 // the most recent, z1 is the one before that)
mjr 6:cc35eb643e8f 968 int z0 = 0, z1 = 0, z2 = 0;
mjr 6:cc35eb643e8f 969
mjr 6:cc35eb643e8f 970 // Firing in progress: we set this when we detect the start of rapid
mjr 6:cc35eb643e8f 971 // plunger movement from a retracted position towards the rest position.
mjr 6:cc35eb643e8f 972 // The actual plunger spring return speed seems to be too slow for VP,
mjr 6:cc35eb643e8f 973 // so when we detect the start of this motion, we immediately tell VP
mjr 6:cc35eb643e8f 974 // to return the plunger to rest, then we monitor the real plunger
mjr 6:cc35eb643e8f 975 // until it atcually stops.
mjr 9:fd65b0a94720 976 int firing = 0;
mjr 2:c174f9ee414a 977
mjr 2:c174f9ee414a 978 // start the first CCD integration cycle
mjr 2:c174f9ee414a 979 ccd.clear();
mjr 9:fd65b0a94720 980
mjr 9:fd65b0a94720 981 // Device status. We report this on each update so that the host config
mjr 9:fd65b0a94720 982 // tool can detect our current settings. This is a bit mask consisting
mjr 9:fd65b0a94720 983 // of these bits:
mjr 9:fd65b0a94720 984 // 0x01 -> plunger sensor enabled
mjr 9:fd65b0a94720 985 uint16_t statusFlags = (cfg.d.ccdEnabled ? 0x01 : 0x00);
mjr 1:d913e0afb2ac 986
mjr 1:d913e0afb2ac 987 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 988 // host requests
mjr 0:5acbbe3f4cf4 989 for (;;)
mjr 0:5acbbe3f4cf4 990 {
mjr 0:5acbbe3f4cf4 991 // Look for an incoming report. Continue processing input as
mjr 0:5acbbe3f4cf4 992 // long as there's anything pending - this ensures that we
mjr 0:5acbbe3f4cf4 993 // handle input in as timely a fashion as possible by deferring
mjr 0:5acbbe3f4cf4 994 // output tasks as long as there's input to process.
mjr 0:5acbbe3f4cf4 995 HID_REPORT report;
mjr 6:cc35eb643e8f 996 while (js.readNB(&report))
mjr 0:5acbbe3f4cf4 997 {
mjr 6:cc35eb643e8f 998 // all Led-Wiz reports are 8 bytes exactly
mjr 6:cc35eb643e8f 999 if (report.length == 8)
mjr 1:d913e0afb2ac 1000 {
mjr 6:cc35eb643e8f 1001 uint8_t *data = report.data;
mjr 6:cc35eb643e8f 1002 if (data[0] == 64)
mjr 0:5acbbe3f4cf4 1003 {
mjr 6:cc35eb643e8f 1004 // LWZ-SBA - first four bytes are bit-packed on/off flags
mjr 6:cc35eb643e8f 1005 // for the outputs; 5th byte is the pulse speed (0-7)
mjr 6:cc35eb643e8f 1006 //printf("LWZ-SBA %02x %02x %02x %02x ; %02x\r\n",
mjr 6:cc35eb643e8f 1007 // data[1], data[2], data[3], data[4], data[5]);
mjr 0:5acbbe3f4cf4 1008
mjr 6:cc35eb643e8f 1009 // update all on/off states
mjr 6:cc35eb643e8f 1010 for (int i = 0, bit = 1, ri = 1 ; i < 32 ; ++i, bit <<= 1)
mjr 6:cc35eb643e8f 1011 {
mjr 6:cc35eb643e8f 1012 if (bit == 0x100) {
mjr 6:cc35eb643e8f 1013 bit = 1;
mjr 6:cc35eb643e8f 1014 ++ri;
mjr 6:cc35eb643e8f 1015 }
mjr 6:cc35eb643e8f 1016 wizOn[i] = ((data[ri] & bit) != 0);
mjr 6:cc35eb643e8f 1017 }
mjr 6:cc35eb643e8f 1018
mjr 6:cc35eb643e8f 1019 // update the physical outputs
mjr 1:d913e0afb2ac 1020 updateWizOuts();
mjr 6:cc35eb643e8f 1021
mjr 6:cc35eb643e8f 1022 // reset the PBA counter
mjr 6:cc35eb643e8f 1023 pbaIdx = 0;
mjr 6:cc35eb643e8f 1024 }
mjr 6:cc35eb643e8f 1025 else if (data[0] == 65)
mjr 6:cc35eb643e8f 1026 {
mjr 6:cc35eb643e8f 1027 // Private control message. This isn't an LedWiz message - it's
mjr 6:cc35eb643e8f 1028 // an extension for this device. 65 is an invalid PBA setting,
mjr 6:cc35eb643e8f 1029 // and isn't used for any other LedWiz message, so we appropriate
mjr 6:cc35eb643e8f 1030 // it for our own private use. The first byte specifies the
mjr 6:cc35eb643e8f 1031 // message type.
