Pinscape Controller version 1 fork. This is a fork to allow for ongoing bug fixes to the original controller version, from before the major changes for the expansion board project.

Dependencies:   FastIO FastPWM SimpleDMA mbed

Fork of Pinscape_Controller by Mike R

Committer:
mjr
Date:
Tue Aug 26 22:24:54 2014 +0000
Revision:
11:bd9da7088e6e
Parent:
10:976666ffa4ef
Child:
12:669df364a565
Button inputs added

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 5:a70c0bce770d 1 /* Copyright 2014 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 5:a70c0bce770d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 5:a70c0bce770d 20 // Pinscape Controller
mjr 5:a70c0bce770d 21 //
mjr 5:a70c0bce770d 22 // "Pinscape" is the name of my custom-built virtual pinball cabinet. I wrote this
mjr 5:a70c0bce770d 23 // software to perform a number of tasks that I needed for my cabinet. It runs on a
mjr 5:a70c0bce770d 24 // Freescale KL25Z microcontroller, which is a small and inexpensive device that
mjr 5:a70c0bce770d 25 // attaches to the host PC via USB and can interface with numerous types of external
mjr 5:a70c0bce770d 26 // hardware.
mjr 5:a70c0bce770d 27 //
mjr 5:a70c0bce770d 28 // I designed the software and hardware in this project especially for Pinscape, but
mjr 5:a70c0bce770d 29 // it uses standard interfaces in Windows and Visual Pinball, so it should be
mjr 5:a70c0bce770d 30 // readily usable in anyone else's VP-based cabinet. I've tried to document the
mjr 5:a70c0bce770d 31 // hardware in enough detail for anyone else to duplicate the entire project, and
mjr 5:a70c0bce770d 32 // the full software is open source.
mjr 5:a70c0bce770d 33 //
mjr 6:cc35eb643e8f 34 // The device appears to the host computer as a USB joystick. This works with the
mjr 6:cc35eb643e8f 35 // standard Windows joystick device drivers, so there's no need to install any
mjr 6:cc35eb643e8f 36 // software on the PC - Windows should recognize it as a joystick when you plug
mjr 6:cc35eb643e8f 37 // it in and shouldn't ask you to install anything. If you bring up the control
mjr 6:cc35eb643e8f 38 // panel for USB Game Controllers, this device will appear as "Pinscape Controller".
mjr 6:cc35eb643e8f 39 // *Don't* do any calibration with the Windows control panel or third-part
mjr 6:cc35eb643e8f 40 // calibration tools. The device calibrates itself automatically for the
mjr 6:cc35eb643e8f 41 // accelerometer data, and has its own special calibration procedure for the
mjr 6:cc35eb643e8f 42 // plunger (see below).
mjr 6:cc35eb643e8f 43 //
mjr 5:a70c0bce770d 44 // The controller provides the following functions. It should be possible to use
mjr 5:a70c0bce770d 45 // any subet of the features without using all of them. External hardware for any
mjr 5:a70c0bce770d 46 // particular function can simply be omitted if that feature isn't needed.
mjr 5:a70c0bce770d 47 //
mjr 5:a70c0bce770d 48 // - Nudge sensing via the KL25Z's on-board accelerometer. Nudge accelerations are
mjr 5:a70c0bce770d 49 // processed into a physics model of a rolling ball, and changes to the ball's
mjr 5:a70c0bce770d 50 // motion are sent to the host computer via the joystick interface. This is designed
mjr 5:a70c0bce770d 51 // especially to work with Visuall Pinball's nudge handling to produce realistic
mjr 5:a70c0bce770d 52 // on-screen results in VP. By doing some physics modeling right on the device,
mjr 5:a70c0bce770d 53 // rather than sending raw accelerometer data to VP, we can produce better results
mjr 5:a70c0bce770d 54 // using our awareness of the real physical parameters of a pinball cabinet.
mjr 5:a70c0bce770d 55 // VP's nudge handling has to be more generic, so it can't make the same sorts
mjr 5:a70c0bce770d 56 // of assumptions that we can about the dynamics of a real cabinet.
mjr 5:a70c0bce770d 57 //
mjr 5:a70c0bce770d 58 // The nudge data reports are compatible with the built-in Windows USB joystick
mjr 5:a70c0bce770d 59 // drivers and with VP's own joystick input scheme, so the nudge sensing is almost
mjr 5:a70c0bce770d 60 // plug-and-play. There are no Windiows drivers to install, and the only VP work
mjr 5:a70c0bce770d 61 // needed is to customize a few global preference settings.
mjr 5:a70c0bce770d 62 //
mjr 5:a70c0bce770d 63 // - Plunger position sensing via an attached TAOS TSL 1410R CCD linear array sensor.
mjr 5:a70c0bce770d 64 // The sensor must be wired to a particular set of I/O ports on the KL25Z, and must
mjr 5:a70c0bce770d 65 // be positioned adjacent to the plunger with proper lighting. The physical and
mjr 5:a70c0bce770d 66 // electronic installation details are desribed in the project documentation. We read
mjr 5:a70c0bce770d 67 // the CCD to determine how far back the plunger is pulled, and report this to Visual
mjr 5:a70c0bce770d 68 // Pinball via the joystick interface. As with the nudge data, this is all nearly
mjr 5:a70c0bce770d 69 // plug-and-play, in that it works with the default Windows USB drivers and works
mjr 5:a70c0bce770d 70 // with the existing VP handling for analog plunger input. A few VP settings are
mjr 5:a70c0bce770d 71 // needed to tell VP to allow the plunger.
mjr 5:a70c0bce770d 72 //
mjr 6:cc35eb643e8f 73 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 74 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 75 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 76 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 6:cc35eb643e8f 77 // sensor or the mechanical plunger, since their alignment might change slightly
mjr 6:cc35eb643e8f 78 // when you put everything back together.) To calibrate, you have to attach a
mjr 6:cc35eb643e8f 79 // momentary switch (e.g., a push-button switch) between one of the KL25Z ground
mjr 6:cc35eb643e8f 80 // pins (e.g., jumper J9 pin 12) and PTE29 (J10 pin 9). Press and hold the
mjr 6:cc35eb643e8f 81 // button for about two seconds - the LED on the KL25Z wlil flash blue while
mjr 6:cc35eb643e8f 82 // you hold the button, and will turn solid blue when you've held it down long
mjr 6:cc35eb643e8f 83 // enough to enter calibration mode. This mode will last about 15 seconds.
mjr 6:cc35eb643e8f 84 // Simply pull the plunger all the way back, hold it for a few moments, and
mjr 6:cc35eb643e8f 85 // gradually return it to the starting position. *Don't* release it - we want
mjr 6:cc35eb643e8f 86 // to measure the maximum retracted position and the rest position, but NOT
mjr 6:cc35eb643e8f 87 // the maximum forward position when the outer barrel spring is compressed.
mjr 6:cc35eb643e8f 88 // After about 15 seconds, the device will save the new calibration settings
mjr 6:cc35eb643e8f 89 // to its flash memory, and the LED will return to the regular "heartbeat"
mjr 6:cc35eb643e8f 90 // flashes. If this is the first time you calibrated, you should observe the
mjr 6:cc35eb643e8f 91 // color of the flashes change from yellow/green to blue/green to indicate
mjr 6:cc35eb643e8f 92 // that the plunger has been calibrated.
mjr 6:cc35eb643e8f 93 //
mjr 6:cc35eb643e8f 94 // Note that while Visual Pinball itself has good native support for analog
mjr 6:cc35eb643e8f 95 // plungers, most of the VP tables in circulation don't implement the necessary
mjr 6:cc35eb643e8f 96 // scripting features to make this work properly. Therefore, you'll have to do
mjr 6:cc35eb643e8f 97 // a little scripting work for each table you download to add the required code
mjr 6:cc35eb643e8f 98 // to that individual table. The work has to be customized for each table, so
mjr 6:cc35eb643e8f 99 // I haven't been able to automate this process, but I have tried to reduce it
mjr 6:cc35eb643e8f 100 // to a relatively simple recipe that I've documented separately.
mjr 5:a70c0bce770d 101 //
mjr 5:a70c0bce770d 102 // - In addition to the CCD sensor, a button should be attached (also described in
mjr 5:a70c0bce770d 103 // the project documentation) to activate calibration mode for the plunger. When
mjr 5:a70c0bce770d 104 // calibration mode is activated, the software reads the plunger position for about
mjr 5:a70c0bce770d 105 // 10 seconds when to note the limits of travel, and uses these limits to ensure
mjr 5:a70c0bce770d 106 // accurate reports to VP that properly report the actual position of the physical
mjr 5:a70c0bce770d 107 // plunger. The calibration is stored in non-volatile memory on the KL25Z, so it's
mjr 5:a70c0bce770d 108 // only necessary to calibrate once - the calibration will survive power cycling
mjr 5:a70c0bce770d 109 // and reboots of the PC. It's only necessary to recalibrate if the CCD sensor or
mjr 5:a70c0bce770d 110 // the plunger are removed and reinstalled, since the relative alignment of the
mjr 5:a70c0bce770d 111 // parts could cahnge slightly when reinstalling.
mjr 5:a70c0bce770d 112 //
mjr 5:a70c0bce770d 113 // - LedWiz emulation. The KL25Z can appear to the PC as an LedWiz device, and will
mjr 5:a70c0bce770d 114 // accept and process LedWiz commands from the host. The software can turn digital
mjr 5:a70c0bce770d 115 // output ports on and off, and can set varying PWM intensitiy levels on a subset
mjr 5:a70c0bce770d 116 // of ports. (The KL25Z can only provide 6 PWM ports. Intensity level settings on
mjr 5:a70c0bce770d 117 // other ports is ignored, so non-PWM ports can only be used for simple on/off
mjr 5:a70c0bce770d 118 // devices such as contactors and solenoids.) The KL25Z can only supply 4mA on its
mjr 5:a70c0bce770d 119 // output ports, so external hardware is required to take advantage of the LedWiz
mjr 5:a70c0bce770d 120 // emulation. Many different hardware designs are possible, but there's a simple
mjr 5:a70c0bce770d 121 // reference design in the documentation that uses a Darlington array IC to
mjr 5:a70c0bce770d 122 // increase the output from each port to 500mA (the same level as the LedWiz),
mjr 5:a70c0bce770d 123 // plus an extended design that adds an optocoupler and MOSFET to provide very
mjr 5:a70c0bce770d 124 // high power handling, up to about 45A or 150W, with voltages up to 100V.
mjr 5:a70c0bce770d 125 // That will handle just about any DC device directly (wtihout relays or other
mjr 5:a70c0bce770d 126 // amplifiers), and switches fast enough to support PWM devices.
mjr 5:a70c0bce770d 127 //
mjr 5:a70c0bce770d 128 // The device can report any desired LedWiz unit number to the host, which makes
mjr 5:a70c0bce770d 129 // it possible to use the LedWiz emulation on a machine that also has one or more
mjr 5:a70c0bce770d 130 // actual LedWiz devices intalled. The LedWiz design allows for up to 16 units
mjr 5:a70c0bce770d 131 // to be installed in one machine - each one is invidually addressable by its
mjr 5:a70c0bce770d 132 // distinct unit number.
mjr 5:a70c0bce770d 133 //
mjr 5:a70c0bce770d 134 // The LedWiz emulation features are of course optional. There's no need to
mjr 5:a70c0bce770d 135 // build any of the external port hardware (or attach anything to the output
mjr 5:a70c0bce770d 136 // ports at all) if the LedWiz features aren't needed. Most people won't have
mjr 5:a70c0bce770d 137 // any use for the LedWiz features. I built them mostly as a learning exercise,
mjr 5:a70c0bce770d 138 // but with a slight practical need for a handful of extra ports (I'm using the
mjr 5:a70c0bce770d 139 // cutting-edge 10-contactor setup, so my real LedWiz is full!).
mjr 6:cc35eb643e8f 140 //
mjr 6:cc35eb643e8f 141 // The on-board LED on the KL25Z flashes to indicate the current device status:
mjr 6:cc35eb643e8f 142 //
mjr 6:cc35eb643e8f 143 // two short red flashes = the device is powered but hasn't successfully
mjr 6:cc35eb643e8f 144 // connected to the host via USB (either it's not physically connected
mjr 6:cc35eb643e8f 145 // to the USB port, or there was a problem with the software handshake
mjr 6:cc35eb643e8f 146 // with the USB device driver on the computer)
mjr 6:cc35eb643e8f 147 //
mjr 6:cc35eb643e8f 148 // short red flash = the host computer is in sleep/suspend mode
mjr 6:cc35eb643e8f 149 //
mjr 6:cc35eb643e8f 150 // long red/green = the LedWiz unti number has been changed, so a reset
mjr 6:cc35eb643e8f 151 // is needed. You can simply unplug the device and plug it back in,
mjr 6:cc35eb643e8f 152 // or presss and hold the reset button on the device for a few seconds.
mjr 6:cc35eb643e8f 153 //
mjr 6:cc35eb643e8f 154 // long yellow/green = everything's working, but the plunger hasn't
mjr 6:cc35eb643e8f 155 // been calibrated; follow the calibration procedure described above.
mjr 6:cc35eb643e8f 156 // This flash mode won't appear if the CCD has been disabled. Note
mjr 6:cc35eb643e8f 157 // that the device can't tell whether a CCD is physically attached,
mjr 6:cc35eb643e8f 158 // so you should use the config command to disable the CCD software
mjr 6:cc35eb643e8f 159 // features if you won't be attaching a CCD.
mjr 6:cc35eb643e8f 160 //
mjr 6:cc35eb643e8f 161 // alternating blue/green = everything's working
mjr 6:cc35eb643e8f 162 //
mjr 6:cc35eb643e8f 163 // Software configuration: you can change option settings by sending special
mjr 6:cc35eb643e8f 164 // USB commands from the PC. I've provided a Windows program for this purpose;
mjr 6:cc35eb643e8f 165 // refer to the documentation for details. For reference, here's the format
mjr 6:cc35eb643e8f 166 // of the USB command for option changes:
mjr 6:cc35eb643e8f 167 //
mjr 6:cc35eb643e8f 168 // length of report = 8 bytes
mjr 6:cc35eb643e8f 169 // byte 0 = 65 (0x41)
mjr 6:cc35eb643e8f 170 // byte 1 = 1 (0x01)
mjr 6:cc35eb643e8f 171 // byte 2 = new LedWiz unit number, 0x01 to 0x0f
mjr 6:cc35eb643e8f 172 // byte 3 = feature enable bit mask:
mjr 6:cc35eb643e8f 173 // 0x01 = enable CCD (default = on)
mjr 9:fd65b0a94720 174 //
mjr 9:fd65b0a94720 175 // Plunger calibration mode: the host can activate plunger calibration mode
mjr 9:fd65b0a94720 176 // by sending this packet. This has the same effect as pressing and holding
mjr 9:fd65b0a94720 177 // the plunger calibration button for two seconds, to allow activating this
mjr 9:fd65b0a94720 178 // mode without attaching a physical button.
