Pinscape Controller version 1 fork. This is a fork to allow for ongoing bug fixes to the original controller version, from before the major changes for the expansion board project.

Dependencies:   FastIO FastPWM SimpleDMA mbed

Fork of Pinscape_Controller by Mike R

Committer:
mjr
Date:
Wed Sep 23 05:06:39 2015 +0000
Revision:
26:cb71c4af2912
Parent:
25:e22b88bd783a
Child:
29:582472d0bc57
Initial TLC5940 PWM controller chip support.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 5:a70c0bce770d 1 /* Copyright 2014 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 5:a70c0bce770d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 5:a70c0bce770d 20 // Pinscape Controller
mjr 5:a70c0bce770d 21 //
mjr 17:ab3cec0c8bf4 22 // "Pinscape" is the name of my custom-built virtual pinball cabinet, so I call this
mjr 17:ab3cec0c8bf4 23 // software the Pinscape Controller. I wrote it to handle several tasks that I needed
mjr 17:ab3cec0c8bf4 24 // for my cabinet. It runs on a Freescale KL25Z microcontroller, which is a small and
mjr 17:ab3cec0c8bf4 25 // inexpensive device that attaches to the cabinet PC via a USB cable, and can attach
mjr 17:ab3cec0c8bf4 26 // via custom wiring to sensors, buttons, and other devices in the cabinet.
mjr 5:a70c0bce770d 27 //
mjr 17:ab3cec0c8bf4 28 // I designed the software and hardware in this project especially for my own
mjr 17:ab3cec0c8bf4 29 // cabinet, but it uses standard interfaces in Windows and Visual Pinball, so it should
mjr 17:ab3cec0c8bf4 30 // work in any VP-based cabinet, as long as you're using the usual VP software suite.
mjr 17:ab3cec0c8bf4 31 // I've tried to document the hardware in enough detail for anyone else to duplicate
mjr 17:ab3cec0c8bf4 32 // the entire project, and the full software is open source.
mjr 5:a70c0bce770d 33 //
mjr 17:ab3cec0c8bf4 34 // The Freescale board appears to the host PC as a standard USB joystick. This works
mjr 17:ab3cec0c8bf4 35 // with the built-in Windows joystick device drivers, so there's no need to install any
mjr 17:ab3cec0c8bf4 36 // new drivers or other software on the PC. Windows should recognize the Freescale
mjr 17:ab3cec0c8bf4 37 // as a joystick when you plug it into the USB port, and Windows shouldn't ask you to
mjr 17:ab3cec0c8bf4 38 // install any drivers. If you bring up the Windows control panel for USB Game
mjr 17:ab3cec0c8bf4 39 // Controllers, this device will appear as "Pinscape Controller". *Don't* do any
mjr 17:ab3cec0c8bf4 40 // calibration with the Windows control panel or third-part calibration tools. The
mjr 17:ab3cec0c8bf4 41 // software calibrates the accelerometer portion automatically, and has its own special
mjr 17:ab3cec0c8bf4 42 // calibration procedure for the plunger sensor, if you're using that (see below).
mjr 5:a70c0bce770d 43 //
mjr 17:ab3cec0c8bf4 44 // This software provides a whole bunch of separate features. You can use any of these
mjr 17:ab3cec0c8bf4 45 // features individually or all together. If you're not using a particular feature, you
mjr 17:ab3cec0c8bf4 46 // can simply omit the extra wiring and/or hardware for that feature. You can use
mjr 17:ab3cec0c8bf4 47 // the nudging feature by itself without any extra hardware attached, since the
mjr 17:ab3cec0c8bf4 48 // accelerometer is built in to the KL25Z board.
mjr 5:a70c0bce770d 49 //
mjr 17:ab3cec0c8bf4 50 // - Nudge sensing via the KL25Z's on-board accelerometer. Nudging the cabinet
mjr 17:ab3cec0c8bf4 51 // causes small accelerations that the accelerometer can detect; these are sent to
mjr 17:ab3cec0c8bf4 52 // Visual Pinball via the joystick interface so that VP can simulate the effect
mjr 17:ab3cec0c8bf4 53 // of the real physical nudges on its simulated ball. VP has native handling for
mjr 17:ab3cec0c8bf4 54 // this type of input, so all you have to do is set some preferences in VP to tell
mjr 17:ab3cec0c8bf4 55 // it that an accelerometer is attached.
mjr 5:a70c0bce770d 56 //
mjr 5:a70c0bce770d 57 // - Plunger position sensing via an attached TAOS TSL 1410R CCD linear array sensor.
mjr 17:ab3cec0c8bf4 58 // To use this feature, you need to buy the TAOS device (it's not built in to the
mjr 17:ab3cec0c8bf4 59 // KL25Z, obviously), wire it to the KL25Z (5 wire connections between the two
mjr 17:ab3cec0c8bf4 60 // devices are required), and mount the TAOS sensor in your cabinet so that it's
mjr 17:ab3cec0c8bf4 61 // positioned properly to capture images of the physical plunger shooter rod.
mjr 17:ab3cec0c8bf4 62 //
mjr 17:ab3cec0c8bf4 63 // The physical mounting and wiring details are desribed in the project
mjr 17:ab3cec0c8bf4 64 // documentation.
mjr 17:ab3cec0c8bf4 65 //
mjr 17:ab3cec0c8bf4 66 // If the CCD is attached, the software constantly captures images from the CCD
mjr 17:ab3cec0c8bf4 67 // and analyzes them to determine how far back the plunger is pulled. It reports
mjr 17:ab3cec0c8bf4 68 // this to Visual Pinball via the joystick interface. This allows VP to make the
mjr 17:ab3cec0c8bf4 69 // simulated on-screen plunger track the motion of the physical plunger in real
mjr 17:ab3cec0c8bf4 70 // time. As with the nudge data, VP has native handling for the plunger input,
mjr 17:ab3cec0c8bf4 71 // so you just need to set the VP preferences to tell it that an analog plunger
mjr 17:ab3cec0c8bf4 72 // device is attached. One caveat, though: although VP itself has built-in
mjr 17:ab3cec0c8bf4 73 // support for an analog plunger, not all existing tables take advantage of it.
mjr 17:ab3cec0c8bf4 74 // Many existing tables have their own custom plunger scripting that doesn't
mjr 17:ab3cec0c8bf4 75 // cooperate with the VP plunger input. All tables *can* be made to work with
mjr 17:ab3cec0c8bf4 76 // the plunger, and in most cases it only requires some simple script editing,
mjr 17:ab3cec0c8bf4 77 // but in some cases it requires some more extensive surgery.
mjr 5:a70c0bce770d 78 //
mjr 6:cc35eb643e8f 79 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 80 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 81 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 82 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 17:ab3cec0c8bf4 83 // sensor or the mechanical plunger, since their alignment shift change slightly
mjr 17:ab3cec0c8bf4 84 // when you put everything back together.) You can optionally install a
mjr 17:ab3cec0c8bf4 85 // dedicated momentary switch or pushbutton to activate the calibration mode;
mjr 17:ab3cec0c8bf4 86 // this is describe in the project documentation. If you don't want to bother
mjr 17:ab3cec0c8bf4 87 // with the extra button, you can also trigger calibration using the Windows
mjr 17:ab3cec0c8bf4 88 // setup software, which you can find on the Pinscape project page.
mjr 6:cc35eb643e8f 89 //
mjr 17:ab3cec0c8bf4 90 // The calibration procedure is described in the project documentation. Briefly,
mjr 17:ab3cec0c8bf4 91 // when you trigger calibration mode, the software will scan the CCD for about
mjr 17:ab3cec0c8bf4 92 // 15 seconds, during which you should simply pull the physical plunger back
mjr 17:ab3cec0c8bf4 93 // all the way, hold it for a moment, and then slowly return it to the rest
mjr 17:ab3cec0c8bf4 94 // position. (DON'T just release it from the retracted position, since that
mjr 17:ab3cec0c8bf4 95 // let it shoot forward too far. We want to measure the range from the park
mjr 17:ab3cec0c8bf4 96 // position to the fully retracted position only.)
mjr 5:a70c0bce770d 97 //
mjr 13:72dda449c3c0 98 // - Button input wiring. 24 of the KL25Z's GPIO ports are mapped as digital inputs
mjr 13:72dda449c3c0 99 // for buttons and switches. The software reports these as joystick buttons when
mjr 13:72dda449c3c0 100 // it sends reports to the PC. These can be used to wire physical pinball-style
mjr 13:72dda449c3c0 101 // buttons in the cabinet (e.g., flipper buttons, the Start button) and miscellaneous
mjr 13:72dda449c3c0 102 // switches (such as a tilt bob) to the PC. Visual Pinball can use joystick buttons
mjr 13:72dda449c3c0 103 // for input - you just have to assign a VP function to each button using VP's
mjr 13:72dda449c3c0 104 // keyboard options dialog. To wire a button physically, connect one terminal of
mjr 13:72dda449c3c0 105 // the button switch to the KL25Z ground, and connect the other terminal to the
mjr 13:72dda449c3c0 106 // the GPIO port you wish to assign to the button. See the buttonMap[] array
mjr 13:72dda449c3c0 107 // below for the available GPIO ports and their assigned joystick button numbers.
mjr 13:72dda449c3c0 108 // If you're not using a GPIO port, you can just leave it unconnected - the digital
mjr 13:72dda449c3c0 109 // inputs have built-in pull-up resistors, so an unconnected port is the same as
mjr 13:72dda449c3c0 110 // an open switch (an "off" state for the button).
mjr 13:72dda449c3c0 111 //
mjr 5:a70c0bce770d 112 // - LedWiz emulation. The KL25Z can appear to the PC as an LedWiz device, and will
mjr 5:a70c0bce770d 113 // accept and process LedWiz commands from the host. The software can turn digital
mjr 5:a70c0bce770d 114 // output ports on and off, and can set varying PWM intensitiy levels on a subset
mjr 5:a70c0bce770d 115 // of ports. (The KL25Z can only provide 6 PWM ports. Intensity level settings on
mjr 5:a70c0bce770d 116 // other ports is ignored, so non-PWM ports can only be used for simple on/off
mjr 5:a70c0bce770d 117 // devices such as contactors and solenoids.) The KL25Z can only supply 4mA on its
mjr 5:a70c0bce770d 118 // output ports, so external hardware is required to take advantage of the LedWiz
mjr 5:a70c0bce770d 119 // emulation. Many different hardware designs are possible, but there's a simple
mjr 5:a70c0bce770d 120 // reference design in the documentation that uses a Darlington array IC to
mjr 5:a70c0bce770d 121 // increase the output from each port to 500mA (the same level as the LedWiz),
mjr 5:a70c0bce770d 122 // plus an extended design that adds an optocoupler and MOSFET to provide very
mjr 5:a70c0bce770d 123 // high power handling, up to about 45A or 150W, with voltages up to 100V.
mjr 5:a70c0bce770d 124 // That will handle just about any DC device directly (wtihout relays or other
mjr 5:a70c0bce770d 125 // amplifiers), and switches fast enough to support PWM devices.
mjr 5:a70c0bce770d 126 //
mjr 5:a70c0bce770d 127 // The device can report any desired LedWiz unit number to the host, which makes
mjr 5:a70c0bce770d 128 // it possible to use the LedWiz emulation on a machine that also has one or more
mjr 5:a70c0bce770d 129 // actual LedWiz devices intalled. The LedWiz design allows for up to 16 units
mjr 5:a70c0bce770d 130 // to be installed in one machine - each one is invidually addressable by its
mjr 5:a70c0bce770d 131 // distinct unit number.
mjr 5:a70c0bce770d 132 //
mjr 5:a70c0bce770d 133 // The LedWiz emulation features are of course optional. There's no need to
mjr 5:a70c0bce770d 134 // build any of the external port hardware (or attach anything to the output
mjr 5:a70c0bce770d 135 // ports at all) if the LedWiz features aren't needed. Most people won't have
mjr 5:a70c0bce770d 136 // any use for the LedWiz features. I built them mostly as a learning exercise,
mjr 5:a70c0bce770d 137 // but with a slight practical need for a handful of extra ports (I'm using the
mjr 5:a70c0bce770d 138 // cutting-edge 10-contactor setup, so my real LedWiz is full!).
mjr 6:cc35eb643e8f 139 //
mjr 26:cb71c4af2912 140 // - Enhanced LedWiz emulation with TLC5940 PWM controller chips. You can attach
mjr 26:cb71c4af2912 141 // external PWM controller chips for controlling device outputs, instead of using
mjr 26:cb71c4af2912 142 // the limited LedWiz emulation through the on-board GPIO ports as described above.
mjr 26:cb71c4af2912 143 // The software can control a set of daisy-chained TLC5940 chips, which provide
mjr 26:cb71c4af2912 144 // 16 PWM outputs per chip. Two of these chips give you the full complement
mjr 26:cb71c4af2912 145 // of 32 output ports of an actual LedWiz, and four give you 64 ports, which
mjr 26:cb71c4af2912 146 // should be plenty for nearly any virtual pinball project.
mjr 26:cb71c4af2912 147 //
mjr 26:cb71c4af2912 148 //
mjr 6:cc35eb643e8f 149 // The on-board LED on the KL25Z flashes to indicate the current device status:
mjr 6:cc35eb643e8f 150 //
mjr 6:cc35eb643e8f 151 // two short red flashes = the device is powered but hasn't successfully
mjr 6:cc35eb643e8f 152 // connected to the host via USB (either it's not physically connected
mjr 6:cc35eb643e8f 153 // to the USB port, or there was a problem with the software handshake
mjr 6:cc35eb643e8f 154 // with the USB device driver on the computer)
mjr 6:cc35eb643e8f 155 //
mjr 6:cc35eb643e8f 156 // short red flash = the host computer is in sleep/suspend mode
mjr 6:cc35eb643e8f 157 //
mjr 6:cc35eb643e8f 158 // long red/green = the LedWiz unti number has been changed, so a reset
mjr 6:cc35eb643e8f 159 // is needed. You can simply unplug the device and plug it back in,
mjr 6:cc35eb643e8f 160 // or presss and hold the reset button on the device for a few seconds.
mjr 6:cc35eb643e8f 161 //
mjr 6:cc35eb643e8f 162 // long yellow/green = everything's working, but the plunger hasn't
mjr 6:cc35eb643e8f 163 // been calibrated; follow the calibration procedure described above.
mjr 6:cc35eb643e8f 164 // This flash mode won't appear if the CCD has been disabled. Note
mjr 18:5e890ebd0023 165 // that the device can't tell whether a CCD is physically attached;
mjr 18:5e890ebd0023 166 // if you don't have a CCD attached, you can set the appropriate option
mjr 18:5e890ebd0023 167 // in config.h or use the Windows config tool to disable the CCD
mjr 18:5e890ebd0023 168 // software features.
mjr 6:cc35eb643e8f 169 //
mjr 6:cc35eb643e8f 170 // alternating blue/green = everything's working
mjr 6:cc35eb643e8f 171 //
mjr 6:cc35eb643e8f 172 // Software configuration: you can change option settings by sending special
mjr 6:cc35eb643e8f 173 // USB commands from the PC. I've provided a Windows program for this purpose;
mjr 6:cc35eb643e8f 174 // refer to the documentation for details. For reference, here's the format
mjr 6:cc35eb643e8f 175 // of the USB command for option changes:
mjr 6:cc35eb643e8f 176 //
mjr 6:cc35eb643e8f 177 // length of report = 8 bytes
mjr 6:cc35eb643e8f 178 // byte 0 = 65 (0x41)
mjr 6:cc35eb643e8f 179 // byte 1 = 1 (0x01)
mjr 6:cc35eb643e8f 180 // byte 2 = new LedWiz unit number, 0x01 to 0x0f
mjr 6:cc35eb643e8f 181 // byte 3 = feature enable bit mask:
mjr 6:cc35eb643e8f 182 // 0x01 = enable CCD (default = on)
mjr 9:fd65b0a94720 183 //
mjr 9:fd65b0a94720 184 // Plunger calibration mode: the host can activate plunger calibration mode
mjr 9:fd65b0a94720 185 // by sending this packet. This has the same effect as pressing and holding
mjr 9:fd65b0a94720 186 // the plunger calibration button for two seconds, to allow activating this
mjr 9:fd65b0a94720 187 // mode without attaching a physical button.