mjr 6:cc35eb643e8f 1032 if (data[1] == 1)
mjr 6:cc35eb643e8f 1033 {
mjr 9:fd65b0a94720 1034 // 1 = Set Configuration:
mjr 6:cc35eb643e8f 1035 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 6:cc35eb643e8f 1036 // data[3] = feature enable bit mask:
mjr 6:cc35eb643e8f 1037 // 0x01 = enable CCD
mjr 6:cc35eb643e8f 1038
mjr 6:cc35eb643e8f 1039 // we'll need a reset if the LedWiz unit number is changing
mjr 6:cc35eb643e8f 1040 uint8_t newUnitNo = data[2] & 0x0f;
mjr 6:cc35eb643e8f 1041 needReset |= (newUnitNo != cfg.d.ledWizUnitNo);
mjr 6:cc35eb643e8f 1042
mjr 6:cc35eb643e8f 1043 // set the configuration parameters from the message
mjr 6:cc35eb643e8f 1044 cfg.d.ledWizUnitNo = newUnitNo;
mjr 6:cc35eb643e8f 1045 cfg.d.ccdEnabled = data[3] & 0x01;
mjr 6:cc35eb643e8f 1046
mjr 9:fd65b0a94720 1047 // update the status flags
mjr 9:fd65b0a94720 1048 statusFlags = (statusFlags & ~0x01) | (data[3] & 0x01);
mjr 9:fd65b0a94720 1049
mjr 9:fd65b0a94720 1050 // if the ccd is no longer enabled, use 0 for z reports
mjr 9:fd65b0a94720 1051 if (!cfg.d.ccdEnabled)
mjr 9:fd65b0a94720 1052 z = 0;
mjr 9:fd65b0a94720 1053
mjr 6:cc35eb643e8f 1054 // save the configuration
mjr 6:cc35eb643e8f 1055 cfg.save(iap, flash_addr);
mjr 6:cc35eb643e8f 1056 }
mjr 9:fd65b0a94720 1057 else if (data[1] == 2)
mjr 9:fd65b0a94720 1058 {
mjr 9:fd65b0a94720 1059 // 2 = Calibrate plunger
mjr 9:fd65b0a94720 1060 // (No parameters)
mjr 9:fd65b0a94720 1061
mjr 9:fd65b0a94720 1062 // enter calibration mode
mjr 9:fd65b0a94720 1063 calBtnState = 3;
mjr 9:fd65b0a94720 1064 calBtnTimer.reset();
mjr 9:fd65b0a94720 1065 cfg.resetPlunger();
mjr 9:fd65b0a94720 1066 }
mjr 6:cc35eb643e8f 1067 }
mjr 6:cc35eb643e8f 1068 else
mjr 6:cc35eb643e8f 1069 {
mjr 6:cc35eb643e8f 1070 // LWZ-PBA - full state dump; each byte is one output
mjr 6:cc35eb643e8f 1071 // in the current bank. pbaIdx keeps track of the bank;
mjr 6:cc35eb643e8f 1072 // this is incremented implicitly by each PBA message.
mjr 6:cc35eb643e8f 1073 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 6:cc35eb643e8f 1074 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 6:cc35eb643e8f 1075
mjr 6:cc35eb643e8f 1076 // update all output profile settings
mjr 6:cc35eb643e8f 1077 for (int i = 0 ; i < 8 ; ++i)
mjr 6:cc35eb643e8f 1078 wizVal[pbaIdx + i] = data[i];
mjr 6:cc35eb643e8f 1079
mjr 6:cc35eb643e8f 1080 // update the physical LED state if this is the last bank
mjr 6:cc35eb643e8f 1081 if (pbaIdx == 24)
mjr 6:cc35eb643e8f 1082 updateWizOuts();
mjr 6:cc35eb643e8f 1083
mjr 6:cc35eb643e8f 1084 // advance to the next bank
mjr 6:cc35eb643e8f 1085 pbaIdx = (pbaIdx + 8) & 31;
mjr 6:cc35eb643e8f 1086 }
mjr 0:5acbbe3f4cf4 1087 }
mjr 0:5acbbe3f4cf4 1088 }
mjr 1:d913e0afb2ac 1089
mjr 1:d913e0afb2ac 1090 // check for plunger calibration
mjr 1:d913e0afb2ac 1091 if (!calBtn)
mjr 0:5acbbe3f4cf4 1092 {
mjr 1:d913e0afb2ac 1093 // check the state
mjr 1:d913e0afb2ac 1094 switch (calBtnState)
mjr 0:5acbbe3f4cf4 1095 {
mjr 1:d913e0afb2ac 1096 case 0:
mjr 1:d913e0afb2ac 1097 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 1098 calBtnTimer.reset();
mjr 1:d913e0afb2ac 1099 calBtnState = 1;
mjr 1:d913e0afb2ac 1100 break;
mjr 1:d913e0afb2ac 1101
mjr 1:d913e0afb2ac 1102 case 1:
mjr 1:d913e0afb2ac 1103 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 1104 // passed, start the hold period
mjr 9:fd65b0a94720 1105 if (calBtnTimer.read_ms() > 50)
mjr 1:d913e0afb2ac 1106 calBtnState = 2;
mjr 1:d913e0afb2ac 1107 break;
mjr 1:d913e0afb2ac 1108
mjr 1:d913e0afb2ac 1109 case 2:
mjr 1:d913e0afb2ac 1110 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 1111 // for the entire hold period, move to calibration mode
mjr 9:fd65b0a94720 1112 if (calBtnTimer.read_ms() > 2050)
mjr 1:d913e0afb2ac 1113 {
mjr 1:d913e0afb2ac 1114 // enter calibration mode
mjr 1:d913e0afb2ac 1115 calBtnState = 3;
mjr 9:fd65b0a94720 1116 calBtnTimer.reset();
mjr 9:fd65b0a94720 1117 cfg.resetPlunger();
mjr 1:d913e0afb2ac 1118 }
mjr 1:d913e0afb2ac 1119 break;
mjr 2:c174f9ee414a 1120
mjr 2:c174f9ee414a 1121 case 3:
mjr 9:fd65b0a94720 1122 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 1123 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 1124 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 1125 break;
mjr 0:5acbbe3f4cf4 1126 }
mjr 0:5acbbe3f4cf4 1127 }
mjr 1:d913e0afb2ac 1128 else
mjr 1:d913e0afb2ac 1129 {
mjr 2:c174f9ee414a 1130 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 1131 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 1132 // and save the results to flash.
mjr 2:c174f9ee414a 1133 //
mjr 2:c174f9ee414a 1134 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 1135 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 1136 // mode, it simply cancels the attempt.
mjr 9:fd65b0a94720 1137 if (calBtnState == 3 && calBtnTimer.read_ms() > 15000)
mjr 2:c174f9ee414a 1138 {
mjr 2:c174f9ee414a 1139 // exit calibration mode
mjr 1:d913e0afb2ac 1140 calBtnState = 0;
mjr 2:c174f9ee414a 1141
mjr 6:cc35eb643e8f 1142 // save the updated configuration
mjr 6:cc35eb643e8f 1143 cfg.d.plungerCal = 1;
mjr 6:cc35eb643e8f 1144 cfg.save(iap, flash_addr);
mjr 2:c174f9ee414a 1145
mjr 2:c174f9ee414a 1146 // the flash state is now valid
mjr 2:c174f9ee414a 1147 flash_valid = true;
mjr 2:c174f9ee414a 1148 }
mjr 2:c174f9ee414a 1149 else if (calBtnState != 3)
mjr 2:c174f9ee414a 1150 {
mjr 2:c174f9ee414a 1151 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 1152 calBtnState = 0;
mjr 2:c174f9ee414a 1153 }
mjr 1:d913e0afb2ac 1154 }
mjr 1:d913e0afb2ac 1155
mjr 1:d913e0afb2ac 1156 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 1157 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 1158 switch (calBtnState)
mjr 0:5acbbe3f4cf4 1159 {
mjr 1:d913e0afb2ac 1160 case 2:
mjr 1:d913e0afb2ac 1161 // in the hold period - flash the light
mjr 9:fd65b0a94720 1162 newCalBtnLit = ((calBtnTimer.read_ms()/250) & 1);
mjr 1:d913e0afb2ac 1163 break;
mjr 1:d913e0afb2ac 1164
mjr 1:d913e0afb2ac 1165 case 3:
mjr 1:d913e0afb2ac 1166 // calibration mode - show steady on
mjr 1:d913e0afb2ac 1167 newCalBtnLit = true;
mjr 1:d913e0afb2ac 1168 break;
mjr 1:d913e0afb2ac 1169
mjr 1:d913e0afb2ac 1170 default:
mjr 1:d913e0afb2ac 1171 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 1172 newCalBtnLit = false;
mjr 1:d913e0afb2ac 1173 break;
mjr 1:d913e0afb2ac 1174 }
mjr 3:3514575d4f86 1175
mjr 3:3514575d4f86 1176 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 1177 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 1178 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 1179 {
