Pinscape Controller version 1 fork. This is a fork to allow for ongoing bug fixes to the original controller version, from before the major changes for the expansion board project.

Dependencies:   FastIO FastPWM SimpleDMA mbed

Fork of Pinscape_Controller by Mike R

Committer:
mjr
Date:
Wed Oct 21 21:53:07 2015 +0000
Revision:
33:d832bcab089e
Parent:
30:6e9902f06f48
Child:
34:6b981a2afab7
With expansion board 5940 "power enable" output; saving this feature, which is to be removed.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 5:a70c0bce770d 1 /* Copyright 2014 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 5:a70c0bce770d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 5:a70c0bce770d 20 // Pinscape Controller
mjr 5:a70c0bce770d 21 //
mjr 17:ab3cec0c8bf4 22 // "Pinscape" is the name of my custom-built virtual pinball cabinet, so I call this
mjr 17:ab3cec0c8bf4 23 // software the Pinscape Controller. I wrote it to handle several tasks that I needed
mjr 17:ab3cec0c8bf4 24 // for my cabinet. It runs on a Freescale KL25Z microcontroller, which is a small and
mjr 17:ab3cec0c8bf4 25 // inexpensive device that attaches to the cabinet PC via a USB cable, and can attach
mjr 17:ab3cec0c8bf4 26 // via custom wiring to sensors, buttons, and other devices in the cabinet.
mjr 5:a70c0bce770d 27 //
mjr 17:ab3cec0c8bf4 28 // I designed the software and hardware in this project especially for my own
mjr 17:ab3cec0c8bf4 29 // cabinet, but it uses standard interfaces in Windows and Visual Pinball, so it should
mjr 17:ab3cec0c8bf4 30 // work in any VP-based cabinet, as long as you're using the usual VP software suite.
mjr 17:ab3cec0c8bf4 31 // I've tried to document the hardware in enough detail for anyone else to duplicate
mjr 17:ab3cec0c8bf4 32 // the entire project, and the full software is open source.
mjr 5:a70c0bce770d 33 //
mjr 17:ab3cec0c8bf4 34 // The Freescale board appears to the host PC as a standard USB joystick. This works
mjr 17:ab3cec0c8bf4 35 // with the built-in Windows joystick device drivers, so there's no need to install any
mjr 17:ab3cec0c8bf4 36 // new drivers or other software on the PC. Windows should recognize the Freescale
mjr 17:ab3cec0c8bf4 37 // as a joystick when you plug it into the USB port, and Windows shouldn't ask you to
mjr 17:ab3cec0c8bf4 38 // install any drivers. If you bring up the Windows control panel for USB Game
mjr 17:ab3cec0c8bf4 39 // Controllers, this device will appear as "Pinscape Controller". *Don't* do any
mjr 17:ab3cec0c8bf4 40 // calibration with the Windows control panel or third-part calibration tools. The
mjr 17:ab3cec0c8bf4 41 // software calibrates the accelerometer portion automatically, and has its own special
mjr 17:ab3cec0c8bf4 42 // calibration procedure for the plunger sensor, if you're using that (see below).
mjr 5:a70c0bce770d 43 //
mjr 17:ab3cec0c8bf4 44 // This software provides a whole bunch of separate features. You can use any of these
mjr 17:ab3cec0c8bf4 45 // features individually or all together. If you're not using a particular feature, you
mjr 17:ab3cec0c8bf4 46 // can simply omit the extra wiring and/or hardware for that feature. You can use
mjr 17:ab3cec0c8bf4 47 // the nudging feature by itself without any extra hardware attached, since the
mjr 17:ab3cec0c8bf4 48 // accelerometer is built in to the KL25Z board.
mjr 5:a70c0bce770d 49 //
mjr 17:ab3cec0c8bf4 50 // - Nudge sensing via the KL25Z's on-board accelerometer. Nudging the cabinet
mjr 17:ab3cec0c8bf4 51 // causes small accelerations that the accelerometer can detect; these are sent to
mjr 17:ab3cec0c8bf4 52 // Visual Pinball via the joystick interface so that VP can simulate the effect
mjr 17:ab3cec0c8bf4 53 // of the real physical nudges on its simulated ball. VP has native handling for
mjr 17:ab3cec0c8bf4 54 // this type of input, so all you have to do is set some preferences in VP to tell
mjr 17:ab3cec0c8bf4 55 // it that an accelerometer is attached.
mjr 5:a70c0bce770d 56 //
mjr 5:a70c0bce770d 57 // - Plunger position sensing via an attached TAOS TSL 1410R CCD linear array sensor.
mjr 17:ab3cec0c8bf4 58 // To use this feature, you need to buy the TAOS device (it's not built in to the
mjr 17:ab3cec0c8bf4 59 // KL25Z, obviously), wire it to the KL25Z (5 wire connections between the two
mjr 17:ab3cec0c8bf4 60 // devices are required), and mount the TAOS sensor in your cabinet so that it's
mjr 17:ab3cec0c8bf4 61 // positioned properly to capture images of the physical plunger shooter rod.
mjr 17:ab3cec0c8bf4 62 //
mjr 17:ab3cec0c8bf4 63 // The physical mounting and wiring details are desribed in the project
mjr 17:ab3cec0c8bf4 64 // documentation.
mjr 17:ab3cec0c8bf4 65 //
mjr 17:ab3cec0c8bf4 66 // If the CCD is attached, the software constantly captures images from the CCD
mjr 17:ab3cec0c8bf4 67 // and analyzes them to determine how far back the plunger is pulled. It reports
mjr 17:ab3cec0c8bf4 68 // this to Visual Pinball via the joystick interface. This allows VP to make the
mjr 17:ab3cec0c8bf4 69 // simulated on-screen plunger track the motion of the physical plunger in real
mjr 17:ab3cec0c8bf4 70 // time. As with the nudge data, VP has native handling for the plunger input,
mjr 17:ab3cec0c8bf4 71 // so you just need to set the VP preferences to tell it that an analog plunger
mjr 17:ab3cec0c8bf4 72 // device is attached. One caveat, though: although VP itself has built-in
mjr 17:ab3cec0c8bf4 73 // support for an analog plunger, not all existing tables take advantage of it.
mjr 17:ab3cec0c8bf4 74 // Many existing tables have their own custom plunger scripting that doesn't
mjr 17:ab3cec0c8bf4 75 // cooperate with the VP plunger input. All tables *can* be made to work with
mjr 17:ab3cec0c8bf4 76 // the plunger, and in most cases it only requires some simple script editing,
mjr 17:ab3cec0c8bf4 77 // but in some cases it requires some more extensive surgery.
mjr 5:a70c0bce770d 78 //
mjr 6:cc35eb643e8f 79 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 80 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 81 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 82 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 17:ab3cec0c8bf4 83 // sensor or the mechanical plunger, since their alignment shift change slightly
mjr 17:ab3cec0c8bf4 84 // when you put everything back together.) You can optionally install a
mjr 17:ab3cec0c8bf4 85 // dedicated momentary switch or pushbutton to activate the calibration mode;
mjr 17:ab3cec0c8bf4 86 // this is describe in the project documentation. If you don't want to bother
mjr 17:ab3cec0c8bf4 87 // with the extra button, you can also trigger calibration using the Windows
mjr 17:ab3cec0c8bf4 88 // setup software, which you can find on the Pinscape project page.
mjr 6:cc35eb643e8f 89 //
mjr 17:ab3cec0c8bf4 90 // The calibration procedure is described in the project documentation. Briefly,
mjr 17:ab3cec0c8bf4 91 // when you trigger calibration mode, the software will scan the CCD for about
mjr 17:ab3cec0c8bf4 92 // 15 seconds, during which you should simply pull the physical plunger back
mjr 17:ab3cec0c8bf4 93 // all the way, hold it for a moment, and then slowly return it to the rest
mjr 17:ab3cec0c8bf4 94 // position. (DON'T just release it from the retracted position, since that
mjr 17:ab3cec0c8bf4 95 // let it shoot forward too far. We want to measure the range from the park
mjr 17:ab3cec0c8bf4 96 // position to the fully retracted position only.)
mjr 5:a70c0bce770d 97 //
mjr 13:72dda449c3c0 98 // - Button input wiring. 24 of the KL25Z's GPIO ports are mapped as digital inputs
mjr 13:72dda449c3c0 99 // for buttons and switches. The software reports these as joystick buttons when
mjr 13:72dda449c3c0 100 // it sends reports to the PC. These can be used to wire physical pinball-style
mjr 13:72dda449c3c0 101 // buttons in the cabinet (e.g., flipper buttons, the Start button) and miscellaneous
mjr 13:72dda449c3c0 102 // switches (such as a tilt bob) to the PC. Visual Pinball can use joystick buttons
mjr 13:72dda449c3c0 103 // for input - you just have to assign a VP function to each button using VP's
mjr 13:72dda449c3c0 104 // keyboard options dialog. To wire a button physically, connect one terminal of
mjr 13:72dda449c3c0 105 // the button switch to the KL25Z ground, and connect the other terminal to the
mjr 13:72dda449c3c0 106 // the GPIO port you wish to assign to the button. See the buttonMap[] array
mjr 13:72dda449c3c0 107 // below for the available GPIO ports and their assigned joystick button numbers.
mjr 13:72dda449c3c0 108 // If you're not using a GPIO port, you can just leave it unconnected - the digital
mjr 13:72dda449c3c0 109 // inputs have built-in pull-up resistors, so an unconnected port is the same as
mjr 13:72dda449c3c0 110 // an open switch (an "off" state for the button).
mjr 13:72dda449c3c0 111 //
mjr 5:a70c0bce770d 112 // - LedWiz emulation. The KL25Z can appear to the PC as an LedWiz device, and will
mjr 5:a70c0bce770d 113 // accept and process LedWiz commands from the host. The software can turn digital
mjr 5:a70c0bce770d 114 // output ports on and off, and can set varying PWM intensitiy levels on a subset
mjr 5:a70c0bce770d 115 // of ports. (The KL25Z can only provide 6 PWM ports. Intensity level settings on
mjr 5:a70c0bce770d 116 // other ports is ignored, so non-PWM ports can only be used for simple on/off
mjr 5:a70c0bce770d 117 // devices such as contactors and solenoids.) The KL25Z can only supply 4mA on its
mjr 5:a70c0bce770d 118 // output ports, so external hardware is required to take advantage of the LedWiz
mjr 5:a70c0bce770d 119 // emulation. Many different hardware designs are possible, but there's a simple
mjr 5:a70c0bce770d 120 // reference design in the documentation that uses a Darlington array IC to
mjr 5:a70c0bce770d 121 // increase the output from each port to 500mA (the same level as the LedWiz),
mjr 5:a70c0bce770d 122 // plus an extended design that adds an optocoupler and MOSFET to provide very
mjr 5:a70c0bce770d 123 // high power handling, up to about 45A or 150W, with voltages up to 100V.
mjr 5:a70c0bce770d 124 // That will handle just about any DC device directly (wtihout relays or other
mjr 5:a70c0bce770d 125 // amplifiers), and switches fast enough to support PWM devices.
mjr 5:a70c0bce770d 126 //
mjr 5:a70c0bce770d 127 // The device can report any desired LedWiz unit number to the host, which makes
mjr 5:a70c0bce770d 128 // it possible to use the LedWiz emulation on a machine that also has one or more
mjr 5:a70c0bce770d 129 // actual LedWiz devices intalled. The LedWiz design allows for up to 16 units
mjr 5:a70c0bce770d 130 // to be installed in one machine - each one is invidually addressable by its
mjr 5:a70c0bce770d 131 // distinct unit number.
mjr 5:a70c0bce770d 132 //
mjr 5:a70c0bce770d 133 // The LedWiz emulation features are of course optional. There's no need to
mjr 5:a70c0bce770d 134 // build any of the external port hardware (or attach anything to the output
mjr 5:a70c0bce770d 135 // ports at all) if the LedWiz features aren't needed. Most people won't have
mjr 5:a70c0bce770d 136 // any use for the LedWiz features. I built them mostly as a learning exercise,
mjr 5:a70c0bce770d 137 // but with a slight practical need for a handful of extra ports (I'm using the
mjr 5:a70c0bce770d 138 // cutting-edge 10-contactor setup, so my real LedWiz is full!).
mjr 6:cc35eb643e8f 139 //
mjr 26:cb71c4af2912 140 // - Enhanced LedWiz emulation with TLC5940 PWM controller chips. You can attach
mjr 26:cb71c4af2912 141 // external PWM controller chips for controlling device outputs, instead of using
mjr 26:cb71c4af2912 142 // the limited LedWiz emulation through the on-board GPIO ports as described above.
mjr 26:cb71c4af2912 143 // The software can control a set of daisy-chained TLC5940 chips, which provide
mjr 26:cb71c4af2912 144 // 16 PWM outputs per chip. Two of these chips give you the full complement
mjr 26:cb71c4af2912 145 // of 32 output ports of an actual LedWiz, and four give you 64 ports, which
mjr 33:d832bcab089e 146 // should be plenty for nearly any virtual pinball project. A private, extended
mjr 33:d832bcab089e 147 // version of the LedWiz protocol lets the host control the extra outputs, up to
mjr 33:d832bcab089e 148 // 128 outputs per KL25Z (8 TLC5940s). To take advantage of the extra outputs
mjr 33:d832bcab089e 149 // on the PC side, you need software that knows about the protocol extensions,
mjr 33:d832bcab089e 150 // which means you need the latest version of DirectOutput Framework (DOF). VP
mjr 33:d832bcab089e 151 // uses DOF for its output, so VP will be able to use the added ports without any
mjr 33:d832bcab089e 152 // extra work on your part. Older software (e.g., Future Pinball) that doesn't
mjr 33:d832bcab089e 153 // use DOF will still be able to use the LedWiz-compatible protocol, so it'll be
mjr 33:d832bcab089e 154 // able to control your first 32 ports (numbered 1-32 in the LedWiz scheme), but
mjr 33:d832bcab089e 155 // older software won't be able to address higher-numbered ports. That shouldn't
mjr 33:d832bcab089e 156 // be a problem because older software wouldn't know what to do with the extra
mjr 33:d832bcab089e 157 // devices anyway - FP, for example, is limited to a pre-defined set of outputs.
mjr 33:d832bcab089e 158 // As long as you put the most common devices on the first 32 outputs, and use
mjr 33:d832bcab089e 159 // higher numbered ports for the less common devices that older software can't
mjr 33:d832bcab089e 160 // use anyway, you'll get maximum functionality out of software new and old.
mjr 26:cb71c4af2912 161 //
mjr 33:d832bcab089e 162 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 163 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 164 //
mjr 6:cc35eb643e8f 165 // two short red flashes = the device is powered but hasn't successfully
mjr 6:cc35eb643e8f 166 // connected to the host via USB (either it's not physically connected
mjr 6:cc35eb643e8f 167 // to the USB port, or there was a problem with the software handshake
mjr 6:cc35eb643e8f 168 // with the USB device driver on the computer)
mjr 6:cc35eb643e8f 169 //
mjr 6:cc35eb643e8f 170 // short red flash = the host computer is in sleep/suspend mode
mjr 6:cc35eb643e8f 171 //
mjr 6:cc35eb643e8f 172 // long red/green = the LedWiz unti number has been changed, so a reset
mjr 6:cc35eb643e8f 173 // is needed. You can simply unplug the device and plug it back in,
mjr 6:cc35eb643e8f 174 // or presss and hold the reset button on the device for a few seconds.
mjr 6:cc35eb643e8f 175 //
mjr 6:cc35eb643e8f 176 // long yellow/green = everything's working, but the plunger hasn't
mjr 6:cc35eb643e8f 177 // been calibrated; follow the calibration procedure described above.
mjr 6:cc35eb643e8f 178 // This flash mode won't appear if the CCD has been disabled. Note
mjr 18:5e890ebd0023 179 // that the device can't tell whether a CCD is physically attached;
mjr 18:5e890ebd0023 180 // if you don't have a CCD attached, you can set the appropriate option
mjr 18:5e890ebd0023 181 // in config.h or use the Windows config tool to disable the CCD
mjr 18:5e890ebd0023 182 // software features.
mjr 6:cc35eb643e8f 183 //
mjr 6:cc35eb643e8f 184 // alternating blue/green = everything's working
mjr 6:cc35eb643e8f 185 //
mjr 33:d832bcab089e 186 // Software configuration: you can some change option settings by sending special
mjr 6:cc35eb643e8f 187 // USB commands from the PC. I've provided a Windows program for this purpose;
mjr 6:cc35eb643e8f 188 // refer to the documentation for details. For reference, here's the format
mjr 6:cc35eb643e8f 189 // of the USB command for option changes:
mjr 6:cc35eb643e8f 190 //
mjr 6:cc35eb643e8f 191 // length of report = 8 bytes
mjr 6:cc35eb643e8f 192 // byte 0 = 65 (0x41)
mjr 33:d832bcab089e 193 // byte 1 = 1 (0x01)
mjr 6:cc35eb643e8f 194 // byte 2 = new LedWiz unit number, 0x01 to 0x0f
mjr 6:cc35eb643e8f 195 // byte 3 = feature enable bit mask:
mjr 6:cc35eb643e8f 196 // 0x01 = enable CCD (default = on)
mjr 9:fd65b0a94720 197 //
mjr 9:fd65b0a94720 198 // Plunger calibration mode: the host can activate plunger calibration mode
mjr 9:fd65b0a94720 199 // by sending this packet. This has the same effect as pressing and holding
mjr 9:fd65b0a94720 200 // the plunger calibration button for two seconds, to allow activating this
mjr 9:fd65b0a94720 201 // mode without attaching a physical button.
mjr 9:fd65b0a94720 202 //
mjr 9:fd65b0a94720 203 // length = 8 bytes
mjr 9:fd65b0a94720 204 // byte 0 = 65 (0x41)
mjr 33:d832bcab089e 205 // byte 1 = 2 (0x02)
mjr 9:fd65b0a94720 206 //
mjr 10:976666ffa4ef 207 // Exposure reports: the host can request a report of the full set of pixel
mjr 10:976666ffa4ef 208 // values for the next frame by sending this special packet:
mjr 10:976666ffa4ef 209 //
mjr 10:976666ffa4ef 210 // length = 8 bytes
mjr 10:976666ffa4ef 211 // byte 0 = 65 (0x41)
mjr 33:d832bcab089e 212 // byte 1 = 3 (0x03)
mjr 10:976666ffa4ef 213 //
mjr 10:976666ffa4ef 214 // We'll respond with a series of special reports giving the exposure status.
mjr 10:976666ffa4ef 215 // Each report has the following structure:
mjr 10:976666ffa4ef 216 //
mjr 10:976666ffa4ef 217 // bytes 0:1 = 11-bit index, with high 5 bits set to 10000. For
mjr 10:976666ffa4ef 218 // example, 0x04 0x80 indicates index 4. This is the
mjr 10:976666ffa4ef 219 // starting pixel number in the report. The first report
mjr 10:976666ffa4ef 220 // will be 0x00 0x80 to indicate pixel #0.
mjr 10:976666ffa4ef 221 // bytes 2:3 = 16-bit unsigned int brightness level of pixel at index
mjr 10:976666ffa4ef 222 // bytes 4:5 = brightness of pixel at index+1
mjr 10:976666ffa4ef 223 // etc for the rest of the packet
mjr 10:976666ffa4ef 224 //
mjr 10:976666ffa4ef 225 // This still has the form of a joystick packet at the USB level, but
mjr 10:976666ffa4ef 226 // can be differentiated by the host via the status bits. It would have
mjr 10:976666ffa4ef 227 // been cleaner to use a different Report ID at the USB level, but this
mjr 10:976666ffa4ef 228 // would have necessitated a different container structure in the report
mjr 10:976666ffa4ef 229 // descriptor, which would have broken LedWiz compatibility. Given that
mjr 10:976666ffa4ef 230 // constraint, we have to re-use the joystick report type, making for
mjr 10:976666ffa4ef 231 // this somewhat kludgey approach.
mjr 33:d832bcab089e 232 //
mjr 33:d832bcab089e 233 // Configuration query: the host can request a full report of our hardware
mjr 33:d832bcab089e 234 // configuration with this message.
mjr 33:d832bcab089e 235 //
mjr 33:d832bcab089e 236 // length = 8 bytes
mjr 33:d832bcab089e 237 // byte 0 = 65 (0x41)
mjr 33:d832bcab089e 238 // byte 1 = 4 (0x04)
mjr 33:d832bcab089e 239 //
mjr 33:d832bcab089e 240 // We'll response with one report containing the configuration status:
mjr 33:d832bcab089e 241 //
mjr 33:d832bcab089e 242 // bytes 0:1 = 0x8800. This has the bit pattern 10001 in the high
mjr 33:d832bcab089e 243 // 5 bits, which distinguishes it from regular joystick
mjr 33:d832bcab089e 244 // reports and from exposure status reports.
mjr 33:d832bcab089e 245 // bytes 2:3 = number of outputs
mjr 33:d832bcab089e 246 // remaining bytes = reserved for future use; set to 0 in current version
mjr 33:d832bcab089e 247 //
mjr 33:d832bcab089e 248 // Turn off all outputs: this message tells the device to turn off all
mjr 33:d832bcab089e 249 // outputs and restore power-up LedWiz defaults. This sets outputs #1-32
mjr 33:d832bcab089e 250 // to profile 48 (full brightness) and switch state Off, sets all extended
mjr 33:d832bcab089e 251 // outputs (#33 and above) to brightness 0, and sets the LedWiz flash rate
mjr 33:d832bcab089e 252 // to 2.
mjr 33:d832bcab089e 253 //
mjr 33:d832bcab089e 254 // length = 8 bytes
mjr 33:d832bcab089e 255 // byte 0 = 65 (0x41)
mjr 33:d832bcab089e 256 // byte 1 = 5 (0x05)
mjr 33:d832bcab089e 257
mjr 33:d832bcab089e 258
mjr 0:5acbbe3f4cf4 259 #include "mbed.h"
mjr 6:cc35eb643e8f 260 #include "math.h"
mjr 0:5acbbe3f4cf4 261 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 262 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 263 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 264 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 265 #include "crc32.h"
mjr 26:cb71c4af2912 266 #include "TLC5940.h"
mjr 2:c174f9ee414a 267
mjr 21:5048e16cc9ef 268 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 269 #include "config.h"
mjr 17:ab3cec0c8bf4 270
mjr 5:a70c0bce770d 271
mjr 5:a70c0bce770d 272 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 273 // utilities
mjr 17:ab3cec0c8bf4 274
mjr 17:ab3cec0c8bf4 275 // number of elements in an array
mjr 17:ab3cec0c8bf4 276 #define countof(x) (sizeof(x)/sizeof((x)[0]))
mjr 17:ab3cec0c8bf4 277
mjr 26:cb71c4af2912 278 // floating point square of a number
mjr 26:cb71c4af2912 279 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 280
mjr 26:cb71c4af2912 281 // floating point rounding
mjr 26:cb71c4af2912 282 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 283
mjr 17:ab3cec0c8bf4 284
mjr 33:d832bcab089e 285 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 286 //
mjr 33:d832bcab089e 287 // USB product version number
mjr 5:a70c0bce770d 288 //
mjr 33:d832bcab089e 289 const uint16_t USB_VERSION_NO = 0x0007;
mjr 0:5acbbe3f4cf4 290
mjr 5:a70c0bce770d 291
mjr 33:d832bcab089e 292 //
mjr 33:d832bcab089e 293 // Build the full USB product ID. If we're using the LedWiz compatible
mjr 33:d832bcab089e 294 // vendor ID, the full product ID is the combination of the LedWiz base
mjr 33:d832bcab089e 295 // product ID (0x00F0) and the 0-based unit number (0-15). If we're not
mjr 33:d832bcab089e 296 // trying to be LedWiz compatible, we just use the exact product ID
mjr 33:d832bcab089e 297 // specified in config.h.