mjr 9:fd65b0a94720 179 //
mjr 9:fd65b0a94720 180 // length = 8 bytes
mjr 9:fd65b0a94720 181 // byte 0 = 65 (0x41)
mjr 9:fd65b0a94720 182 // byte 1 = 2 (0x02)
mjr 9:fd65b0a94720 183 //
mjr 10:976666ffa4ef 184 // Exposure reports: the host can request a report of the full set of pixel
mjr 10:976666ffa4ef 185 // values for the next frame by sending this special packet:
mjr 10:976666ffa4ef 186 //
mjr 10:976666ffa4ef 187 // length = 8 bytes
mjr 10:976666ffa4ef 188 // byte 0 = 65 (0x41)
mjr 10:976666ffa4ef 189 // byte 1 = 3 (0x03)
mjr 10:976666ffa4ef 190 //
mjr 10:976666ffa4ef 191 // We'll respond with a series of special reports giving the exposure status.
mjr 10:976666ffa4ef 192 // Each report has the following structure:
mjr 10:976666ffa4ef 193 //
mjr 10:976666ffa4ef 194 // bytes 0:1 = 11-bit index, with high 5 bits set to 10000. For
mjr 10:976666ffa4ef 195 // example, 0x04 0x80 indicates index 4. This is the
mjr 10:976666ffa4ef 196 // starting pixel number in the report. The first report
mjr 10:976666ffa4ef 197 // will be 0x00 0x80 to indicate pixel #0.
mjr 10:976666ffa4ef 198 // bytes 2:3 = 16-bit unsigned int brightness level of pixel at index
mjr 10:976666ffa4ef 199 // bytes 4:5 = brightness of pixel at index+1
mjr 10:976666ffa4ef 200 // etc for the rest of the packet
mjr 10:976666ffa4ef 201 //
mjr 10:976666ffa4ef 202 // This still has the form of a joystick packet at the USB level, but
mjr 10:976666ffa4ef 203 // can be differentiated by the host via the status bits. It would have
mjr 10:976666ffa4ef 204 // been cleaner to use a different Report ID at the USB level, but this
mjr 10:976666ffa4ef 205 // would have necessitated a different container structure in the report
mjr 10:976666ffa4ef 206 // descriptor, which would have broken LedWiz compatibility. Given that
mjr 10:976666ffa4ef 207 // constraint, we have to re-use the joystick report type, making for
mjr 10:976666ffa4ef 208 // this somewhat kludgey approach.
mjr 6:cc35eb643e8f 209
mjr 0:5acbbe3f4cf4 210 #include "mbed.h"
mjr 6:cc35eb643e8f 211 #include "math.h"
mjr 0:5acbbe3f4cf4 212 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 213 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 214 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 215 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 216 #include "crc32.h"
mjr 2:c174f9ee414a 217
mjr 5:a70c0bce770d 218
mjr 5:a70c0bce770d 219 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 220 //
mjr 5:a70c0bce770d 221 // Configuration details
mjr 5:a70c0bce770d 222 //
mjr 2:c174f9ee414a 223
mjr 5:a70c0bce770d 224 // Our USB device vendor ID, product ID, and version.
mjr 5:a70c0bce770d 225 // We use the vendor ID for the LedWiz, so that the PC-side software can
mjr 5:a70c0bce770d 226 // identify us as capable of performing LedWiz commands. The LedWiz uses
mjr 5:a70c0bce770d 227 // a product ID value from 0xF0 to 0xFF; the last four bits identify the
mjr 5:a70c0bce770d 228 // unit number (e.g., product ID 0xF7 means unit #7). This allows multiple
mjr 5:a70c0bce770d 229 // LedWiz units to be installed in a single PC; the software on the PC side
mjr 5:a70c0bce770d 230 // uses the unit number to route commands to the devices attached to each
mjr 5:a70c0bce770d 231 // unit. On the real LedWiz, the unit number must be set in the firmware
mjr 5:a70c0bce770d 232 // at the factory; it's not configurable by the end user. Most LedWiz's
mjr 5:a70c0bce770d 233 // ship with the unit number set to 0, but the vendor will set different
mjr 5:a70c0bce770d 234 // unit numbers if requested at the time of purchase. So if you have a
mjr 5:a70c0bce770d 235 // single LedWiz already installed in your cabinet, and you didn't ask for
mjr 5:a70c0bce770d 236 // a non-default unit number, your existing LedWiz will be unit 0.
mjr 5:a70c0bce770d 237 //
mjr 5:a70c0bce770d 238 // We use unit #7 by default. There doesn't seem to be a requirement that
mjr 5:a70c0bce770d 239 // unit numbers be contiguous (DirectOutput Framework and other software
mjr 5:a70c0bce770d 240 // seem happy to have units 0 and 7 installed, without 1-6 existing).
mjr 5:a70c0bce770d 241 // Marking this unit as #7 should work for almost everybody out of the box;
mjr 5:a70c0bce770d 242 // the most common case seems to be to have a single LedWiz installed, and
mjr 5:a70c0bce770d 243 // it's probably extremely rare to more than two.
mjr 6:cc35eb643e8f 244 //
mjr 6:cc35eb643e8f 245 // Note that the USB_PRODUCT_ID value set here omits the unit number. We
mjr 6:cc35eb643e8f 246 // take the unit number from the saved configuration. We provide a
mjr 6:cc35eb643e8f 247 // configuration command that can be sent via the USB connection to change
mjr 6:cc35eb643e8f 248 // the unit number, so that users can select the unit number without having
mjr 6:cc35eb643e8f 249 // to install a different version of the software. We'll combine the base
mjr 6:cc35eb643e8f 250 // product ID here with the unit number to get the actual product ID that
mjr 6:cc35eb643e8f 251 // we send to the USB controller.
mjr 5:a70c0bce770d 252 const uint16_t USB_VENDOR_ID = 0xFAFA;
mjr 6:cc35eb643e8f 253 const uint16_t USB_PRODUCT_ID = 0x00F0;
mjr 6:cc35eb643e8f 254 const uint16_t USB_VERSION_NO = 0x0006;
mjr 6:cc35eb643e8f 255 const uint8_t DEFAULT_LEDWIZ_UNIT_NUMBER = 0x07;
mjr 0:5acbbe3f4cf4 256
mjr 9:fd65b0a94720 257 // Number of pixels we read from the sensor on each frame. This can be
mjr 9:fd65b0a94720 258 // less than the physical pixel count if desired; we'll read every nth
mjr 9:fd65b0a94720 259 // piexl if so. E.g., with a 1280-pixel physical sensor, if npix is 320,
mjr 9:fd65b0a94720 260 // we'll read every 4th pixel. It takes time to read each pixel, so the
mjr 9:fd65b0a94720 261 // fewer pixels we read, the higher the refresh rate we can achieve.
mjr 9:fd65b0a94720 262 // It's therefore better not to read more pixels than we have to.
mjr 9:fd65b0a94720 263 //
mjr 9:fd65b0a94720 264 // VP seems to have an internal resolution in the 8-bit range, so there's
mjr 9:fd65b0a94720 265 // no apparent benefit to reading more than 128-256 pixels when using VP.
mjr 9:fd65b0a94720 266 // Empirically, 160 pixels seems about right. The overall travel of a
mjr 9:fd65b0a94720 267 // standard pinball plunger is about 3", so 160 pixels gives us resolution
mjr 9:fd65b0a94720 268 // of about 1/50". This seems to take full advantage of VP's modeling
mjr 9:fd65b0a94720 269 // ability, and is probably also more precise than a human player's
mjr 9:fd65b0a94720 270 // perception of the plunger position.
mjr 9:fd65b0a94720 271 const int npix = 160;
mjr 9:fd65b0a94720 272
mjr 4:02c7cd7b2183 273 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 4:02c7cd7b2183 274 DigitalOut ledR(LED1), ledG(LED2), ledB(LED3);
mjr 0:5acbbe3f4cf4 275
mjr 1:d913e0afb2ac 276 // calibration button - switch input and LED output
mjr 1:d913e0afb2ac 277 DigitalIn calBtn(PTE29);
mjr 1:d913e0afb2ac 278 DigitalOut calBtnLed(PTE23);
mjr 0:5acbbe3f4cf4 279
mjr 11:bd9da7088e6e 280 // Joystick button input pin assignments. You can wire up to
mjr 11:bd9da7088e6e 281 // 32 GPIO ports to buttons (equipped with momentary switches).
mjr 11:bd9da7088e6e 282 // Connect each switch between the desired GPIO port and ground
mjr 11:bd9da7088e6e 283 // (J9 pin 12 or 14). When the button is pressed, we'll tell the
mjr 11:bd9da7088e6e 284 // host PC that the corresponding joystick button as pressed. We
mjr 11:bd9da7088e6e 285 // debounce the keystrokes in software, so you can simply wire
mjr 11:bd9da7088e6e 286 // directly to pushbuttons with no additional external hardware.
mjr 11:bd9da7088e6e 287 //
mjr 11:bd9da7088e6e 288 // Note that we assign 24 buttons by default, even though the USB
mjr 11:bd9da7088e6e 289 // joystick interface can handle up to 32 buttons. VP itself only
mjr 11:bd9da7088e6e 290 // allows mapping of up to 24 buttons in the preferences dialog
mjr 11:bd9da7088e6e 291 // (although it can recognize 32 buttons internally). If you want
mjr 11:bd9da7088e6e 292 // more buttons, you can reassign pins that are assigned by default
mjr 11:bd9da7088e6e 293 // as LedWiz outputs. To reassign a pin, find the pin you wish to
mjr 11:bd9da7088e6e 294 // reassign in the LedWizPortMap array below, and change the pin name
mjr 11:bd9da7088e6e 295 // there to NC (for Not Connected). You can then change one of the
mjr 11:bd9da7088e6e 296 // "NC" entries below to the reallocated pin name. The limit is 32
mjr 11:bd9da7088e6e 297 // buttons total.
mjr 11:bd9da7088e6e 298 //
mjr 11:bd9da7088e6e 299 // Note: PTD1 (pin J2-12) should NOT be assigned as a button input,
mjr 11:bd9da7088e6e 300 // as this pin is physically connected on the KL25Z to the on-board
mjr 11:bd9da7088e6e 301 // indicator LED's blue segment. This precludes any other use of
mjr 11:bd9da7088e6e 302 // the pin.
mjr 11:bd9da7088e6e 303 PinName buttonMap[] = {
mjr 11:bd9da7088e6e 304 PTC2, // J10 pin 10, joystick button 1
mjr 11:bd9da7088e6e 305 PTB3, // J10 pin 8, joystick button 2
mjr 11:bd9da7088e6e 306 PTB2, // J10 pin 6, joystick button 3
mjr 11:bd9da7088e6e 307 PTB1, // J10 pin 4, joystick button 4
mjr 11:bd9da7088e6e 308
mjr 11:bd9da7088e6e 309 PTE30, // J10 pin 11, joystick button 5
mjr 11:bd9da7088e6e 310 PTE22, // J10 pin 5, joystick button 6
mjr 11:bd9da7088e6e 311
mjr 11:bd9da7088e6e 312 PTE5, // J9 pin 15, joystick button 7
mjr 11:bd9da7088e6e 313 PTE4, // J9 pin 13, joystick button 8
mjr 11:bd9da7088e6e 314 PTE3, // J9 pin 11, joystick button 9
mjr 11:bd9da7088e6e 315 PTE2, // J9 pin 9, joystick button 10
mjr 11:bd9da7088e6e 316 PTB11, // J9 pin 7, joystick button 11
mjr 11:bd9da7088e6e 317 PTB10, // J9 pin 5, joystick button 12
mjr 11:bd9da7088e6e 318 PTB9, // J9 pin 3, joystick button 13
mjr 11:bd9da7088e6e 319 PTB8, // J9 pin 1, joystick button 14
mjr 11:bd9da7088e6e 320
mjr 11:bd9da7088e6e 321 PTC12, // J2 pin 1, joystick button 15
mjr 11:bd9da7088e6e 322 PTC13, // J2 pin 3, joystick button 16
mjr 11:bd9da7088e6e 323 PTC16, // J2 pin 5, joystick button 17
mjr 11:bd9da7088e6e 324 PTC17, // J2 pin 7, joystick button 18
mjr 11:bd9da7088e6e 325 PTA16, // J2 pin 9, joystick button 19
mjr 11:bd9da7088e6e 326 PTA17, // J2 pin 11, joystick button 20
mjr 11:bd9da7088e6e 327 PTE31, // J2 pin 13, joystick button 21
mjr 11:bd9da7088e6e 328 PTD6, // J2 pin 17, joystick button 22
mjr 11:bd9da7088e6e 329 PTD7, // J2 pin 19, joystick button 23
mjr 11:bd9da7088e6e 330
mjr 11:bd9da7088e6e 331 PTE1, // J2 pin 20, joystick button 24
mjr 11:bd9da7088e6e 332
mjr 11:bd9da7088e6e 333 NC, // not used, joystick button 25
mjr 11:bd9da7088e6e 334 NC, // not used, joystick button 26
mjr 11:bd9da7088e6e 335 NC, // not used, joystick button 27
mjr 11:bd9da7088e6e 336 NC, // not used, joystick button 28
mjr 11:bd9da7088e6e 337 NC, // not used, joystick button 29
mjr 11:bd9da7088e6e 338 NC, // not used, joystick button 30
mjr 11:bd9da7088e6e 339 NC, // not used, joystick button 31
mjr 11:bd9da7088e6e 340 NC // not used, joystick button 32
mjr 11:bd9da7088e6e 341 };
mjr 11:bd9da7088e6e 342
mjr 11:bd9da7088e6e 343 // LED-Wiz emulation output pin assignments.
mjr 6:cc35eb643e8f 344 //
mjr 6:cc35eb643e8f 345 // The LED-Wiz protocol allows setting individual intensity levels
mjr 6:cc35eb643e8f 346 // on all outputs, with 48 levels of intensity. This can be used
mjr 6:cc35eb643e8f 347 // to control lamp brightness and motor speeds, among other things.
mjr 6:cc35eb643e8f 348 // Unfortunately, the KL25Z only has 10 PWM channels, so while we
mjr 6:cc35eb643e8f 349 // can support the full complement of 32 outputs, we can only provide
mjr 6:cc35eb643e8f 350 // PWM dimming/speed control on 10 of them. The remaining outputs
mjr 6:cc35eb643e8f 351 // can only be switched fully on and fully off - we can't support
mjr 6:cc35eb643e8f 352 // dimming on these, so they'll ignore any intensity level setting
mjr 6:cc35eb643e8f 353 // requested by the host. Use these for devices that don't have any
mjr 6:cc35eb643e8f 354 // use for intensity settings anyway, such as contactors and knockers.
mjr 6:cc35eb643e8f 355 //
mjr 11:bd9da7088e6e 356 // Ports with pins assigned as "NC" are not connected. That is,
mjr 11:bd9da7088e6e 357 // there's no physical pin for that LedWiz port number. You can
mjr 11:bd9da7088e6e 358 // send LedWiz commands to turn NC ports on and off, but doing so
mjr 11:bd9da7088e6e 359 // will have no effect. The reason we leave some ports unassigned
mjr 11:bd9da7088e6e 360 // is that we don't have enough physical GPIO pins to fill out the
mjr 11:bd9da7088e6e 361 // full LedWiz complement of 32 ports. Many pins are already taken
mjr 11:bd9da7088e6e 362 // for other purposes, such as button inputs or the plunger CCD
mjr 11:bd9da7088e6e 363 // interface.