mjr 1:d913e0afb2ac 1180 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 1181 if (calBtnLit) {
mjr 2:c174f9ee414a 1182 calBtnLed = 1;
mjr 4:02c7cd7b2183 1183 ledR = 1;
mjr 4:02c7cd7b2183 1184 ledG = 1;
mjr 9:fd65b0a94720 1185 ledB = 0;
mjr 2:c174f9ee414a 1186 }
mjr 2:c174f9ee414a 1187 else {
mjr 2:c174f9ee414a 1188 calBtnLed = 0;
mjr 4:02c7cd7b2183 1189 ledR = 1;
mjr 4:02c7cd7b2183 1190 ledG = 1;
mjr 9:fd65b0a94720 1191 ledB = 1;
mjr 2:c174f9ee414a 1192 }
mjr 1:d913e0afb2ac 1193 }
mjr 1:d913e0afb2ac 1194
mjr 6:cc35eb643e8f 1195 // read the plunger sensor, if it's enabled
mjr 6:cc35eb643e8f 1196 if (cfg.d.ccdEnabled)
mjr 6:cc35eb643e8f 1197 {
mjr 6:cc35eb643e8f 1198 // start with the previous reading, in case we don't have a
mjr 6:cc35eb643e8f 1199 // clear result on this frame
mjr 6:cc35eb643e8f 1200 int znew = z;
mjr 2:c174f9ee414a 1201
mjr 6:cc35eb643e8f 1202 // read the array
mjr 6:cc35eb643e8f 1203 uint16_t pix[npix];
mjr 6:cc35eb643e8f 1204 ccd.read(pix, npix);
mjr 6:cc35eb643e8f 1205
mjr 6:cc35eb643e8f 1206 // get the average brightness at each end of the sensor
mjr 6:cc35eb643e8f 1207 long avg1 = (long(pix[0]) + long(pix[1]) + long(pix[2]) + long(pix[3]) + long(pix[4]))/5;
mjr 6:cc35eb643e8f 1208 long avg2 = (long(pix[npix-1]) + long(pix[npix-2]) + long(pix[npix-3]) + long(pix[npix-4]) + long(pix[npix-5]))/5;
mjr 6:cc35eb643e8f 1209
mjr 6:cc35eb643e8f 1210 // figure the midpoint in the brightness; multiply by 3 so that we can
mjr 6:cc35eb643e8f 1211 // compare sums of three pixels at a time to smooth out noise
mjr 6:cc35eb643e8f 1212 long midpt = (avg1 + avg2)/2 * 3;
mjr 6:cc35eb643e8f 1213
mjr 6:cc35eb643e8f 1214 // Work from the bright end to the dark end. VP interprets the
mjr 6:cc35eb643e8f 1215 // Z axis value as the amount the plunger is pulled: zero is the
mjr 6:cc35eb643e8f 1216 // rest position, and the axis maximum is fully pulled. So we
mjr 6:cc35eb643e8f 1217 // essentially want to report how much of the sensor is lit,
mjr 6:cc35eb643e8f 1218 // since this increases as the plunger is pulled back.
mjr 6:cc35eb643e8f 1219 int si = 1, di = 1;
mjr 6:cc35eb643e8f 1220 if (avg1 < avg2)
mjr 6:cc35eb643e8f 1221 si = npix - 2, di = -1;
mjr 6:cc35eb643e8f 1222
mjr 6:cc35eb643e8f 1223 // If the bright end and dark end don't differ by enough, skip this
mjr 6:cc35eb643e8f 1224 // reading entirely - we must have an overexposed or underexposed frame.
mjr 6:cc35eb643e8f 1225 // Otherwise proceed with the scan.
mjr 6:cc35eb643e8f 1226 if (labs(avg1 - avg2) > 0x1000)
mjr 6:cc35eb643e8f 1227 {
mjr 6:cc35eb643e8f 1228 uint16_t *pixp = pix + si;
mjr 6:cc35eb643e8f 1229 for (int n = 1 ; n < npix - 1 ; ++n, pixp += di)
mjr 6:cc35eb643e8f 1230 {
mjr 6:cc35eb643e8f 1231 // if we've crossed the midpoint, report this position
mjr 6:cc35eb643e8f 1232 if (long(pixp[-1]) + long(pixp[0]) + long(pixp[1]) < midpt)
mjr 6:cc35eb643e8f 1233 {
mjr 6:cc35eb643e8f 1234 // note the new position
mjr 6:cc35eb643e8f 1235 int pos = n;
mjr 6:cc35eb643e8f 1236
mjr 6:cc35eb643e8f 1237 // Calibrate, or apply calibration, depending on the mode.
mjr 6:cc35eb643e8f 1238 // In either case, normalize to our range. VP appears to
mjr 6:cc35eb643e8f 1239 // ignore negative Z axis values.