mjr 33:d832bcab089e 298 #define MAKE_USB_PRODUCT_ID(vid, pidbase, unit) \
mjr 33:d832bcab089e 299 ((vid) == 0xFAFA && (pidbase) == 0x00F0 ? (pidbase) | (unit) : (pidbase))
mjr 33:d832bcab089e 300
mjr 33:d832bcab089e 301
mjr 33:d832bcab089e 302 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 303 //
mjr 6:cc35eb643e8f 304 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 305 //
mjr 6:cc35eb643e8f 306 #define JOYMAX 4096
mjr 6:cc35eb643e8f 307
mjr 25:e22b88bd783a 308 // --------------------------------------------------------------------------
mjr 25:e22b88bd783a 309 //
mjr 25:e22b88bd783a 310 // Set up mappings for the joystick X and Y reports based on the mounting
mjr 25:e22b88bd783a 311 // orientation of the KL25Z in the cabinet. Visual Pinball and other
mjr 25:e22b88bd783a 312 // pinball software effectively use video coordinates to define the axes:
mjr 25:e22b88bd783a 313 // positive X is to the right of the table, negative Y to the left, positive
mjr 25:e22b88bd783a 314 // Y toward the front of the table, negative Y toward the back. The KL25Z
mjr 25:e22b88bd783a 315 // accelerometer is mounted on the board with positive Y toward the USB
mjr 25:e22b88bd783a 316 // ports and positive X toward the right side of the board with the USB
mjr 25:e22b88bd783a 317 // ports pointing up. It's a simple matter to remap the KL25Z coordinate
mjr 25:e22b88bd783a 318 // system to match VP's coordinate system for mounting orientations at
mjr 25:e22b88bd783a 319 // 90-degree increments...
mjr 25:e22b88bd783a 320 //
mjr 25:e22b88bd783a 321 #if defined(ORIENTATION_PORTS_AT_FRONT)
mjr 25:e22b88bd783a 322 # define JOY_X(x, y) (y)
mjr 25:e22b88bd783a 323 # define JOY_Y(x, y) (x)
mjr 25:e22b88bd783a 324 #elif defined(ORIENTATION_PORTS_AT_LEFT)
mjr 25:e22b88bd783a 325 # define JOY_X(x, y) (-(x))
mjr 25:e22b88bd783a 326 # define JOY_Y(x, y) (y)
mjr 25:e22b88bd783a 327 #elif defined(ORIENTATION_PORTS_AT_RIGHT)
mjr 25:e22b88bd783a 328 # define JOY_X(x, y) (x)
mjr 25:e22b88bd783a 329 # define JOY_Y(x, y) (-(y))
mjr 25:e22b88bd783a 330 #elif defined(ORIENTATION_PORTS_AT_REAR)
mjr 25:e22b88bd783a 331 # define JOY_X(x, y) (-(y))
mjr 25:e22b88bd783a 332 # define JOY_Y(x, y) (-(x))
mjr 25:e22b88bd783a 333 #else
mjr 25:e22b88bd783a 334 # error Please define one of the ORIENTATION_PORTS_AT_xxx macros to establish the accelerometer orientation in your cabinet
mjr 25:e22b88bd783a 335 #endif
mjr 25:e22b88bd783a 336
mjr 25:e22b88bd783a 337
mjr 5:a70c0bce770d 338
mjr 17:ab3cec0c8bf4 339 // --------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 340 //
mjr 21:5048e16cc9ef 341 // Define a symbol to tell us whether any sort of plunger sensor code
mjr 21:5048e16cc9ef 342 // is enabled in this build. Note that this doesn't tell us that a
mjr 21:5048e16cc9ef 343 // plunger device is actually attached or *currently* enabled; it just
mjr 21:5048e16cc9ef 344 // tells us whether or not the code for plunger sensing is enabled in
mjr 21:5048e16cc9ef 345 // the software build. This lets us leave out some unnecessary code
mjr 21:5048e16cc9ef 346 // on installations where no physical plunger is attached.
mjr 17:ab3cec0c8bf4 347 //
mjr 21:5048e16cc9ef 348 const int PLUNGER_CODE_ENABLED =
mjr 21:5048e16cc9ef 349 #if defined(ENABLE_CCD_SENSOR) || defined(ENABLE_POT_SENSOR)
mjr 21:5048e16cc9ef 350 1;
mjr 17:ab3cec0c8bf4 351 #else
mjr 21:5048e16cc9ef 352 0;
mjr 17:ab3cec0c8bf4 353 #endif
mjr 9:fd65b0a94720 354
mjr 17:ab3cec0c8bf4 355 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 356 //
mjr 17:ab3cec0c8bf4 357 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 17:ab3cec0c8bf4 358 //
mjr 26:cb71c4af2912 359 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 26:cb71c4af2912 360 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 26:cb71c4af2912 361 // input or a device output). (This is kind of unfortunate in that it's
mjr 26:cb71c4af2912 362 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 26:cb71c4af2912 363 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 26:cb71c4af2912 364 // SPI capability.)
mjr 26:cb71c4af2912 365 //
mjr 17:ab3cec0c8bf4 366 DigitalOut ledR(LED1), ledG(LED2), ledB(LED3);
mjr 17:ab3cec0c8bf4 367
mjr 9:fd65b0a94720 368
mjr 9:fd65b0a94720 369 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 370 //
mjr 29:582472d0bc57 371 // LedWiz emulation, and enhanced TLC5940 output controller
mjr 5:a70c0bce770d 372 //
mjr 26:cb71c4af2912 373 // There are two modes for this feature. The default mode uses the on-board
mjr 26:cb71c4af2912 374 // GPIO ports to implement device outputs - each LedWiz software port is
mjr 26:cb71c4af2912 375 // connected to a physical GPIO pin on the KL25Z. The KL25Z only has 10
mjr 26:cb71c4af2912 376 // PWM channels, so in this mode only 10 LedWiz ports will be dimmable; the
mjr 26:cb71c4af2912 377 // rest are strictly on/off. The KL25Z also has a limited number of GPIO
mjr 26:cb71c4af2912 378 // ports overall - not enough for the full complement of 32 LedWiz ports
mjr 26:cb71c4af2912 379 // and 24 VP joystick inputs, so it's necessary to trade one against the
mjr 26:cb71c4af2912 380 // other if both features are to be used.
mjr 26:cb71c4af2912 381 //
mjr 26:cb71c4af2912 382 // The alternative, enhanced mode uses external TLC5940 PWM controller
mjr 26:cb71c4af2912 383 // chips to control device outputs. In this mode, each LedWiz software
mjr 26:cb71c4af2912 384 // port is mapped to an output on one of the external TLC5940 chips.
mjr 26:cb71c4af2912 385 // Two 5940s is enough for the full set of 32 LedWiz ports, and we can
mjr 26:cb71c4af2912 386 // support even more chips for even more outputs (although doing so requires
mjr 26:cb71c4af2912 387 // breaking LedWiz compatibility, since the LedWiz USB protocol is hardwired
mjr 26:cb71c4af2912 388 // for 32 outputs). Every port in this mode has full PWM support.
mjr 26:cb71c4af2912 389 //
mjr 5:a70c0bce770d 390
mjr 29:582472d0bc57 391
mjr 26:cb71c4af2912 392 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 393 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 394 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 395 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 396 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 397
mjr 26:cb71c4af2912 398 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 399 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 400 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 401 class LwOut
mjr 6:cc35eb643e8f 402 {
mjr 6:cc35eb643e8f 403 public:
mjr 26:cb71c4af2912 404 // Set the output intensity. 'val' is 0.0 for fully off, 1.0 for
mjr 26:cb71c4af2912 405 // fully on, and fractional values for intermediate intensities.
mjr 6:cc35eb643e8f 406 virtual void set(float val) = 0;
mjr 6:cc35eb643e8f 407 };
mjr 26:cb71c4af2912 408
mjr 33:d832bcab089e 409 // LwOut class for unmapped ports. The LedWiz protocol is hardwired
mjr 33:d832bcab089e 410 // for 32 ports, but we might not want to assign all 32 software ports
mjr 33:d832bcab089e 411 // to physical output pins - the KL25Z has a limited number of GPIO
mjr 33:d832bcab089e 412 // ports, so we might not have enough available GPIOs to fill out the
mjr 33:d832bcab089e 413 // full LedWiz complement after assigning GPIOs for other functions.
mjr 33:d832bcab089e 414 // This class is used to populate the LedWiz mapping array for ports
mjr 33:d832bcab089e 415 // that aren't connected to physical outputs; it simply ignores value
mjr 33:d832bcab089e 416 // changes.
mjr 33:d832bcab089e 417 class LwUnusedOut: public LwOut
mjr 33:d832bcab089e 418 {
mjr 33:d832bcab089e 419 public:
mjr 33:d832bcab089e 420 LwUnusedOut() { }
mjr 33:d832bcab089e 421 virtual void set(float val) { }
mjr 33:d832bcab089e 422 };
mjr 26:cb71c4af2912 423
mjr 26:cb71c4af2912 424
mjr 33:d832bcab089e 425 #if TLC5940_NCHIPS
mjr 33:d832bcab089e 426 //
mjr 33:d832bcab089e 427 // The TLC5940 interface object. Set this up with the port assignments
mjr 33:d832bcab089e 428 // set in config.h.
mjr 33:d832bcab089e 429 //
mjr 26:cb71c4af2912 430 TLC5940 tlc5940(TLC5940_SCLK, TLC5940_SIN, TLC5940_GSCLK, TLC5940_BLANK,
mjr 26:cb71c4af2912 431 TLC5940_XLAT, TLC5940_NCHIPS);
mjr 26:cb71c4af2912 432
mjr 26:cb71c4af2912 433 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 434 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 435 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 436 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 437 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 438 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 439 {
mjr 26:cb71c4af2912 440 public:
mjr 26:cb71c4af2912 441 Lw5940Out(int idx) : idx(idx) { prv = -1; }
mjr 26:cb71c4af2912 442 virtual void set(float val)
mjr 26:cb71c4af2912 443 {
mjr 26:cb71c4af2912 444 if (val != prv)
mjr 29:582472d0bc57 445 tlc5940.set(idx, (int)(val * 4095));
mjr 26:cb71c4af2912 446 }
mjr 26:cb71c4af2912 447 int idx;
mjr 26:cb71c4af2912 448 float prv;
mjr 26:cb71c4af2912 449 };
mjr 26:cb71c4af2912 450
mjr 33:d832bcab089e 451 // Inverted voltage version of TLC5940 class (Active Low - logical "on"
mjr 33:d832bcab089e 452 // is represented by 0V on output)
mjr 33:d832bcab089e 453 class Lw5940OutInv: public Lw5940Out
mjr 33:d832bcab089e 454 {
mjr 33:d832bcab089e 455 public:
mjr 33:d832bcab089e 456 Lw5940OutInv(int idx) : Lw5940Out(idx) { }
mjr 33:d832bcab089e 457 virtual void set(float val) { Lw5940Out::set(1.0 - val); }
mjr 33:d832bcab089e 458 };
mjr 33:d832bcab089e 459
mjr 33:d832bcab089e 460 #else
mjr 33:d832bcab089e 461 // No TLC5940 chips are attached, so we shouldn't encounter any ports
mjr 33:d832bcab089e 462 // in the map marked for TLC5940 outputs. If we do, treat them as unused.
mjr 33:d832bcab089e 463 class Lw5940Out: public LwUnusedOut
mjr 33:d832bcab089e 464 {
mjr 33:d832bcab089e 465 public:
mjr 33:d832bcab089e 466 Lw5940Out(int idx) { }
mjr 33:d832bcab089e 467 };
mjr 33:d832bcab089e 468
mjr 33:d832bcab089e 469 class Lw5940OutInv: public Lw5940Out
mjr 33:d832bcab089e 470 {
mjr 33:d832bcab089e 471 public:
mjr 33:d832bcab089e 472 Lw5940OutInv(int idx) : Lw5940Out(idx) { }
mjr 33:d832bcab089e 473 };
mjr 33:d832bcab089e 474
mjr 33:d832bcab089e 475 #endif // TLC5940_NCHIPS
mjr 26:cb71c4af2912 476
mjr 26:cb71c4af2912 477 //
mjr 26:cb71c4af2912 478 // Default LedWiz mode - using on-board GPIO ports. In this mode, we
mjr 26:cb71c4af2912 479 // assign a KL25Z GPIO port to each LedWiz output. We have to use a
mjr 26:cb71c4af2912 480 // mix of PWM-capable and Digital-Only ports in this configuration,
mjr 26:cb71c4af2912 481 // since the KL25Z hardware only has 10 PWM channels, which isn't
mjr 26:cb71c4af2912 482 // enough to fill out the full complement of 32 LedWiz outputs.
mjr 26:cb71c4af2912 483 //
mjr 26:cb71c4af2912 484
mjr 26:cb71c4af2912 485 // LwOut class for a PWM-capable GPIO port
mjr 6:cc35eb643e8f 486 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 487 {
mjr 6:cc35eb643e8f 488 public:
mjr 13:72dda449c3c0 489 LwPwmOut(PinName pin) : p(pin) { prv = -1; }
mjr 13:72dda449c3c0 490 virtual void set(float val)
mjr 13:72dda449c3c0 491 {
mjr 13:72dda449c3c0 492 if (val != prv)
mjr 13:72dda449c3c0 493 p.write(prv = val);
mjr 13:72dda449c3c0 494 }
mjr 6:cc35eb643e8f 495 PwmOut p;
mjr 13:72dda449c3c0 496 float prv;
mjr 6:cc35eb643e8f 497 };
mjr 26:cb71c4af2912 498
mjr 33:d832bcab089e 499 // Inverted voltage PWM-capable GPIO port. This is the Active Low
mjr 33:d832bcab089e 500 // version of the port - logical "on" is represnted by 0V on the
mjr 33:d832bcab089e 501 // GPIO pin.
mjr 33:d832bcab089e 502 class LwPwmOutInv: public LwPwmOut
mjr 33:d832bcab089e 503 {
mjr 33:d832bcab089e 504 public:
mjr 33:d832bcab089e 505 LwPwmOutInv(PinName pin) : LwPwmOut(pin) { }
mjr 33:d832bcab089e 506 virtual void set(float val) { LwPwmOut::set(1.0 - val); }
mjr 33:d832bcab089e 507 };
mjr 33:d832bcab089e 508
mjr 26:cb71c4af2912 509 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 510 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 511 {
mjr 6:cc35eb643e8f 512 public:
mjr 13:72dda449c3c0 513 LwDigOut(PinName pin) : p(pin) { prv = -1; }
mjr 13:72dda449c3c0 514 virtual void set(float val)
mjr 13:72dda449c3c0 515 {
mjr 13:72dda449c3c0 516 if (val != prv)
mjr 13:72dda449c3c0 517 p.write((prv = val) == 0.0 ? 0 : 1);
mjr 13:72dda449c3c0 518 }
mjr 6:cc35eb643e8f 519 DigitalOut p;
mjr 13:72dda449c3c0 520 float prv;
mjr 6:cc35eb643e8f 521 };
mjr 26:cb71c4af2912 522
mjr 33:d832bcab089e 523 // Inverted voltage digital out
mjr 33:d832bcab089e 524 class LwDigOutInv: public LwDigOut
mjr 11:bd9da7088e6e 525 {
mjr 11:bd9da7088e6e 526 public:
mjr 33:d832bcab089e 527 LwDigOutInv(PinName pin) : LwDigOut(pin) { }
mjr 33:d832bcab089e 528 virtual void set(float val) { LwDigOut::set(1.0 - val); }
mjr 11:bd9da7088e6e 529 };
mjr 6:cc35eb643e8f 530
mjr 29:582472d0bc57 531 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 532 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 29:582472d0bc57 533 // port n (0-based). If we're using GPIO ports to implement outputs,
mjr 29:582472d0bc57 534 // we initialize the array at start-up to map each logical port to the
mjr 29:582472d0bc57 535 // physical GPIO pin for the port specified in the ledWizPortMap[]
mjr 29:582472d0bc57 536 // array in config.h. If we're using TLC5940 chips for the outputs,
mjr 29:582472d0bc57 537 // we map each logical port to the corresponding TLC5940 output.
mjr 33:d832bcab089e 538 static int numOutputs;
mjr 33:d832bcab089e 539 static LwOut **lwPin;
mjr 33:d832bcab089e 540
mjr 33:d832bcab089e 541 // Current absolute brightness level for an output. This is a float
mjr 33:d832bcab089e 542 // value from 0.0 for fully off to 1.0 for fully on. This is the final
mjr 33:d832bcab089e 543 // derived value for the port. For outputs set by LedWiz messages,
mjr 33:d832bcab089e 544 // this is derived from the LedWiz state, and is updated on each pulse
mjr 33:d832bcab089e 545 // timer interrupt for lights in flashing states. For outputs set by
mjr 33:d832bcab089e 546 // extended protocol messages, this is simply the brightness last set.
mjr 33:d832bcab089e 547 static float *outLevel;
mjr 6:cc35eb643e8f 548
mjr 6:cc35eb643e8f 549 // initialize the output pin array
mjr 6:cc35eb643e8f 550 void initLwOut()
mjr 6:cc35eb643e8f 551 {
mjr 33:d832bcab089e 552 // Figure out how many outputs we have. We always have at least
mjr 33:d832bcab089e 553 // 32 outputs, since that's the number fixed by the original LedWiz
mjr 33:d832bcab089e 554 // protocol. If we're using TLC5940 chips, we use our own custom
mjr 33:d832bcab089e 555 // extended protocol that allows for many more ports. In this case,
mjr 33:d832bcab089e 556 // we have 16 outputs per TLC5940, plus any assigned to GPIO pins.
mjr 33:d832bcab089e 557
mjr 33:d832bcab089e 558 // start with 16 ports per TLC5940
mjr 33:d832bcab089e 559 numOutputs = TLC5940_NCHIPS * 16;
mjr 33:d832bcab089e 560
mjr 33:d832bcab089e 561 // add outputs assigned to GPIO pins in the LedWiz-to-pin mapping
mjr 33:d832bcab089e 562 int i;
mjr 33:d832bcab089e 563 for (i = 0 ; i < countof(ledWizPortMap) ; ++i)
mjr 6:cc35eb643e8f 564 {
mjr 33:d832bcab089e 565 if (ledWizPortMap[i].pin != NC)
mjr 33:d832bcab089e 566 ++numOutputs;
mjr 33:d832bcab089e 567 }
mjr 33:d832bcab089e 568
mjr 33:d832bcab089e 569 // always set up at least 32 outputs, so that we don't have to
mjr 33:d832bcab089e 570 // check bounds on commands from the basic LedWiz protocol
mjr 33:d832bcab089e 571 if (numOutputs < 32)
mjr 33:d832bcab089e 572 numOutputs = 32;
mjr 33:d832bcab089e 573
mjr 33:d832bcab089e 574 // allocate the pin array
mjr 33:d832bcab089e 575 lwPin = new LwOut*[numOutputs];
mjr 33:d832bcab089e 576
mjr 33:d832bcab089e 577 // allocate the current brightness array
mjr 33:d832bcab089e 578 outLevel = new float[numOutputs];
mjr 33:d832bcab089e 579
mjr 33:d832bcab089e 580 // allocate a temporary array to keep track of which physical
mjr 33:d832bcab089e 581 // TLC5940 ports we've assigned so far
mjr 33:d832bcab089e 582 char *tlcasi = new char[TLC5940_NCHIPS*16+1];
mjr 33:d832bcab089e 583 memset(tlcasi, 0, TLC5940_NCHIPS*16);
mjr 26:cb71c4af2912 584
mjr 33:d832bcab089e 585 // assign all pins from the port map in config.h
mjr 33:d832bcab089e 586 for (i = 0 ; i < countof(ledWizPortMap) ; ++i)
mjr 33:d832bcab089e 587 {
mjr 33:d832bcab089e 588 // Figure out which type of pin to assign to this port:
mjr 33:d832bcab089e 589 //
mjr 33:d832bcab089e 590 // - If it has a valid GPIO pin (other than "NC"), create a PWM
mjr 33:d832bcab089e 591 // or Digital output pin according to the port type.
mjr 33:d832bcab089e 592 //
mjr 33:d832bcab089e 593 // - If the pin has a TLC5940 port number, set up a TLC5940 port.
mjr 33:d832bcab089e 594 //
mjr 33:d832bcab089e 595 // - Otherwise, the pin is unconnected, so set up an unused out.
mjr 33:d832bcab089e 596 //
mjr 33:d832bcab089e 597 PinName p = ledWizPortMap[i].pin;
mjr 33:d832bcab089e 598 int flags = ledWizPortMap[i].flags;
mjr 33:d832bcab089e 599 int tlcPortNum = ledWizPortMap[i].tlcPortNum;
mjr 33:d832bcab089e 600 int isPwm = flags & PORT_IS_PWM;
mjr 33:d832bcab089e 601 int activeLow = flags & PORT_ACTIVE_LOW;
mjr 33:d832bcab089e 602 if (p != NC)
mjr 33:d832bcab089e 603 {
mjr 33:d832bcab089e 604 // This output is a GPIO - set it up as PWM or Digital, and
mjr 33:d832bcab089e 605 // active high or low, as marked
mjr 33:d832bcab089e 606 if (isPwm)
mjr 33:d832bcab089e 607 lwPin[i] = activeLow ? new LwPwmOutInv(p) : new LwPwmOut(p);
mjr 33:d832bcab089e 608 else
mjr 33:d832bcab089e 609 lwPin[i] = activeLow ? new LwDigOutInv(p) : new LwDigOut(p);
mjr 33:d832bcab089e 610 }
mjr 33:d832bcab089e 611 else if (tlcPortNum != 0)
mjr 33:d832bcab089e 612 {
mjr 33:d832bcab089e 613 // It's a TLC5940 port. Note that the port numbering in the map
mjr 33:d832bcab089e 614 // starts at 1, but internally we number the ports starting at 0,
mjr 33:d832bcab089e 615 // so subtract one to get the correct numbering.