mjr 11:bd9da7088e6e 364 //
mjr 6:cc35eb643e8f 365 // The mapping between physical output pins on the KL25Z and the
mjr 6:cc35eb643e8f 366 // assigned LED-Wiz port numbers is essentially arbitrary - you can
mjr 6:cc35eb643e8f 367 // customize this by changing the entries in the array below if you
mjr 6:cc35eb643e8f 368 // wish to rearrange the pins for any reason. Be aware that some
mjr 6:cc35eb643e8f 369 // of the physical outputs are already used for other purposes
mjr 6:cc35eb643e8f 370 // (e.g., some of the GPIO pins on header J10 are used for the
mjr 6:cc35eb643e8f 371 // CCD sensor - but you can of course reassign those as well by
mjr 6:cc35eb643e8f 372 // changing the corresponding declarations elsewhere in this module).
mjr 6:cc35eb643e8f 373 // The assignments we make here have two main objectives: first,
mjr 6:cc35eb643e8f 374 // to group the outputs on headers J1 and J2 (to facilitate neater
mjr 6:cc35eb643e8f 375 // wiring by keeping the output pins together physically), and
mjr 6:cc35eb643e8f 376 // second, to make the physical pin layout match the LED-Wiz port
mjr 6:cc35eb643e8f 377 // numbering order to the extent possible. There's one big wrench
mjr 6:cc35eb643e8f 378 // in the works, though, which is the limited number and discontiguous
mjr 6:cc35eb643e8f 379 // placement of the KL25Z PWM-capable output pins. This prevents
mjr 6:cc35eb643e8f 380 // us from doing the most obvious sequential ordering of the pins,
mjr 6:cc35eb643e8f 381 // so we end up with the outputs arranged into several blocks.
mjr 6:cc35eb643e8f 382 // Hopefully this isn't too confusing; for more detailed rationale,
mjr 6:cc35eb643e8f 383 // read on...
mjr 6:cc35eb643e8f 384 //
mjr 6:cc35eb643e8f 385 // With the LED-Wiz, the host software configuration usually
mjr 6:cc35eb643e8f 386 // assumes that each RGB LED is hooked up to three consecutive ports
mjr 6:cc35eb643e8f 387 // (for the red, green, and blue components, which need to be
mjr 6:cc35eb643e8f 388 // physically wired to separate outputs to allow each color to be
mjr 6:cc35eb643e8f 389 // controlled independently). To facilitate this, we arrange the
mjr 6:cc35eb643e8f 390 // PWM-enabled outputs so that they're grouped together in the
mjr 6:cc35eb643e8f 391 // port numbering scheme. Unfortunately, these outputs aren't
mjr 6:cc35eb643e8f 392 // together in a single group in the physical pin layout, so to
mjr 6:cc35eb643e8f 393 // group them logically in the LED-Wiz port numbering scheme, we
mjr 6:cc35eb643e8f 394 // have to break up the overall numbering scheme into several blocks.
mjr 6:cc35eb643e8f 395 // So our port numbering goes sequentially down each column of
mjr 6:cc35eb643e8f 396 // header pins, but there are several break points where we have
mjr 6:cc35eb643e8f 397 // to interrupt the obvious sequence to keep the PWM pins grouped
mjr 6:cc35eb643e8f 398 // logically.
mjr 6:cc35eb643e8f 399 //
mjr 6:cc35eb643e8f 400 // In the list below, "pin J1-2" refers to pin 2 on header J1 on
mjr 6:cc35eb643e8f 401 // the KL25Z, using the standard pin numbering in the KL25Z
mjr 6:cc35eb643e8f 402 // documentation - this is the physical pin that the port controls.
mjr 6:cc35eb643e8f 403 // "LW port 1" means LED-Wiz port 1 - this is the LED-Wiz port
mjr 6:cc35eb643e8f 404 // number that you use on the PC side (in the DirectOutput config
mjr 6:cc35eb643e8f 405 // file, for example) to address the port. PWM-capable ports are
mjr 6:cc35eb643e8f 406 // marked as such - we group the PWM-capable ports into the first
mjr 6:cc35eb643e8f 407 // 10 LED-Wiz port numbers.
mjr 11:bd9da7088e6e 408 //
mjr 11:bd9da7088e6e 409 // If you wish to reallocate a pin in the array below to some other
mjr 11:bd9da7088e6e 410 // use, such as a button input port, simply change the pin name in
mjr 11:bd9da7088e6e 411 // the entry to NC (for Not Connected). This will disable the given
mjr 11:bd9da7088e6e 412 // logical LedWiz port number and free up the physical pin.
mjr 11:bd9da7088e6e 413 //
mjr 11:bd9da7088e6e 414 // If you wish to reallocate a pin currently assigned to the button
mjr 11:bd9da7088e6e 415 // input array, simply change the entry for the pin in the buttonMap[]
mjr 11:bd9da7088e6e 416 // array above to NC (for "not connected"), and plug the pin name into
mjr 11:bd9da7088e6e 417 // a slot of your choice in the array below.
mjr 11:bd9da7088e6e 418 //
mjr 11:bd9da7088e6e 419 // Note: PTD1 (pin J2-12) should NOT be assigned as an LedWiz output,
mjr 11:bd9da7088e6e 420 // as this pin is physically connected on the KL25Z to the on-board
mjr 11:bd9da7088e6e 421 // indicator LED's blue segment. This precludes any other use of
mjr 11:bd9da7088e6e 422 // the pin.
mjr 6:cc35eb643e8f 423 //
mjr 6:cc35eb643e8f 424 struct {
mjr 6:cc35eb643e8f 425 PinName pin;
mjr 6:cc35eb643e8f 426 bool isPWM;
mjr 6:cc35eb643e8f 427 } ledWizPortMap[32] = {
mjr 6:cc35eb643e8f 428 { PTA1, true }, // pin J1-2, LW port 1 (PWM capable - TPM 2.0 = channel 9)
mjr 6:cc35eb643e8f 429 { PTA2, true }, // pin J1-4, LW port 2 (PWM capable - TPM 2.1 = channel 10)
mjr 6:cc35eb643e8f 430 { PTD4, true }, // pin J1-6, LW port 3 (PWM capable - TPM 0.4 = channel 5)
mjr 6:cc35eb643e8f 431 { PTA12, true }, // pin J1-8, LW port 4 (PWM capable - TPM 1.0 = channel 7)
mjr 6:cc35eb643e8f 432 { PTA4, true }, // pin J1-10, LW port 5 (PWM capable - TPM 0.1 = channel 2)
mjr 6:cc35eb643e8f 433 { PTA5, true }, // pin J1-12, LW port 6 (PWM capable - TPM 0.2 = channel 3)
mjr 6:cc35eb643e8f 434 { PTA13, true }, // pin J2-2, LW port 7 (PWM capable - TPM 1.1 = channel 13)
mjr 6:cc35eb643e8f 435 { PTD5, true }, // pin J2-4, LW port 8 (PWM capable - TPM 0.5 = channel 6)
mjr 6:cc35eb643e8f 436 { PTD0, true }, // pin J2-6, LW port 9 (PWM capable - TPM 0.0 = channel 1)
mjr 6:cc35eb643e8f 437 { PTD3, true }, // pin J2-10, LW port 10 (PWM capable - TPM 0.3 = channel 4)
mjr 9:fd65b0a94720 438 { PTD2, false }, // pin J2-8, LW port 11
mjr 9:fd65b0a94720 439 { PTC8, false }, // pin J1-14, LW port 12
mjr 9:fd65b0a94720 440 { PTC9, false }, // pin J1-16, LW port 13
mjr 9:fd65b0a94720 441 { PTC7, false }, // pin J1-1, LW port 14
mjr 9:fd65b0a94720 442 { PTC0, false }, // pin J1-3, LW port 15
mjr 9:fd65b0a94720 443 { PTC3, false }, // pin J1-5, LW port 16
mjr 9:fd65b0a94720 444 { PTC4, false }, // pin J1-7, LW port 17
mjr 9:fd65b0a94720 445 { PTC5, false }, // pin J1-9, LW port 18
mjr 9:fd65b0a94720 446 { PTC6, false }, // pin J1-11, LW port 19
mjr 9:fd65b0a94720 447 { PTC10, false }, // pin J1-13, LW port 20
mjr 9:fd65b0a94720 448 { PTC11, false }, // pin J1-15, LW port 21
mjr 11:bd9da7088e6e 449 { PTE0, false }, // pin J2-18, LW port 22
mjr 11:bd9da7088e6e 450 { NC, false }, // Not used, LW port 23
mjr 11:bd9da7088e6e 451 { NC, false }, // Not used, LW port 24
mjr 11:bd9da7088e6e 452 { NC, false }, // Not used, LW port 25
mjr 11:bd9da7088e6e 453 { NC, false }, // Not used, LW port 26
mjr 11:bd9da7088e6e 454 { NC, false }, // Not used, LW port 27
mjr 11:bd9da7088e6e 455 { NC, false }, // Not used, LW port 28
mjr 11:bd9da7088e6e 456 { NC, false }, // Not used, LW port 29
mjr 11:bd9da7088e6e 457 { NC, false }, // Not used, LW port 30
mjr 11:bd9da7088e6e 458 { NC, false }, // Not used, LW port 31
mjr 11:bd9da7088e6e 459 { NC, false } // Not used, LW port 32
mjr 6:cc35eb643e8f 460 };
mjr 6:cc35eb643e8f 461
mjr 6:cc35eb643e8f 462
mjr 5:a70c0bce770d 463 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 5:a70c0bce770d 464 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 5:a70c0bce770d 465
mjr 5:a70c0bce770d 466 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 5:a70c0bce770d 467 #define MMA8451_SCL_PIN PTE25
mjr 5:a70c0bce770d 468 #define MMA8451_SDA_PIN PTE24
mjr 5:a70c0bce770d 469
mjr 5:a70c0bce770d 470 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 5:a70c0bce770d 471 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 5:a70c0bce770d 472 // wired on this board to the MMA8451 interrupt controller.
mjr 5:a70c0bce770d 473 #define MMA8451_INT_PIN PTA15
mjr 5:a70c0bce770d 474
mjr 6:cc35eb643e8f 475 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 6:cc35eb643e8f 476 #define JOYMAX 4096
mjr 6:cc35eb643e8f 477
mjr 5:a70c0bce770d 478
mjr 5:a70c0bce770d 479 // ---------------------------------------------------------------------------
mjr 9:fd65b0a94720 480 // utilities
mjr 9:fd65b0a94720 481
mjr 9:fd65b0a94720 482 // number of elements in an array
mjr 9:fd65b0a94720 483 #define countof(x) (sizeof(x)/sizeof((x)[0]))
mjr 9:fd65b0a94720 484
mjr 9:fd65b0a94720 485 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 486 //
mjr 5:a70c0bce770d 487 // LedWiz emulation
mjr 5:a70c0bce770d 488 //
mjr 5:a70c0bce770d 489
mjr 0:5acbbe3f4cf4 490 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 491
mjr 6:cc35eb643e8f 492 // LedWiz output pin interface. We create a cover class to virtualize
mjr 6:cc35eb643e8f 493 // digital vs PWM outputs and give them a common interface. The KL25Z
mjr 6:cc35eb643e8f 494 // unfortunately doesn't have enough hardware PWM channels to support
mjr 6:cc35eb643e8f 495 // PWM on all 32 LedWiz outputs, so we provide as many PWM channels as
mjr 6:cc35eb643e8f 496 // we can (10), and fill out the rest of the outputs with plain digital
mjr 6:cc35eb643e8f 497 // outs.
mjr 6:cc35eb643e8f 498 class LwOut
mjr 6:cc35eb643e8f 499 {
mjr 6:cc35eb643e8f 500 public:
mjr 6:cc35eb643e8f 501 virtual void set(float val) = 0;
mjr 6:cc35eb643e8f 502 };
mjr 6:cc35eb643e8f 503 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 504 {
mjr 6:cc35eb643e8f 505 public:
mjr 6:cc35eb643e8f 506 LwPwmOut(PinName pin) : p(pin) { }
mjr 6:cc35eb643e8f 507 virtual void set(float val) { p = val; }
mjr 6:cc35eb643e8f 508 PwmOut p;
mjr 6:cc35eb643e8f 509 };
mjr 6:cc35eb643e8f 510 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 511 {
mjr 6:cc35eb643e8f 512 public:
mjr 6:cc35eb643e8f 513 LwDigOut(PinName pin) : p(pin) { }
mjr 6:cc35eb643e8f 514 virtual void set(float val) { p = val; }
mjr 6:cc35eb643e8f 515 DigitalOut p;
mjr 6:cc35eb643e8f 516 };
mjr 11:bd9da7088e6e 517 class LwUnusedOut: public LwOut
mjr 11:bd9da7088e6e 518 {
mjr 11:bd9da7088e6e 519 public:
mjr 11:bd9da7088e6e 520 LwUnusedOut() { }
mjr 11:bd9da7088e6e 521 virtual void set(float val) { }
mjr 11:bd9da7088e6e 522 };
mjr 6:cc35eb643e8f 523
mjr 6:cc35eb643e8f 524 // output pin array
mjr 6:cc35eb643e8f 525 static LwOut *lwPin[32];
mjr 6:cc35eb643e8f 526
mjr 6:cc35eb643e8f 527 // initialize the output pin array
mjr 6:cc35eb643e8f 528 void initLwOut()
mjr 6:cc35eb643e8f 529 {
mjr 9:fd65b0a94720 530 for (int i = 0 ; i < countof(lwPin) ; ++i)
mjr 6:cc35eb643e8f 531 {
mjr 11:bd9da7088e6e 532 PinName p = (i < countof(ledWizPortMap) ? ledWizPortMap[i].pin : NC);
mjr 11:bd9da7088e6e 533 if (p == NC)
mjr 11:bd9da7088e6e 534 lwPin[i] = new LwUnusedOut();
mjr 11:bd9da7088e6e 535 else if (ledWizPortMap[i].isPWM)
mjr 11:bd9da7088e6e 536 lwPin[i] = new LwPwmOut(p);
mjr 11:bd9da7088e6e 537 else
mjr 11:bd9da7088e6e 538 lwPin[i] = new LwDigOut(p);
mjr 6:cc35eb643e8f 539 }
mjr 6:cc35eb643e8f 540 }
mjr 6:cc35eb643e8f 541
mjr 0:5acbbe3f4cf4 542 // on/off state for each LedWiz output
mjr 1:d913e0afb2ac 543 static uint8_t wizOn[32];
mjr 0:5acbbe3f4cf4 544
mjr 0:5acbbe3f4cf4 545 // profile (brightness/blink) state for each LedWiz output
mjr 1:d913e0afb2ac 546 static uint8_t wizVal[32] = {
mjr 0:5acbbe3f4cf4 547 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 548 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 549 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 550 0, 0, 0, 0, 0, 0, 0, 0
mjr 0:5acbbe3f4cf4 551 };
mjr 0:5acbbe3f4cf4 552
mjr 1:d913e0afb2ac 553 static float wizState(int idx)
mjr 0:5acbbe3f4cf4 554 {
mjr 1:d913e0afb2ac 555 if (wizOn[idx]) {
mjr 0:5acbbe3f4cf4 556 // on - map profile brightness state to PWM level
mjr 1:d913e0afb2ac 557 uint8_t val = wizVal[idx];
mjr 0:5acbbe3f4cf4 558 if (val >= 1 && val <= 48)
mjr 0:5acbbe3f4cf4 559 return 1.0 - val/48.0;
mjr 0:5acbbe3f4cf4 560 else if (val >= 129 && val <= 132)
mjr 0:5acbbe3f4cf4 561 return 0.0;
mjr 0:5acbbe3f4cf4 562 else
mjr 0:5acbbe3f4cf4 563 return 1.0;
mjr 0:5acbbe3f4cf4 564 }
mjr 0:5acbbe3f4cf4 565 else {
mjr 0:5acbbe3f4cf4 566 // off
mjr 0:5acbbe3f4cf4 567 return 1.0;
mjr 0:5acbbe3f4cf4 568 }
mjr 0:5acbbe3f4cf4 569 }
mjr 0:5acbbe3f4cf4 570
mjr 1:d913e0afb2ac 571 static void updateWizOuts()
mjr 1:d913e0afb2ac 572 {
mjr 6:cc35eb643e8f 573 for (int i = 0 ; i < 32 ; ++i)
mjr 6:cc35eb643e8f 574 lwPin[i]->set(wizState(i));
mjr 1:d913e0afb2ac 575 }
mjr 1:d913e0afb2ac 576
mjr 11:bd9da7088e6e 577
mjr 11:bd9da7088e6e 578 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 579 //
mjr 11:bd9da7088e6e 580 // Button input
mjr 11:bd9da7088e6e 581 //
mjr 11:bd9da7088e6e 582
mjr 11:bd9da7088e6e 583 // button input map array
mjr 11:bd9da7088e6e 584 DigitalIn *buttonDigIn[32];
mjr 11:bd9da7088e6e 585
mjr 11:bd9da7088e6e 586 // initialize the button inputs
mjr 11:bd9da7088e6e 587 void initButtons()
mjr 11:bd9da7088e6e 588 {
mjr 11:bd9da7088e6e 589 // create the digital inputs
mjr 11:bd9da7088e6e 590 for (int i = 0 ; i < countof(buttonDigIn) ; ++i)
mjr 11:bd9da7088e6e 591 {
mjr 11:bd9da7088e6e 592 if (i < countof(buttonMap) && buttonMap[i] != NC)
mjr 11:bd9da7088e6e 593 buttonDigIn[i] = new DigitalIn(buttonMap[i]);
mjr 11:bd9da7088e6e 594 else
mjr 11:bd9da7088e6e 595 buttonDigIn[i] = 0;
mjr 11:bd9da7088e6e 596 }
mjr 11:bd9da7088e6e 597 }
mjr 11:bd9da7088e6e 598
mjr 11:bd9da7088e6e 599
mjr 11:bd9da7088e6e 600 // read the raw button input state
mjr 11:bd9da7088e6e 601 uint32_t readButtonsRaw()
mjr 11:bd9da7088e6e 602 {
mjr 11:bd9da7088e6e 603 // start with all buttons off
mjr 11:bd9da7088e6e 604 uint32_t buttons = 0;
mjr 11:bd9da7088e6e 605
mjr 11:bd9da7088e6e 606 // scan the button list
mjr 11:bd9da7088e6e 607 uint32_t bit = 1;
mjr 11:bd9da7088e6e 608 for (int i = 0 ; i < countof(buttonDigIn) ; ++i, bit <<= 1)
mjr 11:bd9da7088e6e 609 {
mjr 11:bd9da7088e6e 610 if (buttonDigIn[i] != 0 && !buttonDigIn[i]->read())
mjr 11:bd9da7088e6e 611 buttons |= bit;
mjr 11:bd9da7088e6e 612 }
mjr 11:bd9da7088e6e 613
mjr 11:bd9da7088e6e 614 // return the button list
mjr 11:bd9da7088e6e 615 return buttons;
mjr 11:bd9da7088e6e 616 }
mjr 11:bd9da7088e6e 617
mjr 11:bd9da7088e6e 618 // Read buttons with debouncing. We keep a circular buffer
mjr 11:bd9da7088e6e 619 // of recent input readings. We'll AND together the status of
mjr 11:bd9da7088e6e 620 // each button over the past 50ms. A button that has been on
mjr 11:bd9da7088e6e 621 // continuously for 50ms will be reported as ON. All others
mjr 11:bd9da7088e6e 622 // will be reported as OFF.