mjr 6:cc35eb643e8f 1240 if (calBtnState == 3)
mjr 6:cc35eb643e8f 1241 {
mjr 6:cc35eb643e8f 1242 // calibrating - note if we're expanding the calibration envelope
mjr 6:cc35eb643e8f 1243 if (pos < cfg.d.plungerMin)
mjr 6:cc35eb643e8f 1244 cfg.d.plungerMin = pos;
mjr 6:cc35eb643e8f 1245 if (pos < cfg.d.plungerZero)
mjr 6:cc35eb643e8f 1246 cfg.d.plungerZero = pos;
mjr 6:cc35eb643e8f 1247 if (pos > cfg.d.plungerMax)
mjr 6:cc35eb643e8f 1248 cfg.d.plungerMax = pos;
mjr 6:cc35eb643e8f 1249
mjr 6:cc35eb643e8f 1250 // normalize to the full physical range while calibrating
mjr 6:cc35eb643e8f 1251 znew = int(round(float(pos)/npix * JOYMAX));
mjr 6:cc35eb643e8f 1252 }
mjr 6:cc35eb643e8f 1253 else
mjr 6:cc35eb643e8f 1254 {
mjr 6:cc35eb643e8f 1255 // Running normally - normalize to the calibration range. Note
mjr 6:cc35eb643e8f 1256 // that values below the zero point are allowed - the zero point
mjr 6:cc35eb643e8f 1257 // represents the park position, where the plunger sits when at
mjr 6:cc35eb643e8f 1258 // rest, but a mechanical plunger has a smmall amount of travel
mjr 6:cc35eb643e8f 1259 // in the "push" direction. We represent forward travel with
mjr 6:cc35eb643e8f 1260 // negative z values.
mjr 6:cc35eb643e8f 1261 if (pos > cfg.d.plungerMax)
mjr 6:cc35eb643e8f 1262 pos = cfg.d.plungerMax;
mjr 6:cc35eb643e8f 1263 znew = int(round(float(pos - cfg.d.plungerZero)
mjr 6:cc35eb643e8f 1264 / (cfg.d.plungerMax - cfg.d.plungerZero + 1) * JOYMAX));
mjr 6:cc35eb643e8f 1265 }
mjr 6:cc35eb643e8f 1266
mjr 6:cc35eb643e8f 1267 // done
mjr 6:cc35eb643e8f 1268 break;
mjr 6:cc35eb643e8f 1269 }
mjr 6:cc35eb643e8f 1270 }
mjr 6:cc35eb643e8f 1271 }
mjr 7:100a25f8bf56 1272
mjr 7:100a25f8bf56 1273 // Determine if the plunger is being fired - i.e., if the player
mjr 7:100a25f8bf56 1274 // has just released the plunger from a retracted position.
mjr 6:cc35eb643e8f 1275 //
mjr 7:100a25f8bf56 1276 // We treat firing as an event. That is, we tell VP when the
mjr 7:100a25f8bf56 1277 // plunger is fired, and then stop sending data until the firing
mjr 7:100a25f8bf56 1278 // is complete, allowing VP to carry out the firing motion using
mjr 7:100a25f8bf56 1279 // its internal model plunger rather than trying to track the
mjr 7:100a25f8bf56 1280 // intermediate positions of the mechanical plunger throughout
mjr 9:fd65b0a94720 1281 // the firing motion. This is essential because the firing
mjr 9:fd65b0a94720 1282 // motion is too fast for us to track - in the time it takes us
mjr 9:fd65b0a94720 1283 // to read one frame, the plunger can make it all the way to the
mjr 9:fd65b0a94720 1284 // zero position and bounce back halfway. Fortunately, the range
mjr 9:fd65b0a94720 1285 // of motions for the plunger is limited, so if we see any rapid
mjr 9:fd65b0a94720 1286 // change of position toward the rest position, it's reasonably
mjr 9:fd65b0a94720 1287 // safe to interpret it as a firing event.
mjr 9:fd65b0a94720 1288 //
mjr 9:fd65b0a94720 1289 // This isn't foolproof. The user can trick us by doing a
mjr 9:fd65b0a94720 1290 // controlled rapid forward push but stopping short of the rest
mjr 9:fd65b0a94720 1291 // position. We'll misinterpret that as a firing event. But
mjr 9:fd65b0a94720 1292 // that's not a natural motion that a user would make with a
mjr 9:fd65b0a94720 1293 // plunger, so it's probably an acceptable false positive.
mjr 9:fd65b0a94720 1294 //
mjr 9:fd65b0a94720 1295 // Possible future enhancement: we could add a second physical
mjr 9:fd65b0a94720 1296 // sensor that detects when the plunger reaches the zero position
mjr 9:fd65b0a94720 1297 // and asserts an interrupt. In the interrupt handler, set a
mjr 9:fd65b0a94720 1298 // flag indicating the zero position signal. On each scan of
mjr 9:fd65b0a94720 1299 // the CCD, also check that flag; if it's set, enter firing
mjr 9:fd65b0a94720 1300 // event mode just as we do now. The key here is that the
mjr 9:fd65b0a94720 1301 // secondary sensor would have to be something much faster
mjr 9:fd65b0a94720 1302 // than our CCD scan - it would have to react on, say, the
mjr 9:fd65b0a94720 1303 // millisecond time scale. A simple mechanical switch or a
mjr 9:fd65b0a94720 1304 // proximity sensor could work. This would let us detect
mjr 9:fd65b0a94720 1305 // with certainty when the plunger physically fires, eliminating
mjr 9:fd65b0a94720 1306 // the case where the use can fool us with motion that's fast
mjr 9:fd65b0a94720 1307 // enough to look like a release but doesn't actually reach the
mjr 9:fd65b0a94720 1308 // starting position.