mjr 33:d832bcab089e 616 lwPin[i] = activeLow ? new Lw5940OutInv(tlcPortNum-1) : new Lw5940Out(tlcPortNum-1);
mjr 26:cb71c4af2912 617
mjr 33:d832bcab089e 618 // mark this port as used, so that we don't reassign it when we
mjr 33:d832bcab089e 619 // fill out the remaining unassigned ports
mjr 33:d832bcab089e 620 tlcasi[tlcPortNum-1] = 1;
mjr 33:d832bcab089e 621 }
mjr 33:d832bcab089e 622 else
mjr 33:d832bcab089e 623 {
mjr 33:d832bcab089e 624 // it's not a GPIO or TLC5940 port -> it's not connected
mjr 33:d832bcab089e 625 lwPin[i] = new LwUnusedOut();
mjr 33:d832bcab089e 626 }
mjr 33:d832bcab089e 627 lwPin[i]->set(0);
mjr 6:cc35eb643e8f 628 }
mjr 33:d832bcab089e 629
mjr 33:d832bcab089e 630 // find the next unassigned tlc port
mjr 33:d832bcab089e 631 int tlcnxt;
mjr 33:d832bcab089e 632 for (tlcnxt = 0 ; tlcnxt < TLC5940_NCHIPS*16 && tlcasi[tlcnxt] ; ++tlcnxt) ;
mjr 33:d832bcab089e 633
mjr 33:d832bcab089e 634 // assign any remaining pins
mjr 33:d832bcab089e 635 for ( ; i < numOutputs ; ++i)
mjr 33:d832bcab089e 636 {
mjr 33:d832bcab089e 637 // If we have any more unassigned TLC5940 outputs, assign this LedWiz
mjr 33:d832bcab089e 638 // port to the next available TLC5940 output. Otherwise make it
mjr 33:d832bcab089e 639 // unconnected.
mjr 33:d832bcab089e 640 if (tlcnxt < TLC5940_NCHIPS*16)
mjr 33:d832bcab089e 641 {
mjr 33:d832bcab089e 642 // we have a TLC5940 output available - assign it
mjr 33:d832bcab089e 643 lwPin[i] = new Lw5940Out(tlcnxt);
mjr 33:d832bcab089e 644
mjr 33:d832bcab089e 645 // find the next unassigned TLC5940 output, for the next port
mjr 33:d832bcab089e 646 for (++tlcnxt ; tlcnxt < TLC5940_NCHIPS*16 && tlcasi[tlcnxt] ; ++tlcnxt) ;
mjr 33:d832bcab089e 647 }
mjr 33:d832bcab089e 648 else
mjr 33:d832bcab089e 649 {
mjr 33:d832bcab089e 650 // no more ports available - set up this port as unconnected
mjr 33:d832bcab089e 651 lwPin[i] = new LwUnusedOut();
mjr 33:d832bcab089e 652 }
mjr 33:d832bcab089e 653 }
mjr 33:d832bcab089e 654
mjr 33:d832bcab089e 655 // done with the temporary TLC5940 port assignment list
mjr 33:d832bcab089e 656 delete [] tlcasi;
mjr 6:cc35eb643e8f 657 }
mjr 6:cc35eb643e8f 658
mjr 29:582472d0bc57 659 // LedWiz output states.
mjr 29:582472d0bc57 660 //
mjr 29:582472d0bc57 661 // The LedWiz protocol has two separate control axes for each output.
mjr 29:582472d0bc57 662 // One axis is its on/off state; the other is its "profile" state, which
mjr 29:582472d0bc57 663 // is either a fixed brightness or a blinking pattern for the light.
mjr 29:582472d0bc57 664 // The two axes are independent.
mjr 29:582472d0bc57 665 //
mjr 29:582472d0bc57 666 // Note that the LedWiz protocol can only address 32 outputs, so the
mjr 29:582472d0bc57 667 // wizOn and wizVal arrays have fixed sizes of 32 elements no matter
mjr 29:582472d0bc57 668 // how many physical outputs we're using.
mjr 29:582472d0bc57 669
mjr 0:5acbbe3f4cf4 670 // on/off state for each LedWiz output
mjr 1:d913e0afb2ac 671 static uint8_t wizOn[32];
mjr 0:5acbbe3f4cf4 672
mjr 29:582472d0bc57 673 // Profile (brightness/blink) state for each LedWiz output. If the
mjr 29:582472d0bc57 674 // output was last updated through an LedWiz protocol message, it
mjr 29:582472d0bc57 675 // will have one of these values:
mjr 29:582472d0bc57 676 //
mjr 29:582472d0bc57 677 // 0-48 = fixed brightness 0% to 100%
mjr 29:582472d0bc57 678 // 129 = ramp up / ramp down
mjr 29:582472d0bc57 679 // 130 = flash on / off
mjr 29:582472d0bc57 680 // 131 = on / ramp down
mjr 29:582472d0bc57 681 // 132 = ramp up / on
mjr 29:582472d0bc57 682 //
mjr 29:582472d0bc57 683 // Special value 255: If the output was updated through the
mjr 29:582472d0bc57 684 // extended protocol, we'll set the wizVal entry to 255, which has
mjr 29:582472d0bc57 685 // no meaning in the LedWiz protocol. This tells us that the value
mjr 29:582472d0bc57 686 // in outLevel[] was set directly from the extended protocol, so it
mjr 29:582472d0bc57 687 // shouldn't be derived from wizVal[].
mjr 29:582472d0bc57 688 //
mjr 1:d913e0afb2ac 689 static uint8_t wizVal[32] = {
mjr 13:72dda449c3c0 690 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 691 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 692 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 693 48, 48, 48, 48, 48, 48, 48, 48
mjr 0:5acbbe3f4cf4 694 };
mjr 0:5acbbe3f4cf4 695
mjr 29:582472d0bc57 696 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 29:582472d0bc57 697 // rate for lights in blinking states.
mjr 29:582472d0bc57 698 static uint8_t wizSpeed = 2;
mjr 29:582472d0bc57 699
mjr 29:582472d0bc57 700 // Current LedWiz flash cycle counter.
mjr 29:582472d0bc57 701 static uint8_t wizFlashCounter = 0;
mjr 29:582472d0bc57 702
mjr 29:582472d0bc57 703 // Get the current brightness level for an LedWiz output.
mjr 1:d913e0afb2ac 704 static float wizState(int idx)
mjr 0:5acbbe3f4cf4 705 {
mjr 29:582472d0bc57 706 // if the output was last set with an extended protocol message,
mjr 29:582472d0bc57 707 // use the value set there, ignoring the output's LedWiz state
mjr 29:582472d0bc57 708 if (wizVal[idx] == 255)
mjr 29:582472d0bc57 709 return outLevel[idx];
mjr 29:582472d0bc57 710
mjr 29:582472d0bc57 711 // if it's off, show at zero intensity
mjr 29:582472d0bc57 712 if (!wizOn[idx])
mjr 29:582472d0bc57 713 return 0;
mjr 29:582472d0bc57 714
mjr 29:582472d0bc57 715 // check the state
mjr 29:582472d0bc57 716 uint8_t val = wizVal[idx];
mjr 29:582472d0bc57 717 if (val <= 48)
mjr 29:582472d0bc57 718 {
mjr 29:582472d0bc57 719 // PWM brightness/intensity level. Rescale from the LedWiz
mjr 29:582472d0bc57 720 // 0..48 integer range to our internal PwmOut 0..1 float range.
mjr 29:582472d0bc57 721 // Note that on the actual LedWiz, level 48 is actually about
mjr 29:582472d0bc57 722 // 98% on - contrary to the LedWiz documentation, level 49 is
mjr 29:582472d0bc57 723 // the true 100% level. (In the documentation, level 49 is
mjr 29:582472d0bc57 724 // simply not a valid setting.) Even so, we treat level 48 as
mjr 29:582472d0bc57 725 // 100% on to match the documentation. This won't be perfectly
mjr 29:582472d0bc57 726 // ocmpatible with the actual LedWiz, but it makes for such a
mjr 29:582472d0bc57 727 // small difference in brightness (if the output device is an
mjr 29:582472d0bc57 728 // LED, say) that no one should notice. It seems better to
mjr 29:582472d0bc57 729 // err in this direction, because while the difference in
mjr 29:582472d0bc57 730 // brightness when attached to an LED won't be noticeable, the
mjr 29:582472d0bc57 731 // difference in duty cycle when attached to something like a
mjr 29:582472d0bc57 732 // contactor *can* be noticeable - anything less than 100%
mjr 29:582472d0bc57 733 // can cause a contactor or relay to chatter. There's almost
mjr 29:582472d0bc57 734 // never a situation where you'd want values other than 0% and
mjr 29:582472d0bc57 735 // 100% for a contactor or relay, so treating level 48 as 100%
mjr 29:582472d0bc57 736 // makes us work properly with software that's expecting the
mjr 29:582472d0bc57 737 // documented LedWiz behavior and therefore uses level 48 to
mjr 29:582472d0bc57 738 // turn a contactor or relay fully on.
mjr 29:582472d0bc57 739 return val/48.0;
mjr 29:582472d0bc57 740 }
mjr 29:582472d0bc57 741 else if (val == 49)
mjr 13:72dda449c3c0 742 {
mjr 29:582472d0bc57 743 // 49 is undefined in the LedWiz documentation, but actually
mjr 29:582472d0bc57 744 // means 100% on. The documentation says that levels 1-48 are
mjr 29:582472d0bc57 745 // the full PWM range, but empirically it appears that the real
mjr 29:582472d0bc57 746 // range implemented in the firmware is 1-49. Some software on
mjr 29:582472d0bc57 747 // the PC side (notably DOF) is aware of this and uses level 49
mjr 29:582472d0bc57 748 // to mean "100% on". To ensure compatibility with existing
mjr 29:582472d0bc57 749 // PC-side software, we need to recognize level 49.
mjr 29:582472d0bc57 750 return 1.0;
mjr 29:582472d0bc57 751 }
mjr 29:582472d0bc57 752 else if (val == 129)
mjr 29:582472d0bc57 753 {
mjr 29:582472d0bc57 754 // 129 = ramp up / ramp down
mjr 30:6e9902f06f48 755 return wizFlashCounter < 128
mjr 30:6e9902f06f48 756 ? wizFlashCounter/128.0
mjr 30:6e9902f06f48 757 : (256 - wizFlashCounter)/128.0;
mjr 29:582472d0bc57 758 }
mjr 29:582472d0bc57 759 else if (val == 130)
mjr 29:582472d0bc57 760 {
mjr 29:582472d0bc57 761 // 130 = flash on / off
mjr 30:6e9902f06f48 762 return wizFlashCounter < 128 ? 1.0 : 0.0;
mjr 29:582472d0bc57 763 }
mjr 29:582472d0bc57 764 else if (val == 131)
mjr 29:582472d0bc57 765 {
mjr 29:582472d0bc57 766 // 131 = on / ramp down
mjr 30:6e9902f06f48 767 return wizFlashCounter < 128 ? 1.0 : (255 - wizFlashCounter)/128.0;
mjr 0:5acbbe3f4cf4 768 }
mjr 29:582472d0bc57 769 else if (val == 132)
mjr 29:582472d0bc57 770 {
mjr 29:582472d0bc57 771 // 132 = ramp up / on
mjr 30:6e9902f06f48 772 return wizFlashCounter < 128 ? wizFlashCounter/128.0 : 1.0;
mjr 29:582472d0bc57 773 }
mjr 29:582472d0bc57 774 else
mjr 13:72dda449c3c0 775 {
mjr 29:582472d0bc57 776 // Other values are undefined in the LedWiz documentation. Hosts
mjr 29:582472d0bc57 777 // *should* never send undefined values, since whatever behavior an
mjr 29:582472d0bc57 778 // LedWiz unit exhibits in response is accidental and could change
mjr 29:582472d0bc57 779 // in a future version. We'll treat all undefined values as equivalent
mjr 29:582472d0bc57 780 // to 48 (fully on).
mjr 29:582472d0bc57 781 return 1.0;
mjr 0:5acbbe3f4cf4 782 }
mjr 0:5acbbe3f4cf4 783 }
mjr 0:5acbbe3f4cf4 784
mjr 29:582472d0bc57 785 // LedWiz flash timer pulse. This fires periodically to update
mjr 29:582472d0bc57 786 // LedWiz flashing outputs. At the slowest pulse speed set via
mjr 29:582472d0bc57 787 // the SBA command, each waveform cycle has 256 steps, so we
mjr 29:582472d0bc57 788 // choose the pulse time base so that the slowest cycle completes
mjr 29:582472d0bc57 789 // in 2 seconds. This seems to roughly match the real LedWiz
mjr 29:582472d0bc57 790 // behavior. We run the pulse timer at the same rate regardless
mjr 29:582472d0bc57 791 // of the pulse speed; at higher pulse speeds, we simply use
mjr 29:582472d0bc57 792 // larger steps through the cycle on each interrupt. Running
mjr 29:582472d0bc57 793 // every 1/127 of a second = 8ms seems to be a pretty light load.
mjr 29:582472d0bc57 794 Timeout wizPulseTimer;
mjr 29:582472d0bc57 795 #define WIZ_PULSE_TIME_BASE (1.0/127.0)
mjr 29:582472d0bc57 796 static void wizPulse()
mjr 29:582472d0bc57 797 {
mjr 29:582472d0bc57 798 // increase the counter by the speed increment, and wrap at 256
mjr 29:582472d0bc57 799 wizFlashCounter += wizSpeed;
mjr 29:582472d0bc57 800 wizFlashCounter &= 0xff;
mjr 29:582472d0bc57 801
mjr 29:582472d0bc57 802 // if we have any flashing lights, update them
mjr 29:582472d0bc57 803 int ena = false;
mjr 29:582472d0bc57 804 for (int i = 0 ; i < 32 ; ++i)
mjr 29:582472d0bc57 805 {
mjr 29:582472d0bc57 806 if (wizOn[i])
mjr 29:582472d0bc57 807 {
mjr 29:582472d0bc57 808 uint8_t s = wizVal[i];
mjr 29:582472d0bc57 809 if (s >= 129 && s <= 132)
mjr 29:582472d0bc57 810 {
mjr 29:582472d0bc57 811 lwPin[i]->set(wizState(i));
mjr 29:582472d0bc57 812 ena = true;
mjr 29:582472d0bc57 813 }
mjr 29:582472d0bc57 814 }
mjr 29:582472d0bc57 815 }
mjr 29:582472d0bc57 816
mjr 29:582472d0bc57 817 // Set up the next timer pulse only if we found anything flashing.
mjr 29:582472d0bc57 818 // To minimize overhead from this feature, we only enable the interrupt
mjr 29:582472d0bc57 819 // when we need it. This eliminates any performance penalty to other
mjr 29:582472d0bc57 820 // features when the host software doesn't care about the flashing
mjr 29:582472d0bc57 821 // modes. For example, DOF never uses these modes, so there's no
mjr 29:582472d0bc57 822 // need for them when running Visual Pinball.
mjr 29:582472d0bc57 823 if (ena)
mjr 29:582472d0bc57 824 wizPulseTimer.attach(wizPulse, WIZ_PULSE_TIME_BASE);
mjr 29:582472d0bc57 825 }
mjr 29:582472d0bc57 826
mjr 29:582472d0bc57 827 // Update the physical outputs connected to the LedWiz ports. This is
mjr 29:582472d0bc57 828 // called after any update from an LedWiz protocol message.
mjr 1:d913e0afb2ac 829 static void updateWizOuts()
mjr 1:d913e0afb2ac 830 {
mjr 29:582472d0bc57 831 // update each output
mjr 29:582472d0bc57 832 int pulse = false;
mjr 6:cc35eb643e8f 833 for (int i = 0 ; i < 32 ; ++i)
mjr 29:582472d0bc57 834 {
mjr 29:582472d0bc57 835 pulse |= (wizVal[i] >= 129 && wizVal[i] <= 132);
mjr 6:cc35eb643e8f 836 lwPin[i]->set(wizState(i));
mjr 29:582472d0bc57 837 }
mjr 29:582472d0bc57 838
mjr 29:582472d0bc57 839 // if any outputs are set to flashing mode, and the pulse timer
mjr 29:582472d0bc57 840 // isn't running, turn it on
mjr 29:582472d0bc57 841 if (pulse)
mjr 29:582472d0bc57 842 wizPulseTimer.attach(wizPulse, WIZ_PULSE_TIME_BASE);
mjr 1:d913e0afb2ac 843 }
mjr 1:d913e0afb2ac 844
mjr 11:bd9da7088e6e 845 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 846 //
mjr 11:bd9da7088e6e 847 // Button input
mjr 11:bd9da7088e6e 848 //
mjr 11:bd9da7088e6e 849
mjr 11:bd9da7088e6e 850 // button input map array
mjr 11:bd9da7088e6e 851 DigitalIn *buttonDigIn[32];
mjr 11:bd9da7088e6e 852
mjr 18:5e890ebd0023 853 // button state
mjr 18:5e890ebd0023 854 struct ButtonState
mjr 18:5e890ebd0023 855 {
mjr 18:5e890ebd0023 856 // current on/off state
mjr 18:5e890ebd0023 857 int pressed;
mjr 18:5e890ebd0023 858
mjr 18:5e890ebd0023 859 // Sticky time remaining for current state. When a
mjr 18:5e890ebd0023 860 // state transition occurs, we set this to a debounce
mjr 18:5e890ebd0023 861 // period. Future state transitions will be ignored
mjr 18:5e890ebd0023 862 // until the debounce time elapses.
mjr 18:5e890ebd0023 863 int t;
mjr 18:5e890ebd0023 864 } buttonState[32];
mjr 18:5e890ebd0023 865
mjr 12:669df364a565 866 // timer for button reports
mjr 12:669df364a565 867 static Timer buttonTimer;
mjr 12:669df364a565 868
mjr 11:bd9da7088e6e 869 // initialize the button inputs
mjr 11:bd9da7088e6e 870 void initButtons()
mjr 11:bd9da7088e6e 871 {
mjr 11:bd9da7088e6e 872 // create the digital inputs
mjr 11:bd9da7088e6e 873 for (int i = 0 ; i < countof(buttonDigIn) ; ++i)
mjr 11:bd9da7088e6e 874 {
mjr 11:bd9da7088e6e 875 if (i < countof(buttonMap) && buttonMap[i] != NC)
mjr 11:bd9da7088e6e 876 buttonDigIn[i] = new DigitalIn(buttonMap[i]);
mjr 11:bd9da7088e6e 877 else
mjr 11:bd9da7088e6e 878 buttonDigIn[i] = 0;
mjr 11:bd9da7088e6e 879 }
mjr 12:669df364a565 880
mjr 12:669df364a565 881 // start the button timer
mjr 12:669df364a565 882 buttonTimer.start();
mjr 11:bd9da7088e6e 883 }
mjr 11:bd9da7088e6e 884
mjr 11:bd9da7088e6e 885
mjr 18:5e890ebd0023 886 // read the button input state
mjr 18:5e890ebd0023 887 uint32_t readButtons()
mjr 11:bd9da7088e6e 888 {
mjr 11:bd9da7088e6e 889 // start with all buttons off
mjr 11:bd9da7088e6e 890 uint32_t buttons = 0;
mjr 11:bd9da7088e6e 891
mjr 18:5e890ebd0023 892 // figure the time elapsed since the last scan
mjr 18:5e890ebd0023 893 int dt = buttonTimer.read_ms();
mjr 18:5e890ebd0023 894
mjr 18:5e890ebd0023 895 // reset the timef for the next scan
mjr 18:5e890ebd0023 896 buttonTimer.reset();
mjr 18:5e890ebd0023 897
mjr 11:bd9da7088e6e 898 // scan the button list
mjr 11:bd9da7088e6e 899 uint32_t bit = 1;
mjr 18:5e890ebd0023 900 DigitalIn **di = buttonDigIn;
mjr 18:5e890ebd0023 901 ButtonState *bs = buttonState;
mjr 18:5e890ebd0023 902 for (int i = 0 ; i < countof(buttonDigIn) ; ++i, ++di, ++bs, bit <<= 1)
mjr 11:bd9da7088e6e 903 {
mjr 18:5e890ebd0023 904 // read this button
mjr 18:5e890ebd0023 905 if (*di != 0)
mjr 18:5e890ebd0023 906 {
mjr 18:5e890ebd0023 907 // deduct the elapsed time since the last update
mjr 18:5e890ebd0023 908 // from the button's remaining sticky time
mjr 18:5e890ebd0023 909 bs->t -= dt;
mjr 18:5e890ebd0023 910 if (bs->t < 0)
mjr 18:5e890ebd0023 911 bs->t = 0;
mjr 18:5e890ebd0023 912
mjr 18:5e890ebd0023 913 // If the sticky time has elapsed, note the new physical
mjr 18:5e890ebd0023 914 // state of the button. If we still have sticky time
mjr 18:5e890ebd0023 915 // remaining, ignore the physical state; the last state
mjr 18:5e890ebd0023 916 // change persists until the sticky time elapses so that
mjr 18:5e890ebd0023 917 // we smooth out any "bounce" (electrical transients that
mjr 18:5e890ebd0023 918 // occur when the switch contact is opened or closed).
mjr 18:5e890ebd0023 919 if (bs->t == 0)
mjr 18:5e890ebd0023 920 {
mjr 18:5e890ebd0023 921 // get the new physical state
mjr 18:5e890ebd0023 922 int pressed = !(*di)->read();
mjr 18:5e890ebd0023 923
mjr 18:5e890ebd0023 924 // update the button's logical state if this is a change
mjr 18:5e890ebd0023 925 if (pressed != bs->pressed)
mjr 18:5e890ebd0023 926 {
mjr 18:5e890ebd0023 927 // store the new state
mjr 18:5e890ebd0023 928 bs->pressed = pressed;
mjr 18:5e890ebd0023 929
mjr 18:5e890ebd0023 930 // start a new sticky period for debouncing this
mjr 18:5e890ebd0023 931 // state change
mjr 19:054f8af32fce 932 bs->t = 25;
mjr 18:5e890ebd0023 933 }
mjr 18:5e890ebd0023 934 }
mjr 18:5e890ebd0023 935
mjr 18:5e890ebd0023 936 // if it's pressed, OR its bit into the state
mjr 18:5e890ebd0023 937 if (bs->pressed)
mjr 18:5e890ebd0023 938 buttons |= bit;
mjr 18:5e890ebd0023 939 }
mjr 11:bd9da7088e6e 940 }
mjr 11:bd9da7088e6e 941
mjr 18:5e890ebd0023 942 // return the new button list
mjr 11:bd9da7088e6e 943 return buttons;
mjr 11:bd9da7088e6e 944 }
mjr 11:bd9da7088e6e 945
mjr 5:a70c0bce770d 946 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 947 //
mjr 5:a70c0bce770d 948 // Customization joystick subbclass
mjr 5:a70c0bce770d 949 //
mjr 5:a70c0bce770d 950
mjr 5:a70c0bce770d 951 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 952 {
mjr 5:a70c0bce770d 953 public:
mjr 5:a70c0bce770d 954 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release)
mjr 5:a70c0bce770d 955 : USBJoystick(vendor_id, product_id, product_release, true)
mjr 5:a70c0bce770d 956 {
mjr 5:a70c0bce770d 957 suspended_ = false;
mjr 5:a70c0bce770d 958 }
mjr 5:a70c0bce770d 959
mjr 5:a70c0bce770d 960 // are we connected?
mjr 5:a70c0bce770d 961 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 962
mjr 5:a70c0bce770d 963 // Are we in suspend mode?