mjr 11:bd9da7088e6e 623 uint32_t readButtonsDebounced()
mjr 11:bd9da7088e6e 624 {
mjr 11:bd9da7088e6e 625 struct reading {
mjr 11:bd9da7088e6e 626 int dt; // time since previous reading
mjr 11:bd9da7088e6e 627 uint32_t b; // button state at this reading
mjr 11:bd9da7088e6e 628 };
mjr 11:bd9da7088e6e 629 static Timer t; // timer for tracking time between readings
mjr 11:bd9da7088e6e 630 static reading readings[8]; // circular buffer of readings
mjr 11:bd9da7088e6e 631 static int ri = 0; // reading buffer index (next write position)
mjr 11:bd9da7088e6e 632
mjr 11:bd9da7088e6e 633 // get the write pointer
mjr 11:bd9da7088e6e 634 reading *r = &readings[ri];
mjr 11:bd9da7088e6e 635
mjr 11:bd9da7088e6e 636 // figure the time since the last reading, and read the raw button state
mjr 11:bd9da7088e6e 637 r->dt = t.read_ms();
mjr 11:bd9da7088e6e 638 uint32_t b = r->b = readButtonsRaw();
mjr 11:bd9da7088e6e 639
mjr 11:bd9da7088e6e 640 // start timing the next interval
mjr 11:bd9da7088e6e 641 t.start();
mjr 11:bd9da7088e6e 642 t.reset();
mjr 11:bd9da7088e6e 643
mjr 11:bd9da7088e6e 644 // AND together readings over 50ms
mjr 11:bd9da7088e6e 645 int ms = 0;
mjr 11:bd9da7088e6e 646 for (int i = 0 ; i < countof(readings) && ms < 50 ; ++i)
mjr 11:bd9da7088e6e 647 {
mjr 11:bd9da7088e6e 648 // find the next prior reading, wrapping in the circular buffer
mjr 11:bd9da7088e6e 649 int j = ri - i;
mjr 11:bd9da7088e6e 650 if (j < 0)
mjr 11:bd9da7088e6e 651 j = countof(readings) - 1;
mjr 11:bd9da7088e6e 652
mjr 11:bd9da7088e6e 653 reading *rj = &readings[j];
mjr 11:bd9da7088e6e 654
mjr 11:bd9da7088e6e 655 // AND the buttons for this reading
mjr 11:bd9da7088e6e 656 b &= rj->b;
mjr 11:bd9da7088e6e 657
mjr 11:bd9da7088e6e 658 // count the time
mjr 11:bd9da7088e6e 659 ms += rj->dt;
mjr 11:bd9da7088e6e 660 }
mjr 11:bd9da7088e6e 661
mjr 11:bd9da7088e6e 662 // advance the write position for next time
mjr 11:bd9da7088e6e 663 ri += 1;
mjr 11:bd9da7088e6e 664 if (ri > countof(readings))
mjr 11:bd9da7088e6e 665 ri = 0;
mjr 11:bd9da7088e6e 666
mjr 11:bd9da7088e6e 667 // return the debounced result
mjr 11:bd9da7088e6e 668 return b;
mjr 11:bd9da7088e6e 669 }
mjr 11:bd9da7088e6e 670
mjr 5:a70c0bce770d 671 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 672 //
mjr 5:a70c0bce770d 673 // Non-volatile memory (NVM)
mjr 5:a70c0bce770d 674 //
mjr 0:5acbbe3f4cf4 675
mjr 5:a70c0bce770d 676 // Structure defining our NVM storage layout. We store a small
mjr 2:c174f9ee414a 677 // amount of persistent data in flash memory to retain calibration
mjr 5:a70c0bce770d 678 // data when powered off.
mjr 2:c174f9ee414a 679 struct NVM
mjr 2:c174f9ee414a 680 {
mjr 2:c174f9ee414a 681 // checksum - we use this to determine if the flash record
mjr 6:cc35eb643e8f 682 // has been properly initialized
mjr 2:c174f9ee414a 683 uint32_t checksum;
mjr 2:c174f9ee414a 684
mjr 2:c174f9ee414a 685 // signature value
mjr 2:c174f9ee414a 686 static const uint32_t SIGNATURE = 0x4D4A522A;
mjr 6:cc35eb643e8f 687 static const uint16_t VERSION = 0x0003;
mjr 6:cc35eb643e8f 688
mjr 6:cc35eb643e8f 689 // Is the data structure valid? We test the signature and
mjr 6:cc35eb643e8f 690 // checksum to determine if we've been properly stored.
mjr 6:cc35eb643e8f 691 int valid() const
mjr 6:cc35eb643e8f 692 {
mjr 6:cc35eb643e8f 693 return (d.sig == SIGNATURE
mjr 6:cc35eb643e8f 694 && d.vsn == VERSION
mjr 6:cc35eb643e8f 695 && d.sz == sizeof(NVM)
mjr 6:cc35eb643e8f 696 && checksum == CRC32(&d, sizeof(d)));
mjr 6:cc35eb643e8f 697 }
mjr 6:cc35eb643e8f 698
mjr 6:cc35eb643e8f 699 // save to non-volatile memory
mjr 6:cc35eb643e8f 700 void save(FreescaleIAP &iap, int addr)
mjr 6:cc35eb643e8f 701 {
mjr 6:cc35eb643e8f 702 // update the checksum and structure size
mjr 6:cc35eb643e8f 703 checksum = CRC32(&d, sizeof(d));
mjr 6:cc35eb643e8f 704 d.sz = sizeof(NVM);
mjr 6:cc35eb643e8f 705
mjr 6:cc35eb643e8f 706 // erase the sector
mjr 6:cc35eb643e8f 707 iap.erase_sector(addr);
mjr 6:cc35eb643e8f 708
mjr 6:cc35eb643e8f 709 // save the data
mjr 6:cc35eb643e8f 710 iap.program_flash(addr, this, sizeof(*this));
mjr 6:cc35eb643e8f 711 }
mjr 2:c174f9ee414a 712
mjr 9:fd65b0a94720 713 // reset calibration data for calibration mode
mjr 9:fd65b0a94720 714 void resetPlunger()
mjr 9:fd65b0a94720 715 {
mjr 9:fd65b0a94720 716 // set extremes for the calibration data
mjr 9:fd65b0a94720 717 d.plungerMax = 0;
mjr 9:fd65b0a94720 718 d.plungerZero = npix;
mjr 9:fd65b0a94720 719 d.plungerMin = npix;
mjr 9:fd65b0a94720 720 }
mjr 9:fd65b0a94720 721
mjr 2:c174f9ee414a 722 // stored data (excluding the checksum)
mjr 2:c174f9ee414a 723 struct
mjr 2:c174f9ee414a 724 {
mjr 6:cc35eb643e8f 725 // Signature, structure version, and structure size - further verification
mjr 6:cc35eb643e8f 726 // that we have valid initialized data. The size is a simple proxy for a
mjr 6:cc35eb643e8f 727 // structure version, as the most common type of change to the structure as
mjr 6:cc35eb643e8f 728 // the software evolves will be the addition of new elements. We also
mjr 6:cc35eb643e8f 729 // provide an explicit version number that we can update manually if we
mjr 6:cc35eb643e8f 730 // make any changes that don't affect the structure size but would affect
mjr 6:cc35eb643e8f 731 // compatibility with a saved record (e.g., swapping two existing elements).
mjr 2:c174f9ee414a 732 uint32_t sig;
mjr 2:c174f9ee414a 733 uint16_t vsn;
mjr 6:cc35eb643e8f 734 int sz;
mjr 2:c174f9ee414a 735
mjr 6:cc35eb643e8f 736 // has the plunger been manually calibrated?
mjr 6:cc35eb643e8f 737 int plungerCal;
mjr 6:cc35eb643e8f 738
mjr 2:c174f9ee414a 739 // plunger calibration min and max
mjr 2:c174f9ee414a 740 int plungerMin;
mjr 6:cc35eb643e8f 741 int plungerZero;
mjr 2:c174f9ee414a 742 int plungerMax;
mjr 6:cc35eb643e8f 743
mjr 6:cc35eb643e8f 744 // is the CCD enabled?
mjr 6:cc35eb643e8f 745 int ccdEnabled;
mjr 6:cc35eb643e8f 746
mjr 6:cc35eb643e8f 747 // LedWiz unit number
mjr 6:cc35eb643e8f 748 uint8_t ledWizUnitNo;
mjr 2:c174f9ee414a 749 } d;
mjr 2:c174f9ee414a 750 };
mjr 2:c174f9ee414a 751
mjr 5:a70c0bce770d 752
mjr 5:a70c0bce770d 753 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 754 //
mjr 5:a70c0bce770d 755 // Customization joystick subbclass
mjr 5:a70c0bce770d 756 //
mjr 5:a70c0bce770d 757
mjr 5:a70c0bce770d 758 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 759 {
mjr 5:a70c0bce770d 760 public:
mjr 5:a70c0bce770d 761 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release)
mjr 5:a70c0bce770d 762 : USBJoystick(vendor_id, product_id, product_release, true)
mjr 5:a70c0bce770d 763 {
mjr 5:a70c0bce770d 764 suspended_ = false;
mjr 5:a70c0bce770d 765 }
mjr 5:a70c0bce770d 766
mjr 5:a70c0bce770d 767 // are we connected?
mjr 5:a70c0bce770d 768 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 769
mjr 5:a70c0bce770d 770 // Are we in suspend mode?
mjr 5:a70c0bce770d 771 int isSuspended() const { return suspended_; }
mjr 5:a70c0bce770d 772
mjr 5:a70c0bce770d 773 protected:
mjr 5:a70c0bce770d 774 virtual void suspendStateChanged(unsigned int suspended)
mjr 5:a70c0bce770d 775 { suspended_ = suspended; }
mjr 5:a70c0bce770d 776
mjr 5:a70c0bce770d 777 // are we suspended?
mjr 5:a70c0bce770d 778 int suspended_;
mjr 5:a70c0bce770d 779 };
mjr 5:a70c0bce770d 780
mjr 5:a70c0bce770d 781 // ---------------------------------------------------------------------------
mjr 6:cc35eb643e8f 782 //
mjr 6:cc35eb643e8f 783 // Some simple math service routines
mjr 6:cc35eb643e8f 784 //
mjr 6:cc35eb643e8f 785
mjr 6:cc35eb643e8f 786 inline float square(float x) { return x*x; }
mjr 6:cc35eb643e8f 787 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 6:cc35eb643e8f 788
mjr 6:cc35eb643e8f 789 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 790 //
mjr 5:a70c0bce770d 791 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 792 //
mjr 5:a70c0bce770d 793
mjr 5:a70c0bce770d 794 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 795 //
mjr 5:a70c0bce770d 796 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 797 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 798 // automatic calibration.
mjr 5:a70c0bce770d 799 //
mjr 5:a70c0bce770d 800 // We install an interrupt handler on the accelerometer "data ready"
mjr 6:cc35eb643e8f 801 // interrupt to ensure that we fetch each sample immediately when it
mjr 6:cc35eb643e8f 802 // becomes available. The accelerometer data rate is fiarly high
mjr 6:cc35eb643e8f 803 // (800 Hz), so it's not practical to keep up with it by polling.
mjr 6:cc35eb643e8f 804 // Using an interrupt handler lets us respond quickly and read
mjr 6:cc35eb643e8f 805 // every sample.
mjr 5:a70c0bce770d 806 //
mjr 6:cc35eb643e8f 807 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 808 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 809 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 810 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 811 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 812 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 813 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 814 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 815 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 816 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 817 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 818 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 819 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 820 // of nudging, say).