mjr 6:cc35eb643e8f 1309 //
mjr 7:100a25f8bf56 1310 // To detremine when a firing even occurs, we watch for rapid
mjr 7:100a25f8bf56 1311 // motion from a retracted position towards the rest position -
mjr 7:100a25f8bf56 1312 // that is, large position changes in the negative direction over
mjr 7:100a25f8bf56 1313 // a couple of consecutive readings. When we see a rapid move
mjr 7:100a25f8bf56 1314 // toward zero, we set our internal 'firing' flag, immediately
mjr 7:100a25f8bf56 1315 // report to VP that the plunger has returned to the zero
mjr 7:100a25f8bf56 1316 // position, and then suspend reports until the mechanical
mjr 7:100a25f8bf56 1317 // readings indicate that the plunger has come to rest (indicated
mjr 7:100a25f8bf56 1318 // by several readings in a row at roughly the same position).
mjr 9:fd65b0a94720 1319 //
mjr 9:fd65b0a94720 1320 // Tolerance for firing is 1/3 of the current pull distance, or
mjr 9:fd65b0a94720 1321 // about 1/2", whichever is greater. Making this value too small
mjr 9:fd65b0a94720 1322 // makes for too many false positives. Empirically, 1/4" is too
mjr 9:fd65b0a94720 1323 // twitchy, so set a floor at about 1/2". But we can be less
mjr 9:fd65b0a94720 1324 // sensitive the further back the plunger is pulled, since even
mjr 9:fd65b0a94720 1325 // a long pull will snap back quickly. Note that JOYMAX always
mjr 9:fd65b0a94720 1326 // corresponds to about 3", no matter how many pixels we're
mjr 9:fd65b0a94720 1327 // reading, since the physical sensor is about 3" long; so we
mjr 9:fd65b0a94720 1328 // factor out the pixel count calculate (approximate) physical
mjr 9:fd65b0a94720 1329 // distances based on the normalized axis range.
mjr 9:fd65b0a94720 1330 //
mjr 9:fd65b0a94720 1331 // Firing pattern: when firing, don't simply report a solid 0,
mjr 9:fd65b0a94720 1332 // but instead report a series of pseudo-bouces. This looks
mjr 9:fd65b0a94720 1333 // more realistic, beacause the real plunger is also bouncing
mjr 9:fd65b0a94720 1334 // around during this time. To get maximum firing power in
mjr 9:fd65b0a94720 1335 // the simulation, though, our pseudo-bounces are tiny cmopared
mjr 9:fd65b0a94720 1336 // to the real thing.
mjr 9:fd65b0a94720 1337 const int restTol = JOYMAX/24;
mjr 9:fd65b0a94720 1338 int fireTol = z/3 > JOYMAX/6 ? z/3 : JOYMAX/6;
mjr 9:fd65b0a94720 1339 static const int firePattern[] = {
mjr 9:fd65b0a94720 1340 -JOYMAX/12, -JOYMAX/12, -JOYMAX/12,
mjr 9:fd65b0a94720 1341 0, 0, 0,
mjr 9:fd65b0a94720 1342 JOYMAX/16, JOYMAX/16, JOYMAX/16,
mjr 9:fd65b0a94720 1343 0, 0, 0,
mjr 9:fd65b0a94720 1344 -JOYMAX/20, -JOYMAX/20, -JOYMAX/20,
mjr 9:fd65b0a94720 1345 0, 0, 0,
mjr 9:fd65b0a94720 1346 JOYMAX/24, JOYMAX/24, JOYMAX/24,
mjr 9:fd65b0a94720 1347 0, 0, 0,
mjr 9:fd65b0a94720 1348 -JOYMAX/30, -JOYMAX/30, -JOYMAX/30
mjr 9:fd65b0a94720 1349 };
mjr 9:fd65b0a94720 1350 if (firing != 0)
mjr 6:cc35eb643e8f 1351 {
mjr 6:cc35eb643e8f 1352 // Firing in progress - we've already told VP to send its
mjr 6:cc35eb643e8f 1353 // model plunger all the way back to the rest position, so
mjr 6:cc35eb643e8f 1354 // send no further reports until the mechanical plunger
mjr 6:cc35eb643e8f 1355 // actually comes to rest somewhere.