mjr 5:a70c0bce770d 964 int isSuspended() const { return suspended_; }
mjr 5:a70c0bce770d 965
mjr 5:a70c0bce770d 966 protected:
mjr 5:a70c0bce770d 967 virtual void suspendStateChanged(unsigned int suspended)
mjr 5:a70c0bce770d 968 { suspended_ = suspended; }
mjr 5:a70c0bce770d 969
mjr 5:a70c0bce770d 970 // are we suspended?
mjr 5:a70c0bce770d 971 int suspended_;
mjr 5:a70c0bce770d 972 };
mjr 5:a70c0bce770d 973
mjr 5:a70c0bce770d 974 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 975 //
mjr 5:a70c0bce770d 976 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 977 //
mjr 5:a70c0bce770d 978
mjr 5:a70c0bce770d 979 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 980 //
mjr 5:a70c0bce770d 981 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 982 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 983 // automatic calibration.
mjr 5:a70c0bce770d 984 //
mjr 5:a70c0bce770d 985 // We install an interrupt handler on the accelerometer "data ready"
mjr 6:cc35eb643e8f 986 // interrupt to ensure that we fetch each sample immediately when it
mjr 6:cc35eb643e8f 987 // becomes available. The accelerometer data rate is fiarly high
mjr 6:cc35eb643e8f 988 // (800 Hz), so it's not practical to keep up with it by polling.
mjr 6:cc35eb643e8f 989 // Using an interrupt handler lets us respond quickly and read
mjr 6:cc35eb643e8f 990 // every sample.
mjr 5:a70c0bce770d 991 //
mjr 6:cc35eb643e8f 992 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 993 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 994 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 995 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 996 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 997 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 998 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 999 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 1000 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 1001 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 1002 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 1003 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 1004 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 1005 // of nudging, say).
mjr 5:a70c0bce770d 1006 //
mjr 5:a70c0bce770d 1007
mjr 17:ab3cec0c8bf4 1008 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 1009 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 1010
mjr 17:ab3cec0c8bf4 1011 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 1012 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 1013 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 1014
mjr 17:ab3cec0c8bf4 1015 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 1016 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 1017 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 1018 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 1019
mjr 17:ab3cec0c8bf4 1020
mjr 6:cc35eb643e8f 1021 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 1022 struct AccHist
mjr 5:a70c0bce770d 1023 {
mjr 6:cc35eb643e8f 1024 AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 1025 void set(float x, float y, AccHist *prv)
mjr 6:cc35eb643e8f 1026 {
mjr 6:cc35eb643e8f 1027 // save the raw position
mjr 6:cc35eb643e8f 1028 this->x = x;
mjr 6:cc35eb643e8f 1029 this->y = y;
mjr 6:cc35eb643e8f 1030 this->d = distance(prv);
mjr 6:cc35eb643e8f 1031 }
mjr 6:cc35eb643e8f 1032
mjr 6:cc35eb643e8f 1033 // reading for this entry
mjr 5:a70c0bce770d 1034 float x, y;
mjr 5:a70c0bce770d 1035
mjr 6:cc35eb643e8f 1036 // distance from previous entry
mjr 6:cc35eb643e8f 1037 float d;
mjr 5:a70c0bce770d 1038
mjr 6:cc35eb643e8f 1039 // total and count of samples averaged over this period
mjr 6:cc35eb643e8f 1040 float xtot, ytot;
mjr 6:cc35eb643e8f 1041 int cnt;
mjr 6:cc35eb643e8f 1042
mjr 6:cc35eb643e8f 1043 void clearAvg() { xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 1044 void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; }
mjr 6:cc35eb643e8f 1045 float xAvg() const { return xtot/cnt; }
mjr 6:cc35eb643e8f 1046 float yAvg() const { return ytot/cnt; }
mjr 5:a70c0bce770d 1047
mjr 6:cc35eb643e8f 1048 float distance(AccHist *p)
mjr 6:cc35eb643e8f 1049 { return sqrt(square(p->x - x) + square(p->y - y)); }
mjr 5:a70c0bce770d 1050 };
mjr 5:a70c0bce770d 1051
mjr 5:a70c0bce770d 1052 // accelerometer wrapper class
mjr 3:3514575d4f86 1053 class Accel
mjr 3:3514575d4f86 1054 {
mjr 3:3514575d4f86 1055 public:
mjr 3:3514575d4f86 1056 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin)
mjr 3:3514575d4f86 1057 : mma_(sda, scl, i2cAddr), intIn_(irqPin)
mjr 3:3514575d4f86 1058 {
mjr 5:a70c0bce770d 1059 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 1060 irqPin_ = irqPin;
mjr 5:a70c0bce770d 1061
mjr 5:a70c0bce770d 1062 // reset and initialize
mjr 5:a70c0bce770d 1063 reset();
mjr 5:a70c0bce770d 1064 }
mjr 5:a70c0bce770d 1065
mjr 5:a70c0bce770d 1066 void reset()
mjr 5:a70c0bce770d 1067 {
mjr 6:cc35eb643e8f 1068 // clear the center point
mjr 6:cc35eb643e8f 1069 cx_ = cy_ = 0.0;
mjr 6:cc35eb643e8f 1070
mjr 6:cc35eb643e8f 1071 // start the calibration timer
mjr 5:a70c0bce770d 1072 tCenter_.start();
mjr 5:a70c0bce770d 1073 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 1074
mjr 5:a70c0bce770d 1075 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 1076 mma_.init();
mjr 6:cc35eb643e8f 1077
mjr 6:cc35eb643e8f 1078 // set the initial integrated velocity reading to zero
mjr 6:cc35eb643e8f 1079 vx_ = vy_ = 0;
mjr 3:3514575d4f86 1080
mjr 6:cc35eb643e8f 1081 // set up our accelerometer interrupt handling
mjr 6:cc35eb643e8f 1082 intIn_.rise(this, &Accel::isr);
mjr 5:a70c0bce770d 1083 mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2);
mjr 3:3514575d4f86 1084
mjr 3:3514575d4f86 1085 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 1086 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 1087
mjr 3:3514575d4f86 1088 // start our timers
mjr 3:3514575d4f86 1089 tGet_.start();
mjr 3:3514575d4f86 1090 tInt_.start();
mjr 3:3514575d4f86 1091 }
mjr 3:3514575d4f86 1092
mjr 9:fd65b0a94720 1093 void get(int &x, int &y)
mjr 3:3514575d4f86 1094 {
mjr 3:3514575d4f86 1095 // disable interrupts while manipulating the shared data
mjr 3:3514575d4f86 1096 __disable_irq();
mjr 3:3514575d4f86 1097
mjr 3:3514575d4f86 1098 // read the shared data and store locally for calculations
mjr 6:cc35eb643e8f 1099 float ax = ax_, ay = ay_;
mjr 6:cc35eb643e8f 1100 float vx = vx_, vy = vy_;
mjr 5:a70c0bce770d 1101
mjr 6:cc35eb643e8f 1102 // reset the velocity sum for the next run
mjr 6:cc35eb643e8f 1103 vx_ = vy_ = 0;
mjr 3:3514575d4f86 1104
mjr 3:3514575d4f86 1105 // get the time since the last get() sample
mjr 3:3514575d4f86 1106 float dt = tGet_.read_us()/1.0e6;
mjr 3:3514575d4f86 1107 tGet_.reset();
mjr 3:3514575d4f86 1108
mjr 3:3514575d4f86 1109 // done manipulating the shared data
mjr 3:3514575d4f86 1110 __enable_irq();
mjr 3:3514575d4f86 1111
mjr 6:cc35eb643e8f 1112 // adjust the readings for the integration time
mjr 6:cc35eb643e8f 1113 vx /= dt;
mjr 6:cc35eb643e8f 1114 vy /= dt;
mjr 6:cc35eb643e8f 1115
mjr 6:cc35eb643e8f 1116 // add this sample to the current calibration interval's running total
mjr 6:cc35eb643e8f 1117 AccHist *p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 1118 p->addAvg(ax, ay);
mjr 6:cc35eb643e8f 1119
mjr 5:a70c0bce770d 1120 // check for auto-centering every so often
mjr 5:a70c0bce770d 1121 if (tCenter_.read_ms() > 1000)
mjr 5:a70c0bce770d 1122 {
mjr 5:a70c0bce770d 1123 // add the latest raw sample to the history list
mjr 6:cc35eb643e8f 1124 AccHist *prv = p;
mjr 5:a70c0bce770d 1125 iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv;
mjr 6:cc35eb643e8f 1126 p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 1127 p->set(ax, ay, prv);
mjr 5:a70c0bce770d 1128
mjr 5:a70c0bce770d 1129 // if we have a full complement, check for stability
mjr 5:a70c0bce770d 1130 if (nAccPrv_ >= maxAccPrv)
mjr 5:a70c0bce770d 1131 {
mjr 5:a70c0bce770d 1132 // check if we've been stable for all recent samples
mjr 6:cc35eb643e8f 1133 static const float accTol = .01;
mjr 6:cc35eb643e8f 1134 AccHist *p0 = accPrv_;
mjr 6:cc35eb643e8f 1135 if (p0[0].d < accTol
mjr 6:cc35eb643e8f 1136 && p0[1].d < accTol
mjr 6:cc35eb643e8f 1137 && p0[2].d < accTol
mjr 6:cc35eb643e8f 1138 && p0[3].d < accTol
mjr 6:cc35eb643e8f 1139 && p0[4].d < accTol)
mjr 5:a70c0bce770d 1140 {
mjr 6:cc35eb643e8f 1141 // Figure the new calibration point as the average of
mjr 6:cc35eb643e8f 1142 // the samples over the rest period
mjr 6:cc35eb643e8f 1143 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0;
mjr 6:cc35eb643e8f 1144 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0;
mjr 5:a70c0bce770d 1145 }
mjr 5:a70c0bce770d 1146 }
mjr 5:a70c0bce770d 1147 else
mjr 5:a70c0bce770d 1148 {
mjr 5:a70c0bce770d 1149 // not enough samples yet; just up the count
mjr 5:a70c0bce770d 1150 ++nAccPrv_;
mjr 5:a70c0bce770d 1151 }
mjr 6:cc35eb643e8f 1152
mjr 6:cc35eb643e8f 1153 // clear the new item's running totals
mjr 6:cc35eb643e8f 1154 p->clearAvg();
mjr 5:a70c0bce770d 1155
mjr 5:a70c0bce770d 1156 // reset the timer
mjr 5:a70c0bce770d 1157 tCenter_.reset();
mjr 5:a70c0bce770d 1158 }
mjr 5:a70c0bce770d 1159
mjr 6:cc35eb643e8f 1160 // report our integrated velocity reading in x,y
mjr 6:cc35eb643e8f 1161 x = rawToReport(vx);
mjr 6:cc35eb643e8f 1162 y = rawToReport(vy);
mjr 5:a70c0bce770d 1163
mjr 6:cc35eb643e8f 1164 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 1165 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 1166 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 1167 #endif
mjr 3:3514575d4f86 1168 }
mjr 29:582472d0bc57 1169
mjr 3:3514575d4f86 1170 private:
mjr 6:cc35eb643e8f 1171 // adjust a raw acceleration figure to a usb report value
mjr 6:cc35eb643e8f 1172 int rawToReport(float v)
mjr 5:a70c0bce770d 1173 {
mjr 6:cc35eb643e8f 1174 // scale to the joystick report range and round to integer
mjr 6:cc35eb643e8f 1175 int i = int(round(v*JOYMAX));
mjr 5:a70c0bce770d 1176
mjr 6:cc35eb643e8f 1177 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 1178 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 1179 static const int filter[] = {
mjr 6:cc35eb643e8f 1180 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 1181 0,
mjr 6:cc35eb643e8f 1182 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 1183 };
mjr 6:cc35eb643e8f 1184 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 1185 }
mjr 5:a70c0bce770d 1186
mjr 3:3514575d4f86 1187 // interrupt handler
mjr 3:3514575d4f86 1188 void isr()
mjr 3:3514575d4f86 1189 {
mjr 3:3514575d4f86 1190 // Read the axes. Note that we have to read all three axes
mjr 3:3514575d4f86 1191 // (even though we only really use x and y) in order to clear
mjr 3:3514575d4f86 1192 // the "data ready" status bit in the accelerometer. The
mjr 3:3514575d4f86 1193 // interrupt only occurs when the "ready" bit transitions from
mjr 3:3514575d4f86 1194 // off to on, so we have to make sure it's off.
mjr 5:a70c0bce770d 1195 float x, y, z;
mjr 5:a70c0bce770d 1196 mma_.getAccXYZ(x, y, z);
mjr 3:3514575d4f86 1197
mjr 3:3514575d4f86 1198 // calculate the time since the last interrupt
mjr 3:3514575d4f86 1199 float dt = tInt_.read_us()/1.0e6;
mjr 3:3514575d4f86 1200 tInt_.reset();
mjr 6:cc35eb643e8f 1201
mjr 6:cc35eb643e8f 1202 // integrate the time slice from the previous reading to this reading
mjr 6:cc35eb643e8f 1203 vx_ += (x + ax_ - 2*cx_)*dt/2;
mjr 6:cc35eb643e8f 1204 vy_ += (y + ay_ - 2*cy_)*dt/2;
mjr 3:3514575d4f86 1205
mjr 6:cc35eb643e8f 1206 // store the updates
mjr 6:cc35eb643e8f 1207 ax_ = x;
mjr 6:cc35eb643e8f 1208 ay_ = y;
mjr 6:cc35eb643e8f 1209 az_ = z;
mjr 3:3514575d4f86 1210 }
mjr 3:3514575d4f86 1211
mjr 3:3514575d4f86 1212 // underlying accelerometer object
mjr 3:3514575d4f86 1213 MMA8451Q mma_;
mjr 3:3514575d4f86 1214
mjr 5:a70c0bce770d 1215 // last raw acceleration readings
mjr 6:cc35eb643e8f 1216 float ax_, ay_, az_;
mjr 5:a70c0bce770d 1217
mjr 6:cc35eb643e8f 1218 // integrated velocity reading since last get()
mjr 6:cc35eb643e8f 1219 float vx_, vy_;
mjr 6:cc35eb643e8f 1220
mjr 3:3514575d4f86 1221 // timer for measuring time between get() samples
mjr 3:3514575d4f86 1222 Timer tGet_;
mjr 3:3514575d4f86 1223
mjr 3:3514575d4f86 1224 // timer for measuring time between interrupts
mjr 3:3514575d4f86 1225 Timer tInt_;
mjr 5:a70c0bce770d 1226
mjr 6:cc35eb643e8f 1227 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 1228 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 1229 // at rest.
mjr 6:cc35eb643e8f 1230 float cx_, cy_;
mjr 5:a70c0bce770d 1231
mjr 5:a70c0bce770d 1232 // timer for atuo-centering
mjr 5:a70c0bce770d 1233 Timer tCenter_;
mjr 6:cc35eb643e8f 1234
mjr 6:cc35eb643e8f 1235 // Auto-centering history. This is a separate history list that
mjr 6:cc35eb643e8f 1236 // records results spaced out sparesely over time, so that we can
mjr 6:cc35eb643e8f 1237 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 1238 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 1239 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 1240 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 1241 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 1242 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 1243 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 1244 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 1245 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 1246 // accelerometer measurement bias (e.g., from temperature changes).
mjr 5:a70c0bce770d 1247 int iAccPrv_, nAccPrv_;
mjr 5:a70c0bce770d 1248 static const int maxAccPrv = 5;
mjr 6:cc35eb643e8f 1249 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 1250
mjr 5:a70c0bce770d 1251 // interurupt pin name
mjr 5:a70c0bce770d 1252 PinName irqPin_;
mjr 5:a70c0bce770d 1253
mjr 5:a70c0bce770d 1254 // interrupt router
mjr 5:a70c0bce770d 1255 InterruptIn intIn_;
mjr 3:3514575d4f86 1256 };
mjr 3:3514575d4f86 1257
mjr 5:a70c0bce770d 1258
mjr 5:a70c0bce770d 1259 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 1260 //
mjr 14:df700b22ca08 1261 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 1262 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 1263 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 1264 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 1265 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 1266 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 1267 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 1268 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 1269 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 1270 //
mjr 14:df700b22ca08 1271 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 1272 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 1273 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 1274 //
mjr 5:a70c0bce770d 1275 void clear_i2c()
mjr 5:a70c0bce770d 1276 {
mjr 5:a70c0bce770d 1277 // assume a general-purpose output pin to the I2C clock
mjr 5:a70c0bce770d 1278 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 1279 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 1280
mjr 5:a70c0bce770d 1281 // clock the SCL 9 times
mjr 5:a70c0bce770d 1282 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 1283 {
mjr 5:a70c0bce770d 1284 scl = 1;
mjr 5:a70c0bce770d 1285 wait_us(20);
mjr 5:a70c0bce770d 1286 scl = 0;
mjr 5:a70c0bce770d 1287 wait_us(20);
mjr 5:a70c0bce770d 1288 }
mjr 5:a70c0bce770d 1289 }
mjr 14:df700b22ca08 1290
mjr 14:df700b22ca08 1291 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 1292 //
mjr 17:ab3cec0c8bf4 1293 // Include the appropriate plunger sensor definition. This will define a
mjr 17:ab3cec0c8bf4 1294 // class called PlungerSensor, with a standard interface that we use in
mjr 17:ab3cec0c8bf4 1295 // the main loop below. This is *kind of* like a virtual class interface,
mjr 17:ab3cec0c8bf4 1296 // but it actually defines the methods statically, which is a little more
mjr 17:ab3cec0c8bf4 1297 // efficient at run-time. There's no need for a true virtual interface
mjr 17:ab3cec0c8bf4 1298 // because we don't need to be able to change sensor types on the fly.
mjr 17:ab3cec0c8bf4 1299 //
mjr 17:ab3cec0c8bf4 1300
mjr 22:71422c359f2a 1301 #if defined(ENABLE_CCD_SENSOR)
mjr 17:ab3cec0c8bf4 1302 #include "ccdSensor.h"
mjr 22:71422c359f2a 1303 #elif defined(ENABLE_POT_SENSOR)
mjr 17:ab3cec0c8bf4 1304 #include "potSensor.h"
mjr 17:ab3cec0c8bf4 1305 #else
mjr 17:ab3cec0c8bf4 1306 #include "nullSensor.h"
mjr 17:ab3cec0c8bf4 1307 #endif
mjr 17:ab3cec0c8bf4 1308
mjr 17:ab3cec0c8bf4 1309
mjr 17:ab3cec0c8bf4 1310 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 1311 //
mjr 17:ab3cec0c8bf4 1312 // Non-volatile memory (NVM)
mjr 17:ab3cec0c8bf4 1313 //
mjr 17:ab3cec0c8bf4 1314
mjr 17:ab3cec0c8bf4 1315 // Structure defining our NVM storage layout. We store a small
mjr 17:ab3cec0c8bf4 1316 // amount of persistent data in flash memory to retain calibration
mjr 17:ab3cec0c8bf4 1317 // data when powered off.
mjr 17:ab3cec0c8bf4 1318 struct NVM
mjr 17:ab3cec0c8bf4 1319 {
mjr 17:ab3cec0c8bf4 1320 // checksum - we use this to determine if the flash record
mjr 17:ab3cec0c8bf4 1321 // has been properly initialized
mjr 17:ab3cec0c8bf4 1322 uint32_t checksum;
mjr 17:ab3cec0c8bf4 1323
mjr 17:ab3cec0c8bf4 1324 // signature value
mjr 17:ab3cec0c8bf4 1325 static const uint32_t SIGNATURE = 0x4D4A522A;
mjr 17:ab3cec0c8bf4 1326 static const uint16_t VERSION = 0x0003;
mjr 17:ab3cec0c8bf4 1327
mjr 17:ab3cec0c8bf4 1328 // Is the data structure valid? We test the signature and
mjr 17:ab3cec0c8bf4 1329 // checksum to determine if we've been properly stored.
mjr 17:ab3cec0c8bf4 1330 int valid() const
mjr 17:ab3cec0c8bf4 1331 {
mjr 17:ab3cec0c8bf4 1332 return (d.sig == SIGNATURE
mjr 17:ab3cec0c8bf4 1333 && d.vsn == VERSION
mjr 17:ab3cec0c8bf4 1334 && d.sz == sizeof(NVM)
mjr 17:ab3cec0c8bf4 1335 && checksum == CRC32(&d, sizeof(d)));
mjr 17:ab3cec0c8bf4 1336 }
mjr 17:ab3cec0c8bf4 1337
mjr 17:ab3cec0c8bf4 1338 // save to non-volatile memory
mjr 17:ab3cec0c8bf4 1339 void save(FreescaleIAP &iap, int addr)
mjr 17:ab3cec0c8bf4 1340 {
mjr 17:ab3cec0c8bf4 1341 // update the checksum and structure size
mjr 17:ab3cec0c8bf4 1342 checksum = CRC32(&d, sizeof(d));
mjr 17:ab3cec0c8bf4 1343 d.sz = sizeof(NVM);
mjr 17:ab3cec0c8bf4 1344
mjr 17:ab3cec0c8bf4 1345 // erase the sector
mjr 17:ab3cec0c8bf4 1346 iap.erase_sector(addr);
mjr 17:ab3cec0c8bf4 1347
mjr 17:ab3cec0c8bf4 1348 // save the data
mjr 17:ab3cec0c8bf4 1349 iap.program_flash(addr, this, sizeof(*this));
mjr 17:ab3cec0c8bf4 1350 }
mjr 17:ab3cec0c8bf4 1351
mjr 17:ab3cec0c8bf4 1352 // reset calibration data for calibration mode
mjr 17:ab3cec0c8bf4 1353 void resetPlunger()
mjr 17:ab3cec0c8bf4 1354 {
mjr 17:ab3cec0c8bf4 1355 // set extremes for the calibration data
mjr 17:ab3cec0c8bf4 1356 d.plungerMax = 0;
mjr 17:ab3cec0c8bf4 1357 d.plungerZero = npix;
mjr 17:ab3cec0c8bf4 1358 d.plungerMin = npix;
mjr 17:ab3cec0c8bf4 1359 }
mjr 17:ab3cec0c8bf4 1360
mjr 17:ab3cec0c8bf4 1361 // stored data (excluding the checksum)
mjr 17:ab3cec0c8bf4 1362 struct
mjr 17:ab3cec0c8bf4 1363 {
mjr 17:ab3cec0c8bf4 1364 // Signature, structure version, and structure size - further verification
mjr 17:ab3cec0c8bf4 1365 // that we have valid initialized data. The size is a simple proxy for a
mjr 17:ab3cec0c8bf4 1366 // structure version, as the most common type of change to the structure as
mjr 17:ab3cec0c8bf4 1367 // the software evolves will be the addition of new elements. We also
mjr 17:ab3cec0c8bf4 1368 // provide an explicit version number that we can update manually if we
mjr 17:ab3cec0c8bf4 1369 // make any changes that don't affect the structure size but would affect
mjr 17:ab3cec0c8bf4 1370 // compatibility with a saved record (e.g., swapping two existing elements).
mjr 17:ab3cec0c8bf4 1371 uint32_t sig;
mjr 17:ab3cec0c8bf4 1372 uint16_t vsn;
mjr 17:ab3cec0c8bf4 1373 int sz;
mjr 17:ab3cec0c8bf4 1374
mjr 17:ab3cec0c8bf4 1375 // has the plunger been manually calibrated?