mjr 5:a70c0bce770d 821 //
mjr 5:a70c0bce770d 822
mjr 6:cc35eb643e8f 823 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 824 struct AccHist
mjr 5:a70c0bce770d 825 {
mjr 6:cc35eb643e8f 826 AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 827 void set(float x, float y, AccHist *prv)
mjr 6:cc35eb643e8f 828 {
mjr 6:cc35eb643e8f 829 // save the raw position
mjr 6:cc35eb643e8f 830 this->x = x;
mjr 6:cc35eb643e8f 831 this->y = y;
mjr 6:cc35eb643e8f 832 this->d = distance(prv);
mjr 6:cc35eb643e8f 833 }
mjr 6:cc35eb643e8f 834
mjr 6:cc35eb643e8f 835 // reading for this entry
mjr 5:a70c0bce770d 836 float x, y;
mjr 5:a70c0bce770d 837
mjr 6:cc35eb643e8f 838 // distance from previous entry
mjr 6:cc35eb643e8f 839 float d;
mjr 5:a70c0bce770d 840
mjr 6:cc35eb643e8f 841 // total and count of samples averaged over this period
mjr 6:cc35eb643e8f 842 float xtot, ytot;
mjr 6:cc35eb643e8f 843 int cnt;
mjr 6:cc35eb643e8f 844
mjr 6:cc35eb643e8f 845 void clearAvg() { xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 846 void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; }
mjr 6:cc35eb643e8f 847 float xAvg() const { return xtot/cnt; }
mjr 6:cc35eb643e8f 848 float yAvg() const { return ytot/cnt; }
mjr 5:a70c0bce770d 849
mjr 6:cc35eb643e8f 850 float distance(AccHist *p)
mjr 6:cc35eb643e8f 851 { return sqrt(square(p->x - x) + square(p->y - y)); }
mjr 5:a70c0bce770d 852 };
mjr 5:a70c0bce770d 853
mjr 5:a70c0bce770d 854 // accelerometer wrapper class
mjr 3:3514575d4f86 855 class Accel
mjr 3:3514575d4f86 856 {
mjr 3:3514575d4f86 857 public:
mjr 3:3514575d4f86 858 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin)
mjr 3:3514575d4f86 859 : mma_(sda, scl, i2cAddr), intIn_(irqPin)
mjr 3:3514575d4f86 860 {
mjr 5:a70c0bce770d 861 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 862 irqPin_ = irqPin;
mjr 5:a70c0bce770d 863
mjr 5:a70c0bce770d 864 // reset and initialize
mjr 5:a70c0bce770d 865 reset();
mjr 5:a70c0bce770d 866 }
mjr 5:a70c0bce770d 867
mjr 5:a70c0bce770d 868 void reset()
mjr 5:a70c0bce770d 869 {
mjr 6:cc35eb643e8f 870 // clear the center point
mjr 6:cc35eb643e8f 871 cx_ = cy_ = 0.0;
mjr 6:cc35eb643e8f 872
mjr 6:cc35eb643e8f 873 // start the calibration timer
mjr 5:a70c0bce770d 874 tCenter_.start();
mjr 5:a70c0bce770d 875 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 876
mjr 5:a70c0bce770d 877 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 878 mma_.init();
mjr 6:cc35eb643e8f 879
mjr 6:cc35eb643e8f 880 // set the initial integrated velocity reading to zero
mjr 6:cc35eb643e8f 881 vx_ = vy_ = 0;
mjr 3:3514575d4f86 882
mjr 6:cc35eb643e8f 883 // set up our accelerometer interrupt handling
mjr 6:cc35eb643e8f 884 intIn_.rise(this, &Accel::isr);
mjr 5:a70c0bce770d 885 mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2);
mjr 3:3514575d4f86 886
mjr 3:3514575d4f86 887 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 888 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 889
mjr 3:3514575d4f86 890 // start our timers
mjr 3:3514575d4f86 891 tGet_.start();
mjr 3:3514575d4f86 892 tInt_.start();
mjr 3:3514575d4f86 893 }
mjr 3:3514575d4f86 894
mjr 9:fd65b0a94720 895 void get(int &x, int &y)
mjr 3:3514575d4f86 896 {
mjr 3:3514575d4f86 897 // disable interrupts while manipulating the shared data
mjr 3:3514575d4f86 898 __disable_irq();
mjr 3:3514575d4f86 899
mjr 3:3514575d4f86 900 // read the shared data and store locally for calculations
mjr 6:cc35eb643e8f 901 float ax = ax_, ay = ay_;
mjr 6:cc35eb643e8f 902 float vx = vx_, vy = vy_;
mjr 5:a70c0bce770d 903
mjr 6:cc35eb643e8f 904 // reset the velocity sum for the next run
mjr 6:cc35eb643e8f 905 vx_ = vy_ = 0;
mjr 3:3514575d4f86 906
mjr 3:3514575d4f86 907 // get the time since the last get() sample
mjr 3:3514575d4f86 908 float dt = tGet_.read_us()/1.0e6;
mjr 3:3514575d4f86 909 tGet_.reset();
mjr 3:3514575d4f86 910
mjr 3:3514575d4f86 911 // done manipulating the shared data
mjr 3:3514575d4f86 912 __enable_irq();
mjr 3:3514575d4f86 913
mjr 6:cc35eb643e8f 914 // adjust the readings for the integration time
mjr 6:cc35eb643e8f 915 vx /= dt;
mjr 6:cc35eb643e8f 916 vy /= dt;
mjr 6:cc35eb643e8f 917
mjr 6:cc35eb643e8f 918 // add this sample to the current calibration interval's running total
mjr 6:cc35eb643e8f 919 AccHist *p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 920 p->addAvg(ax, ay);
mjr 6:cc35eb643e8f 921
mjr 5:a70c0bce770d 922 // check for auto-centering every so often
mjr 5:a70c0bce770d 923 if (tCenter_.read_ms() > 1000)
mjr 5:a70c0bce770d 924 {
mjr 5:a70c0bce770d 925 // add the latest raw sample to the history list
mjr 6:cc35eb643e8f 926 AccHist *prv = p;
mjr 5:a70c0bce770d 927 iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv;
mjr 6:cc35eb643e8f 928 p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 929 p->set(ax, ay, prv);
mjr 5:a70c0bce770d 930
mjr 5:a70c0bce770d 931 // if we have a full complement, check for stability
mjr 5:a70c0bce770d 932 if (nAccPrv_ >= maxAccPrv)
mjr 5:a70c0bce770d 933 {
mjr 5:a70c0bce770d 934 // check if we've been stable for all recent samples
mjr 6:cc35eb643e8f 935 static const float accTol = .01;
mjr 6:cc35eb643e8f 936 AccHist *p0 = accPrv_;
mjr 6:cc35eb643e8f 937 if (p0[0].d < accTol
mjr 6:cc35eb643e8f 938 && p0[1].d < accTol
mjr 6:cc35eb643e8f 939 && p0[2].d < accTol
mjr 6:cc35eb643e8f 940 && p0[3].d < accTol
mjr 6:cc35eb643e8f 941 && p0[4].d < accTol)
mjr 5:a70c0bce770d 942 {
mjr 6:cc35eb643e8f 943 // Figure the new calibration point as the average of
mjr 6:cc35eb643e8f 944 // the samples over the rest period
mjr 6:cc35eb643e8f 945 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0;
mjr 6:cc35eb643e8f 946 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0;
mjr 5:a70c0bce770d 947 }
mjr 5:a70c0bce770d 948 }
mjr 5:a70c0bce770d 949 else
mjr 5:a70c0bce770d 950 {
mjr 5:a70c0bce770d 951 // not enough samples yet; just up the count
mjr 5:a70c0bce770d 952 ++nAccPrv_;
mjr 5:a70c0bce770d 953 }
mjr 6:cc35eb643e8f 954
mjr 6:cc35eb643e8f 955 // clear the new item's running totals
mjr 6:cc35eb643e8f 956 p->clearAvg();
mjr 5:a70c0bce770d 957
mjr 5:a70c0bce770d 958 // reset the timer
mjr 5:a70c0bce770d 959 tCenter_.reset();
mjr 5:a70c0bce770d 960 }
mjr 5:a70c0bce770d 961
mjr 6:cc35eb643e8f 962 // report our integrated velocity reading in x,y
mjr 6:cc35eb643e8f 963 x = rawToReport(vx);
mjr 6:cc35eb643e8f 964 y = rawToReport(vy);
mjr 5:a70c0bce770d 965
mjr 6:cc35eb643e8f 966 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 967 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 968 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 969 #endif
mjr 3:3514575d4f86 970 }
mjr 3:3514575d4f86 971
mjr 3:3514575d4f86 972 private:
mjr 6:cc35eb643e8f 973 // adjust a raw acceleration figure to a usb report value
mjr 6:cc35eb643e8f 974 int rawToReport(float v)
mjr 5:a70c0bce770d 975 {
mjr 6:cc35eb643e8f 976 // scale to the joystick report range and round to integer
mjr 6:cc35eb643e8f 977 int i = int(round(v*JOYMAX));
mjr 5:a70c0bce770d 978
mjr 6:cc35eb643e8f 979 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 980 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 981 static const int filter[] = {
mjr 6:cc35eb643e8f 982 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 983 0,
mjr 6:cc35eb643e8f 984 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 985 };
mjr 6:cc35eb643e8f 986 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 987 }
mjr 5:a70c0bce770d 988
mjr 3:3514575d4f86 989 // interrupt handler
mjr 3:3514575d4f86 990 void isr()
mjr 3:3514575d4f86 991 {
mjr 3:3514575d4f86 992 // Read the axes. Note that we have to read all three axes
mjr 3:3514575d4f86 993 // (even though we only really use x and y) in order to clear
mjr 3:3514575d4f86 994 // the "data ready" status bit in the accelerometer. The
mjr 3:3514575d4f86 995 // interrupt only occurs when the "ready" bit transitions from
mjr 3:3514575d4f86 996 // off to on, so we have to make sure it's off.
mjr 5:a70c0bce770d 997 float x, y, z;
mjr 5:a70c0bce770d 998 mma_.getAccXYZ(x, y, z);
mjr 3:3514575d4f86 999
mjr 3:3514575d4f86 1000 // calculate the time since the last interrupt
mjr 3:3514575d4f86 1001 float dt = tInt_.read_us()/1.0e6;
mjr 3:3514575d4f86 1002 tInt_.reset();
mjr 6:cc35eb643e8f 1003
mjr 6:cc35eb643e8f 1004 // integrate the time slice from the previous reading to this reading
mjr 6:cc35eb643e8f 1005 vx_ += (x + ax_ - 2*cx_)*dt/2;
mjr 6:cc35eb643e8f 1006 vy_ += (y + ay_ - 2*cy_)*dt/2;
mjr 3:3514575d4f86 1007
mjr 6:cc35eb643e8f 1008 // store the updates
mjr 6:cc35eb643e8f 1009 ax_ = x;
mjr 6:cc35eb643e8f 1010 ay_ = y;
mjr 6:cc35eb643e8f 1011 az_ = z;
mjr 3:3514575d4f86 1012 }
mjr 3:3514575d4f86 1013
mjr 3:3514575d4f86 1014 // underlying accelerometer object
mjr 3:3514575d4f86 1015 MMA8451Q mma_;
mjr 3:3514575d4f86 1016
mjr 5:a70c0bce770d 1017 // last raw acceleration readings
mjr 6:cc35eb643e8f 1018 float ax_, ay_, az_;
mjr 5:a70c0bce770d 1019
mjr 6:cc35eb643e8f 1020 // integrated velocity reading since last get()
mjr 6:cc35eb643e8f 1021 float vx_, vy_;
mjr 6:cc35eb643e8f 1022
mjr 3:3514575d4f86 1023 // timer for measuring time between get() samples
mjr 3:3514575d4f86 1024 Timer tGet_;
mjr 3:3514575d4f86 1025
mjr 3:3514575d4f86 1026 // timer for measuring time between interrupts
mjr 3:3514575d4f86 1027 Timer tInt_;
mjr 5:a70c0bce770d 1028
mjr 6:cc35eb643e8f 1029 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 1030 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 1031 // at rest.
mjr 6:cc35eb643e8f 1032 float cx_, cy_;
mjr 5:a70c0bce770d 1033
mjr 5:a70c0bce770d 1034 // timer for atuo-centering
mjr 5:a70c0bce770d 1035 Timer tCenter_;
mjr 6:cc35eb643e8f 1036
mjr 6:cc35eb643e8f 1037 // Auto-centering history. This is a separate history list that
mjr 6:cc35eb643e8f 1038 // records results spaced out sparesely over time, so that we can
mjr 6:cc35eb643e8f 1039 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 1040 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 1041 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 1042 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 1043 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 1044 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 1045 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 1046 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 1047 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 1048 // accelerometer measurement bias (e.g., from temperature changes).
mjr 5:a70c0bce770d 1049 int iAccPrv_, nAccPrv_;
mjr 5:a70c0bce770d 1050 static const int maxAccPrv = 5;
mjr 6:cc35eb643e8f 1051 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 1052
mjr 5:a70c0bce770d 1053 // interurupt pin name
mjr 5:a70c0bce770d 1054 PinName irqPin_;
mjr 5:a70c0bce770d 1055
mjr 5:a70c0bce770d 1056 // interrupt router
mjr 5:a70c0bce770d 1057 InterruptIn intIn_;
mjr 3:3514575d4f86 1058 };
mjr 3:3514575d4f86 1059
mjr 5:a70c0bce770d 1060
mjr 5:a70c0bce770d 1061 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 1062 //
mjr 5:a70c0bce770d 1063 // Clear the I2C bus for the MMA8451!. This seems necessary some of the time
mjr 5:a70c0bce770d 1064 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 1065 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 1066 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 5:a70c0bce770d 1067 // the SCL line is supposed to clear this conidtion.
mjr 5:a70c0bce770d 1068 //
mjr 5:a70c0bce770d 1069 void clear_i2c()
mjr 5:a70c0bce770d 1070 {
mjr 5:a70c0bce770d 1071 // assume a general-purpose output pin to the I2C clock
mjr 5:a70c0bce770d 1072 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 1073 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 1074
mjr 5:a70c0bce770d 1075 // clock the SCL 9 times
mjr 5:a70c0bce770d 1076 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 1077 {
mjr 5:a70c0bce770d 1078 scl = 1;
mjr 5:a70c0bce770d 1079 wait_us(20);
mjr 5:a70c0bce770d 1080 scl = 0;
mjr 5:a70c0bce770d 1081 wait_us(20);
mjr 5:a70c0bce770d 1082 }
mjr 5:a70c0bce770d 1083 }
mjr 5:a70c0bce770d 1084
mjr 5:a70c0bce770d 1085 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 1086 //
mjr 5:a70c0bce770d 1087 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 1088 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 1089 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 1090 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 1091 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 1092 // port outputs.