mjr 9:fd65b0a94720 188 //
mjr 9:fd65b0a94720 189 // length = 8 bytes
mjr 9:fd65b0a94720 190 // byte 0 = 65 (0x41)
mjr 9:fd65b0a94720 191 // byte 1 = 2 (0x02)
mjr 9:fd65b0a94720 192 //
mjr 10:976666ffa4ef 193 // Exposure reports: the host can request a report of the full set of pixel
mjr 10:976666ffa4ef 194 // values for the next frame by sending this special packet:
mjr 10:976666ffa4ef 195 //
mjr 10:976666ffa4ef 196 // length = 8 bytes
mjr 10:976666ffa4ef 197 // byte 0 = 65 (0x41)
mjr 10:976666ffa4ef 198 // byte 1 = 3 (0x03)
mjr 10:976666ffa4ef 199 //
mjr 10:976666ffa4ef 200 // We'll respond with a series of special reports giving the exposure status.
mjr 10:976666ffa4ef 201 // Each report has the following structure:
mjr 10:976666ffa4ef 202 //
mjr 10:976666ffa4ef 203 // bytes 0:1 = 11-bit index, with high 5 bits set to 10000. For
mjr 10:976666ffa4ef 204 // example, 0x04 0x80 indicates index 4. This is the
mjr 10:976666ffa4ef 205 // starting pixel number in the report. The first report
mjr 10:976666ffa4ef 206 // will be 0x00 0x80 to indicate pixel #0.
mjr 10:976666ffa4ef 207 // bytes 2:3 = 16-bit unsigned int brightness level of pixel at index
mjr 10:976666ffa4ef 208 // bytes 4:5 = brightness of pixel at index+1
mjr 10:976666ffa4ef 209 // etc for the rest of the packet
mjr 10:976666ffa4ef 210 //
mjr 10:976666ffa4ef 211 // This still has the form of a joystick packet at the USB level, but
mjr 10:976666ffa4ef 212 // can be differentiated by the host via the status bits. It would have
mjr 10:976666ffa4ef 213 // been cleaner to use a different Report ID at the USB level, but this
mjr 10:976666ffa4ef 214 // would have necessitated a different container structure in the report
mjr 10:976666ffa4ef 215 // descriptor, which would have broken LedWiz compatibility. Given that
mjr 10:976666ffa4ef 216 // constraint, we have to re-use the joystick report type, making for
mjr 10:976666ffa4ef 217 // this somewhat kludgey approach.
mjr 6:cc35eb643e8f 218
mjr 0:5acbbe3f4cf4 219 #include "mbed.h"
mjr 6:cc35eb643e8f 220 #include "math.h"
mjr 0:5acbbe3f4cf4 221 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 222 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 223 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 224 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 225 #include "crc32.h"
mjr 26:cb71c4af2912 226 #include "TLC5940.h"
mjr 2:c174f9ee414a 227
mjr 17:ab3cec0c8bf4 228 // our local configuration file
mjr 21:5048e16cc9ef 229 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 230 #include "config.h"
mjr 17:ab3cec0c8bf4 231
mjr 5:a70c0bce770d 232
mjr 5:a70c0bce770d 233 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 234 // utilities
mjr 17:ab3cec0c8bf4 235
mjr 17:ab3cec0c8bf4 236 // number of elements in an array
mjr 17:ab3cec0c8bf4 237 #define countof(x) (sizeof(x)/sizeof((x)[0]))
mjr 17:ab3cec0c8bf4 238
mjr 26:cb71c4af2912 239 // floating point square of a number
mjr 26:cb71c4af2912 240 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 241
mjr 26:cb71c4af2912 242 // floating point rounding
mjr 26:cb71c4af2912 243 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 244
mjr 17:ab3cec0c8bf4 245
mjr 17:ab3cec0c8bf4 246 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 247 // USB device vendor ID, product ID, and version.
mjr 5:a70c0bce770d 248 //
mjr 5:a70c0bce770d 249 // We use the vendor ID for the LedWiz, so that the PC-side software can
mjr 5:a70c0bce770d 250 // identify us as capable of performing LedWiz commands. The LedWiz uses
mjr 5:a70c0bce770d 251 // a product ID value from 0xF0 to 0xFF; the last four bits identify the
mjr 5:a70c0bce770d 252 // unit number (e.g., product ID 0xF7 means unit #7). This allows multiple
mjr 5:a70c0bce770d 253 // LedWiz units to be installed in a single PC; the software on the PC side
mjr 5:a70c0bce770d 254 // uses the unit number to route commands to the devices attached to each
mjr 5:a70c0bce770d 255 // unit. On the real LedWiz, the unit number must be set in the firmware
mjr 5:a70c0bce770d 256 // at the factory; it's not configurable by the end user. Most LedWiz's
mjr 5:a70c0bce770d 257 // ship with the unit number set to 0, but the vendor will set different
mjr 5:a70c0bce770d 258 // unit numbers if requested at the time of purchase. So if you have a
mjr 5:a70c0bce770d 259 // single LedWiz already installed in your cabinet, and you didn't ask for
mjr 5:a70c0bce770d 260 // a non-default unit number, your existing LedWiz will be unit 0.
mjr 5:a70c0bce770d 261 //
mjr 6:cc35eb643e8f 262 // Note that the USB_PRODUCT_ID value set here omits the unit number. We
mjr 6:cc35eb643e8f 263 // take the unit number from the saved configuration. We provide a
mjr 6:cc35eb643e8f 264 // configuration command that can be sent via the USB connection to change
mjr 6:cc35eb643e8f 265 // the unit number, so that users can select the unit number without having
mjr 6:cc35eb643e8f 266 // to install a different version of the software. We'll combine the base
mjr 6:cc35eb643e8f 267 // product ID here with the unit number to get the actual product ID that
mjr 6:cc35eb643e8f 268 // we send to the USB controller.
mjr 5:a70c0bce770d 269 const uint16_t USB_VENDOR_ID = 0xFAFA;
mjr 6:cc35eb643e8f 270 const uint16_t USB_PRODUCT_ID = 0x00F0;
mjr 6:cc35eb643e8f 271 const uint16_t USB_VERSION_NO = 0x0006;
mjr 0:5acbbe3f4cf4 272
mjr 5:a70c0bce770d 273
mjr 6:cc35eb643e8f 274 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 6:cc35eb643e8f 275 #define JOYMAX 4096
mjr 6:cc35eb643e8f 276
mjr 25:e22b88bd783a 277 // --------------------------------------------------------------------------
mjr 25:e22b88bd783a 278 //
mjr 25:e22b88bd783a 279 // Set up mappings for the joystick X and Y reports based on the mounting
mjr 25:e22b88bd783a 280 // orientation of the KL25Z in the cabinet. Visual Pinball and other
mjr 25:e22b88bd783a 281 // pinball software effectively use video coordinates to define the axes:
mjr 25:e22b88bd783a 282 // positive X is to the right of the table, negative Y to the left, positive
mjr 25:e22b88bd783a 283 // Y toward the front of the table, negative Y toward the back. The KL25Z
mjr 25:e22b88bd783a 284 // accelerometer is mounted on the board with positive Y toward the USB
mjr 25:e22b88bd783a 285 // ports and positive X toward the right side of the board with the USB
mjr 25:e22b88bd783a 286 // ports pointing up. It's a simple matter to remap the KL25Z coordinate
mjr 25:e22b88bd783a 287 // system to match VP's coordinate system for mounting orientations at
mjr 25:e22b88bd783a 288 // 90-degree increments...
mjr 25:e22b88bd783a 289 //
mjr 25:e22b88bd783a 290 #if defined(ORIENTATION_PORTS_AT_FRONT)
mjr 25:e22b88bd783a 291 # define JOY_X(x, y) (y)
mjr 25:e22b88bd783a 292 # define JOY_Y(x, y) (x)
mjr 25:e22b88bd783a 293 #elif defined(ORIENTATION_PORTS_AT_LEFT)
mjr 25:e22b88bd783a 294 # define JOY_X(x, y) (-(x))
mjr 25:e22b88bd783a 295 # define JOY_Y(x, y) (y)
mjr 25:e22b88bd783a 296 #elif defined(ORIENTATION_PORTS_AT_RIGHT)
mjr 25:e22b88bd783a 297 # define JOY_X(x, y) (x)
mjr 25:e22b88bd783a 298 # define JOY_Y(x, y) (-(y))
mjr 25:e22b88bd783a 299 #elif defined(ORIENTATION_PORTS_AT_REAR)
mjr 25:e22b88bd783a 300 # define JOY_X(x, y) (-(y))
mjr 25:e22b88bd783a 301 # define JOY_Y(x, y) (-(x))
mjr 25:e22b88bd783a 302 #else
mjr 25:e22b88bd783a 303 # error Please define one of the ORIENTATION_PORTS_AT_xxx macros to establish the accelerometer orientation in your cabinet
mjr 25:e22b88bd783a 304 #endif
mjr 25:e22b88bd783a 305
mjr 25:e22b88bd783a 306
mjr 5:a70c0bce770d 307
mjr 17:ab3cec0c8bf4 308 // --------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 309 //
mjr 21:5048e16cc9ef 310 // Define a symbol to tell us whether any sort of plunger sensor code
mjr 21:5048e16cc9ef 311 // is enabled in this build. Note that this doesn't tell us that a
mjr 21:5048e16cc9ef 312 // plunger device is actually attached or *currently* enabled; it just
mjr 21:5048e16cc9ef 313 // tells us whether or not the code for plunger sensing is enabled in
mjr 21:5048e16cc9ef 314 // the software build. This lets us leave out some unnecessary code
mjr 21:5048e16cc9ef 315 // on installations where no physical plunger is attached.
mjr 17:ab3cec0c8bf4 316 //
mjr 21:5048e16cc9ef 317 const int PLUNGER_CODE_ENABLED =
mjr 21:5048e16cc9ef 318 #if defined(ENABLE_CCD_SENSOR) || defined(ENABLE_POT_SENSOR)
mjr 21:5048e16cc9ef 319 1;
mjr 17:ab3cec0c8bf4 320 #else
mjr 21:5048e16cc9ef 321 0;
mjr 17:ab3cec0c8bf4 322 #endif
mjr 9:fd65b0a94720 323
mjr 17:ab3cec0c8bf4 324 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 325 //
mjr 17:ab3cec0c8bf4 326 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 17:ab3cec0c8bf4 327 //
mjr 26:cb71c4af2912 328 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 26:cb71c4af2912 329 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 26:cb71c4af2912 330 // input or a device output). (This is kind of unfortunate in that it's
mjr 26:cb71c4af2912 331 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 26:cb71c4af2912 332 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 26:cb71c4af2912 333 // SPI capability.)
mjr 26:cb71c4af2912 334 //
mjr 17:ab3cec0c8bf4 335 DigitalOut ledR(LED1), ledG(LED2), ledB(LED3);
mjr 17:ab3cec0c8bf4 336
mjr 9:fd65b0a94720 337
mjr 9:fd65b0a94720 338 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 339 //
mjr 5:a70c0bce770d 340 // LedWiz emulation
mjr 5:a70c0bce770d 341 //
mjr 26:cb71c4af2912 342 // There are two modes for this feature. The default mode uses the on-board
mjr 26:cb71c4af2912 343 // GPIO ports to implement device outputs - each LedWiz software port is
mjr 26:cb71c4af2912 344 // connected to a physical GPIO pin on the KL25Z. The KL25Z only has 10
mjr 26:cb71c4af2912 345 // PWM channels, so in this mode only 10 LedWiz ports will be dimmable; the
mjr 26:cb71c4af2912 346 // rest are strictly on/off. The KL25Z also has a limited number of GPIO
mjr 26:cb71c4af2912 347 // ports overall - not enough for the full complement of 32 LedWiz ports
mjr 26:cb71c4af2912 348 // and 24 VP joystick inputs, so it's necessary to trade one against the
mjr 26:cb71c4af2912 349 // other if both features are to be used.
mjr 26:cb71c4af2912 350 //
mjr 26:cb71c4af2912 351 // The alternative, enhanced mode uses external TLC5940 PWM controller
mjr 26:cb71c4af2912 352 // chips to control device outputs. In this mode, each LedWiz software
mjr 26:cb71c4af2912 353 // port is mapped to an output on one of the external TLC5940 chips.
mjr 26:cb71c4af2912 354 // Two 5940s is enough for the full set of 32 LedWiz ports, and we can
mjr 26:cb71c4af2912 355 // support even more chips for even more outputs (although doing so requires
mjr 26:cb71c4af2912 356 // breaking LedWiz compatibility, since the LedWiz USB protocol is hardwired
mjr 26:cb71c4af2912 357 // for 32 outputs). Every port in this mode has full PWM support.
mjr 26:cb71c4af2912 358 //
mjr 5:a70c0bce770d 359
mjr 26:cb71c4af2912 360 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 361 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 362 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 363 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 364 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 365
mjr 26:cb71c4af2912 366 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 367 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 368 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 369 class LwOut
mjr 6:cc35eb643e8f 370 {
mjr 6:cc35eb643e8f 371 public:
mjr 26:cb71c4af2912 372 // Set the output intensity. 'val' is 0.0 for fully off, 1.0 for
mjr 26:cb71c4af2912 373 // fully on, and fractional values for intermediate intensities.
mjr 6:cc35eb643e8f 374 virtual void set(float val) = 0;
mjr 6:cc35eb643e8f 375 };
mjr 26:cb71c4af2912 376
mjr 26:cb71c4af2912 377
mjr 26:cb71c4af2912 378 #ifdef ENABLE_TLC5940
mjr 26:cb71c4af2912 379
mjr 26:cb71c4af2912 380 // The TLC5940 interface object.
mjr 26:cb71c4af2912 381 TLC5940 tlc5940(TLC5940_SCLK, TLC5940_SIN, TLC5940_GSCLK, TLC5940_BLANK,
mjr 26:cb71c4af2912 382 TLC5940_XLAT, TLC5940_NCHIPS);
mjr 26:cb71c4af2912 383
mjr 26:cb71c4af2912 384 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 385 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 386 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 387 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 388 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 389 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 390 {
mjr 26:cb71c4af2912 391 public:
mjr 26:cb71c4af2912 392 Lw5940Out(int idx) : idx(idx) { prv = -1; }
mjr 26:cb71c4af2912 393 virtual void set(float val)
mjr 26:cb71c4af2912 394 {
mjr 26:cb71c4af2912 395 if (val != prv)
mjr 26:cb71c4af2912 396 tlc5940.set(idx, (int)(val * 4095));
mjr 26:cb71c4af2912 397 }
mjr 26:cb71c4af2912 398 int idx;
mjr 26:cb71c4af2912 399 float prv;
mjr 26:cb71c4af2912 400 };
mjr 26:cb71c4af2912 401
mjr 26:cb71c4af2912 402 #else // ENABLE_TLC5940
mjr 26:cb71c4af2912 403
mjr 26:cb71c4af2912 404 //
mjr 26:cb71c4af2912 405 // Default LedWiz mode - using on-board GPIO ports. In this mode, we
mjr 26:cb71c4af2912 406 // assign a KL25Z GPIO port to each LedWiz output. We have to use a
mjr 26:cb71c4af2912 407 // mix of PWM-capable and Digital-Only ports in this configuration,
mjr 26:cb71c4af2912 408 // since the KL25Z hardware only has 10 PWM channels, which isn't
mjr 26:cb71c4af2912 409 // enough to fill out the full complement of 32 LedWiz outputs.