mjr 17:ab3cec0c8bf4 1376 int plungerCal;
mjr 17:ab3cec0c8bf4 1377
mjr 17:ab3cec0c8bf4 1378 // Plunger calibration min, zero, and max. The zero point is the
mjr 17:ab3cec0c8bf4 1379 // rest position (aka park position), where it's in equilibrium between
mjr 17:ab3cec0c8bf4 1380 // the main spring and the barrel spring. It can travel a small distance
mjr 17:ab3cec0c8bf4 1381 // forward of the rest position, because the barrel spring can be
mjr 17:ab3cec0c8bf4 1382 // compressed by the user pushing on the plunger or by the momentum
mjr 17:ab3cec0c8bf4 1383 // of a release motion. The minimum is the maximum forward point where
mjr 17:ab3cec0c8bf4 1384 // the barrel spring can't be compressed any further.
mjr 17:ab3cec0c8bf4 1385 int plungerMin;
mjr 17:ab3cec0c8bf4 1386 int plungerZero;
mjr 17:ab3cec0c8bf4 1387 int plungerMax;
mjr 17:ab3cec0c8bf4 1388
mjr 17:ab3cec0c8bf4 1389 // is the plunger sensor enabled?
mjr 17:ab3cec0c8bf4 1390 int plungerEnabled;
mjr 17:ab3cec0c8bf4 1391
mjr 17:ab3cec0c8bf4 1392 // LedWiz unit number
mjr 17:ab3cec0c8bf4 1393 uint8_t ledWizUnitNo;
mjr 17:ab3cec0c8bf4 1394 } d;
mjr 17:ab3cec0c8bf4 1395 };
mjr 17:ab3cec0c8bf4 1396
mjr 33:d832bcab089e 1397 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 1398 //
mjr 33:d832bcab089e 1399 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 1400 // for a given interval before allowing an update.
mjr 33:d832bcab089e 1401 //
mjr 33:d832bcab089e 1402 class Debouncer
mjr 33:d832bcab089e 1403 {
mjr 33:d832bcab089e 1404 public:
mjr 33:d832bcab089e 1405 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 1406 {
mjr 33:d832bcab089e 1407 t.start();
mjr 33:d832bcab089e 1408 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 1409 this->tmin = tmin;
mjr 33:d832bcab089e 1410 }
mjr 33:d832bcab089e 1411
mjr 33:d832bcab089e 1412 // Get the current stable value
mjr 33:d832bcab089e 1413 bool val() const { return stable; }
mjr 33:d832bcab089e 1414
mjr 33:d832bcab089e 1415 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 1416 // input device.
mjr 33:d832bcab089e 1417 void sampleIn(bool val)
mjr 33:d832bcab089e 1418 {
mjr 33:d832bcab089e 1419 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 1420 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 1421 // on the sample reader.
mjr 33:d832bcab089e 1422 if (val != prv)
mjr 33:d832bcab089e 1423 {
mjr 33:d832bcab089e 1424 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 1425 t.reset();
mjr 33:d832bcab089e 1426
mjr 33:d832bcab089e 1427 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 1428 prv = val;
mjr 33:d832bcab089e 1429 }
mjr 33:d832bcab089e 1430 else if (val != stable)
mjr 33:d832bcab089e 1431 {
mjr 33:d832bcab089e 1432 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 1433 // and different from the stable value. This means that
mjr 33:d832bcab089e 1434 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 1435 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 1436 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 1437 if (t.read() > tmin)
mjr 33:d832bcab089e 1438 stable = val;
mjr 33:d832bcab089e 1439 }
mjr 33:d832bcab089e 1440 }
mjr 33:d832bcab089e 1441
mjr 33:d832bcab089e 1442 private:
mjr 33:d832bcab089e 1443 // current stable value
mjr 33:d832bcab089e 1444 bool stable;
mjr 33:d832bcab089e 1445
mjr 33:d832bcab089e 1446 // last raw sample value
mjr 33:d832bcab089e 1447 bool prv;
mjr 33:d832bcab089e 1448
mjr 33:d832bcab089e 1449 // elapsed time since last raw input change
mjr 33:d832bcab089e 1450 Timer t;
mjr 33:d832bcab089e 1451
mjr 33:d832bcab089e 1452 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 1453 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 1454 float tmin;
mjr 33:d832bcab089e 1455 };
mjr 33:d832bcab089e 1456
mjr 33:d832bcab089e 1457
mjr 33:d832bcab089e 1458 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 1459 //
mjr 33:d832bcab089e 1460 // Turn off all outputs and restore everything to the default LedWiz
mjr 33:d832bcab089e 1461 // state. This sets outputs #1-32 to LedWiz profile value 48 (full
mjr 33:d832bcab089e 1462 // brightness) and switch state Off, sets all extended outputs (#33
mjr 33:d832bcab089e 1463 // and above) to zero brightness, and sets the LedWiz flash rate to 2.
mjr 33:d832bcab089e 1464 // This effectively restores the power-on conditions.
mjr 33:d832bcab089e 1465 //
mjr 33:d832bcab089e 1466 void allOutputsOff()
mjr 33:d832bcab089e 1467 {
mjr 33:d832bcab089e 1468 // reset all LedWiz outputs to OFF/48
mjr 33:d832bcab089e 1469 for (int i = 0 ; i < 32 ; ++i)
mjr 33:d832bcab089e 1470 {
mjr 33:d832bcab089e 1471 outLevel[i] = 0;
mjr 33:d832bcab089e 1472 wizOn[i] = 0;
mjr 33:d832bcab089e 1473 wizVal[i] = 48;
mjr 33:d832bcab089e 1474 lwPin[i]->set(0);
mjr 33:d832bcab089e 1475 }
mjr 33:d832bcab089e 1476
mjr 33:d832bcab089e 1477 // reset all extended outputs (ports >32) to full off (brightness 0)
mjr 33:d832bcab089e 1478 for (int i = 32 ; i < numOutputs ; ++i)
mjr 33:d832bcab089e 1479 {
mjr 33:d832bcab089e 1480 outLevel[i] = 0;
mjr 33:d832bcab089e 1481 lwPin[i]->set(0);
mjr 33:d832bcab089e 1482 }
mjr 33:d832bcab089e 1483
mjr 33:d832bcab089e 1484 // restore default LedWiz flash rate
mjr 33:d832bcab089e 1485 wizSpeed = 2;
mjr 33:d832bcab089e 1486 }
mjr 33:d832bcab089e 1487
mjr 33:d832bcab089e 1488 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 1489 //
mjr 33:d832bcab089e 1490 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 1491 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 1492 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 1493 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 1494 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 1495 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 1496 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 1497 //
mjr 33:d832bcab089e 1498 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 1499 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 1500 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 1501 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 1502 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 1503 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 1504 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 1505 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 1506 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 1507 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 1508 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 1509 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 1510 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 1511 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 1512 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 1513 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 1514 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 1515 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 1516 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 1517 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 1518 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 1519 //
mjr 33:d832bcab089e 1520 // This scheme might seem a little convoluted, but it neatly handles
mjr 33:d832bcab089e 1521 // all of the different cases that can occur:
mjr 33:d832bcab089e 1522 //
mjr 33:d832bcab089e 1523 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 33:d832bcab089e 1524 // so that the PC goes into "Soft Off" mode (ACPI state S5, in Windows
mjr 33:d832bcab089e 1525 // parlance) when the user turns off the cabinet. In this state, the
mjr 33:d832bcab089e 1526 // motherboard supplies power to USB devices, so the KL25Z continues
mjr 33:d832bcab089e 1527 // running without interruption. The latch system lets us monitor
mjr 33:d832bcab089e 1528 // the power state even when we're never rebooted, since the latch
mjr 33:d832bcab089e 1529 // will turn off when PSU2 is off regardless of what the KL25Z is doing.
mjr 33:d832bcab089e 1530 //
mjr 33:d832bcab089e 1531 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 1532 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 1533 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 1534 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 1535 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 1536 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 1537 // will power up before or after PSU2, so it's not good enough to
mjr 33:d832bcab089e 1538 // observe the *current* state of PSU2 when we first check - if PSU2
mjr 33:d832bcab089e 1539 // were to come on first, checking the current state alone would fool
mjr 33:d832bcab089e 1540 // us into thinking that no action is required, because we would never
mjr 33:d832bcab089e 1541 // have known that PSU2 was ever off. The latch handles this case by
mjr 33:d832bcab089e 1542 // letting us see that PSU2 *was* off before we checked.
mjr 33:d832bcab089e 1543 //
mjr 33:d832bcab089e 1544 // - If the KL25Z is rebooted while the main system is running, or the
mjr 33:d832bcab089e 1545 // KL25Z is unplugged and plugged back in, we will correctly leave the
mjr 33:d832bcab089e 1546 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 1547 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 1548 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 1549 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 1550 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 1551 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 1552 //
mjr 33:d832bcab089e 1553 //
mjr 33:d832bcab089e 1554 #ifdef ENABLE_TV_TIMER
mjr 33:d832bcab089e 1555
mjr 33:d832bcab089e 1556 // Current PSU2 state:
mjr 33:d832bcab089e 1557 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 1558 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 1559 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 1560 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 1561 // 5 -> TV relay on
mjr 33:d832bcab089e 1562 //
mjr 33:d832bcab089e 1563 int psu2_state = 1;
mjr 33:d832bcab089e 1564 DigitalIn psu2_status_sense(PSU2_STATUS_SENSE);
mjr 33:d832bcab089e 1565 DigitalOut psu2_status_set(PSU2_STATUS_SET);
mjr 33:d832bcab089e 1566 DigitalOut tv_relay(TV_RELAY_PIN);
mjr 33:d832bcab089e 1567 Timer tv_timer;
mjr 33:d832bcab089e 1568 void TVTimerInt()
mjr 33:d832bcab089e 1569 {
mjr 33:d832bcab089e 1570 // Check our internal state
mjr 33:d832bcab089e 1571 switch (psu2_state)
mjr 33:d832bcab089e 1572 {
mjr 33:d832bcab089e 1573 case 1:
mjr 33:d832bcab089e 1574 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 1575 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 1576 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 1577 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 1578 // stuck, it means that PSU2 is now on after being off.
mjr 33:d832bcab089e 1579 if (!psu2_status_sense)
mjr 33:d832bcab089e 1580 {
mjr 33:d832bcab089e 1581 // switch to OFF state
mjr 33:d832bcab089e 1582 psu2_state = 2;
mjr 33:d832bcab089e 1583
mjr 33:d832bcab089e 1584 // try setting the latch
mjr 33:d832bcab089e 1585 psu2_status_set = 1;
mjr 33:d832bcab089e 1586 }
mjr 33:d832bcab089e 1587 break;
mjr 33:d832bcab089e 1588
mjr 33:d832bcab089e 1589 case 2:
mjr 33:d832bcab089e 1590 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 1591 // the latch. Drop the SET signal and go to CHECK state.
mjr 33:d832bcab089e 1592 psu2_status_set = 0;
mjr 33:d832bcab089e 1593 psu2_state = 3;
mjr 33:d832bcab089e 1594 break;
mjr 33:d832bcab089e 1595
mjr 33:d832bcab089e 1596 case 3:
mjr 33:d832bcab089e 1597 // CHECK state: we pulsed SET, and we're now ready to see
mjr 33:d832bcab089e 1598 // if that stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 1599 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 1600 // off, our SET command didn't stick, so PSU2 is still off.
mjr 33:d832bcab089e 1601 if (psu2_status_sense)
mjr 33:d832bcab089e 1602 {
mjr 33:d832bcab089e 1603 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 1604 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 1605 tv_timer.reset();
mjr 33:d832bcab089e 1606 tv_timer.start();
mjr 33:d832bcab089e 1607 psu2_state = 4;
mjr 33:d832bcab089e 1608 }
mjr 33:d832bcab089e 1609 else
mjr 33:d832bcab089e 1610 {
mjr 33:d832bcab089e 1611 // The latch didn't stick, so PSU2 was still off at
mjr 33:d832bcab089e 1612 // our last check. Try pulsing it again in case PSU2
mjr 33:d832bcab089e 1613 // was turned on since the last check.
mjr 33:d832bcab089e 1614 psu2_status_set = 1;
mjr 33:d832bcab089e 1615 psu2_state = 2;
mjr 33:d832bcab089e 1616 }
mjr 33:d832bcab089e 1617 break;
mjr 33:d832bcab089e 1618
mjr 33:d832bcab089e 1619 case 4:
mjr 33:d832bcab089e 1620 // TV timer countdown in progress. If we've reached the
mjr 33:d832bcab089e 1621 // delay time, pulse the relay.
mjr 33:d832bcab089e 1622 if (tv_timer.read() >= TV_DELAY_TIME)
mjr 33:d832bcab089e 1623 {
mjr 33:d832bcab089e 1624 // turn on the relay for one timer interval
mjr 33:d832bcab089e 1625 tv_relay = 1;
mjr 33:d832bcab089e 1626 psu2_state = 5;
mjr 33:d832bcab089e 1627 }
mjr 33:d832bcab089e 1628 break;
mjr 33:d832bcab089e 1629
mjr 33:d832bcab089e 1630 case 5:
mjr 33:d832bcab089e 1631 // TV timer relay on. We pulse this for one interval, so
mjr 33:d832bcab089e 1632 // it's now time to turn it off and return to the default state.
mjr 33:d832bcab089e 1633 tv_relay = 0;
mjr 33:d832bcab089e 1634 psu2_state = 1;
mjr 33:d832bcab089e 1635 break;
mjr 33:d832bcab089e 1636 }
mjr 33:d832bcab089e 1637 }
mjr 33:d832bcab089e 1638
mjr 33:d832bcab089e 1639 Ticker tv_ticker;
mjr 33:d832bcab089e 1640 void startTVTimer()
mjr 33:d832bcab089e 1641 {
mjr 33:d832bcab089e 1642 // Set up our time routine to run every 1/4 second.
mjr 33:d832bcab089e 1643 tv_ticker.attach(&TVTimerInt, 0.25);
mjr 33:d832bcab089e 1644 }
mjr 33:d832bcab089e 1645
mjr 33:d832bcab089e 1646
mjr 33:d832bcab089e 1647 #else // ENABLE_TV_TIMER
mjr 33:d832bcab089e 1648 //
mjr 33:d832bcab089e 1649 // TV timer not used - just provide a dummy startup function
mjr 33:d832bcab089e 1650 void startTVTimer() { }
mjr 33:d832bcab089e 1651 //
mjr 33:d832bcab089e 1652 #endif // ENABLE_TV_TIMER
mjr 33:d832bcab089e 1653
mjr 17:ab3cec0c8bf4 1654
mjr 17:ab3cec0c8bf4 1655 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 1656 //
mjr 5:a70c0bce770d 1657 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 1658 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 1659 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 1660 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 1661 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 1662 // port outputs.
mjr 5:a70c0bce770d 1663 //
mjr 0:5acbbe3f4cf4 1664 int main(void)
mjr 0:5acbbe3f4cf4 1665 {
mjr 1:d913e0afb2ac 1666 // turn off our on-board indicator LED
mjr 4:02c7cd7b2183 1667 ledR = 1;
mjr 4:02c7cd7b2183 1668 ledG = 1;
mjr 4:02c7cd7b2183 1669 ledB = 1;
mjr 1:d913e0afb2ac 1670
mjr 33:d832bcab089e 1671 // start the TV timer, if applicable
mjr 33:d832bcab089e 1672 startTVTimer();
mjr 33:d832bcab089e 1673
mjr 33:d832bcab089e 1674 // we're not connected/awake yet
mjr 33:d832bcab089e 1675 bool connected = false;
mjr 33:d832bcab089e 1676 time_t connectChangeTime = time(0);
mjr 33:d832bcab089e 1677
mjr 33:d832bcab089e 1678 #if TLC5940_NCHIPS
mjr 33:d832bcab089e 1679 // start the TLC5940 clock
mjr 33:d832bcab089e 1680 for (int i = 0 ; i < numOutputs ; ++i) lwPin[i]->set(1.0);
mjr 33:d832bcab089e 1681 tlc5940.start();
mjr 33:d832bcab089e 1682
mjr 33:d832bcab089e 1683 // enable power to the TLC5940 opto/LED outputs
mjr 33:d832bcab089e 1684 # ifdef TLC5940_PWRENA
mjr 33:d832bcab089e 1685 DigitalOut tlcPwrEna(TLC5940_PWRENA);
mjr 33:d832bcab089e 1686 tlcPwrEna = 1;
mjr 33:d832bcab089e 1687 # endif
mjr 33:d832bcab089e 1688 #endif
mjr 33:d832bcab089e 1689
mjr 6:cc35eb643e8f 1690 // initialize the LedWiz ports
mjr 6:cc35eb643e8f 1691 initLwOut();
mjr 6:cc35eb643e8f 1692
mjr 11:bd9da7088e6e 1693 // initialize the button input ports
mjr 11:bd9da7088e6e 1694 initButtons();
mjr 33:d832bcab089e 1695
mjr 6:cc35eb643e8f 1696 // we don't need a reset yet
mjr 6:cc35eb643e8f 1697 bool needReset = false;
mjr 6:cc35eb643e8f 1698
mjr 5:a70c0bce770d 1699 // clear the I2C bus for the accelerometer
mjr 5:a70c0bce770d 1700 clear_i2c();
mjr 5:a70c0bce770d 1701
mjr 2:c174f9ee414a 1702 // set up a flash memory controller
mjr 2:c174f9ee414a 1703 FreescaleIAP iap;
mjr 2:c174f9ee414a 1704
mjr 2:c174f9ee414a 1705 // use the last sector of flash for our non-volatile memory structure
mjr 2:c174f9ee414a 1706 int flash_addr = (iap.flash_size() - SECTOR_SIZE);
mjr 2:c174f9ee414a 1707 NVM *flash = (NVM *)flash_addr;
mjr 2:c174f9ee414a 1708 NVM cfg;
mjr 2:c174f9ee414a 1709
mjr 2:c174f9ee414a 1710 // check for valid flash
mjr 6:cc35eb643e8f 1711 bool flash_valid = flash->valid();
mjr 2:c174f9ee414a 1712
mjr 2:c174f9ee414a 1713 // if the flash is valid, load it; otherwise initialize to defaults
mjr 2:c174f9ee414a 1714 if (flash_valid) {
mjr 2:c174f9ee414a 1715 memcpy(&cfg, flash, sizeof(cfg));
mjr 6:cc35eb643e8f 1716 printf("Flash restored: plunger cal=%d, min=%d, zero=%d, max=%d\r\n",
mjr 6:cc35eb643e8f 1717 cfg.d.plungerCal, cfg.d.plungerMin, cfg.d.plungerZero, cfg.d.plungerMax);
mjr 2:c174f9ee414a 1718 }
mjr 2:c174f9ee414a 1719 else {
mjr 2:c174f9ee414a 1720 printf("Factory reset\r\n");
mjr 2:c174f9ee414a 1721 cfg.d.sig = cfg.SIGNATURE;
mjr 2:c174f9ee414a 1722 cfg.d.vsn = cfg.VERSION;
mjr 6:cc35eb643e8f 1723 cfg.d.plungerCal = 0;
mjr 17:ab3cec0c8bf4 1724 cfg.d.plungerMin = 0; // assume we can go all the way forward...
mjr 17:ab3cec0c8bf4 1725 cfg.d.plungerMax = npix; // ...and all the way back
mjr 17:ab3cec0c8bf4 1726 cfg.d.plungerZero = npix/6; // the rest position is usually around 1/2" back
mjr 21:5048e16cc9ef 1727 cfg.d.ledWizUnitNo = DEFAULT_LEDWIZ_UNIT_NUMBER - 1; // unit numbering starts from 0 internally
mjr 21:5048e16cc9ef 1728 cfg.d.plungerEnabled = PLUNGER_CODE_ENABLED;
mjr 2:c174f9ee414a 1729 }
mjr 1:d913e0afb2ac 1730
mjr 6:cc35eb643e8f 1731 // Create the joystick USB client. Note that we use the LedWiz unit
mjr 6:cc35eb643e8f 1732 // number from the saved configuration.
mjr 6:cc35eb643e8f 1733 MyUSBJoystick js(
mjr 6:cc35eb643e8f 1734 USB_VENDOR_ID,
mjr 33:d832bcab089e 1735 MAKE_USB_PRODUCT_ID(USB_VENDOR_ID, USB_PRODUCT_ID, cfg.d.ledWizUnitNo),
mjr 6:cc35eb643e8f 1736 USB_VERSION_NO);
mjr 17:ab3cec0c8bf4 1737
mjr 17:ab3cec0c8bf4 1738 // last report timer - we use this to throttle reports, since VP
mjr 17:ab3cec0c8bf4 1739 // doesn't want to hear from us more than about every 10ms
mjr 17:ab3cec0c8bf4 1740 Timer reportTimer;
mjr 17:ab3cec0c8bf4 1741 reportTimer.start();
mjr 17:ab3cec0c8bf4 1742
mjr 17:ab3cec0c8bf4 1743 // initialize the calibration buttons, if present
mjr 17:ab3cec0c8bf4 1744 DigitalIn *calBtn = (CAL_BUTTON_PIN == NC ? 0 : new DigitalIn(CAL_BUTTON_PIN));
mjr 17:ab3cec0c8bf4 1745 DigitalOut *calBtnLed = (CAL_BUTTON_LED == NC ? 0 : new DigitalOut(CAL_BUTTON_LED));
mjr 6:cc35eb643e8f 1746
mjr 1:d913e0afb2ac 1747 // plunger calibration button debounce timer
mjr 1:d913e0afb2ac 1748 Timer calBtnTimer;
mjr 1:d913e0afb2ac 1749 calBtnTimer.start();
mjr 1:d913e0afb2ac 1750 int calBtnLit = false;
mjr 1:d913e0afb2ac 1751
mjr 1:d913e0afb2ac 1752 // Calibration button state:
mjr 1:d913e0afb2ac 1753 // 0 = not pushed
mjr 1:d913e0afb2ac 1754 // 1 = pushed, not yet debounced
mjr 1:d913e0afb2ac 1755 // 2 = pushed, debounced, waiting for hold time
mjr 1:d913e0afb2ac 1756 // 3 = pushed, hold time completed - in calibration mode
mjr 1:d913e0afb2ac 1757 int calBtnState = 0;
mjr 1:d913e0afb2ac 1758
mjr 1:d913e0afb2ac 1759 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 1760 Timer hbTimer;
mjr 1:d913e0afb2ac 1761 hbTimer.start();
mjr 1:d913e0afb2ac 1762 int hb = 0;
mjr 5:a70c0bce770d 1763 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 1764
mjr 1:d913e0afb2ac 1765 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 1766 Timer acTimer;
mjr 1:d913e0afb2ac 1767 acTimer.start();
mjr 1:d913e0afb2ac 1768
mjr 0:5acbbe3f4cf4 1769 // create the accelerometer object
mjr 5:a70c0bce770d 1770 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS, MMA8451_INT_PIN);
mjr 0:5acbbe3f4cf4 1771
mjr 21:5048e16cc9ef 1772 #ifdef ENABLE_JOYSTICK
mjr 17:ab3cec0c8bf4 1773 // last accelerometer report, in joystick units (we report the nudge
mjr 17:ab3cec0c8bf4 1774 // acceleration via the joystick x & y axes, per the VP convention)
mjr 17:ab3cec0c8bf4 1775 int x = 0, y = 0;
mjr 17:ab3cec0c8bf4 1776
mjr 21:5048e16cc9ef 1777 // flag: send a pixel dump after the next read
mjr 21:5048e16cc9ef 1778 bool reportPix = false;
mjr 21:5048e16cc9ef 1779 #endif
mjr 21:5048e16cc9ef 1780
mjr 17:ab3cec0c8bf4 1781 // create our plunger sensor object
mjr 17:ab3cec0c8bf4 1782 PlungerSensor plungerSensor;
mjr 17:ab3cec0c8bf4 1783
mjr 17:ab3cec0c8bf4 1784 // last plunger report position, in 'npix' normalized pixel units
mjr 17:ab3cec0c8bf4 1785 int pos = 0;
mjr 17:ab3cec0c8bf4 1786
mjr 17:ab3cec0c8bf4 1787 // last plunger report, in joystick units (we report the plunger as the
mjr 17:ab3cec0c8bf4 1788 // "z" axis of the joystick, per the VP convention)
mjr 17:ab3cec0c8bf4 1789 int z = 0;
mjr 17:ab3cec0c8bf4 1790
mjr 17:ab3cec0c8bf4 1791 // most recent prior plunger readings, for tracking release events(z0 is
mjr 17:ab3cec0c8bf4 1792 // reading just before the last one we reported, z1 is the one before that,
mjr 17:ab3cec0c8bf4 1793 // z2 the next before that)
mjr 17:ab3cec0c8bf4 1794 int z0 = 0, z1 = 0, z2 = 0;
mjr 17:ab3cec0c8bf4 1795
mjr 17:ab3cec0c8bf4 1796 // Simulated "bounce" position when firing. We model the bounce off of
mjr 17:ab3cec0c8bf4 1797 // the barrel spring when the plunger is released as proportional to the
mjr 17:ab3cec0c8bf4 1798 // distance it was retracted just before being released.