mjr 6:cc35eb643e8f 1356 if (abs(z0 - z2) < restTol && abs(znew - z2) < restTol)
mjr 6:cc35eb643e8f 1357 {
mjr 6:cc35eb643e8f 1358 // the plunger is back at rest - firing is done
mjr 9:fd65b0a94720 1359 firing = 0;
mjr 6:cc35eb643e8f 1360
mjr 6:cc35eb643e8f 1361 // resume normal reporting
mjr 6:cc35eb643e8f 1362 z = z2;
mjr 6:cc35eb643e8f 1363 }
mjr 9:fd65b0a94720 1364 else if (firing < countof(firePattern))
mjr 9:fd65b0a94720 1365 {
mjr 9:fd65b0a94720 1366 // firing - report the next position in the pseudo-bounce
mjr 9:fd65b0a94720 1367 // pattern
mjr 9:fd65b0a94720 1368 z = firePattern[firing++];
mjr 9:fd65b0a94720 1369 }
mjr 9:fd65b0a94720 1370 else
mjr 9:fd65b0a94720 1371 {
mjr 9:fd65b0a94720 1372 // firing, out of pseudo-bounce items - just report the
mjr 9:fd65b0a94720 1373 // rest position
mjr 9:fd65b0a94720 1374 z = 0;
mjr 9:fd65b0a94720 1375 }
mjr 6:cc35eb643e8f 1376 }
mjr 6:cc35eb643e8f 1377 else if (z0 < z2 && z1 < z2 && znew < z2
mjr 6:cc35eb643e8f 1378 && (z0 < z2 - fireTol
mjr 6:cc35eb643e8f 1379 || z1 < z2 - fireTol
mjr 6:cc35eb643e8f 1380 || znew < z2 - fireTol))
mjr 6:cc35eb643e8f 1381 {
mjr 6:cc35eb643e8f 1382 // Big jumps toward rest position in last two readings -
mjr 6:cc35eb643e8f 1383 // firing has begun. Report an immediate return to the
mjr 6:cc35eb643e8f 1384 // rest position, and send no further reports until the
mjr 6:cc35eb643e8f 1385 // physical plunger has come to rest. This effectively
mjr 6:cc35eb643e8f 1386 // detaches VP's model plunger from the real world for
mjr 6:cc35eb643e8f 1387 // the duration of the spring return, letting VP evolve
mjr 6:cc35eb643e8f 1388 // its model without trying to synchronize with the
mjr 6:cc35eb643e8f 1389 // mechanical version. The release motion is too fast
mjr 6:cc35eb643e8f 1390 // for that to work well; we can't take samples quickly
mjr 6:cc35eb643e8f 1391 // enough to get prcise velocity or acceleration
mjr 6:cc35eb643e8f 1392 // readings. It's better to let VP figure the speed
mjr 6:cc35eb643e8f 1393 // and acceleration through modeling. Plus, that lets
mjr 6:cc35eb643e8f 1394 // each virtual table set the desired parameters for its
mjr 6:cc35eb643e8f 1395 // virtual plunger, rather than imposing the actual
mjr 6:cc35eb643e8f 1396 // mechanical charateristics of the physical plunger on
mjr 6:cc35eb643e8f 1397 // every table.
mjr 9:fd65b0a94720 1398 firing = 1;
mjr 9:fd65b0a94720 1399
mjr 9:fd65b0a94720 1400 // report the first firing pattern position
mjr 9:fd65b0a94720 1401 z = firePattern[0];
mjr 6:cc35eb643e8f 1402 }
mjr 6:cc35eb643e8f 1403 else
mjr 6:cc35eb643e8f 1404 {
mjr 6:cc35eb643e8f 1405 // everything normal; report the 3rd recent position on
mjr 6:cc35eb643e8f 1406 // tape delay
mjr 6:cc35eb643e8f 1407 z = z2;
mjr 6:cc35eb643e8f 1408 }
mjr 6:cc35eb643e8f 1409
mjr 6:cc35eb643e8f 1410 // shift in the new reading
mjr 6:cc35eb643e8f 1411 z2 = z1;
mjr 6:cc35eb643e8f 1412 z1 = z0;
mjr 6:cc35eb643e8f 1413 z0 = znew;
mjr 2:c174f9ee414a 1414 }
mjr 9:fd65b0a94720 1415 else
mjr 9:fd65b0a94720 1416 {
mjr 9:fd65b0a94720 1417 // plunger disabled - pause 10ms to throttle updates to a
mjr 9:fd65b0a94720 1418 // reasonable pace
mjr 9:fd65b0a94720 1419 wait_ms(10);
mjr 9:fd65b0a94720 1420 }
mjr 6:cc35eb643e8f 1421
mjr 1:d913e0afb2ac 1422 // read the accelerometer
mjr 9:fd65b0a94720 1423 int xa, ya;
mjr 9:fd65b0a94720 1424 accel.get(xa, ya);
mjr 1:d913e0afb2ac 1425
mjr 6:cc35eb643e8f 1426 // confine the results to our joystick axis range
mjr 6:cc35eb643e8f 1427 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 6:cc35eb643e8f 1428 if (xa > JOYMAX) xa = JOYMAX;
mjr 6:cc35eb643e8f 1429 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 6:cc35eb643e8f 1430 if (ya > JOYMAX) ya = JOYMAX;
mjr 1:d913e0afb2ac 1431
mjr 6:cc35eb643e8f 1432 // store the updated accelerometer coordinates
mjr 6:cc35eb643e8f 1433 x = xa;
mjr 6:cc35eb643e8f 1434 y = ya;
mjr 6:cc35eb643e8f 1435
mjr 8:c732e279ee29 1436 // Send the status report. Note that the nominal x and y axes
mjr 8:c732e279ee29 1437 // are reversed - this makes it more intuitive to set up in VP.