mjr 26:cb71c4af2912 410 //
mjr 26:cb71c4af2912 411
mjr 26:cb71c4af2912 412 // LwOut class for a PWM-capable GPIO port
mjr 6:cc35eb643e8f 413 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 414 {
mjr 6:cc35eb643e8f 415 public:
mjr 13:72dda449c3c0 416 LwPwmOut(PinName pin) : p(pin) { prv = -1; }
mjr 13:72dda449c3c0 417 virtual void set(float val)
mjr 13:72dda449c3c0 418 {
mjr 13:72dda449c3c0 419 if (val != prv)
mjr 13:72dda449c3c0 420 p.write(prv = val);
mjr 13:72dda449c3c0 421 }
mjr 6:cc35eb643e8f 422 PwmOut p;
mjr 13:72dda449c3c0 423 float prv;
mjr 6:cc35eb643e8f 424 };
mjr 26:cb71c4af2912 425
mjr 26:cb71c4af2912 426 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 427 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 428 {
mjr 6:cc35eb643e8f 429 public:
mjr 13:72dda449c3c0 430 LwDigOut(PinName pin) : p(pin) { prv = -1; }
mjr 13:72dda449c3c0 431 virtual void set(float val)
mjr 13:72dda449c3c0 432 {
mjr 13:72dda449c3c0 433 if (val != prv)
mjr 13:72dda449c3c0 434 p.write((prv = val) == 0.0 ? 0 : 1);
mjr 13:72dda449c3c0 435 }
mjr 6:cc35eb643e8f 436 DigitalOut p;
mjr 13:72dda449c3c0 437 float prv;
mjr 6:cc35eb643e8f 438 };
mjr 26:cb71c4af2912 439
mjr 26:cb71c4af2912 440 #endif // ENABLE_TLC5940
mjr 26:cb71c4af2912 441
mjr 26:cb71c4af2912 442 // LwOut class for unmapped ports. The LedWiz protocol is hardwired
mjr 26:cb71c4af2912 443 // for 32 ports, but we might not want to assign all 32 software ports
mjr 26:cb71c4af2912 444 // to physical output pins - the KL25Z has a limited number of GPIO
mjr 26:cb71c4af2912 445 // ports, so we might not have enough available GPIOs to fill out the
mjr 26:cb71c4af2912 446 // full LedWiz complement after assigning GPIOs for other functions.
mjr 26:cb71c4af2912 447 // This class is used to populate the LedWiz mapping array for ports
mjr 26:cb71c4af2912 448 // that aren't connected to physical outputs; it simply ignores value
mjr 26:cb71c4af2912 449 // changes.
mjr 11:bd9da7088e6e 450 class LwUnusedOut: public LwOut
mjr 11:bd9da7088e6e 451 {
mjr 11:bd9da7088e6e 452 public:
mjr 11:bd9da7088e6e 453 LwUnusedOut() { }
mjr 11:bd9da7088e6e 454 virtual void set(float val) { }
mjr 11:bd9da7088e6e 455 };
mjr 6:cc35eb643e8f 456
mjr 26:cb71c4af2912 457 // Array of output assignments. This array is indexed by the LedWiz
mjr 26:cb71c4af2912 458 // output port number; that protocol is hardwired for 32 ports, so we
mjr 26:cb71c4af2912 459 // need 32 elements in the array. Each element is an LwOut object
mjr 26:cb71c4af2912 460 // that provides the mapping to the physical output corresponding to
mjr 26:cb71c4af2912 461 // the software port.
mjr 6:cc35eb643e8f 462 static LwOut *lwPin[32];
mjr 6:cc35eb643e8f 463
mjr 6:cc35eb643e8f 464 // initialize the output pin array
mjr 6:cc35eb643e8f 465 void initLwOut()
mjr 6:cc35eb643e8f 466 {
mjr 9:fd65b0a94720 467 for (int i = 0 ; i < countof(lwPin) ; ++i)
mjr 6:cc35eb643e8f 468 {
mjr 26:cb71c4af2912 469 #ifdef ENABLE_TLC5940
mjr 26:cb71c4af2912 470 // Set up a TLC5940 output. If the output is within range of
mjr 26:cb71c4af2912 471 // the connected number of chips (16 outputs per chip), assign it
mjr 26:cb71c4af2912 472 // to the current index, otherwise leave it unattached.
mjr 26:cb71c4af2912 473 if (i < TLC5940_NCHIPS*16)
mjr 26:cb71c4af2912 474 lwPin[i] = new Lw5940Out(i);
mjr 26:cb71c4af2912 475 else
mjr 26:cb71c4af2912 476 lwPin[i] = new LwUnusedOut();
mjr 26:cb71c4af2912 477
mjr 26:cb71c4af2912 478 #else // ENABLE_TLC5940
mjr 26:cb71c4af2912 479 // Set up the GPIO pin, according to whether it's PWM-capable or
mjr 26:cb71c4af2912 480 // digital-only, and whether or not it's assigned at all.
mjr 11:bd9da7088e6e 481 PinName p = (i < countof(ledWizPortMap) ? ledWizPortMap[i].pin : NC);
mjr 11:bd9da7088e6e 482 if (p == NC)
mjr 11:bd9da7088e6e 483 lwPin[i] = new LwUnusedOut();
mjr 11:bd9da7088e6e 484 else if (ledWizPortMap[i].isPWM)
mjr 11:bd9da7088e6e 485 lwPin[i] = new LwPwmOut(p);
mjr 11:bd9da7088e6e 486 else
mjr 11:bd9da7088e6e 487 lwPin[i] = new LwDigOut(p);
mjr 26:cb71c4af2912 488
mjr 26:cb71c4af2912 489 #endif // ENABLE_TLC5940
mjr 26:cb71c4af2912 490
mjr 6:cc35eb643e8f 491 }
mjr 6:cc35eb643e8f 492 }
mjr 6:cc35eb643e8f 493
mjr 0:5acbbe3f4cf4 494 // on/off state for each LedWiz output
mjr 1:d913e0afb2ac 495 static uint8_t wizOn[32];
mjr 0:5acbbe3f4cf4 496
mjr 0:5acbbe3f4cf4 497 // profile (brightness/blink) state for each LedWiz output
mjr 1:d913e0afb2ac 498 static uint8_t wizVal[32] = {
mjr 13:72dda449c3c0 499 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 500 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 501 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 502 48, 48, 48, 48, 48, 48, 48, 48
mjr 0:5acbbe3f4cf4 503 };
mjr 0:5acbbe3f4cf4 504
mjr 1:d913e0afb2ac 505 static float wizState(int idx)
mjr 0:5acbbe3f4cf4 506 {
mjr 13:72dda449c3c0 507 if (wizOn[idx])
mjr 13:72dda449c3c0 508 {
mjr 0:5acbbe3f4cf4 509 // on - map profile brightness state to PWM level
mjr 1:d913e0afb2ac 510 uint8_t val = wizVal[idx];
mjr 13:72dda449c3c0 511 if (val <= 48)
mjr 13:72dda449c3c0 512 {
mjr 15:944bbc29c4dd 513 // PWM brightness/intensity level. Rescale from the LedWiz
mjr 15:944bbc29c4dd 514 // 0..48 integer range to our internal PwmOut 0..1 float range.
mjr 15:944bbc29c4dd 515 // Note that on the actual LedWiz, level 48 is actually about
mjr 15:944bbc29c4dd 516 // 98% on - contrary to the LedWiz documentation, level 49 is
mjr 15:944bbc29c4dd 517 // the true 100% level. (In the documentation, level 49 is
mjr 15:944bbc29c4dd 518 // simply not a valid setting.) Even so, we treat level 48 as
mjr 15:944bbc29c4dd 519 // 100% on to match the documentation. This won't be perfectly
mjr 15:944bbc29c4dd 520 // ocmpatible with the actual LedWiz, but it makes for such a
mjr 15:944bbc29c4dd 521 // small difference in brightness (if the output device is an
mjr 15:944bbc29c4dd 522 // LED, say) that no one should notice. It seems better to
mjr 15:944bbc29c4dd 523 // err in this direction, because while the difference in
mjr 15:944bbc29c4dd 524 // brightness when attached to an LED won't be noticeable, the
mjr 15:944bbc29c4dd 525 // difference in duty cycle when attached to something like a
mjr 15:944bbc29c4dd 526 // contactor *can* be noticeable - anything less than 100%
mjr 15:944bbc29c4dd 527 // can cause a contactor or relay to chatter. There's almost
mjr 15:944bbc29c4dd 528 // never a situation where you'd want values other than 0% and
mjr 15:944bbc29c4dd 529 // 100% for a contactor or relay, so treating level 48 as 100%
mjr 15:944bbc29c4dd 530 // makes us work properly with software that's expecting the
mjr 15:944bbc29c4dd 531 // documented LedWiz behavior and therefore uses level 48 to
mjr 15:944bbc29c4dd 532 // turn a contactor or relay fully on.
mjr 13:72dda449c3c0 533 return val/48.0;
mjr 13:72dda449c3c0 534 }
mjr 13:72dda449c3c0 535 else if (val == 49)
mjr 13:72dda449c3c0 536 {
mjr 15:944bbc29c4dd 537 // 49 is undefined in the LedWiz documentation, but actually
mjr 15:944bbc29c4dd 538 // means 100% on. The documentation says that levels 1-48 are
mjr 15:944bbc29c4dd 539 // the full PWM range, but empirically it appears that the real
mjr 15:944bbc29c4dd 540 // range implemented in the firmware is 1-49. Some software on
mjr 15:944bbc29c4dd 541 // the PC side (notably DOF) is aware of this and uses level 49
mjr 15:944bbc29c4dd 542 // to mean "100% on". To ensure compatibility with existing
mjr 15:944bbc29c4dd 543 // PC-side software, we need to recognize level 49.
mjr 13:72dda449c3c0 544 return 1.0;
mjr 13:72dda449c3c0 545 }
mjr 0:5acbbe3f4cf4 546 else if (val >= 129 && val <= 132)
mjr 13:72dda449c3c0 547 {
mjr 13:72dda449c3c0 548 // Values of 129-132 select different flashing modes. We don't
mjr 13:72dda449c3c0 549 // support any of these. Instead, simply treat them as fully on.
mjr 13:72dda449c3c0 550 // Note that DOF doesn't ever use modes 129-132, as it implements
mjr 13:72dda449c3c0 551 // all flashing modes itself on the host side, so this limitation
mjr 13:72dda449c3c0 552 // won't have any effect on DOF users. You can observe it using
mjr 13:72dda449c3c0 553 // LedBlinky, though.
mjr 13:72dda449c3c0 554 return 1.0;
mjr 13:72dda449c3c0 555 }
mjr 0:5acbbe3f4cf4 556 else
mjr 13:72dda449c3c0 557 {
mjr 13:72dda449c3c0 558 // Other values are undefined in the LedWiz documentation. Hosts
mjr 13:72dda449c3c0 559 // *should* never send undefined values, since whatever behavior an
mjr 13:72dda449c3c0 560 // LedWiz unit exhibits in response is accidental and could change
mjr 13:72dda449c3c0 561 // in a future version. We'll treat all undefined values as equivalent
mjr 13:72dda449c3c0 562 // to 48 (fully on).
mjr 13:72dda449c3c0 563 //
mjr 13:72dda449c3c0 564 // NB: the 49 and 129-132 cases are broken out above for the sake
mjr 13:72dda449c3c0 565 // of documentation. We end up using 1.0 as the return value for
mjr 13:72dda449c3c0 566 // everything outside of the defined 0-48 range, so we could collapse
mjr 13:72dda449c3c0 567 // this whole thing to a single 'else' branch, but I wanted to call
mjr 13:72dda449c3c0 568 // out the specific reasons for handling the settings above as we do.
mjr 0:5acbbe3f4cf4 569 return 1.0;
mjr 13:72dda449c3c0 570 }
mjr 0:5acbbe3f4cf4 571 }
mjr 13:72dda449c3c0 572 else
mjr 13:72dda449c3c0 573 {
mjr 13:72dda449c3c0 574 // off - show at 0 intensity
mjr 13:72dda449c3c0 575 return 0.0;
mjr 0:5acbbe3f4cf4 576 }
mjr 0:5acbbe3f4cf4 577 }
mjr 0:5acbbe3f4cf4 578
mjr 1:d913e0afb2ac 579 static void updateWizOuts()
mjr 1:d913e0afb2ac 580 {
mjr 6:cc35eb643e8f 581 for (int i = 0 ; i < 32 ; ++i)
mjr 6:cc35eb643e8f 582 lwPin[i]->set(wizState(i));
mjr 1:d913e0afb2ac 583 }
mjr 1:d913e0afb2ac 584
mjr 11:bd9da7088e6e 585
mjr 11:bd9da7088e6e 586 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 587 //
mjr 11:bd9da7088e6e 588 // Button input
mjr 11:bd9da7088e6e 589 //
mjr 11:bd9da7088e6e 590
mjr 11:bd9da7088e6e 591 // button input map array
mjr 11:bd9da7088e6e 592 DigitalIn *buttonDigIn[32];
mjr 11:bd9da7088e6e 593
mjr 18:5e890ebd0023 594 // button state
mjr 18:5e890ebd0023 595 struct ButtonState
mjr 18:5e890ebd0023 596 {
mjr 18:5e890ebd0023 597 // current on/off state
mjr 18:5e890ebd0023 598 int pressed;
mjr 18:5e890ebd0023 599
mjr 18:5e890ebd0023 600 // Sticky time remaining for current state. When a
mjr 18:5e890ebd0023 601 // state transition occurs, we set this to a debounce
mjr 18:5e890ebd0023 602 // period. Future state transitions will be ignored
mjr 18:5e890ebd0023 603 // until the debounce time elapses.
mjr 18:5e890ebd0023 604 int t;
mjr 18:5e890ebd0023 605 } buttonState[32];
mjr 18:5e890ebd0023 606
mjr 12:669df364a565 607 // timer for button reports
mjr 12:669df364a565 608 static Timer buttonTimer;
mjr 12:669df364a565 609
mjr 11:bd9da7088e6e 610 // initialize the button inputs
mjr 11:bd9da7088e6e 611 void initButtons()
mjr 11:bd9da7088e6e 612 {
mjr 11:bd9da7088e6e 613 // create the digital inputs
mjr 11:bd9da7088e6e 614 for (int i = 0 ; i < countof(buttonDigIn) ; ++i)
mjr 11:bd9da7088e6e 615 {
mjr 11:bd9da7088e6e 616 if (i < countof(buttonMap) && buttonMap[i] != NC)
mjr 11:bd9da7088e6e 617 buttonDigIn[i] = new DigitalIn(buttonMap[i]);
mjr 11:bd9da7088e6e 618 else
mjr 11:bd9da7088e6e 619 buttonDigIn[i] = 0;
mjr 11:bd9da7088e6e 620 }
mjr 12:669df364a565 621
mjr 12:669df364a565 622 // start the button timer
mjr 12:669df364a565 623 buttonTimer.start();
mjr 11:bd9da7088e6e 624 }
mjr 11:bd9da7088e6e 625
mjr 11:bd9da7088e6e 626
mjr 18:5e890ebd0023 627 // read the button input state
mjr 18:5e890ebd0023 628 uint32_t readButtons()
mjr 11:bd9da7088e6e 629 {
mjr 11:bd9da7088e6e 630 // start with all buttons off
mjr 11:bd9da7088e6e 631 uint32_t buttons = 0;
mjr 11:bd9da7088e6e 632
mjr 18:5e890ebd0023 633 // figure the time elapsed since the last scan
mjr 18:5e890ebd0023 634 int dt = buttonTimer.read_ms();
mjr 18:5e890ebd0023 635
mjr 18:5e890ebd0023 636 // reset the timef for the next scan
mjr 18:5e890ebd0023 637 buttonTimer.reset();
mjr 18:5e890ebd0023 638
mjr 11:bd9da7088e6e 639 // scan the button list
mjr 11:bd9da7088e6e 640 uint32_t bit = 1;
mjr 18:5e890ebd0023 641 DigitalIn **di = buttonDigIn;
mjr 18:5e890ebd0023 642 ButtonState *bs = buttonState;
mjr 18:5e890ebd0023 643 for (int i = 0 ; i < countof(buttonDigIn) ; ++i, ++di, ++bs, bit <<= 1)
mjr 11:bd9da7088e6e 644 {
mjr 18:5e890ebd0023 645 // read this button
mjr 18:5e890ebd0023 646 if (*di != 0)
mjr 18:5e890ebd0023 647 {
mjr 18:5e890ebd0023 648 // deduct the elapsed time since the last update
mjr 18:5e890ebd0023 649 // from the button's remaining sticky time
mjr 18:5e890ebd0023 650 bs->t -= dt;
mjr 18:5e890ebd0023 651 if (bs->t < 0)
mjr 18:5e890ebd0023 652 bs->t = 0;
mjr 18:5e890ebd0023 653
mjr 18:5e890ebd0023 654 // If the sticky time has elapsed, note the new physical
mjr 18:5e890ebd0023 655 // state of the button. If we still have sticky time
mjr 18:5e890ebd0023 656 // remaining, ignore the physical state; the last state
mjr 18:5e890ebd0023 657 // change persists until the sticky time elapses so that
mjr 18:5e890ebd0023 658 // we smooth out any "bounce" (electrical transients that
mjr 18:5e890ebd0023 659 // occur when the switch contact is opened or closed).