mjr 17:ab3cec0c8bf4 1799 int zBounce = 0;
mjr 2:c174f9ee414a 1800
mjr 17:ab3cec0c8bf4 1801 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 17:ab3cec0c8bf4 1802 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 17:ab3cec0c8bf4 1803 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 17:ab3cec0c8bf4 1804 // back and releases the plunger, or simply pushes on the plunger from
mjr 17:ab3cec0c8bf4 1805 // the rest position. This allows the plunger to be used in lieu of a
mjr 17:ab3cec0c8bf4 1806 // physical Launch Ball button for tables that don't have plungers.
mjr 17:ab3cec0c8bf4 1807 //
mjr 17:ab3cec0c8bf4 1808 // States:
mjr 17:ab3cec0c8bf4 1809 // 0 = default
mjr 17:ab3cec0c8bf4 1810 // 1 = cocked (plunger has been pulled back about 1" from state 0)
mjr 17:ab3cec0c8bf4 1811 // 2 = uncocked (plunger is pulled back less than 1" from state 1)
mjr 21:5048e16cc9ef 1812 // 3 = launching, plunger is forward beyond park position
mjr 21:5048e16cc9ef 1813 // 4 = launching, plunger is behind park position
mjr 21:5048e16cc9ef 1814 // 5 = pressed and holding (plunger has been pressed forward beyond
mjr 21:5048e16cc9ef 1815 // the park position from state 0)
mjr 17:ab3cec0c8bf4 1816 int lbState = 0;
mjr 6:cc35eb643e8f 1817
mjr 17:ab3cec0c8bf4 1818 // Time since last lbState transition. Some of the states are time-
mjr 17:ab3cec0c8bf4 1819 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 17:ab3cec0c8bf4 1820 // we remain in this state for more than a few milliseconds, since
mjr 17:ab3cec0c8bf4 1821 // it indicates that the plunger is being slowly returned to rest
mjr 17:ab3cec0c8bf4 1822 // rather than released. In the "launching" state, we need to release
mjr 17:ab3cec0c8bf4 1823 // the Launch Ball button after a moment, and we need to wait for
mjr 17:ab3cec0c8bf4 1824 // the plunger to come to rest before returning to state 0.
mjr 17:ab3cec0c8bf4 1825 Timer lbTimer;
mjr 17:ab3cec0c8bf4 1826 lbTimer.start();
mjr 17:ab3cec0c8bf4 1827
mjr 18:5e890ebd0023 1828 // Launch Ball simulated push timer. We start this when we simulate
mjr 18:5e890ebd0023 1829 // the button push, and turn off the simulated button when enough time
mjr 18:5e890ebd0023 1830 // has elapsed.
mjr 18:5e890ebd0023 1831 Timer lbBtnTimer;
mjr 18:5e890ebd0023 1832
mjr 17:ab3cec0c8bf4 1833 // Simulated button states. This is a vector of button states
mjr 17:ab3cec0c8bf4 1834 // for the simulated buttons. We combine this with the physical
mjr 17:ab3cec0c8bf4 1835 // button states on each USB joystick report, so we will report
mjr 17:ab3cec0c8bf4 1836 // a button as pressed if either the physical button is being pressed
mjr 17:ab3cec0c8bf4 1837 // or we're simulating a press on the button. This is used for the
mjr 17:ab3cec0c8bf4 1838 // simulated Launch Ball button.
mjr 17:ab3cec0c8bf4 1839 uint32_t simButtons = 0;
mjr 6:cc35eb643e8f 1840
mjr 6:cc35eb643e8f 1841 // Firing in progress: we set this when we detect the start of rapid
mjr 6:cc35eb643e8f 1842 // plunger movement from a retracted position towards the rest position.
mjr 17:ab3cec0c8bf4 1843 //
mjr 17:ab3cec0c8bf4 1844 // When we detect a firing event, we send VP a series of synthetic
mjr 17:ab3cec0c8bf4 1845 // reports simulating the idealized plunger motion. The actual physical
mjr 17:ab3cec0c8bf4 1846 // motion is much too fast to report to VP; in the time between two USB
mjr 17:ab3cec0c8bf4 1847 // reports, the plunger can shoot all the way forward, rebound off of
mjr 17:ab3cec0c8bf4 1848 // the barrel spring, bounce back part way, and bounce forward again,
mjr 17:ab3cec0c8bf4 1849 // or even do all of this more than once. This means that sampling the
mjr 17:ab3cec0c8bf4 1850 // physical motion at the USB report rate would create a misleading
mjr 17:ab3cec0c8bf4 1851 // picture of the plunger motion, since our samples would catch the
mjr 17:ab3cec0c8bf4 1852 // plunger at random points in this oscillating motion. From the
mjr 17:ab3cec0c8bf4 1853 // user's perspective, the physical action that occurred is simply that
mjr 17:ab3cec0c8bf4 1854 // the plunger was released from a particular distance, so it's this
mjr 17:ab3cec0c8bf4 1855 // high-level event that we want to convey to VP. To do this, we
mjr 17:ab3cec0c8bf4 1856 // synthesize a series of reports to convey an idealized version of
mjr 17:ab3cec0c8bf4 1857 // the release motion that's perfectly synchronized to the VP reports.
mjr 17:ab3cec0c8bf4 1858 // Essentially we pretend that our USB position samples are exactly
mjr 17:ab3cec0c8bf4 1859 // aligned in time with (1) the point of retraction just before the
mjr 17:ab3cec0c8bf4 1860 // user released the plunger, (2) the point of maximum forward motion
mjr 17:ab3cec0c8bf4 1861 // just after the user released the plunger (the point of maximum
mjr 17:ab3cec0c8bf4 1862 // compression as the plunger bounces off of the barrel spring), and
mjr 17:ab3cec0c8bf4 1863 // (3) the plunger coming to rest at the park position. This series
mjr 17:ab3cec0c8bf4 1864 // of reports is synthetic in the sense that it's not what we actually
mjr 17:ab3cec0c8bf4 1865 // see on the CCD at the times of these reports - the true plunger
mjr 17:ab3cec0c8bf4 1866 // position is oscillating at high speed during this period. But at
mjr 17:ab3cec0c8bf4 1867 // the same time it conveys a more faithful picture of the true physical
mjr 17:ab3cec0c8bf4 1868 // motion to VP, and allows VP to reproduce the true physical motion
mjr 17:ab3cec0c8bf4 1869 // more faithfully in its simulation model, by correcting for the
mjr 17:ab3cec0c8bf4 1870 // relatively low sampling rate in the communication path between the
mjr 17:ab3cec0c8bf4 1871 // real plunger and VP's model plunger.
mjr 17:ab3cec0c8bf4 1872 //
mjr 17:ab3cec0c8bf4 1873 // If 'firing' is non-zero, it's the index of our current report in
mjr 17:ab3cec0c8bf4 1874 // the synthetic firing report series.
mjr 9:fd65b0a94720 1875 int firing = 0;
mjr 2:c174f9ee414a 1876
mjr 2:c174f9ee414a 1877 // start the first CCD integration cycle
mjr 17:ab3cec0c8bf4 1878 plungerSensor.init();
mjr 9:fd65b0a94720 1879
mjr 9:fd65b0a94720 1880 // Device status. We report this on each update so that the host config
mjr 9:fd65b0a94720 1881 // tool can detect our current settings. This is a bit mask consisting
mjr 9:fd65b0a94720 1882 // of these bits:
mjr 33:d832bcab089e 1883 // 0x0001 -> plunger sensor enabled
mjr 33:d832bcab089e 1884 // 0x8000 -> RESERVED - must always be zero
mjr 33:d832bcab089e 1885 //
mjr 33:d832bcab089e 1886 // Note that the high bit (0x8000) must always be 0, since we use that
mjr 33:d832bcab089e 1887 // to distinguish special request reply packets.
mjr 17:ab3cec0c8bf4 1888 uint16_t statusFlags = (cfg.d.plungerEnabled ? 0x01 : 0x00);
mjr 10:976666ffa4ef 1889
mjr 1:d913e0afb2ac 1890 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 1891 // host requests
mjr 0:5acbbe3f4cf4 1892 for (;;)
mjr 0:5acbbe3f4cf4 1893 {
mjr 18:5e890ebd0023 1894 // Look for an incoming report. Process a few input reports in
mjr 18:5e890ebd0023 1895 // a row, but stop after a few so that a barrage of inputs won't
mjr 20:4c43877327ab 1896 // starve our output event processing. Also, pause briefly between
mjr 20:4c43877327ab 1897 // reads; allowing reads to occur back-to-back seems to occasionally
mjr 20:4c43877327ab 1898 // stall the USB pipeline (for reasons unknown; I'd fix the underlying
mjr 20:4c43877327ab 1899 // problem if I knew what it was).
mjr 0:5acbbe3f4cf4 1900 HID_REPORT report;
mjr 20:4c43877327ab 1901 for (int rr = 0 ; rr < 4 && js.readNB(&report) ; ++rr, wait_ms(1))
mjr 0:5acbbe3f4cf4 1902 {
mjr 6:cc35eb643e8f 1903 // all Led-Wiz reports are 8 bytes exactly
mjr 6:cc35eb643e8f 1904 if (report.length == 8)
mjr 1:d913e0afb2ac 1905 {
mjr 33:d832bcab089e 1906 // LedWiz commands come in two varieties: SBA and PBA. An
mjr 33:d832bcab089e 1907 // SBA is marked by the first byte having value 64 (0x40). In
mjr 33:d832bcab089e 1908 // the real LedWiz protocol, any other value in the first byte
mjr 33:d832bcab089e 1909 // means it's a PBA message. However, *valid* PBA messages
mjr 33:d832bcab089e 1910 // always have a first byte (and in fact all 8 bytes) in the
mjr 33:d832bcab089e 1911 // range 0-49 or 129-132. Anything else is invalid. We take
mjr 33:d832bcab089e 1912 // advantage of this to implement private protocol extensions.
mjr 33:d832bcab089e 1913 // So our full protocol is as follows:
mjr 33:d832bcab089e 1914 //
mjr 33:d832bcab089e 1915 // first byte =
mjr 33:d832bcab089e 1916 // 0-48 -> LWZ-PBA
mjr 33:d832bcab089e 1917 // 64 -> LWZ SBA
mjr 33:d832bcab089e 1918 // 65 -> private control message; second byte specifies subtype
mjr 33:d832bcab089e 1919 // 129-132 -> LWZ-PBA
mjr 33:d832bcab089e 1920 // 200-219 -> extended bank brightness set for outputs N to N+6, where
mjr 33:d832bcab089e 1921 // N is (first byte - 200)*7
mjr 33:d832bcab089e 1922 // other -> reserved for future use
mjr 33:d832bcab089e 1923 //
mjr 6:cc35eb643e8f 1924 uint8_t *data = report.data;
mjr 6:cc35eb643e8f 1925 if (data[0] == 64)
mjr 0:5acbbe3f4cf4 1926 {
mjr 6:cc35eb643e8f 1927 // LWZ-SBA - first four bytes are bit-packed on/off flags
mjr 29:582472d0bc57 1928 // for the outputs; 5th byte is the pulse speed (1-7)
mjr 6:cc35eb643e8f 1929 //printf("LWZ-SBA %02x %02x %02x %02x ; %02x\r\n",
mjr 6:cc35eb643e8f 1930 // data[1], data[2], data[3], data[4], data[5]);
mjr 0:5acbbe3f4cf4 1931
mjr 6:cc35eb643e8f 1932 // update all on/off states
mjr 6:cc35eb643e8f 1933 for (int i = 0, bit = 1, ri = 1 ; i < 32 ; ++i, bit <<= 1)
mjr 6:cc35eb643e8f 1934 {
mjr 33:d832bcab089e 1935 // figure the on/off state bit for this output
mjr 6:cc35eb643e8f 1936 if (bit == 0x100) {
mjr 6:cc35eb643e8f 1937 bit = 1;
mjr 6:cc35eb643e8f 1938 ++ri;
mjr 6:cc35eb643e8f 1939 }
mjr 33:d832bcab089e 1940
mjr 33:d832bcab089e 1941 // set the on/off state
mjr 6:cc35eb643e8f 1942 wizOn[i] = ((data[ri] & bit) != 0);
mjr 33:d832bcab089e 1943
mjr 33:d832bcab089e 1944 // If the wizVal setting is 255, it means that this
mjr 33:d832bcab089e 1945 // output was last set to a brightness value with the
mjr 33:d832bcab089e 1946 // extended protocol. Return it to LedWiz control by
mjr 33:d832bcab089e 1947 // rescaling the brightness setting to the LedWiz range
mjr 33:d832bcab089e 1948 // and updating wizVal with the result. If it's any
mjr 33:d832bcab089e 1949 // other value, it was previously set by a PBA message,
mjr 33:d832bcab089e 1950 // so simply retain the last setting - in the normal
mjr 33:d832bcab089e 1951 // LedWiz protocol, the "profile" (brightness) and on/off
mjr 33:d832bcab089e 1952 // states are independent, so an SBA just turns an output
mjr 33:d832bcab089e 1953 // on or off but retains its last brightness level.
mjr 33:d832bcab089e 1954 if (wizVal[i] == 255)
mjr 33:d832bcab089e 1955 wizVal[i] = (uint8_t)round(outLevel[i]*48);
mjr 6:cc35eb643e8f 1956 }
mjr 29:582472d0bc57 1957
mjr 29:582472d0bc57 1958 // set the flash speed - enforce the value range 1-7
mjr 29:582472d0bc57 1959 wizSpeed = data[5];
mjr 29:582472d0bc57 1960 if (wizSpeed < 1)
mjr 29:582472d0bc57 1961 wizSpeed = 1;
mjr 29:582472d0bc57 1962 else if (wizSpeed > 7)
mjr 29:582472d0bc57 1963 wizSpeed = 7;
mjr 6:cc35eb643e8f 1964
mjr 6:cc35eb643e8f 1965 // update the physical outputs
mjr 1:d913e0afb2ac 1966 updateWizOuts();
mjr 6:cc35eb643e8f 1967
mjr 6:cc35eb643e8f 1968 // reset the PBA counter
mjr 6:cc35eb643e8f 1969 pbaIdx = 0;
mjr 6:cc35eb643e8f 1970 }
mjr 6:cc35eb643e8f 1971 else if (data[0] == 65)
mjr 6:cc35eb643e8f 1972 {
mjr 6:cc35eb643e8f 1973 // Private control message. This isn't an LedWiz message - it's
mjr 6:cc35eb643e8f 1974 // an extension for this device. 65 is an invalid PBA setting,
mjr 6:cc35eb643e8f 1975 // and isn't used for any other LedWiz message, so we appropriate
mjr 6:cc35eb643e8f 1976 // it for our own private use. The first byte specifies the
mjr 6:cc35eb643e8f 1977 // message type.
mjr 6:cc35eb643e8f 1978 if (data[1] == 1)
mjr 6:cc35eb643e8f 1979 {
mjr 9:fd65b0a94720 1980 // 1 = Set Configuration:
mjr 6:cc35eb643e8f 1981 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 6:cc35eb643e8f 1982 // data[3] = feature enable bit mask:
mjr 21:5048e16cc9ef 1983 // 0x01 = enable plunger sensor
mjr 6:cc35eb643e8f 1984
mjr 6:cc35eb643e8f 1985 // we'll need a reset if the LedWiz unit number is changing
mjr 6:cc35eb643e8f 1986 uint8_t newUnitNo = data[2] & 0x0f;
mjr 6:cc35eb643e8f 1987 needReset |= (newUnitNo != cfg.d.ledWizUnitNo);
mjr 6:cc35eb643e8f 1988
mjr 6:cc35eb643e8f 1989 // set the configuration parameters from the message
mjr 6:cc35eb643e8f 1990 cfg.d.ledWizUnitNo = newUnitNo;
mjr 17:ab3cec0c8bf4 1991 cfg.d.plungerEnabled = data[3] & 0x01;
mjr 6:cc35eb643e8f 1992
mjr 9:fd65b0a94720 1993 // update the status flags
mjr 9:fd65b0a94720 1994 statusFlags = (statusFlags & ~0x01) | (data[3] & 0x01);
mjr 9:fd65b0a94720 1995
mjr 9:fd65b0a94720 1996 // if the ccd is no longer enabled, use 0 for z reports
mjr 17:ab3cec0c8bf4 1997 if (!cfg.d.plungerEnabled)
mjr 9:fd65b0a94720 1998 z = 0;
mjr 9:fd65b0a94720 1999
mjr 6:cc35eb643e8f 2000 // save the configuration
mjr 6:cc35eb643e8f 2001 cfg.save(iap, flash_addr);
mjr 6:cc35eb643e8f 2002 }
mjr 21:5048e16cc9ef 2003 #ifdef ENABLE_JOYSTICK
mjr 9:fd65b0a94720 2004 else if (data[1] == 2)
mjr 9:fd65b0a94720 2005 {
mjr 9:fd65b0a94720 2006 // 2 = Calibrate plunger
mjr 9:fd65b0a94720 2007 // (No parameters)
mjr 9:fd65b0a94720 2008
mjr 9:fd65b0a94720 2009 // enter calibration mode
mjr 9:fd65b0a94720 2010 calBtnState = 3;
mjr 9:fd65b0a94720 2011 calBtnTimer.reset();
mjr 9:fd65b0a94720 2012 cfg.resetPlunger();
mjr 9:fd65b0a94720 2013 }
mjr 10:976666ffa4ef 2014 else if (data[1] == 3)
mjr 10:976666ffa4ef 2015 {
mjr 10:976666ffa4ef 2016 // 3 = pixel dump
mjr 10:976666ffa4ef 2017 // (No parameters)
mjr 10:976666ffa4ef 2018 reportPix = true;
mjr 10:976666ffa4ef 2019
mjr 10:976666ffa4ef 2020 // show purple until we finish sending the report
mjr 10:976666ffa4ef 2021 ledR = 0;
mjr 10:976666ffa4ef 2022 ledB = 0;
mjr 10:976666ffa4ef 2023 ledG = 1;
mjr 10:976666ffa4ef 2024 }
mjr 33:d832bcab089e 2025 else if (data[1] == 4)
mjr 33:d832bcab089e 2026 {
mjr 33:d832bcab089e 2027 // 4 = hardware configuration query
mjr 33:d832bcab089e 2028 // (No parameters)
mjr 33:d832bcab089e 2029 wait_ms(1);
mjr 33:d832bcab089e 2030 js.reportConfig(numOutputs, cfg.d.ledWizUnitNo);
mjr 33:d832bcab089e 2031 }
mjr 33:d832bcab089e 2032 else if (data[1] == 5)
mjr 33:d832bcab089e 2033 {
mjr 33:d832bcab089e 2034 // 5 = all outputs off, reset to LedWiz defaults
mjr 33:d832bcab089e 2035 allOutputsOff();
mjr 33:d832bcab089e 2036 }
mjr 21:5048e16cc9ef 2037 #endif // ENABLE_JOYSTICK
mjr 6:cc35eb643e8f 2038 }
mjr 33:d832bcab089e 2039 else if (data[0] >= 200 && data[0] < 220)
mjr 33:d832bcab089e 2040 {
mjr 33:d832bcab089e 2041 // Extended protocol - banked brightness update.
mjr 33:d832bcab089e 2042 // data[0]-200 gives us the bank of 7 outputs we're setting:
mjr 33:d832bcab089e 2043 // 200 is outputs 0-6, 201 is outputs 7-13, 202 is 14-20, etc.
mjr 33:d832bcab089e 2044 // The remaining bytes are brightness levels, 0-255, for the
mjr 33:d832bcab089e 2045 // seven outputs in the selected bank. The LedWiz flashing
mjr 33:d832bcab089e 2046 // modes aren't accessible in this message type; we can only
mjr 33:d832bcab089e 2047 // set a fixed brightness, but in exchange we get 8-bit
mjr 33:d832bcab089e 2048 // resolution rather than the paltry 0-48 scale that the real
mjr 33:d832bcab089e 2049 // LedWiz uses. There's no separate on/off status for outputs
mjr 33:d832bcab089e 2050 // adjusted with this message type, either, as there would be
mjr 33:d832bcab089e 2051 // for a PBA message - setting a non-zero value immediately
mjr 33:d832bcab089e 2052 // turns the output, overriding the last SBA setting.
mjr 33:d832bcab089e 2053 //
mjr 33:d832bcab089e 2054 // For outputs 0-31, this overrides any previous PBA/SBA
mjr 33:d832bcab089e 2055 // settings for the port. Any subsequent PBA/SBA message will
mjr 33:d832bcab089e 2056 // in turn override the setting made here. It's simple - the
mjr 33:d832bcab089e 2057 // most recent message of either type takes precedence. For
mjr 33:d832bcab089e 2058 // outputs above the LedWiz range, PBA/SBA messages can't
mjr 33:d832bcab089e 2059 // address those ports anyway.