mjr 5:a70c0bce770d 1093 //
mjr 0:5acbbe3f4cf4 1094 int main(void)
mjr 0:5acbbe3f4cf4 1095 {
mjr 1:d913e0afb2ac 1096 // turn off our on-board indicator LED
mjr 4:02c7cd7b2183 1097 ledR = 1;
mjr 4:02c7cd7b2183 1098 ledG = 1;
mjr 4:02c7cd7b2183 1099 ledB = 1;
mjr 1:d913e0afb2ac 1100
mjr 6:cc35eb643e8f 1101 // initialize the LedWiz ports
mjr 6:cc35eb643e8f 1102 initLwOut();
mjr 6:cc35eb643e8f 1103
mjr 11:bd9da7088e6e 1104 // initialize the button input ports
mjr 11:bd9da7088e6e 1105 initButtons();
mjr 11:bd9da7088e6e 1106
mjr 6:cc35eb643e8f 1107 // we don't need a reset yet
mjr 6:cc35eb643e8f 1108 bool needReset = false;
mjr 6:cc35eb643e8f 1109
mjr 5:a70c0bce770d 1110 // clear the I2C bus for the accelerometer
mjr 5:a70c0bce770d 1111 clear_i2c();
mjr 5:a70c0bce770d 1112
mjr 2:c174f9ee414a 1113 // set up a flash memory controller
mjr 2:c174f9ee414a 1114 FreescaleIAP iap;
mjr 2:c174f9ee414a 1115
mjr 2:c174f9ee414a 1116 // use the last sector of flash for our non-volatile memory structure
mjr 2:c174f9ee414a 1117 int flash_addr = (iap.flash_size() - SECTOR_SIZE);
mjr 2:c174f9ee414a 1118 NVM *flash = (NVM *)flash_addr;
mjr 2:c174f9ee414a 1119 NVM cfg;
mjr 2:c174f9ee414a 1120
mjr 2:c174f9ee414a 1121 // check for valid flash
mjr 6:cc35eb643e8f 1122 bool flash_valid = flash->valid();
mjr 2:c174f9ee414a 1123
mjr 2:c174f9ee414a 1124 // if the flash is valid, load it; otherwise initialize to defaults
mjr 2:c174f9ee414a 1125 if (flash_valid) {
mjr 2:c174f9ee414a 1126 memcpy(&cfg, flash, sizeof(cfg));
mjr 6:cc35eb643e8f 1127 printf("Flash restored: plunger cal=%d, min=%d, zero=%d, max=%d\r\n",
mjr 6:cc35eb643e8f 1128 cfg.d.plungerCal, cfg.d.plungerMin, cfg.d.plungerZero, cfg.d.plungerMax);
mjr 2:c174f9ee414a 1129 }
mjr 2:c174f9ee414a 1130 else {
mjr 2:c174f9ee414a 1131 printf("Factory reset\r\n");
mjr 2:c174f9ee414a 1132 cfg.d.sig = cfg.SIGNATURE;
mjr 2:c174f9ee414a 1133 cfg.d.vsn = cfg.VERSION;
mjr 6:cc35eb643e8f 1134 cfg.d.plungerCal = 0;
mjr 6:cc35eb643e8f 1135 cfg.d.plungerZero = 0;
mjr 2:c174f9ee414a 1136 cfg.d.plungerMin = 0;
mjr 2:c174f9ee414a 1137 cfg.d.plungerMax = npix;
mjr 6:cc35eb643e8f 1138 cfg.d.ledWizUnitNo = DEFAULT_LEDWIZ_UNIT_NUMBER;
mjr 6:cc35eb643e8f 1139 cfg.d.ccdEnabled = true;
mjr 2:c174f9ee414a 1140 }
mjr 1:d913e0afb2ac 1141
mjr 6:cc35eb643e8f 1142 // Create the joystick USB client. Note that we use the LedWiz unit
mjr 6:cc35eb643e8f 1143 // number from the saved configuration.
mjr 6:cc35eb643e8f 1144 MyUSBJoystick js(
mjr 6:cc35eb643e8f 1145 USB_VENDOR_ID,
mjr 6:cc35eb643e8f 1146 USB_PRODUCT_ID | cfg.d.ledWizUnitNo,
mjr 6:cc35eb643e8f 1147 USB_VERSION_NO);
mjr 6:cc35eb643e8f 1148
mjr 1:d913e0afb2ac 1149 // plunger calibration button debounce timer
mjr 1:d913e0afb2ac 1150 Timer calBtnTimer;
mjr 1:d913e0afb2ac 1151 calBtnTimer.start();
mjr 1:d913e0afb2ac 1152 int calBtnLit = false;
mjr 1:d913e0afb2ac 1153
mjr 1:d913e0afb2ac 1154 // Calibration button state:
mjr 1:d913e0afb2ac 1155 // 0 = not pushed
mjr 1:d913e0afb2ac 1156 // 1 = pushed, not yet debounced
mjr 1:d913e0afb2ac 1157 // 2 = pushed, debounced, waiting for hold time
mjr 1:d913e0afb2ac 1158 // 3 = pushed, hold time completed - in calibration mode
mjr 1:d913e0afb2ac 1159 int calBtnState = 0;
mjr 1:d913e0afb2ac 1160
mjr 1:d913e0afb2ac 1161 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 1162 Timer hbTimer;
mjr 1:d913e0afb2ac 1163 hbTimer.start();
mjr 1:d913e0afb2ac 1164 int hb = 0;
mjr 5:a70c0bce770d 1165 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 1166
mjr 1:d913e0afb2ac 1167 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 1168 Timer acTimer;
mjr 1:d913e0afb2ac 1169 acTimer.start();
mjr 1:d913e0afb2ac 1170
mjr 0:5acbbe3f4cf4 1171 // create the accelerometer object
mjr 5:a70c0bce770d 1172 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS, MMA8451_INT_PIN);
mjr 0:5acbbe3f4cf4 1173
mjr 0:5acbbe3f4cf4 1174 // create the CCD array object
mjr 1:d913e0afb2ac 1175 TSL1410R ccd(PTE20, PTE21, PTB0);
mjr 2:c174f9ee414a 1176
mjr 1:d913e0afb2ac 1177 // last accelerometer report, in mouse coordinates
mjr 6:cc35eb643e8f 1178 int x = 0, y = 0, z = 0;
mjr 6:cc35eb643e8f 1179
mjr 6:cc35eb643e8f 1180 // previous two plunger readings, for "debouncing" the results (z0 is
mjr 6:cc35eb643e8f 1181 // the most recent, z1 is the one before that)
mjr 6:cc35eb643e8f 1182 int z0 = 0, z1 = 0, z2 = 0;
mjr 6:cc35eb643e8f 1183
mjr 6:cc35eb643e8f 1184 // Firing in progress: we set this when we detect the start of rapid
mjr 6:cc35eb643e8f 1185 // plunger movement from a retracted position towards the rest position.
mjr 6:cc35eb643e8f 1186 // The actual plunger spring return speed seems to be too slow for VP,
mjr 6:cc35eb643e8f 1187 // so when we detect the start of this motion, we immediately tell VP
mjr 6:cc35eb643e8f 1188 // to return the plunger to rest, then we monitor the real plunger
mjr 6:cc35eb643e8f 1189 // until it atcually stops.
mjr 9:fd65b0a94720 1190 int firing = 0;
mjr 2:c174f9ee414a 1191
mjr 2:c174f9ee414a 1192 // start the first CCD integration cycle
mjr 2:c174f9ee414a 1193 ccd.clear();
mjr 9:fd65b0a94720 1194
mjr 9:fd65b0a94720 1195 // Device status. We report this on each update so that the host config
mjr 9:fd65b0a94720 1196 // tool can detect our current settings. This is a bit mask consisting
mjr 9:fd65b0a94720 1197 // of these bits:
mjr 9:fd65b0a94720 1198 // 0x01 -> plunger sensor enabled
mjr 9:fd65b0a94720 1199 uint16_t statusFlags = (cfg.d.ccdEnabled ? 0x01 : 0x00);
mjr 10:976666ffa4ef 1200
mjr 10:976666ffa4ef 1201 // flag: send a pixel dump after the next read
mjr 10:976666ffa4ef 1202 bool reportPix = false;
mjr 1:d913e0afb2ac 1203
mjr 1:d913e0afb2ac 1204 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 1205 // host requests
mjr 0:5acbbe3f4cf4 1206 for (;;)
mjr 0:5acbbe3f4cf4 1207 {
mjr 0:5acbbe3f4cf4 1208 // Look for an incoming report. Continue processing input as
mjr 0:5acbbe3f4cf4 1209 // long as there's anything pending - this ensures that we
mjr 0:5acbbe3f4cf4 1210 // handle input in as timely a fashion as possible by deferring
mjr 0:5acbbe3f4cf4 1211 // output tasks as long as there's input to process.
mjr 0:5acbbe3f4cf4 1212 HID_REPORT report;
mjr 6:cc35eb643e8f 1213 while (js.readNB(&report))
mjr 0:5acbbe3f4cf4 1214 {
mjr 6:cc35eb643e8f 1215 // all Led-Wiz reports are 8 bytes exactly
mjr 6:cc35eb643e8f 1216 if (report.length == 8)
mjr 1:d913e0afb2ac 1217 {
mjr 6:cc35eb643e8f 1218 uint8_t *data = report.data;
mjr 6:cc35eb643e8f 1219 if (data[0] == 64)
mjr 0:5acbbe3f4cf4 1220 {
mjr 6:cc35eb643e8f 1221 // LWZ-SBA - first four bytes are bit-packed on/off flags
mjr 6:cc35eb643e8f 1222 // for the outputs; 5th byte is the pulse speed (0-7)
mjr 6:cc35eb643e8f 1223 //printf("LWZ-SBA %02x %02x %02x %02x ; %02x\r\n",
mjr 6:cc35eb643e8f 1224 // data[1], data[2], data[3], data[4], data[5]);
mjr 0:5acbbe3f4cf4 1225
mjr 6:cc35eb643e8f 1226 // update all on/off states
mjr 6:cc35eb643e8f 1227 for (int i = 0, bit = 1, ri = 1 ; i < 32 ; ++i, bit <<= 1)
mjr 6:cc35eb643e8f 1228 {
mjr 6:cc35eb643e8f 1229 if (bit == 0x100) {
mjr 6:cc35eb643e8f 1230 bit = 1;
mjr 6:cc35eb643e8f 1231 ++ri;
mjr 6:cc35eb643e8f 1232 }
mjr 6:cc35eb643e8f 1233 wizOn[i] = ((data[ri] & bit) != 0);
mjr 6:cc35eb643e8f 1234 }
mjr 6:cc35eb643e8f 1235
mjr 6:cc35eb643e8f 1236 // update the physical outputs
mjr 1:d913e0afb2ac 1237 updateWizOuts();
mjr 6:cc35eb643e8f 1238
mjr 6:cc35eb643e8f 1239 // reset the PBA counter
mjr 6:cc35eb643e8f 1240 pbaIdx = 0;
mjr 6:cc35eb643e8f 1241 }
mjr 6:cc35eb643e8f 1242 else if (data[0] == 65)
mjr 6:cc35eb643e8f 1243 {
mjr 6:cc35eb643e8f 1244 // Private control message. This isn't an LedWiz message - it's
mjr 6:cc35eb643e8f 1245 // an extension for this device. 65 is an invalid PBA setting,
mjr 6:cc35eb643e8f 1246 // and isn't used for any other LedWiz message, so we appropriate
mjr 6:cc35eb643e8f 1247 // it for our own private use. The first byte specifies the
mjr 6:cc35eb643e8f 1248 // message type.
mjr 6:cc35eb643e8f 1249 if (data[1] == 1)
mjr 6:cc35eb643e8f 1250 {
mjr 9:fd65b0a94720 1251 // 1 = Set Configuration:
mjr 6:cc35eb643e8f 1252 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 6:cc35eb643e8f 1253 // data[3] = feature enable bit mask:
mjr 6:cc35eb643e8f 1254 // 0x01 = enable CCD
mjr 6:cc35eb643e8f 1255
mjr 6:cc35eb643e8f 1256 // we'll need a reset if the LedWiz unit number is changing
mjr 6:cc35eb643e8f 1257 uint8_t newUnitNo = data[2] & 0x0f;
mjr 6:cc35eb643e8f 1258 needReset |= (newUnitNo != cfg.d.ledWizUnitNo);
mjr 6:cc35eb643e8f 1259
mjr 6:cc35eb643e8f 1260 // set the configuration parameters from the message
mjr 6:cc35eb643e8f 1261 cfg.d.ledWizUnitNo = newUnitNo;
mjr 6:cc35eb643e8f 1262 cfg.d.ccdEnabled = data[3] & 0x01;
mjr 6:cc35eb643e8f 1263
mjr 9:fd65b0a94720 1264 // update the status flags
mjr 9:fd65b0a94720 1265 statusFlags = (statusFlags & ~0x01) | (data[3] & 0x01);
mjr 9:fd65b0a94720 1266
mjr 9:fd65b0a94720 1267 // if the ccd is no longer enabled, use 0 for z reports
mjr 9:fd65b0a94720 1268 if (!cfg.d.ccdEnabled)
mjr 9:fd65b0a94720 1269 z = 0;
mjr 9:fd65b0a94720 1270
mjr 6:cc35eb643e8f 1271 // save the configuration
mjr 6:cc35eb643e8f 1272 cfg.save(iap, flash_addr);
mjr 6:cc35eb643e8f 1273 }
mjr 9:fd65b0a94720 1274 else if (data[1] == 2)
mjr 9:fd65b0a94720 1275 {
mjr 9:fd65b0a94720 1276 // 2 = Calibrate plunger
mjr 9:fd65b0a94720 1277 // (No parameters)
mjr 9:fd65b0a94720 1278
mjr 9:fd65b0a94720 1279 // enter calibration mode
mjr 9:fd65b0a94720 1280 calBtnState = 3;
mjr 9:fd65b0a94720 1281 calBtnTimer.reset();
mjr 9:fd65b0a94720 1282 cfg.resetPlunger();
mjr 9:fd65b0a94720 1283 }
mjr 10:976666ffa4ef 1284 else if (data[1] == 3)
mjr 10:976666ffa4ef 1285 {
mjr 10:976666ffa4ef 1286 // 3 = pixel dump
mjr 10:976666ffa4ef 1287 // (No parameters)
mjr 10:976666ffa4ef 1288 reportPix = true;
mjr 10:976666ffa4ef 1289
mjr 10:976666ffa4ef 1290 // show purple until we finish sending the report
mjr 10:976666ffa4ef 1291 ledR = 0;
mjr 10:976666ffa4ef 1292 ledB = 0;
mjr 10:976666ffa4ef 1293 ledG = 1;
mjr 10:976666ffa4ef 1294 }
mjr 6:cc35eb643e8f 1295 }
mjr 6:cc35eb643e8f 1296 else
mjr 6:cc35eb643e8f 1297 {
mjr 6:cc35eb643e8f 1298 // LWZ-PBA - full state dump; each byte is one output
mjr 6:cc35eb643e8f 1299 // in the current bank. pbaIdx keeps track of the bank;
mjr 6:cc35eb643e8f 1300 // this is incremented implicitly by each PBA message.