mjr 18:5e890ebd0023 660 if (bs->t == 0)
mjr 18:5e890ebd0023 661 {
mjr 18:5e890ebd0023 662 // get the new physical state
mjr 18:5e890ebd0023 663 int pressed = !(*di)->read();
mjr 18:5e890ebd0023 664
mjr 18:5e890ebd0023 665 // update the button's logical state if this is a change
mjr 18:5e890ebd0023 666 if (pressed != bs->pressed)
mjr 18:5e890ebd0023 667 {
mjr 18:5e890ebd0023 668 // store the new state
mjr 18:5e890ebd0023 669 bs->pressed = pressed;
mjr 18:5e890ebd0023 670
mjr 18:5e890ebd0023 671 // start a new sticky period for debouncing this
mjr 18:5e890ebd0023 672 // state change
mjr 19:054f8af32fce 673 bs->t = 25;
mjr 18:5e890ebd0023 674 }
mjr 18:5e890ebd0023 675 }
mjr 18:5e890ebd0023 676
mjr 18:5e890ebd0023 677 // if it's pressed, OR its bit into the state
mjr 18:5e890ebd0023 678 if (bs->pressed)
mjr 18:5e890ebd0023 679 buttons |= bit;
mjr 18:5e890ebd0023 680 }
mjr 11:bd9da7088e6e 681 }
mjr 11:bd9da7088e6e 682
mjr 18:5e890ebd0023 683 // return the new button list
mjr 11:bd9da7088e6e 684 return buttons;
mjr 11:bd9da7088e6e 685 }
mjr 11:bd9da7088e6e 686
mjr 5:a70c0bce770d 687 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 688 //
mjr 5:a70c0bce770d 689 // Customization joystick subbclass
mjr 5:a70c0bce770d 690 //
mjr 5:a70c0bce770d 691
mjr 5:a70c0bce770d 692 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 693 {
mjr 5:a70c0bce770d 694 public:
mjr 5:a70c0bce770d 695 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release)
mjr 5:a70c0bce770d 696 : USBJoystick(vendor_id, product_id, product_release, true)
mjr 5:a70c0bce770d 697 {
mjr 5:a70c0bce770d 698 suspended_ = false;
mjr 5:a70c0bce770d 699 }
mjr 5:a70c0bce770d 700
mjr 5:a70c0bce770d 701 // are we connected?
mjr 5:a70c0bce770d 702 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 703
mjr 5:a70c0bce770d 704 // Are we in suspend mode?
mjr 5:a70c0bce770d 705 int isSuspended() const { return suspended_; }
mjr 5:a70c0bce770d 706
mjr 5:a70c0bce770d 707 protected:
mjr 5:a70c0bce770d 708 virtual void suspendStateChanged(unsigned int suspended)
mjr 5:a70c0bce770d 709 { suspended_ = suspended; }
mjr 5:a70c0bce770d 710
mjr 5:a70c0bce770d 711 // are we suspended?
mjr 5:a70c0bce770d 712 int suspended_;
mjr 5:a70c0bce770d 713 };
mjr 5:a70c0bce770d 714
mjr 5:a70c0bce770d 715 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 716 //
mjr 5:a70c0bce770d 717 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 718 //
mjr 5:a70c0bce770d 719
mjr 5:a70c0bce770d 720 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 721 //
mjr 5:a70c0bce770d 722 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 723 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 724 // automatic calibration.
mjr 5:a70c0bce770d 725 //
mjr 5:a70c0bce770d 726 // We install an interrupt handler on the accelerometer "data ready"
mjr 6:cc35eb643e8f 727 // interrupt to ensure that we fetch each sample immediately when it
mjr 6:cc35eb643e8f 728 // becomes available. The accelerometer data rate is fiarly high
mjr 6:cc35eb643e8f 729 // (800 Hz), so it's not practical to keep up with it by polling.
mjr 6:cc35eb643e8f 730 // Using an interrupt handler lets us respond quickly and read
mjr 6:cc35eb643e8f 731 // every sample.
mjr 5:a70c0bce770d 732 //
mjr 6:cc35eb643e8f 733 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 734 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 735 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 736 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 737 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 738 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 739 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 740 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 741 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 742 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 743 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 744 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 745 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 746 // of nudging, say).
mjr 5:a70c0bce770d 747 //
mjr 5:a70c0bce770d 748
mjr 17:ab3cec0c8bf4 749 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 750 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 751
mjr 17:ab3cec0c8bf4 752 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 753 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 754 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 755
mjr 17:ab3cec0c8bf4 756 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 757 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 758 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 759 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 760
mjr 17:ab3cec0c8bf4 761
mjr 6:cc35eb643e8f 762 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 763 struct AccHist
mjr 5:a70c0bce770d 764 {
mjr 6:cc35eb643e8f 765 AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 766 void set(float x, float y, AccHist *prv)
mjr 6:cc35eb643e8f 767 {
mjr 6:cc35eb643e8f 768 // save the raw position
mjr 6:cc35eb643e8f 769 this->x = x;
mjr 6:cc35eb643e8f 770 this->y = y;
mjr 6:cc35eb643e8f 771 this->d = distance(prv);
mjr 6:cc35eb643e8f 772 }
mjr 6:cc35eb643e8f 773
mjr 6:cc35eb643e8f 774 // reading for this entry
mjr 5:a70c0bce770d 775 float x, y;
mjr 5:a70c0bce770d 776
mjr 6:cc35eb643e8f 777 // distance from previous entry
mjr 6:cc35eb643e8f 778 float d;
mjr 5:a70c0bce770d 779
mjr 6:cc35eb643e8f 780 // total and count of samples averaged over this period
mjr 6:cc35eb643e8f 781 float xtot, ytot;
mjr 6:cc35eb643e8f 782 int cnt;
mjr 6:cc35eb643e8f 783
mjr 6:cc35eb643e8f 784 void clearAvg() { xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 785 void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; }
mjr 6:cc35eb643e8f 786 float xAvg() const { return xtot/cnt; }
mjr 6:cc35eb643e8f 787 float yAvg() const { return ytot/cnt; }
mjr 5:a70c0bce770d 788
mjr 6:cc35eb643e8f 789 float distance(AccHist *p)
mjr 6:cc35eb643e8f 790 { return sqrt(square(p->x - x) + square(p->y - y)); }
mjr 5:a70c0bce770d 791 };
mjr 5:a70c0bce770d 792
mjr 5:a70c0bce770d 793 // accelerometer wrapper class
mjr 3:3514575d4f86 794 class Accel
mjr 3:3514575d4f86 795 {
mjr 3:3514575d4f86 796 public:
mjr 3:3514575d4f86 797 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin)
mjr 3:3514575d4f86 798 : mma_(sda, scl, i2cAddr), intIn_(irqPin)
mjr 3:3514575d4f86 799 {
mjr 5:a70c0bce770d 800 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 801 irqPin_ = irqPin;
mjr 5:a70c0bce770d 802
mjr 5:a70c0bce770d 803 // reset and initialize
mjr 5:a70c0bce770d 804 reset();
mjr 5:a70c0bce770d 805 }
mjr 5:a70c0bce770d 806
mjr 5:a70c0bce770d 807 void reset()
mjr 5:a70c0bce770d 808 {
mjr 6:cc35eb643e8f 809 // clear the center point
mjr 6:cc35eb643e8f 810 cx_ = cy_ = 0.0;
mjr 6:cc35eb643e8f 811
mjr 6:cc35eb643e8f 812 // start the calibration timer
mjr 5:a70c0bce770d 813 tCenter_.start();
mjr 5:a70c0bce770d 814 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 815
mjr 5:a70c0bce770d 816 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 817 mma_.init();
mjr 6:cc35eb643e8f 818
mjr 6:cc35eb643e8f 819 // set the initial integrated velocity reading to zero
mjr 6:cc35eb643e8f 820 vx_ = vy_ = 0;
mjr 3:3514575d4f86 821
mjr 6:cc35eb643e8f 822 // set up our accelerometer interrupt handling
mjr 6:cc35eb643e8f 823 intIn_.rise(this, &Accel::isr);
mjr 5:a70c0bce770d 824 mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2);
mjr 3:3514575d4f86 825
mjr 3:3514575d4f86 826 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 827 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 828
mjr 3:3514575d4f86 829 // start our timers
mjr 3:3514575d4f86 830 tGet_.start();
mjr 3:3514575d4f86 831 tInt_.start();
mjr 3:3514575d4f86 832 }
mjr 3:3514575d4f86 833
mjr 9:fd65b0a94720 834 void get(int &x, int &y)
mjr 3:3514575d4f86 835 {
mjr 3:3514575d4f86 836 // disable interrupts while manipulating the shared data
mjr 3:3514575d4f86 837 __disable_irq();
mjr 3:3514575d4f86 838
mjr 3:3514575d4f86 839 // read the shared data and store locally for calculations
mjr 6:cc35eb643e8f 840 float ax = ax_, ay = ay_;
mjr 6:cc35eb643e8f 841 float vx = vx_, vy = vy_;
mjr 5:a70c0bce770d 842
mjr 6:cc35eb643e8f 843 // reset the velocity sum for the next run
mjr 6:cc35eb643e8f 844 vx_ = vy_ = 0;
mjr 3:3514575d4f86 845
mjr 3:3514575d4f86 846 // get the time since the last get() sample
mjr 3:3514575d4f86 847 float dt = tGet_.read_us()/1.0e6;
mjr 3:3514575d4f86 848 tGet_.reset();
mjr 3:3514575d4f86 849
mjr 3:3514575d4f86 850 // done manipulating the shared data
mjr 3:3514575d4f86 851 __enable_irq();
mjr 3:3514575d4f86 852
mjr 6:cc35eb643e8f 853 // adjust the readings for the integration time
mjr 6:cc35eb643e8f 854 vx /= dt;
mjr 6:cc35eb643e8f 855 vy /= dt;
mjr 6:cc35eb643e8f 856
mjr 6:cc35eb643e8f 857 // add this sample to the current calibration interval's running total
mjr 6:cc35eb643e8f 858 AccHist *p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 859 p->addAvg(ax, ay);
mjr 6:cc35eb643e8f 860
mjr 5:a70c0bce770d 861 // check for auto-centering every so often
mjr 5:a70c0bce770d 862 if (tCenter_.read_ms() > 1000)
mjr 5:a70c0bce770d 863 {
mjr 5:a70c0bce770d 864 // add the latest raw sample to the history list
mjr 6:cc35eb643e8f 865 AccHist *prv = p;
mjr 5:a70c0bce770d 866 iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv;
mjr 6:cc35eb643e8f 867 p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 868 p->set(ax, ay, prv);
mjr 5:a70c0bce770d 869
mjr 5:a70c0bce770d 870 // if we have a full complement, check for stability
mjr 5:a70c0bce770d 871 if (nAccPrv_ >= maxAccPrv)
mjr 5:a70c0bce770d 872 {
mjr 5:a70c0bce770d 873 // check if we've been stable for all recent samples
mjr 6:cc35eb643e8f 874 static const float accTol = .01;
mjr 6:cc35eb643e8f 875 AccHist *p0 = accPrv_;
mjr 6:cc35eb643e8f 876 if (p0[0].d < accTol
mjr 6:cc35eb643e8f 877 && p0[1].d < accTol
mjr 6:cc35eb643e8f 878 && p0[2].d < accTol
mjr 6:cc35eb643e8f 879 && p0[3].d < accTol
mjr 6:cc35eb643e8f 880 && p0[4].d < accTol)
mjr 5:a70c0bce770d 881 {
mjr 6:cc35eb643e8f 882 // Figure the new calibration point as the average of
mjr 6:cc35eb643e8f 883 // the samples over the rest period
mjr 6:cc35eb643e8f 884 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0;
mjr 6:cc35eb643e8f 885 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0;
mjr 5:a70c0bce770d 886 }
mjr 5:a70c0bce770d 887 }
mjr 5:a70c0bce770d 888 else
mjr 5:a70c0bce770d 889 {
mjr 5:a70c0bce770d 890 // not enough samples yet; just up the count
mjr 5:a70c0bce770d 891 ++nAccPrv_;
mjr 5:a70c0bce770d 892 }
mjr 6:cc35eb643e8f 893
mjr 6:cc35eb643e8f 894 // clear the new item's running totals
mjr 6:cc35eb643e8f 895 p->clearAvg();
mjr 5:a70c0bce770d 896
mjr 5:a70c0bce770d 897 // reset the timer
mjr 5:a70c0bce770d 898 tCenter_.reset();
mjr 5:a70c0bce770d 899 }
mjr 5:a70c0bce770d 900
mjr 6:cc35eb643e8f 901 // report our integrated velocity reading in x,y
mjr 6:cc35eb643e8f 902 x = rawToReport(vx);
mjr 6:cc35eb643e8f 903 y = rawToReport(vy);
mjr 5:a70c0bce770d 904
mjr 6:cc35eb643e8f 905 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 906 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 907 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 908 #endif
mjr 3:3514575d4f86 909 }
mjr 3:3514575d4f86 910
mjr 3:3514575d4f86 911 private:
mjr 6:cc35eb643e8f 912 // adjust a raw acceleration figure to a usb report value
mjr 6:cc35eb643e8f 913 int rawToReport(float v)
mjr 5:a70c0bce770d 914 {
mjr 6:cc35eb643e8f 915 // scale to the joystick report range and round to integer
mjr 6:cc35eb643e8f 916 int i = int(round(v*JOYMAX));
mjr 5:a70c0bce770d 917
mjr 6:cc35eb643e8f 918 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 919 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 920 static const int filter[] = {
mjr 6:cc35eb643e8f 921 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 922 0,
mjr 6:cc35eb643e8f 923 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 924 };
mjr 6:cc35eb643e8f 925 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 926 }
mjr 5:a70c0bce770d 927
mjr 3:3514575d4f86 928 // interrupt handler
mjr 3:3514575d4f86 929 void isr()
mjr 3:3514575d4f86 930 {
mjr 3:3514575d4f86 931 // Read the axes. Note that we have to read all three axes
mjr 3:3514575d4f86 932 // (even though we only really use x and y) in order to clear
mjr 3:3514575d4f86 933 // the "data ready" status bit in the accelerometer. The
mjr 3:3514575d4f86 934 // interrupt only occurs when the "ready" bit transitions from
mjr 3:3514575d4f86 935 // off to on, so we have to make sure it's off.
mjr 5:a70c0bce770d 936 float x, y, z;
mjr 5:a70c0bce770d 937 mma_.getAccXYZ(x, y, z);
mjr 3:3514575d4f86 938
mjr 3:3514575d4f86 939 // calculate the time since the last interrupt
mjr 3:3514575d4f86 940 float dt = tInt_.read_us()/1.0e6;
mjr 3:3514575d4f86 941 tInt_.reset();
mjr 6:cc35eb643e8f 942
mjr 6:cc35eb643e8f 943 // integrate the time slice from the previous reading to this reading
mjr 6:cc35eb643e8f 944 vx_ += (x + ax_ - 2*cx_)*dt/2;
mjr 6:cc35eb643e8f 945 vy_ += (y + ay_ - 2*cy_)*dt/2;
mjr 3:3514575d4f86 946
mjr 6:cc35eb643e8f 947 // store the updates
mjr 6:cc35eb643e8f 948 ax_ = x;
mjr 6:cc35eb643e8f 949 ay_ = y;
mjr 6:cc35eb643e8f 950 az_ = z;
mjr 3:3514575d4f86 951 }
mjr 3:3514575d4f86 952
mjr 3:3514575d4f86 953 // underlying accelerometer object
mjr 3:3514575d4f86 954 MMA8451Q mma_;
mjr 3:3514575d4f86 955
mjr 5:a70c0bce770d 956 // last raw acceleration readings
mjr 6:cc35eb643e8f 957 float ax_, ay_, az_;
mjr 5:a70c0bce770d 958
mjr 6:cc35eb643e8f 959 // integrated velocity reading since last get()
mjr 6:cc35eb643e8f 960 float vx_, vy_;
mjr 6:cc35eb643e8f 961
mjr 3:3514575d4f86 962 // timer for measuring time between get() samples
mjr 3:3514575d4f86 963 Timer tGet_;
mjr 3:3514575d4f86 964
mjr 3:3514575d4f86 965 // timer for measuring time between interrupts
mjr 3:3514575d4f86 966 Timer tInt_;
mjr 5:a70c0bce770d 967
mjr 6:cc35eb643e8f 968 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 969 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 970 // at rest.