mjr 33:d832bcab089e 2060 int i0 = (data[0] - 200)*7;
mjr 33:d832bcab089e 2061 int i1 = i0 + 7 < numOutputs ? i0 + 7 : numOutputs;
mjr 33:d832bcab089e 2062 for (int i = i0 ; i < i1 ; ++i)
mjr 33:d832bcab089e 2063 {
mjr 33:d832bcab089e 2064 // set the brightness level for the output
mjr 33:d832bcab089e 2065 float b = data[i-i0+1]/255.0;
mjr 33:d832bcab089e 2066 outLevel[i] = b;
mjr 33:d832bcab089e 2067
mjr 33:d832bcab089e 2068 // if it's in the basic LedWiz output set, set the LedWiz
mjr 33:d832bcab089e 2069 // profile value to 255, which means "use outLevel"
mjr 33:d832bcab089e 2070 if (i < 32)
mjr 33:d832bcab089e 2071 wizVal[i] = 255;
mjr 33:d832bcab089e 2072
mjr 33:d832bcab089e 2073 // set the output
mjr 33:d832bcab089e 2074 lwPin[i]->set(b);
mjr 33:d832bcab089e 2075 }
mjr 33:d832bcab089e 2076 }
mjr 6:cc35eb643e8f 2077 else
mjr 6:cc35eb643e8f 2078 {
mjr 33:d832bcab089e 2079 // Everything else is LWZ-PBA. This is a full "profile"
mjr 33:d832bcab089e 2080 // dump from the host for one bank of 8 outputs. Each
mjr 33:d832bcab089e 2081 // byte sets one output in the current bank. The current
mjr 33:d832bcab089e 2082 // bank is implied; the bank starts at 0 and is reset to 0
mjr 33:d832bcab089e 2083 // by any LWZ-SBA message, and is incremented to the next
mjr 33:d832bcab089e 2084 // bank by each LWZ-PBA message. Our variable pbaIdx keeps
mjr 33:d832bcab089e 2085 // track of our notion of the current bank. There's no direct
mjr 33:d832bcab089e 2086 // way for the host to select the bank; it just has to count
mjr 33:d832bcab089e 2087 // on us staying in sync. In practice, the host will always
mjr 33:d832bcab089e 2088 // send a full set of 4 PBA messages in a row to set all 32
mjr 33:d832bcab089e 2089 // outputs.
mjr 33:d832bcab089e 2090 //
mjr 33:d832bcab089e 2091 // Note that a PBA implicitly overrides our extended profile
mjr 33:d832bcab089e 2092 // messages (message prefix 200-219), because this sets the
mjr 33:d832bcab089e 2093 // wizVal[] entry for each output, and that takes precedence
mjr 33:d832bcab089e 2094 // over the extended protocol settings.
mjr 33:d832bcab089e 2095 //
mjr 6:cc35eb643e8f 2096 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 6:cc35eb643e8f 2097 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 6:cc35eb643e8f 2098
mjr 33:d832bcab089e 2099 // Update all output profile settings
mjr 6:cc35eb643e8f 2100 for (int i = 0 ; i < 8 ; ++i)
mjr 6:cc35eb643e8f 2101 wizVal[pbaIdx + i] = data[i];
mjr 6:cc35eb643e8f 2102
mjr 33:d832bcab089e 2103 // Update the physical LED state if this is the last bank.
mjr 33:d832bcab089e 2104 // Note that hosts always send a full set of four PBA
mjr 33:d832bcab089e 2105 // messages, so there's no need to do a physical update
mjr 33:d832bcab089e 2106 // until we've received the last bank's PBA message.
mjr 6:cc35eb643e8f 2107 if (pbaIdx == 24)
mjr 13:72dda449c3c0 2108 {
mjr 6:cc35eb643e8f 2109 updateWizOuts();
mjr 13:72dda449c3c0 2110 pbaIdx = 0;
mjr 13:72dda449c3c0 2111 }
mjr 13:72dda449c3c0 2112 else
mjr 13:72dda449c3c0 2113 pbaIdx += 8;
mjr 6:cc35eb643e8f 2114 }
mjr 0:5acbbe3f4cf4 2115 }
mjr 0:5acbbe3f4cf4 2116 }
mjr 1:d913e0afb2ac 2117
mjr 1:d913e0afb2ac 2118 // check for plunger calibration
mjr 17:ab3cec0c8bf4 2119 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 2120 {
mjr 1:d913e0afb2ac 2121 // check the state
mjr 1:d913e0afb2ac 2122 switch (calBtnState)
mjr 0:5acbbe3f4cf4 2123 {
mjr 1:d913e0afb2ac 2124 case 0:
mjr 1:d913e0afb2ac 2125 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 2126 calBtnTimer.reset();
mjr 1:d913e0afb2ac 2127 calBtnState = 1;
mjr 1:d913e0afb2ac 2128 break;
mjr 1:d913e0afb2ac 2129
mjr 1:d913e0afb2ac 2130 case 1:
mjr 1:d913e0afb2ac 2131 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 2132 // passed, start the hold period
mjr 9:fd65b0a94720 2133 if (calBtnTimer.read_ms() > 50)
mjr 1:d913e0afb2ac 2134 calBtnState = 2;
mjr 1:d913e0afb2ac 2135 break;
mjr 1:d913e0afb2ac 2136
mjr 1:d913e0afb2ac 2137 case 2:
mjr 1:d913e0afb2ac 2138 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 2139 // for the entire hold period, move to calibration mode
mjr 9:fd65b0a94720 2140 if (calBtnTimer.read_ms() > 2050)
mjr 1:d913e0afb2ac 2141 {
mjr 1:d913e0afb2ac 2142 // enter calibration mode
mjr 1:d913e0afb2ac 2143 calBtnState = 3;
mjr 9:fd65b0a94720 2144 calBtnTimer.reset();
mjr 9:fd65b0a94720 2145 cfg.resetPlunger();
mjr 1:d913e0afb2ac 2146 }
mjr 1:d913e0afb2ac 2147 break;
mjr 2:c174f9ee414a 2148
mjr 2:c174f9ee414a 2149 case 3:
mjr 9:fd65b0a94720 2150 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 2151 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 2152 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 2153 break;
mjr 0:5acbbe3f4cf4 2154 }
mjr 0:5acbbe3f4cf4 2155 }
mjr 1:d913e0afb2ac 2156 else
mjr 1:d913e0afb2ac 2157 {
mjr 2:c174f9ee414a 2158 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 2159 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 2160 // and save the results to flash.
mjr 2:c174f9ee414a 2161 //
mjr 2:c174f9ee414a 2162 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 2163 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 2164 // mode, it simply cancels the attempt.
mjr 9:fd65b0a94720 2165 if (calBtnState == 3 && calBtnTimer.read_ms() > 15000)
mjr 2:c174f9ee414a 2166 {
mjr 2:c174f9ee414a 2167 // exit calibration mode
mjr 1:d913e0afb2ac 2168 calBtnState = 0;
mjr 2:c174f9ee414a 2169
mjr 6:cc35eb643e8f 2170 // save the updated configuration
mjr 6:cc35eb643e8f 2171 cfg.d.plungerCal = 1;
mjr 6:cc35eb643e8f 2172 cfg.save(iap, flash_addr);
mjr 2:c174f9ee414a 2173
mjr 2:c174f9ee414a 2174 // the flash state is now valid
mjr 2:c174f9ee414a 2175 flash_valid = true;
mjr 2:c174f9ee414a 2176 }
mjr 2:c174f9ee414a 2177 else if (calBtnState != 3)
mjr 2:c174f9ee414a 2178 {
mjr 2:c174f9ee414a 2179 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 2180 calBtnState = 0;
mjr 2:c174f9ee414a 2181 }
mjr 1:d913e0afb2ac 2182 }
mjr 1:d913e0afb2ac 2183
mjr 1:d913e0afb2ac 2184 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 2185 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 2186 switch (calBtnState)
mjr 0:5acbbe3f4cf4 2187 {
mjr 1:d913e0afb2ac 2188 case 2:
mjr 1:d913e0afb2ac 2189 // in the hold period - flash the light
mjr 9:fd65b0a94720 2190 newCalBtnLit = ((calBtnTimer.read_ms()/250) & 1);
mjr 1:d913e0afb2ac 2191 break;
mjr 1:d913e0afb2ac 2192
mjr 1:d913e0afb2ac 2193 case 3:
mjr 1:d913e0afb2ac 2194 // calibration mode - show steady on
mjr 1:d913e0afb2ac 2195 newCalBtnLit = true;
mjr 1:d913e0afb2ac 2196 break;
mjr 1:d913e0afb2ac 2197
mjr 1:d913e0afb2ac 2198 default:
mjr 1:d913e0afb2ac 2199 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 2200 newCalBtnLit = false;
mjr 1:d913e0afb2ac 2201 break;
mjr 1:d913e0afb2ac 2202 }
mjr 3:3514575d4f86 2203
mjr 3:3514575d4f86 2204 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 2205 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 2206 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 2207 {
mjr 1:d913e0afb2ac 2208 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 2209 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 2210 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 2211 calBtnLed->write(1);
mjr 4:02c7cd7b2183 2212 ledR = 1;
mjr 4:02c7cd7b2183 2213 ledG = 1;
mjr 9:fd65b0a94720 2214 ledB = 0;
mjr 2:c174f9ee414a 2215 }
mjr 2:c174f9ee414a 2216 else {
mjr 17:ab3cec0c8bf4 2217 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 2218 calBtnLed->write(0);
mjr 4:02c7cd7b2183 2219 ledR = 1;
mjr 4:02c7cd7b2183 2220 ledG = 1;
mjr 9:fd65b0a94720 2221 ledB = 1;
mjr 2:c174f9ee414a 2222 }
mjr 1:d913e0afb2ac 2223 }
mjr 1:d913e0afb2ac 2224
mjr 17:ab3cec0c8bf4 2225 // If the plunger is enabled, and we're not already in a firing event,
mjr 17:ab3cec0c8bf4 2226 // and the last plunger reading had the plunger pulled back at least
mjr 17:ab3cec0c8bf4 2227 // a bit, watch for plunger release events until it's time for our next
mjr 17:ab3cec0c8bf4 2228 // USB report.
mjr 17:ab3cec0c8bf4 2229 if (!firing && cfg.d.plungerEnabled && z >= JOYMAX/6)
mjr 17:ab3cec0c8bf4 2230 {
mjr 17:ab3cec0c8bf4 2231 // monitor the plunger until it's time for our next report
mjr 17:ab3cec0c8bf4 2232 while (reportTimer.read_ms() < 15)
mjr 17:ab3cec0c8bf4 2233 {
mjr 17:ab3cec0c8bf4 2234 // do a fast low-res scan; if it's at or past the zero point,
mjr 17:ab3cec0c8bf4 2235 // start a firing event
mjr 17:ab3cec0c8bf4 2236 if (plungerSensor.lowResScan() <= cfg.d.plungerZero)
mjr 17:ab3cec0c8bf4 2237 firing = 1;
mjr 17:ab3cec0c8bf4 2238 }
mjr 17:ab3cec0c8bf4 2239 }
mjr 17:ab3cec0c8bf4 2240
mjr 6:cc35eb643e8f 2241 // read the plunger sensor, if it's enabled
mjr 17:ab3cec0c8bf4 2242 if (cfg.d.plungerEnabled)
mjr 6:cc35eb643e8f 2243 {
mjr 6:cc35eb643e8f 2244 // start with the previous reading, in case we don't have a
mjr 6:cc35eb643e8f 2245 // clear result on this frame
mjr 6:cc35eb643e8f 2246 int znew = z;
mjr 17:ab3cec0c8bf4 2247 if (plungerSensor.highResScan(pos))
mjr 6:cc35eb643e8f 2248 {
mjr 17:ab3cec0c8bf4 2249 // We got a new reading. If we're in calibration mode, use it
mjr 17:ab3cec0c8bf4 2250 // to figure the new calibration, otherwise adjust the new reading
mjr 17:ab3cec0c8bf4 2251 // for the established calibration.
mjr 17:ab3cec0c8bf4 2252 if (calBtnState == 3)
mjr 6:cc35eb643e8f 2253 {
mjr 17:ab3cec0c8bf4 2254 // Calibration mode. If this reading is outside of the current
mjr 17:ab3cec0c8bf4 2255 // calibration bounds, expand the bounds.
mjr 17:ab3cec0c8bf4 2256 if (pos < cfg.d.plungerMin)
mjr 17:ab3cec0c8bf4 2257 cfg.d.plungerMin = pos;
mjr 17:ab3cec0c8bf4 2258 if (pos < cfg.d.plungerZero)
mjr 17:ab3cec0c8bf4 2259 cfg.d.plungerZero = pos;
mjr 17:ab3cec0c8bf4 2260 if (pos > cfg.d.plungerMax)
mjr 17:ab3cec0c8bf4 2261 cfg.d.plungerMax = pos;
mjr 6:cc35eb643e8f 2262
mjr 17:ab3cec0c8bf4 2263 // normalize to the full physical range while calibrating
mjr 17:ab3cec0c8bf4 2264 znew = int(round(float(pos)/npix * JOYMAX));
mjr 17:ab3cec0c8bf4 2265 }
mjr 17:ab3cec0c8bf4 2266 else
mjr 17:ab3cec0c8bf4 2267 {
mjr 17:ab3cec0c8bf4 2268 // Not in calibration mode, so normalize the new reading to the
mjr 17:ab3cec0c8bf4 2269 // established calibration range.
mjr 17:ab3cec0c8bf4 2270 //
mjr 17:ab3cec0c8bf4 2271 // Note that negative values are allowed. Zero represents the
mjr 17:ab3cec0c8bf4 2272 // "park" position, where the plunger sits when at rest. A mechanical
mjr 23:14f8c5004cd0 2273 // plunger has a small amount of travel in the "push" direction,
mjr 17:ab3cec0c8bf4 2274 // since the barrel spring can be compressed slightly. Negative
mjr 17:ab3cec0c8bf4 2275 // values represent travel in the push direction.
mjr 17:ab3cec0c8bf4 2276 if (pos > cfg.d.plungerMax)
mjr 17:ab3cec0c8bf4 2277 pos = cfg.d.plungerMax;
mjr 17:ab3cec0c8bf4 2278 znew = int(round(float(pos - cfg.d.plungerZero)
mjr 17:ab3cec0c8bf4 2279 / (cfg.d.plungerMax - cfg.d.plungerZero + 1) * JOYMAX));
mjr 6:cc35eb643e8f 2280 }
mjr 6:cc35eb643e8f 2281 }
mjr 7:100a25f8bf56 2282
mjr 17:ab3cec0c8bf4 2283 // If we're not already in a firing event, check to see if the
mjr 17:ab3cec0c8bf4 2284 // new position is forward of the last report. If it is, a firing
mjr 17:ab3cec0c8bf4 2285 // event might have started during the high-res scan. This might
mjr 17:ab3cec0c8bf4 2286 // seem unlikely given that the scan only takes about 5ms, but that
mjr 17:ab3cec0c8bf4 2287 // 5ms represents about 25-30% of our total time between reports,
mjr 17:ab3cec0c8bf4 2288 // there's about a 1 in 4 chance that a release starts during a
mjr 17:ab3cec0c8bf4 2289 // scan.
mjr 17:ab3cec0c8bf4 2290 if (!firing && z0 > 0 && znew < z0)
mjr 17:ab3cec0c8bf4 2291 {
mjr 17:ab3cec0c8bf4 2292 // The plunger has moved forward since the previous report.
mjr 17:ab3cec0c8bf4 2293 // Watch it for a few more ms to see if we can get a stable
mjr 17:ab3cec0c8bf4 2294 // new position.
mjr 23:14f8c5004cd0 2295 int pos0 = plungerSensor.lowResScan();
mjr 23:14f8c5004cd0 2296 int pos1 = pos0;
mjr 17:ab3cec0c8bf4 2297 Timer tw;
mjr 17:ab3cec0c8bf4 2298 tw.start();
mjr 17:ab3cec0c8bf4 2299 while (tw.read_ms() < 6)
mjr 17:ab3cec0c8bf4 2300 {
mjr 23:14f8c5004cd0 2301 // read the new position
mjr 23:14f8c5004cd0 2302 int pos2 = plungerSensor.lowResScan();
mjr 23:14f8c5004cd0 2303
mjr 23:14f8c5004cd0 2304 // If it's stable over consecutive readings, stop looping.
mjr 23:14f8c5004cd0 2305 // (Count it as stable if the position is within about 1/8".
mjr 23:14f8c5004cd0 2306 // pos1 and pos2 are reported in pixels, so they range from
mjr 23:14f8c5004cd0 2307 // 0 to npix. The overall travel of a standard plunger is
mjr 23:14f8c5004cd0 2308 // about 3.2", so we have (npix/3.2) pixels per inch, hence
mjr 23:14f8c5004cd0 2309 // 1/8" is (npix/3.2)*(1/8) pixels.)
mjr 23:14f8c5004cd0 2310 if (abs(pos2 - pos1) < int(npix/(3.2*8)))
mjr 23:14f8c5004cd0 2311 break;
mjr 23:14f8c5004cd0 2312
mjr 23:14f8c5004cd0 2313 // If we've crossed the rest position, and we've moved by
mjr 23:14f8c5004cd0 2314 // a minimum distance from where we starting this loop, begin
mjr 23:14f8c5004cd0 2315 // a firing event. (We require a minimum distance to prevent
mjr 23:14f8c5004cd0 2316 // spurious firing from random analog noise in the readings
mjr 23:14f8c5004cd0 2317 // when the plunger is actually just sitting still at the
mjr 23:14f8c5004cd0 2318 // rest position. If it's at rest, it's normal to see small
mjr 23:14f8c5004cd0 2319 // random fluctuations in the analog reading +/- 1% or so
mjr 23:14f8c5004cd0 2320 // from the 0 point, especially with a sensor like a
mjr 23:14f8c5004cd0 2321 // potentionemeter that reports the position as a single
mjr 23:14f8c5004cd0 2322 // analog voltage.) Note that we compare the latest reading
mjr 23:14f8c5004cd0 2323 // to the first reading of the loop - we don't require the
mjr 23:14f8c5004cd0 2324 // threshold motion over consecutive readings, but any time
mjr 23:14f8c5004cd0 2325 // over the stability wait loop.
mjr 23:14f8c5004cd0 2326 if (pos1 < cfg.d.plungerZero
mjr 23:14f8c5004cd0 2327 && abs(pos2 - pos0) > int(npix/(3.2*8)))
mjr 17:ab3cec0c8bf4 2328 {
mjr 17:ab3cec0c8bf4 2329 firing = 1;
mjr 17:ab3cec0c8bf4 2330 break;
mjr 17:ab3cec0c8bf4 2331 }
mjr 23:14f8c5004cd0 2332
mjr 17:ab3cec0c8bf4 2333 // the new reading is now the prior reading
mjr 17:ab3cec0c8bf4 2334 pos1 = pos2;
mjr 17:ab3cec0c8bf4 2335 }
mjr 17:ab3cec0c8bf4 2336 }
mjr 17:ab3cec0c8bf4 2337
mjr 17:ab3cec0c8bf4 2338 // Check for a simulated Launch Ball button press, if enabled
mjr 18:5e890ebd0023 2339 if (ZBLaunchBallPort != 0)
mjr 17:ab3cec0c8bf4 2340 {
mjr 18:5e890ebd0023 2341 const int cockThreshold = JOYMAX/3;
mjr 18:5e890ebd0023 2342 const int pushThreshold = int(-JOYMAX/3 * LaunchBallPushDistance);
mjr 17:ab3cec0c8bf4 2343 int newState = lbState;
mjr 17:ab3cec0c8bf4 2344 switch (lbState)
mjr 17:ab3cec0c8bf4 2345 {
mjr 17:ab3cec0c8bf4 2346 case 0:
mjr 17:ab3cec0c8bf4 2347 // Base state. If the plunger is pulled back by an inch
mjr 17:ab3cec0c8bf4 2348 // or more, go to "cocked" state. If the plunger is pushed
mjr 21:5048e16cc9ef 2349 // forward by 1/4" or more, go to "pressed" state.
mjr 18:5e890ebd0023 2350 if (znew >= cockThreshold)
mjr 17:ab3cec0c8bf4 2351 newState = 1;
mjr 18:5e890ebd0023 2352 else if (znew <= pushThreshold)
mjr 21:5048e16cc9ef 2353 newState = 5;
mjr 17:ab3cec0c8bf4 2354 break;
mjr 17:ab3cec0c8bf4 2355
mjr 17:ab3cec0c8bf4 2356 case 1:
mjr 17:ab3cec0c8bf4 2357 // Cocked state. If a firing event is now in progress,
mjr 17:ab3cec0c8bf4 2358 // go to "launch" state. Otherwise, if the plunger is less
mjr 17:ab3cec0c8bf4 2359 // than 1" retracted, go to "uncocked" state - the player
mjr 17:ab3cec0c8bf4 2360 // might be slowly returning the plunger to rest so as not
mjr 17:ab3cec0c8bf4 2361 // to trigger a launch.
mjr 17:ab3cec0c8bf4 2362 if (firing || znew <= 0)
mjr 17:ab3cec0c8bf4 2363 newState = 3;
mjr 18:5e890ebd0023 2364 else if (znew < cockThreshold)
mjr 17:ab3cec0c8bf4 2365 newState = 2;
mjr 17:ab3cec0c8bf4 2366 break;
mjr 17:ab3cec0c8bf4 2367
mjr 17:ab3cec0c8bf4 2368 case 2:
mjr 17:ab3cec0c8bf4 2369 // Uncocked state. If the plunger is more than an inch
mjr 17:ab3cec0c8bf4 2370 // retracted, return to cocked state. If we've been in
mjr 17:ab3cec0c8bf4 2371 // the uncocked state for more than half a second, return
mjr 18:5e890ebd0023 2372 // to the base state. This allows the user to return the
mjr 18:5e890ebd0023 2373 // plunger to rest without triggering a launch, by moving
mjr 18:5e890ebd0023 2374 // it at manual speed to the rest position rather than
mjr 18:5e890ebd0023 2375 // releasing it.
mjr 18:5e890ebd0023 2376 if (znew >= cockThreshold)
mjr 17:ab3cec0c8bf4 2377 newState = 1;
mjr 17:ab3cec0c8bf4 2378 else if (lbTimer.read_ms() > 500)
mjr 17:ab3cec0c8bf4 2379 newState = 0;
mjr 17:ab3cec0c8bf4 2380 break;
mjr 17:ab3cec0c8bf4 2381
mjr 17:ab3cec0c8bf4 2382 case 3:
mjr 17:ab3cec0c8bf4 2383 // Launch state. If the plunger is no longer pushed
mjr 17:ab3cec0c8bf4 2384 // forward, switch to launch rest state.
mjr 18:5e890ebd0023 2385 if (znew >= 0)
mjr 17:ab3cec0c8bf4 2386 newState = 4;
mjr 17:ab3cec0c8bf4 2387 break;
mjr 17:ab3cec0c8bf4 2388
mjr 17:ab3cec0c8bf4 2389 case 4:
mjr 17:ab3cec0c8bf4 2390 // Launch rest state. If the plunger is pushed forward
mjr 17:ab3cec0c8bf4 2391 // again, switch back to launch state. If not, and we've
mjr 17:ab3cec0c8bf4 2392 // been in this state for at least 200ms, return to the
mjr 17:ab3cec0c8bf4 2393 // default state.