mjr 8:c732e279ee29 1438 // If we mount the Freesale card flat on the floor of the cabinet
mjr 8:c732e279ee29 1439 // with the USB connectors facing the front of the cabinet, this
mjr 8:c732e279ee29 1440 // arrangement of our nominal axes aligns with VP's standard
mjr 8:c732e279ee29 1441 // setting, so that we can configure VP with X Axis = X on the
mjr 8:c732e279ee29 1442 // joystick and Y Axis = Y on the joystick.
mjr 9:fd65b0a94720 1443 js.update(y, x, z, 0, statusFlags);
mjr 1:d913e0afb2ac 1444
mjr 6:cc35eb643e8f 1445 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 1446 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 1447 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 1448 #endif
mjr 6:cc35eb643e8f 1449
mjr 6:cc35eb643e8f 1450 // provide a visual status indication on the on-board LED
mjr 5:a70c0bce770d 1451 if (calBtnState < 2 && hbTimer.read_ms() > 1000)
mjr 1:d913e0afb2ac 1452 {
mjr 5:a70c0bce770d 1453 if (js.isSuspended() || !js.isConnected())
mjr 2:c174f9ee414a 1454 {
mjr 5:a70c0bce770d 1455 // suspended - turn off the LED
mjr 4:02c7cd7b2183 1456 ledR = 1;
mjr 4:02c7cd7b2183 1457 ledG = 1;
mjr 4:02c7cd7b2183 1458 ledB = 1;
mjr 5:a70c0bce770d 1459
mjr 5:a70c0bce770d 1460 // show a status flash every so often
mjr 5:a70c0bce770d 1461 if (hbcnt % 3 == 0)
mjr 5:a70c0bce770d 1462 {
mjr 6:cc35eb643e8f 1463 // disconnected = red/red flash; suspended = red
mjr 5:a70c0bce770d 1464 for (int n = js.isConnected() ? 1 : 2 ; n > 0 ; --n)
mjr 5:a70c0bce770d 1465 {
mjr 5:a70c0bce770d 1466 ledR = 0;
mjr 5:a70c0bce770d 1467 wait(0.05);
mjr 5:a70c0bce770d 1468 ledR = 1;
mjr 5:a70c0bce770d 1469 wait(0.25);
mjr 5:a70c0bce770d 1470 }
mjr 5:a70c0bce770d 1471 }
mjr 2:c174f9ee414a 1472 }
mjr 6:cc35eb643e8f 1473 else if (needReset)
mjr 2:c174f9ee414a 1474 {
mjr 6:cc35eb643e8f 1475 // connected, need to reset due to changes in config parameters -
mjr 6:cc35eb643e8f 1476 // flash red/green
mjr 6:cc35eb643e8f 1477 hb = !hb;
mjr 6:cc35eb643e8f 1478 ledR = (hb ? 0 : 1);
mjr 6:cc35eb643e8f 1479 ledG = (hb ? 1 : 0);
mjr 6:cc35eb643e8f 1480 ledB = 0;
mjr 6:cc35eb643e8f 1481 }
mjr 6:cc35eb643e8f 1482 else if (cfg.d.ccdEnabled && !cfg.d.plungerCal)
mjr 6:cc35eb643e8f 1483 {
mjr 6:cc35eb643e8f 1484 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 1485 hb = !hb;
mjr 6:cc35eb643e8f 1486 ledR = (hb ? 0 : 1);
mjr 6:cc35eb643e8f 1487 ledG = 0;
mjr 6:cc35eb643e8f 1488 ledB = 1;
mjr 6:cc35eb643e8f 1489 }
mjr 6:cc35eb643e8f 1490 else
mjr 6:cc35eb643e8f 1491 {
mjr 6:cc35eb643e8f 1492 // connected - flash blue/green
mjr 2:c174f9ee414a 1493 hb = !hb;
mjr 4:02c7cd7b2183 1494 ledR = 1;
mjr 4:02c7cd7b2183 1495 ledG = (hb ? 0 : 1);
mjr 4:02c7cd7b2183 1496 ledB = (hb ? 1 : 0);
mjr 2:c174f9ee414a 1497 }
mjr 1:d913e0afb2ac 1498
mjr 1:d913e0afb2ac 1499 // reset the heartbeat timer
mjr 1:d913e0afb2ac 1500 hbTimer.reset();
mjr 5:a70c0bce770d 1501 ++hbcnt;
mjr 1:d913e0afb2ac 1502 }
mjr 1:d913e0afb2ac 1503 }
mjr 0:5acbbe3f4cf4 1504 }