mjr 6:cc35eb643e8f 971 float cx_, cy_;
mjr 5:a70c0bce770d 972
mjr 5:a70c0bce770d 973 // timer for atuo-centering
mjr 5:a70c0bce770d 974 Timer tCenter_;
mjr 6:cc35eb643e8f 975
mjr 6:cc35eb643e8f 976 // Auto-centering history. This is a separate history list that
mjr 6:cc35eb643e8f 977 // records results spaced out sparesely over time, so that we can
mjr 6:cc35eb643e8f 978 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 979 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 980 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 981 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 982 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 983 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 984 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 985 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 986 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 987 // accelerometer measurement bias (e.g., from temperature changes).
mjr 5:a70c0bce770d 988 int iAccPrv_, nAccPrv_;
mjr 5:a70c0bce770d 989 static const int maxAccPrv = 5;
mjr 6:cc35eb643e8f 990 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 991
mjr 5:a70c0bce770d 992 // interurupt pin name
mjr 5:a70c0bce770d 993 PinName irqPin_;
mjr 5:a70c0bce770d 994
mjr 5:a70c0bce770d 995 // interrupt router
mjr 5:a70c0bce770d 996 InterruptIn intIn_;
mjr 3:3514575d4f86 997 };
mjr 3:3514575d4f86 998
mjr 5:a70c0bce770d 999
mjr 5:a70c0bce770d 1000 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 1001 //
mjr 14:df700b22ca08 1002 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 1003 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 1004 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 1005 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 1006 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 1007 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 1008 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 1009 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 1010 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 1011 //
mjr 14:df700b22ca08 1012 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 1013 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 1014 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 1015 //
mjr 5:a70c0bce770d 1016 void clear_i2c()
mjr 5:a70c0bce770d 1017 {
mjr 5:a70c0bce770d 1018 // assume a general-purpose output pin to the I2C clock
mjr 5:a70c0bce770d 1019 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 1020 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 1021
mjr 5:a70c0bce770d 1022 // clock the SCL 9 times
mjr 5:a70c0bce770d 1023 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 1024 {
mjr 5:a70c0bce770d 1025 scl = 1;
mjr 5:a70c0bce770d 1026 wait_us(20);
mjr 5:a70c0bce770d 1027 scl = 0;
mjr 5:a70c0bce770d 1028 wait_us(20);
mjr 5:a70c0bce770d 1029 }
mjr 5:a70c0bce770d 1030 }
mjr 14:df700b22ca08 1031
mjr 14:df700b22ca08 1032 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 1033 //
mjr 17:ab3cec0c8bf4 1034 // Include the appropriate plunger sensor definition. This will define a
mjr 17:ab3cec0c8bf4 1035 // class called PlungerSensor, with a standard interface that we use in
mjr 17:ab3cec0c8bf4 1036 // the main loop below. This is *kind of* like a virtual class interface,
mjr 17:ab3cec0c8bf4 1037 // but it actually defines the methods statically, which is a little more
mjr 17:ab3cec0c8bf4 1038 // efficient at run-time. There's no need for a true virtual interface
mjr 17:ab3cec0c8bf4 1039 // because we don't need to be able to change sensor types on the fly.
mjr 17:ab3cec0c8bf4 1040 //
mjr 17:ab3cec0c8bf4 1041
mjr 22:71422c359f2a 1042 #if defined(ENABLE_CCD_SENSOR)
mjr 17:ab3cec0c8bf4 1043 #include "ccdSensor.h"
mjr 22:71422c359f2a 1044 #elif defined(ENABLE_POT_SENSOR)
mjr 17:ab3cec0c8bf4 1045 #include "potSensor.h"
mjr 17:ab3cec0c8bf4 1046 #else
mjr 17:ab3cec0c8bf4 1047 #include "nullSensor.h"
mjr 17:ab3cec0c8bf4 1048 #endif
mjr 17:ab3cec0c8bf4 1049
mjr 17:ab3cec0c8bf4 1050
mjr 17:ab3cec0c8bf4 1051 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 1052 //
mjr 17:ab3cec0c8bf4 1053 // Non-volatile memory (NVM)
mjr 17:ab3cec0c8bf4 1054 //
mjr 17:ab3cec0c8bf4 1055
mjr 17:ab3cec0c8bf4 1056 // Structure defining our NVM storage layout. We store a small
mjr 17:ab3cec0c8bf4 1057 // amount of persistent data in flash memory to retain calibration
mjr 17:ab3cec0c8bf4 1058 // data when powered off.
mjr 17:ab3cec0c8bf4 1059 struct NVM
mjr 17:ab3cec0c8bf4 1060 {
mjr 17:ab3cec0c8bf4 1061 // checksum - we use this to determine if the flash record
mjr 17:ab3cec0c8bf4 1062 // has been properly initialized
mjr 17:ab3cec0c8bf4 1063 uint32_t checksum;
mjr 17:ab3cec0c8bf4 1064
mjr 17:ab3cec0c8bf4 1065 // signature value
mjr 17:ab3cec0c8bf4 1066 static const uint32_t SIGNATURE = 0x4D4A522A;
mjr 17:ab3cec0c8bf4 1067 static const uint16_t VERSION = 0x0003;
mjr 17:ab3cec0c8bf4 1068
mjr 17:ab3cec0c8bf4 1069 // Is the data structure valid? We test the signature and
mjr 17:ab3cec0c8bf4 1070 // checksum to determine if we've been properly stored.
mjr 17:ab3cec0c8bf4 1071 int valid() const
mjr 17:ab3cec0c8bf4 1072 {
mjr 17:ab3cec0c8bf4 1073 return (d.sig == SIGNATURE
mjr 17:ab3cec0c8bf4 1074 && d.vsn == VERSION
mjr 17:ab3cec0c8bf4 1075 && d.sz == sizeof(NVM)
mjr 17:ab3cec0c8bf4 1076 && checksum == CRC32(&d, sizeof(d)));
mjr 17:ab3cec0c8bf4 1077 }
mjr 17:ab3cec0c8bf4 1078
mjr 17:ab3cec0c8bf4 1079 // save to non-volatile memory
mjr 17:ab3cec0c8bf4 1080 void save(FreescaleIAP &iap, int addr)
mjr 17:ab3cec0c8bf4 1081 {
mjr 17:ab3cec0c8bf4 1082 // update the checksum and structure size
mjr 17:ab3cec0c8bf4 1083 checksum = CRC32(&d, sizeof(d));
mjr 17:ab3cec0c8bf4 1084 d.sz = sizeof(NVM);
mjr 17:ab3cec0c8bf4 1085
mjr 17:ab3cec0c8bf4 1086 // erase the sector
mjr 17:ab3cec0c8bf4 1087 iap.erase_sector(addr);
mjr 17:ab3cec0c8bf4 1088
mjr 17:ab3cec0c8bf4 1089 // save the data
mjr 17:ab3cec0c8bf4 1090 iap.program_flash(addr, this, sizeof(*this));
mjr 17:ab3cec0c8bf4 1091 }
mjr 17:ab3cec0c8bf4 1092
mjr 17:ab3cec0c8bf4 1093 // reset calibration data for calibration mode
mjr 17:ab3cec0c8bf4 1094 void resetPlunger()
mjr 17:ab3cec0c8bf4 1095 {
mjr 17:ab3cec0c8bf4 1096 // set extremes for the calibration data
mjr 17:ab3cec0c8bf4 1097 d.plungerMax = 0;
mjr 17:ab3cec0c8bf4 1098 d.plungerZero = npix;
mjr 17:ab3cec0c8bf4 1099 d.plungerMin = npix;
mjr 17:ab3cec0c8bf4 1100 }
mjr 17:ab3cec0c8bf4 1101
mjr 17:ab3cec0c8bf4 1102 // stored data (excluding the checksum)
mjr 17:ab3cec0c8bf4 1103 struct
mjr 17:ab3cec0c8bf4 1104 {
mjr 17:ab3cec0c8bf4 1105 // Signature, structure version, and structure size - further verification
mjr 17:ab3cec0c8bf4 1106 // that we have valid initialized data. The size is a simple proxy for a
mjr 17:ab3cec0c8bf4 1107 // structure version, as the most common type of change to the structure as
mjr 17:ab3cec0c8bf4 1108 // the software evolves will be the addition of new elements. We also
mjr 17:ab3cec0c8bf4 1109 // provide an explicit version number that we can update manually if we
mjr 17:ab3cec0c8bf4 1110 // make any changes that don't affect the structure size but would affect
mjr 17:ab3cec0c8bf4 1111 // compatibility with a saved record (e.g., swapping two existing elements).
mjr 17:ab3cec0c8bf4 1112 uint32_t sig;
mjr 17:ab3cec0c8bf4 1113 uint16_t vsn;
mjr 17:ab3cec0c8bf4 1114 int sz;
mjr 17:ab3cec0c8bf4 1115
mjr 17:ab3cec0c8bf4 1116 // has the plunger been manually calibrated?
mjr 17:ab3cec0c8bf4 1117 int plungerCal;
mjr 17:ab3cec0c8bf4 1118
mjr 17:ab3cec0c8bf4 1119 // Plunger calibration min, zero, and max. The zero point is the
mjr 17:ab3cec0c8bf4 1120 // rest position (aka park position), where it's in equilibrium between
mjr 17:ab3cec0c8bf4 1121 // the main spring and the barrel spring. It can travel a small distance
mjr 17:ab3cec0c8bf4 1122 // forward of the rest position, because the barrel spring can be
mjr 17:ab3cec0c8bf4 1123 // compressed by the user pushing on the plunger or by the momentum
mjr 17:ab3cec0c8bf4 1124 // of a release motion. The minimum is the maximum forward point where
mjr 17:ab3cec0c8bf4 1125 // the barrel spring can't be compressed any further.
mjr 17:ab3cec0c8bf4 1126 int plungerMin;
mjr 17:ab3cec0c8bf4 1127 int plungerZero;
mjr 17:ab3cec0c8bf4 1128 int plungerMax;
mjr 17:ab3cec0c8bf4 1129
mjr 17:ab3cec0c8bf4 1130 // is the plunger sensor enabled?
mjr 17:ab3cec0c8bf4 1131 int plungerEnabled;
mjr 17:ab3cec0c8bf4 1132
mjr 17:ab3cec0c8bf4 1133 // LedWiz unit number
mjr 17:ab3cec0c8bf4 1134 uint8_t ledWizUnitNo;
mjr 17:ab3cec0c8bf4 1135 } d;
mjr 17:ab3cec0c8bf4 1136 };
mjr 17:ab3cec0c8bf4 1137
mjr 17:ab3cec0c8bf4 1138
mjr 17:ab3cec0c8bf4 1139 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 1140 //
mjr 5:a70c0bce770d 1141 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 1142 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 1143 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 1144 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 1145 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 1146 // port outputs.
mjr 5:a70c0bce770d 1147 //
mjr 0:5acbbe3f4cf4 1148 int main(void)
mjr 0:5acbbe3f4cf4 1149 {
mjr 1:d913e0afb2ac 1150 // turn off our on-board indicator LED
mjr 4:02c7cd7b2183 1151 ledR = 1;
mjr 4:02c7cd7b2183 1152 ledG = 1;
mjr 4:02c7cd7b2183 1153 ledB = 1;
mjr 1:d913e0afb2ac 1154
mjr 6:cc35eb643e8f 1155 // initialize the LedWiz ports
mjr 6:cc35eb643e8f 1156 initLwOut();
mjr 6:cc35eb643e8f 1157
mjr 11:bd9da7088e6e 1158 // initialize the button input ports
mjr 11:bd9da7088e6e 1159 initButtons();
mjr 11:bd9da7088e6e 1160
mjr 6:cc35eb643e8f 1161 // we don't need a reset yet
mjr 6:cc35eb643e8f 1162 bool needReset = false;
mjr 6:cc35eb643e8f 1163
mjr 5:a70c0bce770d 1164 // clear the I2C bus for the accelerometer
mjr 5:a70c0bce770d 1165 clear_i2c();
mjr 5:a70c0bce770d 1166
mjr 2:c174f9ee414a 1167 // set up a flash memory controller
mjr 2:c174f9ee414a 1168 FreescaleIAP iap;
mjr 2:c174f9ee414a 1169
mjr 2:c174f9ee414a 1170 // use the last sector of flash for our non-volatile memory structure
mjr 2:c174f9ee414a 1171 int flash_addr = (iap.flash_size() - SECTOR_SIZE);
mjr 2:c174f9ee414a 1172 NVM *flash = (NVM *)flash_addr;
mjr 2:c174f9ee414a 1173 NVM cfg;
mjr 2:c174f9ee414a 1174
mjr 2:c174f9ee414a 1175 // check for valid flash
mjr 6:cc35eb643e8f 1176 bool flash_valid = flash->valid();
mjr 2:c174f9ee414a 1177
mjr 2:c174f9ee414a 1178 // if the flash is valid, load it; otherwise initialize to defaults
mjr 2:c174f9ee414a 1179 if (flash_valid) {
mjr 2:c174f9ee414a 1180 memcpy(&cfg, flash, sizeof(cfg));
mjr 6:cc35eb643e8f 1181 printf("Flash restored: plunger cal=%d, min=%d, zero=%d, max=%d\r\n",
mjr 6:cc35eb643e8f 1182 cfg.d.plungerCal, cfg.d.plungerMin, cfg.d.plungerZero, cfg.d.plungerMax);
mjr 2:c174f9ee414a 1183 }
mjr 2:c174f9ee414a 1184 else {
mjr 2:c174f9ee414a 1185 printf("Factory reset\r\n");
mjr 2:c174f9ee414a 1186 cfg.d.sig = cfg.SIGNATURE;
mjr 2:c174f9ee414a 1187 cfg.d.vsn = cfg.VERSION;
mjr 6:cc35eb643e8f 1188 cfg.d.plungerCal = 0;
mjr 17:ab3cec0c8bf4 1189 cfg.d.plungerMin = 0; // assume we can go all the way forward...
mjr 17:ab3cec0c8bf4 1190 cfg.d.plungerMax = npix; // ...and all the way back
mjr 17:ab3cec0c8bf4 1191 cfg.d.plungerZero = npix/6; // the rest position is usually around 1/2" back
mjr 21:5048e16cc9ef 1192 cfg.d.ledWizUnitNo = DEFAULT_LEDWIZ_UNIT_NUMBER - 1; // unit numbering starts from 0 internally
mjr 21:5048e16cc9ef 1193 cfg.d.plungerEnabled = PLUNGER_CODE_ENABLED;
mjr 2:c174f9ee414a 1194 }
mjr 1:d913e0afb2ac 1195
mjr 6:cc35eb643e8f 1196 // Create the joystick USB client. Note that we use the LedWiz unit
mjr 6:cc35eb643e8f 1197 // number from the saved configuration.