mjr 18:5e890ebd0023 2394 if (znew <= pushThreshold)
mjr 17:ab3cec0c8bf4 2395 newState = 3;
mjr 17:ab3cec0c8bf4 2396 else if (lbTimer.read_ms() > 200)
mjr 17:ab3cec0c8bf4 2397 newState = 0;
mjr 17:ab3cec0c8bf4 2398 break;
mjr 21:5048e16cc9ef 2399
mjr 21:5048e16cc9ef 2400 case 5:
mjr 21:5048e16cc9ef 2401 // Press-and-Hold state. If the plunger is no longer pushed
mjr 21:5048e16cc9ef 2402 // forward, AND it's been at least 50ms since we generated
mjr 21:5048e16cc9ef 2403 // the simulated Launch Ball button press, return to the base
mjr 21:5048e16cc9ef 2404 // state. The minimum time is to ensure that VP has a chance
mjr 21:5048e16cc9ef 2405 // to see the button press and to avoid transient key bounce
mjr 21:5048e16cc9ef 2406 // effects when the plunger position is right on the threshold.
mjr 21:5048e16cc9ef 2407 if (znew > pushThreshold && lbTimer.read_ms() > 50)
mjr 21:5048e16cc9ef 2408 newState = 0;
mjr 21:5048e16cc9ef 2409 break;
mjr 17:ab3cec0c8bf4 2410 }
mjr 17:ab3cec0c8bf4 2411
mjr 17:ab3cec0c8bf4 2412 // change states if desired
mjr 18:5e890ebd0023 2413 const uint32_t lbButtonBit = (1 << (LaunchBallButton - 1));
mjr 17:ab3cec0c8bf4 2414 if (newState != lbState)
mjr 17:ab3cec0c8bf4 2415 {
mjr 21:5048e16cc9ef 2416 // If we're entering Launch state OR we're entering the
mjr 21:5048e16cc9ef 2417 // Press-and-Hold state, AND the ZB Launch Ball LedWiz signal
mjr 21:5048e16cc9ef 2418 // is turned on, simulate a Launch Ball button press.
mjr 21:5048e16cc9ef 2419 if (((newState == 3 && lbState != 4) || newState == 5)
mjr 21:5048e16cc9ef 2420 && wizOn[ZBLaunchBallPort-1])
mjr 18:5e890ebd0023 2421 {
mjr 18:5e890ebd0023 2422 lbBtnTimer.reset();
mjr 18:5e890ebd0023 2423 lbBtnTimer.start();
mjr 18:5e890ebd0023 2424 simButtons |= lbButtonBit;
mjr 18:5e890ebd0023 2425 }
mjr 21:5048e16cc9ef 2426
mjr 17:ab3cec0c8bf4 2427 // if we're switching to state 0, release the button
mjr 17:ab3cec0c8bf4 2428 if (newState == 0)
mjr 17:ab3cec0c8bf4 2429 simButtons &= ~(1 << (LaunchBallButton - 1));
mjr 17:ab3cec0c8bf4 2430
mjr 17:ab3cec0c8bf4 2431 // switch to the new state
mjr 17:ab3cec0c8bf4 2432 lbState = newState;
mjr 17:ab3cec0c8bf4 2433
mjr 17:ab3cec0c8bf4 2434 // start timing in the new state
mjr 17:ab3cec0c8bf4 2435 lbTimer.reset();
mjr 17:ab3cec0c8bf4 2436 }
mjr 21:5048e16cc9ef 2437
mjr 21:5048e16cc9ef 2438 // If the Launch Ball button press is in effect, but the
mjr 21:5048e16cc9ef 2439 // ZB Launch Ball LedWiz signal is no longer turned on, turn
mjr 21:5048e16cc9ef 2440 // off the button.
mjr 21:5048e16cc9ef 2441 //
mjr 21:5048e16cc9ef 2442 // If we're in one of the Launch states (state #3 or #4),
mjr 21:5048e16cc9ef 2443 // and the button has been on for long enough, turn it off.
mjr 21:5048e16cc9ef 2444 // The Launch mode is triggered by a pull-and-release gesture.
mjr 21:5048e16cc9ef 2445 // From the user's perspective, this is just a single gesture
mjr 21:5048e16cc9ef 2446 // that should trigger just one momentary press on the Launch
mjr 21:5048e16cc9ef 2447 // Ball button. Physically, though, the plunger usually
mjr 21:5048e16cc9ef 2448 // bounces back and forth for 500ms or so before coming to
mjr 21:5048e16cc9ef 2449 // rest after this gesture. That's what the whole state
mjr 21:5048e16cc9ef 2450 // #3-#4 business is all about - we stay in this pair of
mjr 21:5048e16cc9ef 2451 // states until the plunger comes to rest. As long as we're
mjr 21:5048e16cc9ef 2452 // in these states, we won't send duplicate button presses.
mjr 21:5048e16cc9ef 2453 // But we also don't want the one button press to continue
mjr 21:5048e16cc9ef 2454 // the whole time, so we'll time it out now.
mjr 21:5048e16cc9ef 2455 //
mjr 21:5048e16cc9ef 2456 // (This could be written as one big 'if' condition, but
mjr 21:5048e16cc9ef 2457 // I'm breaking it out verbosely like this to make it easier
mjr 21:5048e16cc9ef 2458 // for human readers such as myself to comprehend the logic.)
mjr 21:5048e16cc9ef 2459 if ((simButtons & lbButtonBit) != 0)
mjr 18:5e890ebd0023 2460 {
mjr 21:5048e16cc9ef 2461 int turnOff = false;
mjr 21:5048e16cc9ef 2462
mjr 21:5048e16cc9ef 2463 // turn it off if the ZB Launch Ball signal is off
mjr 21:5048e16cc9ef 2464 if (!wizOn[ZBLaunchBallPort-1])
mjr 21:5048e16cc9ef 2465 turnOff = true;
mjr 21:5048e16cc9ef 2466
mjr 21:5048e16cc9ef 2467 // also turn it off if we're in state 3 or 4 ("Launch"),
mjr 21:5048e16cc9ef 2468 // and the button has been on long enough
mjr 21:5048e16cc9ef 2469 if ((lbState == 3 || lbState == 4) && lbBtnTimer.read_ms() > 250)
mjr 21:5048e16cc9ef 2470 turnOff = true;
mjr 21:5048e16cc9ef 2471
mjr 21:5048e16cc9ef 2472 // if we decided to turn off the button, do so
mjr 21:5048e16cc9ef 2473 if (turnOff)
mjr 21:5048e16cc9ef 2474 {
mjr 21:5048e16cc9ef 2475 lbBtnTimer.stop();
mjr 21:5048e16cc9ef 2476 simButtons &= ~lbButtonBit;
mjr 21:5048e16cc9ef 2477 }
mjr 18:5e890ebd0023 2478 }
mjr 17:ab3cec0c8bf4 2479 }
mjr 17:ab3cec0c8bf4 2480
mjr 17:ab3cec0c8bf4 2481 // If a firing event is in progress, generate synthetic reports to
mjr 17:ab3cec0c8bf4 2482 // describe an idealized version of the plunger motion to VP rather
mjr 17:ab3cec0c8bf4 2483 // than reporting the actual physical plunger position.
mjr 6:cc35eb643e8f 2484 //
mjr 17:ab3cec0c8bf4 2485 // We use the synthetic reports during a release event because the
mjr 17:ab3cec0c8bf4 2486 // physical plunger motion when released is too fast for VP to track.
mjr 17:ab3cec0c8bf4 2487 // VP only syncs its internal physics model with the outside world
mjr 17:ab3cec0c8bf4 2488 // about every 10ms. In that amount of time, the plunger moves
mjr 17:ab3cec0c8bf4 2489 // fast enough when released that it can shoot all the way forward,
mjr 17:ab3cec0c8bf4 2490 // bounce off of the barrel spring, and rebound part of the way
mjr 17:ab3cec0c8bf4 2491 // back. The result is the classic analog-to-digital problem of
mjr 17:ab3cec0c8bf4 2492 // sample aliasing. If we happen to time our sample during the
mjr 17:ab3cec0c8bf4 2493 // release motion so that we catch the plunger at the peak of a
mjr 17:ab3cec0c8bf4 2494 // bounce, the digital signal incorrectly looks like the plunger
mjr 17:ab3cec0c8bf4 2495 // is moving slowly forward - VP thinks we went from fully
mjr 17:ab3cec0c8bf4 2496 // retracted to half retracted in the sample interval, whereas
mjr 17:ab3cec0c8bf4 2497 // we actually traveled all the way forward and half way back,
mjr 17:ab3cec0c8bf4 2498 // so the speed VP infers is about 1/3 of the actual speed.
mjr 9:fd65b0a94720 2499 //
mjr 17:ab3cec0c8bf4 2500 // To correct this, we take advantage of our ability to sample
mjr 17:ab3cec0c8bf4 2501 // the CCD image several times in the course of a VP report. If
mjr 17:ab3cec0c8bf4 2502 // we catch the plunger near the origin after we've seen it
mjr 17:ab3cec0c8bf4 2503 // retracted, we go into Release Event mode. During this mode,
mjr 17:ab3cec0c8bf4 2504 // we stop reporting the true physical plunger position, and
mjr 17:ab3cec0c8bf4 2505 // instead report an idealized pattern: we report the plunger
mjr 17:ab3cec0c8bf4 2506 // immediately shooting forward to a position in front of the
mjr 17:ab3cec0c8bf4 2507 // park position that's in proportion to how far back the plunger
mjr 17:ab3cec0c8bf4 2508 // was just before the release, and we then report it stationary
mjr 17:ab3cec0c8bf4 2509 // at the park position. We continue to report the stationary
mjr 17:ab3cec0c8bf4 2510 // park position until the actual physical plunger motion has
mjr 17:ab3cec0c8bf4 2511 // stabilized on a new position. We then exit Release Event
mjr 17:ab3cec0c8bf4 2512 // mode and return to reporting the true physical position.
mjr 17:ab3cec0c8bf4 2513 if (firing)
mjr 6:cc35eb643e8f 2514 {
mjr 17:ab3cec0c8bf4 2515 // Firing in progress. Keep reporting the park position
mjr 17:ab3cec0c8bf4 2516 // until the physical plunger position comes to rest.
mjr 17:ab3cec0c8bf4 2517 const int restTol = JOYMAX/24;
mjr 17:ab3cec0c8bf4 2518 if (firing == 1)
mjr 6:cc35eb643e8f 2519 {
mjr 17:ab3cec0c8bf4 2520 // For the first couple of frames, show the plunger shooting
mjr 17:ab3cec0c8bf4 2521 // forward past the zero point, to simulate the momentum carrying
mjr 17:ab3cec0c8bf4 2522 // it forward to bounce off of the barrel spring. Show the
mjr 17:ab3cec0c8bf4 2523 // bounce as proportional to the distance it was retracted
mjr 17:ab3cec0c8bf4 2524 // in the prior report.
mjr 17:ab3cec0c8bf4 2525 z = zBounce = -z0/6;
mjr 17:ab3cec0c8bf4 2526 ++firing;
mjr 6:cc35eb643e8f 2527 }
mjr 17:ab3cec0c8bf4 2528 else if (firing == 2)
mjr 9:fd65b0a94720 2529 {
mjr 17:ab3cec0c8bf4 2530 // second frame - keep the bounce a little longer
mjr 17:ab3cec0c8bf4 2531 z = zBounce;
mjr 17:ab3cec0c8bf4 2532 ++firing;
mjr 17:ab3cec0c8bf4 2533 }
mjr 17:ab3cec0c8bf4 2534 else if (firing > 4
mjr 17:ab3cec0c8bf4 2535 && abs(znew - z0) < restTol
mjr 17:ab3cec0c8bf4 2536 && abs(znew - z1) < restTol
mjr 17:ab3cec0c8bf4 2537 && abs(znew - z2) < restTol)
mjr 17:ab3cec0c8bf4 2538 {
mjr 17:ab3cec0c8bf4 2539 // The physical plunger has come to rest. Exit firing
mjr 17:ab3cec0c8bf4 2540 // mode and resume reporting the actual position.
mjr 17:ab3cec0c8bf4 2541 firing = false;
mjr 17:ab3cec0c8bf4 2542 z = znew;
mjr 9:fd65b0a94720 2543 }
mjr 9:fd65b0a94720 2544 else
mjr 9:fd65b0a94720 2545 {
mjr 17:ab3cec0c8bf4 2546 // until the physical plunger comes to rest, simply
mjr 17:ab3cec0c8bf4 2547 // report the park position
mjr 9:fd65b0a94720 2548 z = 0;
mjr 17:ab3cec0c8bf4 2549 ++firing;
mjr 9:fd65b0a94720 2550 }
mjr 6:cc35eb643e8f 2551 }
mjr 6:cc35eb643e8f 2552 else
mjr 6:cc35eb643e8f 2553 {
mjr 17:ab3cec0c8bf4 2554 // not in firing mode - report the true physical position
mjr 17:ab3cec0c8bf4 2555 z = znew;
mjr 6:cc35eb643e8f 2556 }
mjr 17:ab3cec0c8bf4 2557
mjr 17:ab3cec0c8bf4 2558 // shift the new reading into the recent history buffer
mjr 6:cc35eb643e8f 2559 z2 = z1;
mjr 6:cc35eb643e8f 2560 z1 = z0;
mjr 6:cc35eb643e8f 2561 z0 = znew;
mjr 2:c174f9ee414a 2562 }
mjr 6:cc35eb643e8f 2563
mjr 11:bd9da7088e6e 2564 // update the buttons
mjr 18:5e890ebd0023 2565 uint32_t buttons = readButtons();
mjr 17:ab3cec0c8bf4 2566
mjr 21:5048e16cc9ef 2567 #ifdef ENABLE_JOYSTICK
mjr 17:ab3cec0c8bf4 2568 // If it's been long enough since our last USB status report,
mjr 17:ab3cec0c8bf4 2569 // send the new report. We throttle the report rate because
mjr 17:ab3cec0c8bf4 2570 // it can overwhelm the PC side if we report too frequently.
mjr 17:ab3cec0c8bf4 2571 // VP only wants to sync with the real world in 10ms intervals,
mjr 17:ab3cec0c8bf4 2572 // so reporting more frequently only creates i/o overhead
mjr 17:ab3cec0c8bf4 2573 // without doing anything to improve the simulation.
mjr 17:ab3cec0c8bf4 2574 if (reportTimer.read_ms() > 15)
mjr 17:ab3cec0c8bf4 2575 {
mjr 17:ab3cec0c8bf4 2576 // read the accelerometer
mjr 17:ab3cec0c8bf4 2577 int xa, ya;
mjr 17:ab3cec0c8bf4 2578 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 2579
mjr 17:ab3cec0c8bf4 2580 // confine the results to our joystick axis range
mjr 17:ab3cec0c8bf4 2581 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 17:ab3cec0c8bf4 2582 if (xa > JOYMAX) xa = JOYMAX;
mjr 17:ab3cec0c8bf4 2583 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 17:ab3cec0c8bf4 2584 if (ya > JOYMAX) ya = JOYMAX;
mjr 17:ab3cec0c8bf4 2585
mjr 17:ab3cec0c8bf4 2586 // store the updated accelerometer coordinates
mjr 17:ab3cec0c8bf4 2587 x = xa;
mjr 17:ab3cec0c8bf4 2588 y = ya;
mjr 17:ab3cec0c8bf4 2589
mjr 21:5048e16cc9ef 2590 // Report the current plunger position UNLESS the ZB Launch Ball
mjr 21:5048e16cc9ef 2591 // signal is on, in which case just report a constant 0 value.
mjr 21:5048e16cc9ef 2592 // ZB Launch Ball turns off the plunger position because it
mjr 21:5048e16cc9ef 2593 // tells us that the table has a Launch Ball button instead of
mjr 21:5048e16cc9ef 2594 // a traditional plunger.
mjr 21:5048e16cc9ef 2595 int zrep = (ZBLaunchBallPort != 0 && wizOn[ZBLaunchBallPort-1] ? 0 : z);
mjr 21:5048e16cc9ef 2596
mjr 25:e22b88bd783a 2597 // Send the status report. Note that we have to map the X and Y
mjr 25:e22b88bd783a 2598 // axes from the accelerometer to match the Windows joystick axes.
mjr 25:e22b88bd783a 2599 // The mapping is determined according to the mounting direction
mjr 25:e22b88bd783a 2600 // set in config.h via the ORIENTATION_xxx macros.
mjr 25:e22b88bd783a 2601 js.update(JOY_X(x,y), JOY_Y(x,y), zrep, buttons | simButtons, statusFlags);
mjr 17:ab3cec0c8bf4 2602
mjr 17:ab3cec0c8bf4 2603 // we've just started a new report interval, so reset the timer
mjr 17:ab3cec0c8bf4 2604 reportTimer.reset();
mjr 17:ab3cec0c8bf4 2605 }
mjr 21:5048e16cc9ef 2606
mjr 10:976666ffa4ef 2607 // If we're in pixel dump mode, report all pixel exposure values
mjr 10:976666ffa4ef 2608 if (reportPix)
mjr 10:976666ffa4ef 2609 {
mjr 17:ab3cec0c8bf4 2610 // send the report
mjr 17:ab3cec0c8bf4 2611 plungerSensor.sendExposureReport(js);
mjr 17:ab3cec0c8bf4 2612
mjr 10:976666ffa4ef 2613 // we have satisfied this request
mjr 10:976666ffa4ef 2614 reportPix = false;
mjr 10:976666ffa4ef 2615 }
mjr 10:976666ffa4ef 2616
mjr 21:5048e16cc9ef 2617 #else // ENABLE_JOYSTICK
mjr 21:5048e16cc9ef 2618 // We're a secondary controller, with no joystick reporting. Send
mjr 21:5048e16cc9ef 2619 // a generic status report to the host periodically for the sake of
mjr 21:5048e16cc9ef 2620 // the Windows config tool.
mjr 21:5048e16cc9ef 2621 if (reportTimer.read_ms() > 200)
mjr 21:5048e16cc9ef 2622 {
mjr 21:5048e16cc9ef 2623 js.updateStatus(0);
mjr 21:5048e16cc9ef 2624 }
mjr 21:5048e16cc9ef 2625
mjr 21:5048e16cc9ef 2626 #endif // ENABLE_JOYSTICK
mjr 21:5048e16cc9ef 2627
mjr 6:cc35eb643e8f 2628 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 2629 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 2630 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 2631 #endif
mjr 6:cc35eb643e8f 2632
mjr 33:d832bcab089e 2633 // check for connection status changes
mjr 33:d832bcab089e 2634 int newConnected = js.isConnected() && !js.isSuspended();
mjr 33:d832bcab089e 2635 if (newConnected != connected)
mjr 33:d832bcab089e 2636 {
mjr 33:d832bcab089e 2637 // give it a few seconds to stabilize
mjr 33:d832bcab089e 2638 time_t tc = time(0);
mjr 33:d832bcab089e 2639 if (tc - connectChangeTime > 3)
mjr 33:d832bcab089e 2640 {
mjr 33:d832bcab089e 2641 // note the new status
mjr 33:d832bcab089e 2642 connected = newConnected;
mjr 33:d832bcab089e 2643 connectChangeTime = tc;
mjr 33:d832bcab089e 2644
mjr 33:d832bcab089e 2645 // if we're no longer connected, turn off all outputs
mjr 33:d832bcab089e 2646 if (!connected)
mjr 33:d832bcab089e 2647 allOutputsOff();
mjr 33:d832bcab089e 2648 }
mjr 33:d832bcab089e 2649 }
mjr 33:d832bcab089e 2650
mjr 6:cc35eb643e8f 2651 // provide a visual status indication on the on-board LED
mjr 5:a70c0bce770d 2652 if (calBtnState < 2 && hbTimer.read_ms() > 1000)
mjr 1:d913e0afb2ac 2653 {
mjr 33:d832bcab089e 2654 if (!newConnected)
mjr 2:c174f9ee414a 2655 {
mjr 5:a70c0bce770d 2656 // suspended - turn off the LED
mjr 4:02c7cd7b2183 2657 ledR = 1;
mjr 4:02c7cd7b2183 2658 ledG = 1;
mjr 4:02c7cd7b2183 2659 ledB = 1;
mjr 5:a70c0bce770d 2660
mjr 5:a70c0bce770d 2661 // show a status flash every so often
mjr 5:a70c0bce770d 2662 if (hbcnt % 3 == 0)
mjr 5:a70c0bce770d 2663 {
mjr 6:cc35eb643e8f 2664 // disconnected = red/red flash; suspended = red
mjr 5:a70c0bce770d 2665 for (int n = js.isConnected() ? 1 : 2 ; n > 0 ; --n)
mjr 5:a70c0bce770d 2666 {
mjr 5:a70c0bce770d 2667 ledR = 0;
mjr 5:a70c0bce770d 2668 wait(0.05);
mjr 5:a70c0bce770d 2669 ledR = 1;
mjr 5:a70c0bce770d 2670 wait(0.25);
mjr 5:a70c0bce770d 2671 }
mjr 5:a70c0bce770d 2672 }
mjr 2:c174f9ee414a 2673 }
mjr 6:cc35eb643e8f 2674 else if (needReset)
mjr 2:c174f9ee414a 2675 {
mjr 6:cc35eb643e8f 2676 // connected, need to reset due to changes in config parameters -
mjr 6:cc35eb643e8f 2677 // flash red/green
mjr 6:cc35eb643e8f 2678 hb = !hb;
mjr 6:cc35eb643e8f 2679 ledR = (hb ? 0 : 1);
mjr 6:cc35eb643e8f 2680 ledG = (hb ? 1 : 0);
mjr 6:cc35eb643e8f 2681 ledB = 0;
mjr 6:cc35eb643e8f 2682 }
mjr 17:ab3cec0c8bf4 2683 else if (cfg.d.plungerEnabled && !cfg.d.plungerCal)
mjr 6:cc35eb643e8f 2684 {
mjr 6:cc35eb643e8f 2685 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 2686 hb = !hb;
mjr 6:cc35eb643e8f 2687 ledR = (hb ? 0 : 1);
mjr 6:cc35eb643e8f 2688 ledG = 0;
mjr 6:cc35eb643e8f 2689 ledB = 1;
mjr 6:cc35eb643e8f 2690 }
mjr 6:cc35eb643e8f 2691 else
mjr 6:cc35eb643e8f 2692 {
mjr 6:cc35eb643e8f 2693 // connected - flash blue/green
mjr 2:c174f9ee414a 2694 hb = !hb;
mjr 4:02c7cd7b2183 2695 ledR = 1;
mjr 4:02c7cd7b2183 2696 ledG = (hb ? 0 : 1);
mjr 4:02c7cd7b2183 2697 ledB = (hb ? 1 : 0);
mjr 2:c174f9ee414a 2698 }
mjr 1:d913e0afb2ac 2699
mjr 1:d913e0afb2ac 2700 // reset the heartbeat timer
mjr 1:d913e0afb2ac 2701 hbTimer.reset();
mjr 5:a70c0bce770d 2702 ++hbcnt;
mjr 1:d913e0afb2ac 2703 }
mjr 1:d913e0afb2ac 2704 }
mjr 0:5acbbe3f4cf4 2705 }