mjr 6:cc35eb643e8f 1301 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 6:cc35eb643e8f 1302 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 6:cc35eb643e8f 1303
mjr 6:cc35eb643e8f 1304 // update all output profile settings
mjr 6:cc35eb643e8f 1305 for (int i = 0 ; i < 8 ; ++i)
mjr 6:cc35eb643e8f 1306 wizVal[pbaIdx + i] = data[i];
mjr 6:cc35eb643e8f 1307
mjr 6:cc35eb643e8f 1308 // update the physical LED state if this is the last bank
mjr 6:cc35eb643e8f 1309 if (pbaIdx == 24)
mjr 6:cc35eb643e8f 1310 updateWizOuts();
mjr 6:cc35eb643e8f 1311
mjr 6:cc35eb643e8f 1312 // advance to the next bank
mjr 6:cc35eb643e8f 1313 pbaIdx = (pbaIdx + 8) & 31;
mjr 6:cc35eb643e8f 1314 }
mjr 0:5acbbe3f4cf4 1315 }
mjr 0:5acbbe3f4cf4 1316 }
mjr 1:d913e0afb2ac 1317
mjr 1:d913e0afb2ac 1318 // check for plunger calibration
mjr 1:d913e0afb2ac 1319 if (!calBtn)
mjr 0:5acbbe3f4cf4 1320 {
mjr 1:d913e0afb2ac 1321 // check the state
mjr 1:d913e0afb2ac 1322 switch (calBtnState)
mjr 0:5acbbe3f4cf4 1323 {
mjr 1:d913e0afb2ac 1324 case 0:
mjr 1:d913e0afb2ac 1325 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 1326 calBtnTimer.reset();
mjr 1:d913e0afb2ac 1327 calBtnState = 1;
mjr 1:d913e0afb2ac 1328 break;
mjr 1:d913e0afb2ac 1329
mjr 1:d913e0afb2ac 1330 case 1:
mjr 1:d913e0afb2ac 1331 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 1332 // passed, start the hold period
mjr 9:fd65b0a94720 1333 if (calBtnTimer.read_ms() > 50)
mjr 1:d913e0afb2ac 1334 calBtnState = 2;
mjr 1:d913e0afb2ac 1335 break;
mjr 1:d913e0afb2ac 1336
mjr 1:d913e0afb2ac 1337 case 2:
mjr 1:d913e0afb2ac 1338 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 1339 // for the entire hold period, move to calibration mode
mjr 9:fd65b0a94720 1340 if (calBtnTimer.read_ms() > 2050)
mjr 1:d913e0afb2ac 1341 {
mjr 1:d913e0afb2ac 1342 // enter calibration mode
mjr 1:d913e0afb2ac 1343 calBtnState = 3;
mjr 9:fd65b0a94720 1344 calBtnTimer.reset();
mjr 9:fd65b0a94720 1345 cfg.resetPlunger();
mjr 1:d913e0afb2ac 1346 }
mjr 1:d913e0afb2ac 1347 break;
mjr 2:c174f9ee414a 1348
mjr 2:c174f9ee414a 1349 case 3:
mjr 9:fd65b0a94720 1350 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 1351 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 1352 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 1353 break;
mjr 0:5acbbe3f4cf4 1354 }
mjr 0:5acbbe3f4cf4 1355 }
mjr 1:d913e0afb2ac 1356 else
mjr 1:d913e0afb2ac 1357 {
mjr 2:c174f9ee414a 1358 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 1359 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 1360 // and save the results to flash.
mjr 2:c174f9ee414a 1361 //
mjr 2:c174f9ee414a 1362 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 1363 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 1364 // mode, it simply cancels the attempt.
mjr 9:fd65b0a94720 1365 if (calBtnState == 3 && calBtnTimer.read_ms() > 15000)
mjr 2:c174f9ee414a 1366 {
mjr 2:c174f9ee414a 1367 // exit calibration mode
mjr 1:d913e0afb2ac 1368 calBtnState = 0;
mjr 2:c174f9ee414a 1369
mjr 6:cc35eb643e8f 1370 // save the updated configuration
mjr 6:cc35eb643e8f 1371 cfg.d.plungerCal = 1;
mjr 6:cc35eb643e8f 1372 cfg.save(iap, flash_addr);
mjr 2:c174f9ee414a 1373
mjr 2:c174f9ee414a 1374 // the flash state is now valid
mjr 2:c174f9ee414a 1375 flash_valid = true;
mjr 2:c174f9ee414a 1376 }
mjr 2:c174f9ee414a 1377 else if (calBtnState != 3)
mjr 2:c174f9ee414a 1378 {
mjr 2:c174f9ee414a 1379 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 1380 calBtnState = 0;
mjr 2:c174f9ee414a 1381 }
mjr 1:d913e0afb2ac 1382 }
mjr 1:d913e0afb2ac 1383
mjr 1:d913e0afb2ac 1384 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 1385 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 1386 switch (calBtnState)
mjr 0:5acbbe3f4cf4 1387 {
mjr 1:d913e0afb2ac 1388 case 2:
mjr 1:d913e0afb2ac 1389 // in the hold period - flash the light
mjr 9:fd65b0a94720 1390 newCalBtnLit = ((calBtnTimer.read_ms()/250) & 1);
mjr 1:d913e0afb2ac 1391 break;
mjr 1:d913e0afb2ac 1392
mjr 1:d913e0afb2ac 1393 case 3:
mjr 1:d913e0afb2ac 1394 // calibration mode - show steady on
mjr 1:d913e0afb2ac 1395 newCalBtnLit = true;
mjr 1:d913e0afb2ac 1396 break;
mjr 1:d913e0afb2ac 1397
mjr 1:d913e0afb2ac 1398 default:
mjr 1:d913e0afb2ac 1399 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 1400 newCalBtnLit = false;
mjr 1:d913e0afb2ac 1401 break;
mjr 1:d913e0afb2ac 1402 }
mjr 3:3514575d4f86 1403
mjr 3:3514575d4f86 1404 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 1405 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 1406 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 1407 {
mjr 1:d913e0afb2ac 1408 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 1409 if (calBtnLit) {
mjr 2:c174f9ee414a 1410 calBtnLed = 1;
mjr 4:02c7cd7b2183 1411 ledR = 1;
mjr 4:02c7cd7b2183 1412 ledG = 1;
mjr 9:fd65b0a94720 1413 ledB = 0;
mjr 2:c174f9ee414a 1414 }
mjr 2:c174f9ee414a 1415 else {
mjr 2:c174f9ee414a 1416 calBtnLed = 0;
mjr 4:02c7cd7b2183 1417 ledR = 1;
mjr 4:02c7cd7b2183 1418 ledG = 1;
mjr 9:fd65b0a94720 1419 ledB = 1;
mjr 2:c174f9ee414a 1420 }
mjr 1:d913e0afb2ac 1421 }
mjr 1:d913e0afb2ac 1422
mjr 6:cc35eb643e8f 1423 // read the plunger sensor, if it's enabled
mjr 10:976666ffa4ef 1424 uint16_t pix[npix];
mjr 6:cc35eb643e8f 1425 if (cfg.d.ccdEnabled)
mjr 6:cc35eb643e8f 1426 {
mjr 6:cc35eb643e8f 1427 // start with the previous reading, in case we don't have a
mjr 6:cc35eb643e8f 1428 // clear result on this frame
mjr 6:cc35eb643e8f 1429 int znew = z;
mjr 2:c174f9ee414a 1430
mjr 6:cc35eb643e8f 1431 // read the array
mjr 6:cc35eb643e8f 1432 ccd.read(pix, npix);
mjr 6:cc35eb643e8f 1433
mjr 6:cc35eb643e8f 1434 // get the average brightness at each end of the sensor
mjr 6:cc35eb643e8f 1435 long avg1 = (long(pix[0]) + long(pix[1]) + long(pix[2]) + long(pix[3]) + long(pix[4]))/5;
mjr 6:cc35eb643e8f 1436 long avg2 = (long(pix[npix-1]) + long(pix[npix-2]) + long(pix[npix-3]) + long(pix[npix-4]) + long(pix[npix-5]))/5;
mjr 6:cc35eb643e8f 1437
mjr 6:cc35eb643e8f 1438 // figure the midpoint in the brightness; multiply by 3 so that we can
mjr 6:cc35eb643e8f 1439 // compare sums of three pixels at a time to smooth out noise
mjr 6:cc35eb643e8f 1440 long midpt = (avg1 + avg2)/2 * 3;
mjr 6:cc35eb643e8f 1441
mjr 6:cc35eb643e8f 1442 // Work from the bright end to the dark end. VP interprets the
mjr 6:cc35eb643e8f 1443 // Z axis value as the amount the plunger is pulled: zero is the
mjr 6:cc35eb643e8f 1444 // rest position, and the axis maximum is fully pulled. So we
mjr 6:cc35eb643e8f 1445 // essentially want to report how much of the sensor is lit,
mjr 6:cc35eb643e8f 1446 // since this increases as the plunger is pulled back.
mjr 6:cc35eb643e8f 1447 int si = 1, di = 1;
mjr 6:cc35eb643e8f 1448 if (avg1 < avg2)
mjr 6:cc35eb643e8f 1449 si = npix - 2, di = -1;
mjr 6:cc35eb643e8f 1450
mjr 6:cc35eb643e8f 1451 // If the bright end and dark end don't differ by enough, skip this
mjr 6:cc35eb643e8f 1452 // reading entirely - we must have an overexposed or underexposed frame.
mjr 6:cc35eb643e8f 1453 // Otherwise proceed with the scan.
mjr 6:cc35eb643e8f 1454 if (labs(avg1 - avg2) > 0x1000)
mjr 6:cc35eb643e8f 1455 {
mjr 6:cc35eb643e8f 1456 uint16_t *pixp = pix + si;
mjr 6:cc35eb643e8f 1457 for (int n = 1 ; n < npix - 1 ; ++n, pixp += di)
mjr 6:cc35eb643e8f 1458 {
mjr 6:cc35eb643e8f 1459 // if we've crossed the midpoint, report this position
mjr 6:cc35eb643e8f 1460 if (long(pixp[-1]) + long(pixp[0]) + long(pixp[1]) < midpt)
mjr 6:cc35eb643e8f 1461 {
mjr 6:cc35eb643e8f 1462 // note the new position
mjr 6:cc35eb643e8f 1463 int pos = n;
mjr 6:cc35eb643e8f 1464
mjr 6:cc35eb643e8f 1465 // Calibrate, or apply calibration, depending on the mode.
mjr 6:cc35eb643e8f 1466 // In either case, normalize to our range. VP appears to
mjr 6:cc35eb643e8f 1467 // ignore negative Z axis values.
mjr 6:cc35eb643e8f 1468 if (calBtnState == 3)
mjr 6:cc35eb643e8f 1469 {
mjr 6:cc35eb643e8f 1470 // calibrating - note if we're expanding the calibration envelope
mjr 6:cc35eb643e8f 1471 if (pos < cfg.d.plungerMin)
mjr 6:cc35eb643e8f 1472 cfg.d.plungerMin = pos;
mjr 6:cc35eb643e8f 1473 if (pos < cfg.d.plungerZero)
mjr 6:cc35eb643e8f 1474 cfg.d.plungerZero = pos;
mjr 6:cc35eb643e8f 1475 if (pos > cfg.d.plungerMax)
mjr 6:cc35eb643e8f 1476 cfg.d.plungerMax = pos;
mjr 6:cc35eb643e8f 1477
mjr 6:cc35eb643e8f 1478 // normalize to the full physical range while calibrating
mjr 6:cc35eb643e8f 1479 znew = int(round(float(pos)/npix * JOYMAX));
mjr 6:cc35eb643e8f 1480 }
mjr 6:cc35eb643e8f 1481 else
mjr 6:cc35eb643e8f 1482 {
mjr 6:cc35eb643e8f 1483 // Running normally - normalize to the calibration range. Note
mjr 6:cc35eb643e8f 1484 // that values below the zero point are allowed - the zero point
mjr 6:cc35eb643e8f 1485 // represents the park position, where the plunger sits when at
mjr 6:cc35eb643e8f 1486 // rest, but a mechanical plunger has a smmall amount of travel
mjr 6:cc35eb643e8f 1487 // in the "push" direction. We represent forward travel with
mjr 6:cc35eb643e8f 1488 // negative z values.
mjr 6:cc35eb643e8f 1489 if (pos > cfg.d.plungerMax)
mjr 6:cc35eb643e8f 1490 pos = cfg.d.plungerMax;
mjr 6:cc35eb643e8f 1491 znew = int(round(float(pos - cfg.d.plungerZero)
mjr 6:cc35eb643e8f 1492 / (cfg.d.plungerMax - cfg.d.plungerZero + 1) * JOYMAX));
mjr 6:cc35eb643e8f 1493 }
mjr 6:cc35eb643e8f 1494
mjr 6:cc35eb643e8f 1495 // done
mjr 6:cc35eb643e8f 1496 break;
mjr 6:cc35eb643e8f 1497 }
mjr 6:cc35eb643e8f 1498 }
mjr 6:cc35eb643e8f 1499 }
mjr 7:100a25f8bf56 1500
mjr 7:100a25f8bf56 1501 // Determine if the plunger is being fired - i.e., if the player
mjr 7:100a25f8bf56 1502 // has just released the plunger from a retracted position.
mjr 6:cc35eb643e8f 1503 //
mjr 7:100a25f8bf56 1504 // We treat firing as an event. That is, we tell VP when the
mjr 7:100a25f8bf56 1505 // plunger is fired, and then stop sending data until the firing
mjr 7:100a25f8bf56 1506 // is complete, allowing VP to carry out the firing motion using
mjr 7:100a25f8bf56 1507 // its internal model plunger rather than trying to track the
mjr 7:100a25f8bf56 1508 // intermediate positions of the mechanical plunger throughout
mjr 9:fd65b0a94720 1509 // the firing motion. This is essential because the firing
mjr 9:fd65b0a94720 1510 // motion is too fast for us to track - in the time it takes us
mjr 9:fd65b0a94720 1511 // to read one frame, the plunger can make it all the way to the
mjr 9:fd65b0a94720 1512 // zero position and bounce back halfway. Fortunately, the range
mjr 9:fd65b0a94720 1513 // of motions for the plunger is limited, so if we see any rapid
mjr 9:fd65b0a94720 1514 // change of position toward the rest position, it's reasonably
mjr 9:fd65b0a94720 1515 // safe to interpret it as a firing event.
mjr 9:fd65b0a94720 1516 //
mjr 9:fd65b0a94720 1517 // This isn't foolproof. The user can trick us by doing a
mjr 9:fd65b0a94720 1518 // controlled rapid forward push but stopping short of the rest
mjr 9:fd65b0a94720 1519 // position. We'll misinterpret that as a firing event. But
mjr 9:fd65b0a94720 1520 // that's not a natural motion that a user would make with a
mjr 9:fd65b0a94720 1521 // plunger, so it's probably an acceptable false positive.
mjr 9:fd65b0a94720 1522 //
mjr 9:fd65b0a94720 1523 // Possible future enhancement: we could add a second physical
mjr 9:fd65b0a94720 1524 // sensor that detects when the plunger reaches the zero position
mjr 9:fd65b0a94720 1525 // and asserts an interrupt. In the interrupt handler, set a
mjr 9:fd65b0a94720 1526 // flag indicating the zero position signal. On each scan of
mjr 9:fd65b0a94720 1527 // the CCD, also check that flag; if it's set, enter firing
mjr 9:fd65b0a94720 1528 // event mode just as we do now. The key here is that the
mjr 9:fd65b0a94720 1529 // secondary sensor would have to be something much faster
mjr 9:fd65b0a94720 1530 // than our CCD scan - it would have to react on, say, the
mjr 9:fd65b0a94720 1531 // millisecond time scale. A simple mechanical switch or a
mjr 9:fd65b0a94720 1532 // proximity sensor could work. This would let us detect
mjr 9:fd65b0a94720 1533 // with certainty when the plunger physically fires, eliminating
mjr 9:fd65b0a94720 1534 // the case where the use can fool us with motion that's fast
mjr 9:fd65b0a94720 1535 // enough to look like a release but doesn't actually reach the
mjr 9:fd65b0a94720 1536 // starting position.