mjr 6:cc35eb643e8f 1198 MyUSBJoystick js(
mjr 6:cc35eb643e8f 1199 USB_VENDOR_ID,
mjr 6:cc35eb643e8f 1200 USB_PRODUCT_ID | cfg.d.ledWizUnitNo,
mjr 6:cc35eb643e8f 1201 USB_VERSION_NO);
mjr 17:ab3cec0c8bf4 1202
mjr 17:ab3cec0c8bf4 1203 // last report timer - we use this to throttle reports, since VP
mjr 17:ab3cec0c8bf4 1204 // doesn't want to hear from us more than about every 10ms
mjr 17:ab3cec0c8bf4 1205 Timer reportTimer;
mjr 17:ab3cec0c8bf4 1206 reportTimer.start();
mjr 17:ab3cec0c8bf4 1207
mjr 17:ab3cec0c8bf4 1208 // initialize the calibration buttons, if present
mjr 17:ab3cec0c8bf4 1209 DigitalIn *calBtn = (CAL_BUTTON_PIN == NC ? 0 : new DigitalIn(CAL_BUTTON_PIN));
mjr 17:ab3cec0c8bf4 1210 DigitalOut *calBtnLed = (CAL_BUTTON_LED == NC ? 0 : new DigitalOut(CAL_BUTTON_LED));
mjr 6:cc35eb643e8f 1211
mjr 1:d913e0afb2ac 1212 // plunger calibration button debounce timer
mjr 1:d913e0afb2ac 1213 Timer calBtnTimer;
mjr 1:d913e0afb2ac 1214 calBtnTimer.start();
mjr 1:d913e0afb2ac 1215 int calBtnLit = false;
mjr 1:d913e0afb2ac 1216
mjr 1:d913e0afb2ac 1217 // Calibration button state:
mjr 1:d913e0afb2ac 1218 // 0 = not pushed
mjr 1:d913e0afb2ac 1219 // 1 = pushed, not yet debounced
mjr 1:d913e0afb2ac 1220 // 2 = pushed, debounced, waiting for hold time
mjr 1:d913e0afb2ac 1221 // 3 = pushed, hold time completed - in calibration mode
mjr 1:d913e0afb2ac 1222 int calBtnState = 0;
mjr 1:d913e0afb2ac 1223
mjr 1:d913e0afb2ac 1224 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 1225 Timer hbTimer;
mjr 1:d913e0afb2ac 1226 hbTimer.start();
mjr 1:d913e0afb2ac 1227 int hb = 0;
mjr 5:a70c0bce770d 1228 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 1229
mjr 1:d913e0afb2ac 1230 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 1231 Timer acTimer;
mjr 1:d913e0afb2ac 1232 acTimer.start();
mjr 1:d913e0afb2ac 1233
mjr 0:5acbbe3f4cf4 1234 // create the accelerometer object
mjr 5:a70c0bce770d 1235 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS, MMA8451_INT_PIN);
mjr 0:5acbbe3f4cf4 1236
mjr 21:5048e16cc9ef 1237 #ifdef ENABLE_JOYSTICK
mjr 17:ab3cec0c8bf4 1238 // last accelerometer report, in joystick units (we report the nudge
mjr 17:ab3cec0c8bf4 1239 // acceleration via the joystick x & y axes, per the VP convention)
mjr 17:ab3cec0c8bf4 1240 int x = 0, y = 0;
mjr 17:ab3cec0c8bf4 1241
mjr 21:5048e16cc9ef 1242 // flag: send a pixel dump after the next read
mjr 21:5048e16cc9ef 1243 bool reportPix = false;
mjr 21:5048e16cc9ef 1244 #endif
mjr 21:5048e16cc9ef 1245
mjr 17:ab3cec0c8bf4 1246 // create our plunger sensor object
mjr 17:ab3cec0c8bf4 1247 PlungerSensor plungerSensor;
mjr 17:ab3cec0c8bf4 1248
mjr 17:ab3cec0c8bf4 1249 // last plunger report position, in 'npix' normalized pixel units
mjr 17:ab3cec0c8bf4 1250 int pos = 0;
mjr 17:ab3cec0c8bf4 1251
mjr 17:ab3cec0c8bf4 1252 // last plunger report, in joystick units (we report the plunger as the
mjr 17:ab3cec0c8bf4 1253 // "z" axis of the joystick, per the VP convention)
mjr 17:ab3cec0c8bf4 1254 int z = 0;
mjr 17:ab3cec0c8bf4 1255
mjr 17:ab3cec0c8bf4 1256 // most recent prior plunger readings, for tracking release events(z0 is
mjr 17:ab3cec0c8bf4 1257 // reading just before the last one we reported, z1 is the one before that,
mjr 17:ab3cec0c8bf4 1258 // z2 the next before that)
mjr 17:ab3cec0c8bf4 1259 int z0 = 0, z1 = 0, z2 = 0;
mjr 17:ab3cec0c8bf4 1260
mjr 17:ab3cec0c8bf4 1261 // Simulated "bounce" position when firing. We model the bounce off of
mjr 17:ab3cec0c8bf4 1262 // the barrel spring when the plunger is released as proportional to the
mjr 17:ab3cec0c8bf4 1263 // distance it was retracted just before being released.
mjr 17:ab3cec0c8bf4 1264 int zBounce = 0;
mjr 2:c174f9ee414a 1265
mjr 17:ab3cec0c8bf4 1266 // Simulated Launch Ball button state. If a "ZB Launch Ball" port is
mjr 17:ab3cec0c8bf4 1267 // defined for our LedWiz port mapping, any time that port is turned ON,
mjr 17:ab3cec0c8bf4 1268 // we'll simulate pushing the Launch Ball button if the player pulls
mjr 17:ab3cec0c8bf4 1269 // back and releases the plunger, or simply pushes on the plunger from
mjr 17:ab3cec0c8bf4 1270 // the rest position. This allows the plunger to be used in lieu of a
mjr 17:ab3cec0c8bf4 1271 // physical Launch Ball button for tables that don't have plungers.
mjr 17:ab3cec0c8bf4 1272 //
mjr 17:ab3cec0c8bf4 1273 // States:
mjr 17:ab3cec0c8bf4 1274 // 0 = default
mjr 17:ab3cec0c8bf4 1275 // 1 = cocked (plunger has been pulled back about 1" from state 0)
mjr 17:ab3cec0c8bf4 1276 // 2 = uncocked (plunger is pulled back less than 1" from state 1)
mjr 21:5048e16cc9ef 1277 // 3 = launching, plunger is forward beyond park position
mjr 21:5048e16cc9ef 1278 // 4 = launching, plunger is behind park position
mjr 21:5048e16cc9ef 1279 // 5 = pressed and holding (plunger has been pressed forward beyond
mjr 21:5048e16cc9ef 1280 // the park position from state 0)
mjr 17:ab3cec0c8bf4 1281 int lbState = 0;
mjr 6:cc35eb643e8f 1282
mjr 17:ab3cec0c8bf4 1283 // Time since last lbState transition. Some of the states are time-
mjr 17:ab3cec0c8bf4 1284 // sensitive. In the "uncocked" state, we'll return to state 0 if
mjr 17:ab3cec0c8bf4 1285 // we remain in this state for more than a few milliseconds, since
mjr 17:ab3cec0c8bf4 1286 // it indicates that the plunger is being slowly returned to rest
mjr 17:ab3cec0c8bf4 1287 // rather than released. In the "launching" state, we need to release
mjr 17:ab3cec0c8bf4 1288 // the Launch Ball button after a moment, and we need to wait for
mjr 17:ab3cec0c8bf4 1289 // the plunger to come to rest before returning to state 0.
mjr 17:ab3cec0c8bf4 1290 Timer lbTimer;
mjr 17:ab3cec0c8bf4 1291 lbTimer.start();
mjr 17:ab3cec0c8bf4 1292
mjr 18:5e890ebd0023 1293 // Launch Ball simulated push timer. We start this when we simulate
mjr 18:5e890ebd0023 1294 // the button push, and turn off the simulated button when enough time
mjr 18:5e890ebd0023 1295 // has elapsed.
mjr 18:5e890ebd0023 1296 Timer lbBtnTimer;
mjr 18:5e890ebd0023 1297
mjr 17:ab3cec0c8bf4 1298 // Simulated button states. This is a vector of button states
mjr 17:ab3cec0c8bf4 1299 // for the simulated buttons. We combine this with the physical
mjr 17:ab3cec0c8bf4 1300 // button states on each USB joystick report, so we will report
mjr 17:ab3cec0c8bf4 1301 // a button as pressed if either the physical button is being pressed
mjr 17:ab3cec0c8bf4 1302 // or we're simulating a press on the button. This is used for the
mjr 17:ab3cec0c8bf4 1303 // simulated Launch Ball button.
mjr 17:ab3cec0c8bf4 1304 uint32_t simButtons = 0;
mjr 6:cc35eb643e8f 1305
mjr 6:cc35eb643e8f 1306 // Firing in progress: we set this when we detect the start of rapid
mjr 6:cc35eb643e8f 1307 // plunger movement from a retracted position towards the rest position.
mjr 17:ab3cec0c8bf4 1308 //
mjr 17:ab3cec0c8bf4 1309 // When we detect a firing event, we send VP a series of synthetic
mjr 17:ab3cec0c8bf4 1310 // reports simulating the idealized plunger motion. The actual physical
mjr 17:ab3cec0c8bf4 1311 // motion is much too fast to report to VP; in the time between two USB
mjr 17:ab3cec0c8bf4 1312 // reports, the plunger can shoot all the way forward, rebound off of
mjr 17:ab3cec0c8bf4 1313 // the barrel spring, bounce back part way, and bounce forward again,
mjr 17:ab3cec0c8bf4 1314 // or even do all of this more than once. This means that sampling the
mjr 17:ab3cec0c8bf4 1315 // physical motion at the USB report rate would create a misleading
mjr 17:ab3cec0c8bf4 1316 // picture of the plunger motion, since our samples would catch the
mjr 17:ab3cec0c8bf4 1317 // plunger at random points in this oscillating motion. From the
mjr 17:ab3cec0c8bf4 1318 // user's perspective, the physical action that occurred is simply that
mjr 17:ab3cec0c8bf4 1319 // the plunger was released from a particular distance, so it's this
mjr 17:ab3cec0c8bf4 1320 // high-level event that we want to convey to VP. To do this, we
mjr 17:ab3cec0c8bf4 1321 // synthesize a series of reports to convey an idealized version of
mjr 17:ab3cec0c8bf4 1322 // the release motion that's perfectly synchronized to the VP reports.
mjr 17:ab3cec0c8bf4 1323 // Essentially we pretend that our USB position samples are exactly
mjr 17:ab3cec0c8bf4 1324 // aligned in time with (1) the point of retraction just before the
mjr 17:ab3cec0c8bf4 1325 // user released the plunger, (2) the point of maximum forward motion
mjr 17:ab3cec0c8bf4 1326 // just after the user released the plunger (the point of maximum
mjr 17:ab3cec0c8bf4 1327 // compression as the plunger bounces off of the barrel spring), and
mjr 17:ab3cec0c8bf4 1328 // (3) the plunger coming to rest at the park position. This series
mjr 17:ab3cec0c8bf4 1329 // of reports is synthetic in the sense that it's not what we actually
mjr 17:ab3cec0c8bf4 1330 // see on the CCD at the times of these reports - the true plunger
mjr 17:ab3cec0c8bf4 1331 // position is oscillating at high speed during this period. But at
mjr 17:ab3cec0c8bf4 1332 // the same time it conveys a more faithful picture of the true physical
mjr 17:ab3cec0c8bf4 1333 // motion to VP, and allows VP to reproduce the true physical motion
mjr 17:ab3cec0c8bf4 1334 // more faithfully in its simulation model, by correcting for the
mjr 17:ab3cec0c8bf4 1335 // relatively low sampling rate in the communication path between the
mjr 17:ab3cec0c8bf4 1336 // real plunger and VP's model plunger.
mjr 17:ab3cec0c8bf4 1337 //
mjr 17:ab3cec0c8bf4 1338 // If 'firing' is non-zero, it's the index of our current report in
mjr 17:ab3cec0c8bf4 1339 // the synthetic firing report series.
mjr 9:fd65b0a94720 1340 int firing = 0;
mjr 2:c174f9ee414a 1341
mjr 2:c174f9ee414a 1342 // start the first CCD integration cycle
mjr 17:ab3cec0c8bf4 1343 plungerSensor.init();
mjr 9:fd65b0a94720 1344
mjr 9:fd65b0a94720 1345 // Device status. We report this on each update so that the host config
mjr 9:fd65b0a94720 1346 // tool can detect our current settings. This is a bit mask consisting
mjr 9:fd65b0a94720 1347 // of these bits:
mjr 9:fd65b0a94720 1348 // 0x01 -> plunger sensor enabled
mjr 17:ab3cec0c8bf4 1349 uint16_t statusFlags = (cfg.d.plungerEnabled ? 0x01 : 0x00);
mjr 10:976666ffa4ef 1350
mjr 1:d913e0afb2ac 1351 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 1352 // host requests
mjr 0:5acbbe3f4cf4 1353 for (;;)
mjr 0:5acbbe3f4cf4 1354 {
mjr 18:5e890ebd0023 1355 // Look for an incoming report. Process a few input reports in
mjr 18:5e890ebd0023 1356 // a row, but stop after a few so that a barrage of inputs won't
mjr 20:4c43877327ab 1357 // starve our output event processing. Also, pause briefly between
mjr 20:4c43877327ab 1358 // reads; allowing reads to occur back-to-back seems to occasionally
mjr 20:4c43877327ab 1359 // stall the USB pipeline (for reasons unknown; I'd fix the underlying
mjr 20:4c43877327ab 1360 // problem if I knew what it was).
mjr 0:5acbbe3f4cf4 1361 HID_REPORT report;
mjr 20:4c43877327ab 1362 for (int rr = 0 ; rr < 4 && js.readNB(&report) ; ++rr, wait_ms(1))
mjr 0:5acbbe3f4cf4 1363 {
mjr 6:cc35eb643e8f 1364 // all Led-Wiz reports are 8 bytes exactly
mjr 6:cc35eb643e8f 1365 if (report.length == 8)
mjr 1:d913e0afb2ac 1366 {
mjr 6:cc35eb643e8f 1367 uint8_t *data = report.data;
mjr 6:cc35eb643e8f 1368 if (data[0] == 64)
mjr 0:5acbbe3f4cf4 1369 {
mjr 6:cc35eb643e8f 1370 // LWZ-SBA - first four bytes are bit-packed on/off flags
mjr 6:cc35eb643e8f 1371 // for the outputs; 5th byte is the pulse speed (0-7)
mjr 6:cc35eb643e8f 1372 //printf("LWZ-SBA %02x %02x %02x %02x ; %02x\r\n",
mjr 6:cc35eb643e8f 1373 // data[1], data[2], data[3], data[4], data[5]);
mjr 0:5acbbe3f4cf4 1374
mjr 6:cc35eb643e8f 1375 // update all on/off states
mjr 6:cc35eb643e8f 1376 for (int i = 0, bit = 1, ri = 1 ; i < 32 ; ++i, bit <<= 1)
mjr 6:cc35eb643e8f 1377 {
mjr 6:cc35eb643e8f 1378 if (bit == 0x100) {
mjr 6:cc35eb643e8f 1379 bit = 1;
mjr 6:cc35eb643e8f 1380 ++ri;
mjr 6:cc35eb643e8f 1381 }
mjr 6:cc35eb643e8f 1382 wizOn[i] = ((data[ri] & bit) != 0);
mjr 6:cc35eb643e8f 1383 }
mjr 6:cc35eb643e8f 1384
mjr 6:cc35eb643e8f 1385 // update the physical outputs
mjr 1:d913e0afb2ac 1386 updateWizOuts();
mjr 6:cc35eb643e8f 1387
mjr 6:cc35eb643e8f 1388 // reset the PBA counter
mjr 6:cc35eb643e8f 1389 pbaIdx = 0;
mjr 6:cc35eb643e8f 1390 }
mjr 6:cc35eb643e8f 1391 else if (data[0] == 65)
mjr 6:cc35eb643e8f 1392 {
mjr 6:cc35eb643e8f 1393 // Private control message. This isn't an LedWiz message - it's
mjr 6:cc35eb643e8f 1394 // an extension for this device. 65 is an invalid PBA setting,
mjr 6:cc35eb643e8f 1395 // and isn't used for any other LedWiz message, so we appropriate
mjr 6:cc35eb643e8f 1396 // it for our own private use. The first byte specifies the
mjr 6:cc35eb643e8f 1397 // message type.
mjr 6:cc35eb643e8f 1398 if (data[1] == 1)
mjr 6:cc35eb643e8f 1399 {
mjr 9:fd65b0a94720 1400 // 1 = Set Configuration:
mjr 6:cc35eb643e8f 1401 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 6:cc35eb643e8f 1402 // data[3] = feature enable bit mask:
mjr 21:5048e16cc9ef 1403 // 0x01 = enable plunger sensor
mjr 6:cc35eb643e8f 1404
mjr 6:cc35eb643e8f 1405 // we'll need a reset if the LedWiz unit number is changing
mjr 6:cc35eb643e8f 1406 uint8_t newUnitNo = data[2] & 0x0f;
mjr 6:cc35eb643e8f 1407 needReset |= (newUnitNo != cfg.d.ledWizUnitNo);
mjr 6:cc35eb643e8f 1408
mjr 6:cc35eb643e8f 1409 // set the configuration parameters from the message
mjr 6:cc35eb643e8f 1410 cfg.d.ledWizUnitNo = newUnitNo;
mjr 17:ab3cec0c8bf4 1411 cfg.d.plungerEnabled = data[3] & 0x01;
mjr 6:cc35eb643e8f 1412
mjr 9:fd65b0a94720 1413 // update the status flags
mjr 9:fd65b0a94720 1414 statusFlags = (statusFlags & ~0x01) | (data[3] & 0x01);
mjr 9:fd65b0a94720 1415
mjr 9:fd65b0a94720 1416 // if the ccd is no longer enabled, use 0 for z reports
mjr 17:ab3cec0c8bf4 1417 if (!cfg.d.plungerEnabled)
mjr 9:fd65b0a94720 1418 z = 0;
mjr 9:fd65b0a94720 1419
mjr 6:cc35eb643e8f 1420 // save the configuration
mjr 6:cc35eb643e8f 1421 cfg.save(iap, flash_addr);
mjr 6:cc35eb643e8f 1422 }
mjr 21:5048e16cc9ef 1423 #ifdef ENABLE_JOYSTICK
mjr 9:fd65b0a94720 1424 else if (data[1] == 2)
mjr 9:fd65b0a94720 1425 {
mjr 9:fd65b0a94720 1426 // 2 = Calibrate plunger
mjr 9:fd65b0a94720 1427 // (No parameters)
mjr 9:fd65b0a94720 1428
mjr 9:fd65b0a94720 1429 // enter calibration mode
mjr 9:fd65b0a94720 1430 calBtnState = 3;
mjr 9:fd65b0a94720 1431 calBtnTimer.reset();
mjr 9:fd65b0a94720 1432 cfg.resetPlunger();
mjr 9:fd65b0a94720 1433 }
mjr 10:976666ffa4ef 1434 else if (data[1] == 3)
mjr 10:976666ffa4ef 1435 {
mjr 10:976666ffa4ef 1436 // 3 = pixel dump
mjr 10:976666ffa4ef 1437 // (No parameters)
mjr 10:976666ffa4ef 1438 reportPix = true;
mjr 10:976666ffa4ef 1439
mjr 10:976666ffa4ef 1440 // show purple until we finish sending the report
mjr 10:976666ffa4ef 1441 ledR = 0;
mjr 10:976666ffa4ef 1442 ledB = 0;
mjr 10:976666ffa4ef 1443 ledG = 1;
mjr 10:976666ffa4ef 1444 }
mjr 21:5048e16cc9ef 1445 #endif // ENABLE_JOYSTICK
mjr 6:cc35eb643e8f 1446 }
mjr 6:cc35eb643e8f 1447 else
mjr 6:cc35eb643e8f 1448 {
mjr 6:cc35eb643e8f 1449 // LWZ-PBA - full state dump; each byte is one output
mjr 6:cc35eb643e8f 1450 // in the current bank. pbaIdx keeps track of the bank;
mjr 6:cc35eb643e8f 1451 // this is incremented implicitly by each PBA message.
mjr 6:cc35eb643e8f 1452 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 6:cc35eb643e8f 1453 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 6:cc35eb643e8f 1454
mjr 6:cc35eb643e8f 1455 // update all output profile settings
mjr 6:cc35eb643e8f 1456 for (int i = 0 ; i < 8 ; ++i)
mjr 6:cc35eb643e8f 1457 wizVal[pbaIdx + i] = data[i];
mjr 6:cc35eb643e8f 1458
mjr 6:cc35eb643e8f 1459 // update the physical LED state if this is the last bank
mjr 6:cc35eb643e8f 1460 if (pbaIdx == 24)
mjr 13:72dda449c3c0 1461 {
mjr 6:cc35eb643e8f 1462 updateWizOuts();
mjr 13:72dda449c3c0 1463 pbaIdx = 0;
mjr 13:72dda449c3c0 1464 }
mjr 13:72dda449c3c0 1465 else
mjr 13:72dda449c3c0 1466 pbaIdx += 8;
mjr 6:cc35eb643e8f 1467 }
mjr 0:5acbbe3f4cf4 1468 }
mjr 0:5acbbe3f4cf4 1469 }
mjr 1:d913e0afb2ac 1470
mjr 1:d913e0afb2ac 1471 // check for plunger calibration
mjr 17:ab3cec0c8bf4 1472 if (calBtn != 0 && !calBtn->read())
mjr 0:5acbbe3f4cf4 1473 {
mjr 1:d913e0afb2ac 1474 // check the state
mjr 1:d913e0afb2ac 1475 switch (calBtnState)
mjr 0:5acbbe3f4cf4 1476 {
mjr 1:d913e0afb2ac 1477 case 0:
mjr 1:d913e0afb2ac 1478 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 1479 calBtnTimer.reset();
mjr 1:d913e0afb2ac 1480 calBtnState = 1;
mjr 1:d913e0afb2ac 1481 break;
mjr 1:d913e0afb2ac 1482
mjr 1:d913e0afb2ac 1483 case 1:
mjr 1:d913e0afb2ac 1484 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 1485 // passed, start the hold period
mjr 9:fd65b0a94720 1486 if (calBtnTimer.read_ms() > 50)
mjr 1:d913e0afb2ac 1487 calBtnState = 2;
mjr 1:d913e0afb2ac 1488 break;
mjr 1:d913e0afb2ac 1489
mjr 1:d913e0afb2ac 1490 case 2:
mjr 1:d913e0afb2ac 1491 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 1492 // for the entire hold period, move to calibration mode
mjr 9:fd65b0a94720 1493 if (calBtnTimer.read_ms() > 2050)
mjr 1:d913e0afb2ac 1494 {
mjr 1:d913e0afb2ac 1495 // enter calibration mode
mjr 1:d913e0afb2ac 1496 calBtnState = 3;
mjr 9:fd65b0a94720 1497 calBtnTimer.reset();
mjr 9:fd65b0a94720 1498 cfg.resetPlunger();
mjr 1:d913e0afb2ac 1499 }
mjr 1:d913e0afb2ac 1500 break;
mjr 2:c174f9ee414a 1501
mjr 2:c174f9ee414a 1502 case 3:
mjr 9:fd65b0a94720 1503 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 1504 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 1505 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 1506 break;
mjr 0:5acbbe3f4cf4 1507 }
mjr 0:5acbbe3f4cf4 1508 }
mjr 1:d913e0afb2ac 1509 else
mjr 1:d913e0afb2ac 1510 {
mjr 2:c174f9ee414a 1511 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 1512 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 1513 // and save the results to flash.
mjr 2:c174f9ee414a 1514 //
mjr 2:c174f9ee414a 1515 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 1516 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 1517 // mode, it simply cancels the attempt.
mjr 9:fd65b0a94720 1518 if (calBtnState == 3 && calBtnTimer.read_ms() > 15000)
mjr 2:c174f9ee414a 1519 {
mjr 2:c174f9ee414a 1520 // exit calibration mode
mjr 1:d913e0afb2ac 1521 calBtnState = 0;
mjr 2:c174f9ee414a 1522
mjr 6:cc35eb643e8f 1523 // save the updated configuration
mjr 6:cc35eb643e8f 1524 cfg.d.plungerCal = 1;
mjr 6:cc35eb643e8f 1525 cfg.save(iap, flash_addr);
mjr 2:c174f9ee414a 1526
mjr 2:c174f9ee414a 1527 // the flash state is now valid
mjr 2:c174f9ee414a 1528 flash_valid = true;
mjr 2:c174f9ee414a 1529 }
mjr 2:c174f9ee414a 1530 else if (calBtnState != 3)
mjr 2:c174f9ee414a 1531 {
mjr 2:c174f9ee414a 1532 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 1533 calBtnState = 0;
mjr 2:c174f9ee414a 1534 }
mjr 1:d913e0afb2ac 1535 }
mjr 1:d913e0afb2ac 1536
mjr 1:d913e0afb2ac 1537 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 1538 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 1539 switch (calBtnState)
mjr 0:5acbbe3f4cf4 1540 {
mjr 1:d913e0afb2ac 1541 case 2:
mjr 1:d913e0afb2ac 1542 // in the hold period - flash the light
mjr 9:fd65b0a94720 1543 newCalBtnLit = ((calBtnTimer.read_ms()/250) & 1);
mjr 1:d913e0afb2ac 1544 break;
mjr 1:d913e0afb2ac 1545
mjr 1:d913e0afb2ac 1546 case 3:
mjr 1:d913e0afb2ac 1547 // calibration mode - show steady on
mjr 1:d913e0afb2ac 1548 newCalBtnLit = true;
mjr 1:d913e0afb2ac 1549 break;
mjr 1:d913e0afb2ac 1550
mjr 1:d913e0afb2ac 1551 default:
mjr 1:d913e0afb2ac 1552 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 1553 newCalBtnLit = false;
mjr 1:d913e0afb2ac 1554 break;
mjr 1:d913e0afb2ac 1555 }
mjr 3:3514575d4f86 1556
mjr 3:3514575d4f86 1557 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 1558 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 1559 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 1560 {
mjr 1:d913e0afb2ac 1561 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 1562 if (calBtnLit) {
mjr 17:ab3cec0c8bf4 1563 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 1564 calBtnLed->write(1);
mjr 4:02c7cd7b2183 1565 ledR = 1;
mjr 4:02c7cd7b2183 1566 ledG = 1;
mjr 9:fd65b0a94720 1567 ledB = 0;
mjr 2:c174f9ee414a 1568 }
mjr 2:c174f9ee414a 1569 else {
mjr 17:ab3cec0c8bf4 1570 if (calBtnLed != 0)
mjr 17:ab3cec0c8bf4 1571 calBtnLed->write(0);
mjr 4:02c7cd7b2183 1572 ledR = 1;
mjr 4:02c7cd7b2183 1573 ledG = 1;
mjr 9:fd65b0a94720 1574 ledB = 1;
mjr 2:c174f9ee414a 1575 }
mjr 1:d913e0afb2ac 1576 }
mjr 1:d913e0afb2ac 1577
mjr 17:ab3cec0c8bf4 1578 // If the plunger is enabled, and we're not already in a firing event,
mjr 17:ab3cec0c8bf4 1579 // and the last plunger reading had the plunger pulled back at least
mjr 17:ab3cec0c8bf4 1580 // a bit, watch for plunger release events until it's time for our next
mjr 17:ab3cec0c8bf4 1581 // USB report.
mjr 17:ab3cec0c8bf4 1582 if (!firing && cfg.d.plungerEnabled && z >= JOYMAX/6)
mjr 17:ab3cec0c8bf4 1583 {
mjr 17:ab3cec0c8bf4 1584 // monitor the plunger until it's time for our next report
mjr 17:ab3cec0c8bf4 1585 while (reportTimer.read_ms() < 15)
mjr 17:ab3cec0c8bf4 1586 {
mjr 17:ab3cec0c8bf4 1587 // do a fast low-res scan; if it's at or past the zero point,
mjr 17:ab3cec0c8bf4 1588 // start a firing event
mjr 17:ab3cec0c8bf4 1589 if (plungerSensor.lowResScan() <= cfg.d.plungerZero)
mjr 17:ab3cec0c8bf4 1590 firing = 1;
mjr 17:ab3cec0c8bf4 1591 }
mjr 17:ab3cec0c8bf4 1592 }
mjr 17:ab3cec0c8bf4 1593
mjr 6:cc35eb643e8f 1594 // read the plunger sensor, if it's enabled
mjr 17:ab3cec0c8bf4 1595 if (cfg.d.plungerEnabled)
mjr 6:cc35eb643e8f 1596 {
mjr 6:cc35eb643e8f 1597 // start with the previous reading, in case we don't have a
mjr 6:cc35eb643e8f 1598 // clear result on this frame
mjr 6:cc35eb643e8f 1599 int znew = z;
mjr 17:ab3cec0c8bf4 1600 if (plungerSensor.highResScan(pos))
mjr 6:cc35eb643e8f 1601 {
mjr 17:ab3cec0c8bf4 1602 // We got a new reading. If we're in calibration mode, use it
mjr 17:ab3cec0c8bf4 1603 // to figure the new calibration, otherwise adjust the new reading
mjr 17:ab3cec0c8bf4 1604 // for the established calibration.
mjr 17:ab3cec0c8bf4 1605 if (calBtnState == 3)
mjr 6:cc35eb643e8f 1606 {
mjr 17:ab3cec0c8bf4 1607 // Calibration mode. If this reading is outside of the current
mjr 17:ab3cec0c8bf4 1608 // calibration bounds, expand the bounds.
mjr 17:ab3cec0c8bf4 1609 if (pos < cfg.d.plungerMin)
mjr 17:ab3cec0c8bf4 1610 cfg.d.plungerMin = pos;
mjr 17:ab3cec0c8bf4 1611 if (pos < cfg.d.plungerZero)
mjr 17:ab3cec0c8bf4 1612 cfg.d.plungerZero = pos;
mjr 17:ab3cec0c8bf4 1613 if (pos > cfg.d.plungerMax)
mjr 17:ab3cec0c8bf4 1614 cfg.d.plungerMax = pos;
mjr 6:cc35eb643e8f 1615
mjr 17:ab3cec0c8bf4 1616 // normalize to the full physical range while calibrating
mjr 17:ab3cec0c8bf4 1617 znew = int(round(float(pos)/npix * JOYMAX));
mjr 17:ab3cec0c8bf4 1618 }
mjr 17:ab3cec0c8bf4 1619 else
mjr 17:ab3cec0c8bf4 1620 {
mjr 17:ab3cec0c8bf4 1621 // Not in calibration mode, so normalize the new reading to the
mjr 17:ab3cec0c8bf4 1622 // established calibration range.
mjr 17:ab3cec0c8bf4 1623 //
mjr 17:ab3cec0c8bf4 1624 // Note that negative values are allowed. Zero represents the
mjr 17:ab3cec0c8bf4 1625 // "park" position, where the plunger sits when at rest. A mechanical
mjr 23:14f8c5004cd0 1626 // plunger has a small amount of travel in the "push" direction,
mjr 17:ab3cec0c8bf4 1627 // since the barrel spring can be compressed slightly. Negative
mjr 17:ab3cec0c8bf4 1628 // values represent travel in the push direction.
mjr 17:ab3cec0c8bf4 1629 if (pos > cfg.d.plungerMax)
mjr 17:ab3cec0c8bf4 1630 pos = cfg.d.plungerMax;
mjr 17:ab3cec0c8bf4 1631 znew = int(round(float(pos - cfg.d.plungerZero)
mjr 17:ab3cec0c8bf4 1632 / (cfg.d.plungerMax - cfg.d.plungerZero + 1) * JOYMAX));
mjr 6:cc35eb643e8f 1633 }
mjr 6:cc35eb643e8f 1634 }
mjr 7:100a25f8bf56 1635
mjr 17:ab3cec0c8bf4 1636 // If we're not already in a firing event, check to see if the
mjr 17:ab3cec0c8bf4 1637 // new position is forward of the last report. If it is, a firing
mjr 17:ab3cec0c8bf4 1638 // event might have started during the high-res scan. This might
mjr 17:ab3cec0c8bf4 1639 // seem unlikely given that the scan only takes about 5ms, but that
mjr 17:ab3cec0c8bf4 1640 // 5ms represents about 25-30% of our total time between reports,
mjr 17:ab3cec0c8bf4 1641 // there's about a 1 in 4 chance that a release starts during a
mjr 17:ab3cec0c8bf4 1642 // scan.
mjr 17:ab3cec0c8bf4 1643 if (!firing && z0 > 0 && znew < z0)
mjr 17:ab3cec0c8bf4 1644 {
mjr 17:ab3cec0c8bf4 1645 // The plunger has moved forward since the previous report.
mjr 17:ab3cec0c8bf4 1646 // Watch it for a few more ms to see if we can get a stable
mjr 17:ab3cec0c8bf4 1647 // new position.
mjr 23:14f8c5004cd0 1648 int pos0 = plungerSensor.lowResScan();
mjr 23:14f8c5004cd0 1649 int pos1 = pos0;
mjr 17:ab3cec0c8bf4 1650 Timer tw;
mjr 17:ab3cec0c8bf4 1651 tw.start();
mjr 17:ab3cec0c8bf4 1652 while (tw.read_ms() < 6)
mjr 17:ab3cec0c8bf4 1653 {
mjr 23:14f8c5004cd0 1654 // read the new position
mjr 23:14f8c5004cd0 1655 int pos2 = plungerSensor.lowResScan();
mjr 23:14f8c5004cd0 1656
mjr 23:14f8c5004cd0 1657 // If it's stable over consecutive readings, stop looping.
mjr 23:14f8c5004cd0 1658 // (Count it as stable if the position is within about 1/8".
mjr 23:14f8c5004cd0 1659 // pos1 and pos2 are reported in pixels, so they range from
mjr 23:14f8c5004cd0 1660 // 0 to npix. The overall travel of a standard plunger is
mjr 23:14f8c5004cd0 1661 // about 3.2", so we have (npix/3.2) pixels per inch, hence
mjr 23:14f8c5004cd0 1662 // 1/8" is (npix/3.2)*(1/8) pixels.)