mjr 6:cc35eb643e8f 1537 //
mjr 7:100a25f8bf56 1538 // To detremine when a firing even occurs, we watch for rapid
mjr 7:100a25f8bf56 1539 // motion from a retracted position towards the rest position -
mjr 7:100a25f8bf56 1540 // that is, large position changes in the negative direction over
mjr 7:100a25f8bf56 1541 // a couple of consecutive readings. When we see a rapid move
mjr 7:100a25f8bf56 1542 // toward zero, we set our internal 'firing' flag, immediately
mjr 7:100a25f8bf56 1543 // report to VP that the plunger has returned to the zero
mjr 7:100a25f8bf56 1544 // position, and then suspend reports until the mechanical
mjr 7:100a25f8bf56 1545 // readings indicate that the plunger has come to rest (indicated
mjr 7:100a25f8bf56 1546 // by several readings in a row at roughly the same position).
mjr 9:fd65b0a94720 1547 //
mjr 9:fd65b0a94720 1548 // Tolerance for firing is 1/3 of the current pull distance, or
mjr 9:fd65b0a94720 1549 // about 1/2", whichever is greater. Making this value too small
mjr 9:fd65b0a94720 1550 // makes for too many false positives. Empirically, 1/4" is too
mjr 9:fd65b0a94720 1551 // twitchy, so set a floor at about 1/2". But we can be less
mjr 9:fd65b0a94720 1552 // sensitive the further back the plunger is pulled, since even
mjr 9:fd65b0a94720 1553 // a long pull will snap back quickly. Note that JOYMAX always
mjr 9:fd65b0a94720 1554 // corresponds to about 3", no matter how many pixels we're
mjr 9:fd65b0a94720 1555 // reading, since the physical sensor is about 3" long; so we
mjr 9:fd65b0a94720 1556 // factor out the pixel count calculate (approximate) physical
mjr 9:fd65b0a94720 1557 // distances based on the normalized axis range.
mjr 9:fd65b0a94720 1558 //
mjr 9:fd65b0a94720 1559 // Firing pattern: when firing, don't simply report a solid 0,
mjr 9:fd65b0a94720 1560 // but instead report a series of pseudo-bouces. This looks
mjr 9:fd65b0a94720 1561 // more realistic, beacause the real plunger is also bouncing
mjr 9:fd65b0a94720 1562 // around during this time. To get maximum firing power in
mjr 9:fd65b0a94720 1563 // the simulation, though, our pseudo-bounces are tiny cmopared
mjr 9:fd65b0a94720 1564 // to the real thing.
mjr 9:fd65b0a94720 1565 const int restTol = JOYMAX/24;
mjr 9:fd65b0a94720 1566 int fireTol = z/3 > JOYMAX/6 ? z/3 : JOYMAX/6;
mjr 9:fd65b0a94720 1567 static const int firePattern[] = {
mjr 9:fd65b0a94720 1568 -JOYMAX/12, -JOYMAX/12, -JOYMAX/12,
mjr 9:fd65b0a94720 1569 };
mjr 9:fd65b0a94720 1570 if (firing != 0)
mjr 6:cc35eb643e8f 1571 {
mjr 6:cc35eb643e8f 1572 // Firing in progress - we've already told VP to send its
mjr 6:cc35eb643e8f 1573 // model plunger all the way back to the rest position, so
mjr 6:cc35eb643e8f 1574 // send no further reports until the mechanical plunger
mjr 6:cc35eb643e8f 1575 // actually comes to rest somewhere.
mjr 6:cc35eb643e8f 1576 if (abs(z0 - z2) < restTol && abs(znew - z2) < restTol)
mjr 6:cc35eb643e8f 1577 {
mjr 6:cc35eb643e8f 1578 // the plunger is back at rest - firing is done
mjr 9:fd65b0a94720 1579 firing = 0;
mjr 6:cc35eb643e8f 1580
mjr 6:cc35eb643e8f 1581 // resume normal reporting
mjr 6:cc35eb643e8f 1582 z = z2;
mjr 6:cc35eb643e8f 1583 }
mjr 9:fd65b0a94720 1584 else if (firing < countof(firePattern))
mjr 9:fd65b0a94720 1585 {
mjr 9:fd65b0a94720 1586 // firing - report the next position in the pseudo-bounce
mjr 9:fd65b0a94720 1587 // pattern
mjr 9:fd65b0a94720 1588 z = firePattern[firing++];
mjr 9:fd65b0a94720 1589 }
mjr 9:fd65b0a94720 1590 else
mjr 9:fd65b0a94720 1591 {
mjr 9:fd65b0a94720 1592 // firing, out of pseudo-bounce items - just report the
mjr 9:fd65b0a94720 1593 // rest position
mjr 9:fd65b0a94720 1594 z = 0;
mjr 9:fd65b0a94720 1595 }
mjr 6:cc35eb643e8f 1596 }
mjr 6:cc35eb643e8f 1597 else if (z0 < z2 && z1 < z2 && znew < z2
mjr 6:cc35eb643e8f 1598 && (z0 < z2 - fireTol
mjr 6:cc35eb643e8f 1599 || z1 < z2 - fireTol
mjr 6:cc35eb643e8f 1600 || znew < z2 - fireTol))
mjr 6:cc35eb643e8f 1601 {
mjr 6:cc35eb643e8f 1602 // Big jumps toward rest position in last two readings -
mjr 6:cc35eb643e8f 1603 // firing has begun. Report an immediate return to the
mjr 6:cc35eb643e8f 1604 // rest position, and send no further reports until the
mjr 6:cc35eb643e8f 1605 // physical plunger has come to rest. This effectively
mjr 6:cc35eb643e8f 1606 // detaches VP's model plunger from the real world for
mjr 6:cc35eb643e8f 1607 // the duration of the spring return, letting VP evolve
mjr 6:cc35eb643e8f 1608 // its model without trying to synchronize with the
mjr 6:cc35eb643e8f 1609 // mechanical version. The release motion is too fast
mjr 6:cc35eb643e8f 1610 // for that to work well; we can't take samples quickly
mjr 6:cc35eb643e8f 1611 // enough to get prcise velocity or acceleration
mjr 6:cc35eb643e8f 1612 // readings. It's better to let VP figure the speed
mjr 6:cc35eb643e8f 1613 // and acceleration through modeling. Plus, that lets
mjr 6:cc35eb643e8f 1614 // each virtual table set the desired parameters for its
mjr 6:cc35eb643e8f 1615 // virtual plunger, rather than imposing the actual
mjr 6:cc35eb643e8f 1616 // mechanical charateristics of the physical plunger on
mjr 6:cc35eb643e8f 1617 // every table.
mjr 9:fd65b0a94720 1618 firing = 1;
mjr 9:fd65b0a94720 1619
mjr 9:fd65b0a94720 1620 // report the first firing pattern position
mjr 9:fd65b0a94720 1621 z = firePattern[0];
mjr 6:cc35eb643e8f 1622 }
mjr 6:cc35eb643e8f 1623 else
mjr 6:cc35eb643e8f 1624 {
mjr 6:cc35eb643e8f 1625 // everything normal; report the 3rd recent position on
mjr 6:cc35eb643e8f 1626 // tape delay
mjr 6:cc35eb643e8f 1627 z = z2;
mjr 6:cc35eb643e8f 1628 }
mjr 6:cc35eb643e8f 1629
mjr 6:cc35eb643e8f 1630 // shift in the new reading
mjr 6:cc35eb643e8f 1631 z2 = z1;
mjr 6:cc35eb643e8f 1632 z1 = z0;
mjr 6:cc35eb643e8f 1633 z0 = znew;
mjr 2:c174f9ee414a 1634 }
mjr 9:fd65b0a94720 1635 else
mjr 9:fd65b0a94720 1636 {
mjr 9:fd65b0a94720 1637 // plunger disabled - pause 10ms to throttle updates to a
mjr 9:fd65b0a94720 1638 // reasonable pace
mjr 9:fd65b0a94720 1639 wait_ms(10);
mjr 9:fd65b0a94720 1640 }
mjr 6:cc35eb643e8f 1641
mjr 1:d913e0afb2ac 1642 // read the accelerometer
mjr 9:fd65b0a94720 1643 int xa, ya;
mjr 9:fd65b0a94720 1644 accel.get(xa, ya);
mjr 1:d913e0afb2ac 1645
mjr 6:cc35eb643e8f 1646 // confine the results to our joystick axis range
mjr 6:cc35eb643e8f 1647 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 6:cc35eb643e8f 1648 if (xa > JOYMAX) xa = JOYMAX;
mjr 6:cc35eb643e8f 1649 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 6:cc35eb643e8f 1650 if (ya > JOYMAX) ya = JOYMAX;
mjr 1:d913e0afb2ac 1651
mjr 6:cc35eb643e8f 1652 // store the updated accelerometer coordinates
mjr 6:cc35eb643e8f 1653 x = xa;
mjr 6:cc35eb643e8f 1654 y = ya;
mjr 6:cc35eb643e8f 1655
mjr 11:bd9da7088e6e 1656 // update the buttons
mjr 11:bd9da7088e6e 1657 uint32_t buttons = readButtonsDebounced();
mjr 11:bd9da7088e6e 1658
mjr 8:c732e279ee29 1659 // Send the status report. Note that the nominal x and y axes
mjr 8:c732e279ee29 1660 // are reversed - this makes it more intuitive to set up in VP.
mjr 8:c732e279ee29 1661 // If we mount the Freesale card flat on the floor of the cabinet
mjr 8:c732e279ee29 1662 // with the USB connectors facing the front of the cabinet, this
mjr 8:c732e279ee29 1663 // arrangement of our nominal axes aligns with VP's standard
mjr 8:c732e279ee29 1664 // setting, so that we can configure VP with X Axis = X on the
mjr 8:c732e279ee29 1665 // joystick and Y Axis = Y on the joystick.
mjr 11:bd9da7088e6e 1666 js.update(y, x, z, buttons, statusFlags);
mjr 1:d913e0afb2ac 1667
mjr 10:976666ffa4ef 1668 // If we're in pixel dump mode, report all pixel exposure values
mjr 10:976666ffa4ef 1669 if (reportPix)
mjr 10:976666ffa4ef 1670 {
mjr 10:976666ffa4ef 1671 // we have satisfied this request
mjr 10:976666ffa4ef 1672 reportPix = false;
mjr 10:976666ffa4ef 1673
mjr 10:976666ffa4ef 1674 // send reports for all pixels
mjr 10:976666ffa4ef 1675 int idx = 0;
mjr 10:976666ffa4ef 1676 while (idx < npix)
mjr 10:976666ffa4ef 1677 js.updateExposure(idx, npix, pix);
mjr 10:976666ffa4ef 1678
mjr 10:976666ffa4ef 1679 // The pixel dump requires many USB reports, since each report
mjr 10:976666ffa4ef 1680 // can only send a few pixel values. An integration cycle has
mjr 10:976666ffa4ef 1681 // been running all this time, since each read starts a new
mjr 10:976666ffa4ef 1682 // cycle. Our timing is longer than usual on this round, so
mjr 10:976666ffa4ef 1683 // the integration won't be comparable to a normal cycle. Throw
mjr 10:976666ffa4ef 1684 // this one away by doing a read now, and throwing it away - that
mjr 10:976666ffa4ef 1685 // will get the timing of the *next* cycle roughly back to normal.
mjr 10:976666ffa4ef 1686 ccd.read(pix, npix);
mjr 10:976666ffa4ef 1687 }
mjr 10:976666ffa4ef 1688
mjr 6:cc35eb643e8f 1689 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 1690 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 1691 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 1692 #endif
mjr 6:cc35eb643e8f 1693
mjr 6:cc35eb643e8f 1694 // provide a visual status indication on the on-board LED
mjr 5:a70c0bce770d 1695 if (calBtnState < 2 && hbTimer.read_ms() > 1000)
mjr 1:d913e0afb2ac 1696 {
mjr 5:a70c0bce770d 1697 if (js.isSuspended() || !js.isConnected())
mjr 2:c174f9ee414a 1698 {
mjr 5:a70c0bce770d 1699 // suspended - turn off the LED
mjr 4:02c7cd7b2183 1700 ledR = 1;
mjr 4:02c7cd7b2183 1701 ledG = 1;
mjr 4:02c7cd7b2183 1702 ledB = 1;
mjr 5:a70c0bce770d 1703
mjr 5:a70c0bce770d 1704 // show a status flash every so often
mjr 5:a70c0bce770d 1705 if (hbcnt % 3 == 0)
mjr 5:a70c0bce770d 1706 {
mjr 6:cc35eb643e8f 1707 // disconnected = red/red flash; suspended = red
mjr 5:a70c0bce770d 1708 for (int n = js.isConnected() ? 1 : 2 ; n > 0 ; --n)
mjr 5:a70c0bce770d 1709 {
mjr 5:a70c0bce770d 1710 ledR = 0;
mjr 5:a70c0bce770d 1711 wait(0.05);
mjr 5:a70c0bce770d 1712 ledR = 1;
mjr 5:a70c0bce770d 1713 wait(0.25);
mjr 5:a70c0bce770d 1714 }
mjr 5:a70c0bce770d 1715 }
mjr 2:c174f9ee414a 1716 }
mjr 6:cc35eb643e8f 1717 else if (needReset)
mjr 2:c174f9ee414a 1718 {
mjr 6:cc35eb643e8f 1719 // connected, need to reset due to changes in config parameters -
mjr 6:cc35eb643e8f 1720 // flash red/green
mjr 6:cc35eb643e8f 1721 hb = !hb;
mjr 6:cc35eb643e8f 1722 ledR = (hb ? 0 : 1);
mjr 6:cc35eb643e8f 1723 ledG = (hb ? 1 : 0);
mjr 6:cc35eb643e8f 1724 ledB = 0;
mjr 6:cc35eb643e8f 1725 }
mjr 6:cc35eb643e8f 1726 else if (cfg.d.ccdEnabled && !cfg.d.plungerCal)
mjr 6:cc35eb643e8f 1727 {
mjr 6:cc35eb643e8f 1728 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 1729 hb = !hb;
mjr 6:cc35eb643e8f 1730 ledR = (hb ? 0 : 1);
mjr 6:cc35eb643e8f 1731 ledG = 0;
mjr 6:cc35eb643e8f 1732 ledB = 1;
mjr 6:cc35eb643e8f 1733 }
mjr 6:cc35eb643e8f 1734 else
mjr 6:cc35eb643e8f 1735 {
mjr 6:cc35eb643e8f 1736 // connected - flash blue/green
mjr 2:c174f9ee414a 1737 hb = !hb;
mjr 4:02c7cd7b2183 1738 ledR = 1;
mjr 4:02c7cd7b2183 1739 ledG = (hb ? 0 : 1);
mjr 4:02c7cd7b2183 1740 ledB = (hb ? 1 : 0);
mjr 2:c174f9ee414a 1741 }
mjr 1:d913e0afb2ac 1742
mjr 1:d913e0afb2ac 1743 // reset the heartbeat timer
mjr 1:d913e0afb2ac 1744 hbTimer.reset();
mjr 5:a70c0bce770d 1745 ++hbcnt;
mjr 1:d913e0afb2ac 1746 }
mjr 1:d913e0afb2ac 1747 }
mjr 0:5acbbe3f4cf4 1748 }