mjr 23:14f8c5004cd0 1663 if (abs(pos2 - pos1) < int(npix/(3.2*8)))
mjr 23:14f8c5004cd0 1664 break;
mjr 23:14f8c5004cd0 1665
mjr 23:14f8c5004cd0 1666 // If we've crossed the rest position, and we've moved by
mjr 23:14f8c5004cd0 1667 // a minimum distance from where we starting this loop, begin
mjr 23:14f8c5004cd0 1668 // a firing event. (We require a minimum distance to prevent
mjr 23:14f8c5004cd0 1669 // spurious firing from random analog noise in the readings
mjr 23:14f8c5004cd0 1670 // when the plunger is actually just sitting still at the
mjr 23:14f8c5004cd0 1671 // rest position. If it's at rest, it's normal to see small
mjr 23:14f8c5004cd0 1672 // random fluctuations in the analog reading +/- 1% or so
mjr 23:14f8c5004cd0 1673 // from the 0 point, especially with a sensor like a
mjr 23:14f8c5004cd0 1674 // potentionemeter that reports the position as a single
mjr 23:14f8c5004cd0 1675 // analog voltage.) Note that we compare the latest reading
mjr 23:14f8c5004cd0 1676 // to the first reading of the loop - we don't require the
mjr 23:14f8c5004cd0 1677 // threshold motion over consecutive readings, but any time
mjr 23:14f8c5004cd0 1678 // over the stability wait loop.
mjr 23:14f8c5004cd0 1679 if (pos1 < cfg.d.plungerZero
mjr 23:14f8c5004cd0 1680 && abs(pos2 - pos0) > int(npix/(3.2*8)))
mjr 17:ab3cec0c8bf4 1681 {
mjr 17:ab3cec0c8bf4 1682 firing = 1;
mjr 17:ab3cec0c8bf4 1683 break;
mjr 17:ab3cec0c8bf4 1684 }
mjr 23:14f8c5004cd0 1685
mjr 17:ab3cec0c8bf4 1686 // the new reading is now the prior reading
mjr 17:ab3cec0c8bf4 1687 pos1 = pos2;
mjr 17:ab3cec0c8bf4 1688 }
mjr 17:ab3cec0c8bf4 1689 }
mjr 17:ab3cec0c8bf4 1690
mjr 17:ab3cec0c8bf4 1691 // Check for a simulated Launch Ball button press, if enabled
mjr 18:5e890ebd0023 1692 if (ZBLaunchBallPort != 0)
mjr 17:ab3cec0c8bf4 1693 {
mjr 18:5e890ebd0023 1694 const int cockThreshold = JOYMAX/3;
mjr 18:5e890ebd0023 1695 const int pushThreshold = int(-JOYMAX/3 * LaunchBallPushDistance);
mjr 17:ab3cec0c8bf4 1696 int newState = lbState;
mjr 17:ab3cec0c8bf4 1697 switch (lbState)
mjr 17:ab3cec0c8bf4 1698 {
mjr 17:ab3cec0c8bf4 1699 case 0:
mjr 17:ab3cec0c8bf4 1700 // Base state. If the plunger is pulled back by an inch
mjr 17:ab3cec0c8bf4 1701 // or more, go to "cocked" state. If the plunger is pushed
mjr 21:5048e16cc9ef 1702 // forward by 1/4" or more, go to "pressed" state.
mjr 18:5e890ebd0023 1703 if (znew >= cockThreshold)
mjr 17:ab3cec0c8bf4 1704 newState = 1;
mjr 18:5e890ebd0023 1705 else if (znew <= pushThreshold)
mjr 21:5048e16cc9ef 1706 newState = 5;
mjr 17:ab3cec0c8bf4 1707 break;
mjr 17:ab3cec0c8bf4 1708
mjr 17:ab3cec0c8bf4 1709 case 1:
mjr 17:ab3cec0c8bf4 1710 // Cocked state. If a firing event is now in progress,
mjr 17:ab3cec0c8bf4 1711 // go to "launch" state. Otherwise, if the plunger is less
mjr 17:ab3cec0c8bf4 1712 // than 1" retracted, go to "uncocked" state - the player
mjr 17:ab3cec0c8bf4 1713 // might be slowly returning the plunger to rest so as not
mjr 17:ab3cec0c8bf4 1714 // to trigger a launch.
mjr 17:ab3cec0c8bf4 1715 if (firing || znew <= 0)
mjr 17:ab3cec0c8bf4 1716 newState = 3;
mjr 18:5e890ebd0023 1717 else if (znew < cockThreshold)
mjr 17:ab3cec0c8bf4 1718 newState = 2;
mjr 17:ab3cec0c8bf4 1719 break;
mjr 17:ab3cec0c8bf4 1720
mjr 17:ab3cec0c8bf4 1721 case 2:
mjr 17:ab3cec0c8bf4 1722 // Uncocked state. If the plunger is more than an inch
mjr 17:ab3cec0c8bf4 1723 // retracted, return to cocked state. If we've been in
mjr 17:ab3cec0c8bf4 1724 // the uncocked state for more than half a second, return
mjr 18:5e890ebd0023 1725 // to the base state. This allows the user to return the
mjr 18:5e890ebd0023 1726 // plunger to rest without triggering a launch, by moving
mjr 18:5e890ebd0023 1727 // it at manual speed to the rest position rather than
mjr 18:5e890ebd0023 1728 // releasing it.
mjr 18:5e890ebd0023 1729 if (znew >= cockThreshold)
mjr 17:ab3cec0c8bf4 1730 newState = 1;
mjr 17:ab3cec0c8bf4 1731 else if (lbTimer.read_ms() > 500)
mjr 17:ab3cec0c8bf4 1732 newState = 0;
mjr 17:ab3cec0c8bf4 1733 break;
mjr 17:ab3cec0c8bf4 1734
mjr 17:ab3cec0c8bf4 1735 case 3:
mjr 17:ab3cec0c8bf4 1736 // Launch state. If the plunger is no longer pushed
mjr 17:ab3cec0c8bf4 1737 // forward, switch to launch rest state.
mjr 18:5e890ebd0023 1738 if (znew >= 0)
mjr 17:ab3cec0c8bf4 1739 newState = 4;
mjr 17:ab3cec0c8bf4 1740 break;
mjr 17:ab3cec0c8bf4 1741
mjr 17:ab3cec0c8bf4 1742 case 4:
mjr 17:ab3cec0c8bf4 1743 // Launch rest state. If the plunger is pushed forward
mjr 17:ab3cec0c8bf4 1744 // again, switch back to launch state. If not, and we've
mjr 17:ab3cec0c8bf4 1745 // been in this state for at least 200ms, return to the
mjr 17:ab3cec0c8bf4 1746 // default state.
mjr 18:5e890ebd0023 1747 if (znew <= pushThreshold)
mjr 17:ab3cec0c8bf4 1748 newState = 3;
mjr 17:ab3cec0c8bf4 1749 else if (lbTimer.read_ms() > 200)
mjr 17:ab3cec0c8bf4 1750 newState = 0;
mjr 17:ab3cec0c8bf4 1751 break;
mjr 21:5048e16cc9ef 1752
mjr 21:5048e16cc9ef 1753 case 5:
mjr 21:5048e16cc9ef 1754 // Press-and-Hold state. If the plunger is no longer pushed
mjr 21:5048e16cc9ef 1755 // forward, AND it's been at least 50ms since we generated
mjr 21:5048e16cc9ef 1756 // the simulated Launch Ball button press, return to the base
mjr 21:5048e16cc9ef 1757 // state. The minimum time is to ensure that VP has a chance
mjr 21:5048e16cc9ef 1758 // to see the button press and to avoid transient key bounce
mjr 21:5048e16cc9ef 1759 // effects when the plunger position is right on the threshold.
mjr 21:5048e16cc9ef 1760 if (znew > pushThreshold && lbTimer.read_ms() > 50)
mjr 21:5048e16cc9ef 1761 newState = 0;
mjr 21:5048e16cc9ef 1762 break;
mjr 17:ab3cec0c8bf4 1763 }
mjr 17:ab3cec0c8bf4 1764
mjr 17:ab3cec0c8bf4 1765 // change states if desired
mjr 18:5e890ebd0023 1766 const uint32_t lbButtonBit = (1 << (LaunchBallButton - 1));
mjr 17:ab3cec0c8bf4 1767 if (newState != lbState)
mjr 17:ab3cec0c8bf4 1768 {
mjr 21:5048e16cc9ef 1769 // If we're entering Launch state OR we're entering the
mjr 21:5048e16cc9ef 1770 // Press-and-Hold state, AND the ZB Launch Ball LedWiz signal
mjr 21:5048e16cc9ef 1771 // is turned on, simulate a Launch Ball button press.
mjr 21:5048e16cc9ef 1772 if (((newState == 3 && lbState != 4) || newState == 5)
mjr 21:5048e16cc9ef 1773 && wizOn[ZBLaunchBallPort-1])
mjr 18:5e890ebd0023 1774 {
mjr 18:5e890ebd0023 1775 lbBtnTimer.reset();
mjr 18:5e890ebd0023 1776 lbBtnTimer.start();
mjr 18:5e890ebd0023 1777 simButtons |= lbButtonBit;
mjr 18:5e890ebd0023 1778 }
mjr 21:5048e16cc9ef 1779
mjr 17:ab3cec0c8bf4 1780 // if we're switching to state 0, release the button
mjr 17:ab3cec0c8bf4 1781 if (newState == 0)
mjr 17:ab3cec0c8bf4 1782 simButtons &= ~(1 << (LaunchBallButton - 1));
mjr 17:ab3cec0c8bf4 1783
mjr 17:ab3cec0c8bf4 1784 // switch to the new state
mjr 17:ab3cec0c8bf4 1785 lbState = newState;
mjr 17:ab3cec0c8bf4 1786
mjr 17:ab3cec0c8bf4 1787 // start timing in the new state
mjr 17:ab3cec0c8bf4 1788 lbTimer.reset();
mjr 17:ab3cec0c8bf4 1789 }
mjr 21:5048e16cc9ef 1790
mjr 21:5048e16cc9ef 1791 // If the Launch Ball button press is in effect, but the
mjr 21:5048e16cc9ef 1792 // ZB Launch Ball LedWiz signal is no longer turned on, turn
mjr 21:5048e16cc9ef 1793 // off the button.
mjr 21:5048e16cc9ef 1794 //
mjr 21:5048e16cc9ef 1795 // If we're in one of the Launch states (state #3 or #4),
mjr 21:5048e16cc9ef 1796 // and the button has been on for long enough, turn it off.
mjr 21:5048e16cc9ef 1797 // The Launch mode is triggered by a pull-and-release gesture.
mjr 21:5048e16cc9ef 1798 // From the user's perspective, this is just a single gesture
mjr 21:5048e16cc9ef 1799 // that should trigger just one momentary press on the Launch
mjr 21:5048e16cc9ef 1800 // Ball button. Physically, though, the plunger usually
mjr 21:5048e16cc9ef 1801 // bounces back and forth for 500ms or so before coming to
mjr 21:5048e16cc9ef 1802 // rest after this gesture. That's what the whole state
mjr 21:5048e16cc9ef 1803 // #3-#4 business is all about - we stay in this pair of
mjr 21:5048e16cc9ef 1804 // states until the plunger comes to rest. As long as we're
mjr 21:5048e16cc9ef 1805 // in these states, we won't send duplicate button presses.
mjr 21:5048e16cc9ef 1806 // But we also don't want the one button press to continue
mjr 21:5048e16cc9ef 1807 // the whole time, so we'll time it out now.
mjr 21:5048e16cc9ef 1808 //
mjr 21:5048e16cc9ef 1809 // (This could be written as one big 'if' condition, but
mjr 21:5048e16cc9ef 1810 // I'm breaking it out verbosely like this to make it easier
mjr 21:5048e16cc9ef 1811 // for human readers such as myself to comprehend the logic.)
mjr 21:5048e16cc9ef 1812 if ((simButtons & lbButtonBit) != 0)
mjr 18:5e890ebd0023 1813 {
mjr 21:5048e16cc9ef 1814 int turnOff = false;
mjr 21:5048e16cc9ef 1815
mjr 21:5048e16cc9ef 1816 // turn it off if the ZB Launch Ball signal is off
mjr 21:5048e16cc9ef 1817 if (!wizOn[ZBLaunchBallPort-1])
mjr 21:5048e16cc9ef 1818 turnOff = true;
mjr 21:5048e16cc9ef 1819
mjr 21:5048e16cc9ef 1820 // also turn it off if we're in state 3 or 4 ("Launch"),
mjr 21:5048e16cc9ef 1821 // and the button has been on long enough
mjr 21:5048e16cc9ef 1822 if ((lbState == 3 || lbState == 4) && lbBtnTimer.read_ms() > 250)
mjr 21:5048e16cc9ef 1823 turnOff = true;
mjr 21:5048e16cc9ef 1824
mjr 21:5048e16cc9ef 1825 // if we decided to turn off the button, do so
mjr 21:5048e16cc9ef 1826 if (turnOff)
mjr 21:5048e16cc9ef 1827 {
mjr 21:5048e16cc9ef 1828 lbBtnTimer.stop();
mjr 21:5048e16cc9ef 1829 simButtons &= ~lbButtonBit;
mjr 21:5048e16cc9ef 1830 }
mjr 18:5e890ebd0023 1831 }
mjr 17:ab3cec0c8bf4 1832 }
mjr 17:ab3cec0c8bf4 1833
mjr 17:ab3cec0c8bf4 1834 // If a firing event is in progress, generate synthetic reports to
mjr 17:ab3cec0c8bf4 1835 // describe an idealized version of the plunger motion to VP rather
mjr 17:ab3cec0c8bf4 1836 // than reporting the actual physical plunger position.
mjr 6:cc35eb643e8f 1837 //
mjr 17:ab3cec0c8bf4 1838 // We use the synthetic reports during a release event because the
mjr 17:ab3cec0c8bf4 1839 // physical plunger motion when released is too fast for VP to track.
mjr 17:ab3cec0c8bf4 1840 // VP only syncs its internal physics model with the outside world
mjr 17:ab3cec0c8bf4 1841 // about every 10ms. In that amount of time, the plunger moves
mjr 17:ab3cec0c8bf4 1842 // fast enough when released that it can shoot all the way forward,
mjr 17:ab3cec0c8bf4 1843 // bounce off of the barrel spring, and rebound part of the way
mjr 17:ab3cec0c8bf4 1844 // back. The result is the classic analog-to-digital problem of
mjr 17:ab3cec0c8bf4 1845 // sample aliasing. If we happen to time our sample during the
mjr 17:ab3cec0c8bf4 1846 // release motion so that we catch the plunger at the peak of a
mjr 17:ab3cec0c8bf4 1847 // bounce, the digital signal incorrectly looks like the plunger
mjr 17:ab3cec0c8bf4 1848 // is moving slowly forward - VP thinks we went from fully
mjr 17:ab3cec0c8bf4 1849 // retracted to half retracted in the sample interval, whereas
mjr 17:ab3cec0c8bf4 1850 // we actually traveled all the way forward and half way back,
mjr 17:ab3cec0c8bf4 1851 // so the speed VP infers is about 1/3 of the actual speed.
mjr 9:fd65b0a94720 1852 //
mjr 17:ab3cec0c8bf4 1853 // To correct this, we take advantage of our ability to sample
mjr 17:ab3cec0c8bf4 1854 // the CCD image several times in the course of a VP report. If
mjr 17:ab3cec0c8bf4 1855 // we catch the plunger near the origin after we've seen it
mjr 17:ab3cec0c8bf4 1856 // retracted, we go into Release Event mode. During this mode,
mjr 17:ab3cec0c8bf4 1857 // we stop reporting the true physical plunger position, and
mjr 17:ab3cec0c8bf4 1858 // instead report an idealized pattern: we report the plunger
mjr 17:ab3cec0c8bf4 1859 // immediately shooting forward to a position in front of the
mjr 17:ab3cec0c8bf4 1860 // park position that's in proportion to how far back the plunger
mjr 17:ab3cec0c8bf4 1861 // was just before the release, and we then report it stationary
mjr 17:ab3cec0c8bf4 1862 // at the park position. We continue to report the stationary
mjr 17:ab3cec0c8bf4 1863 // park position until the actual physical plunger motion has
mjr 17:ab3cec0c8bf4 1864 // stabilized on a new position. We then exit Release Event
mjr 17:ab3cec0c8bf4 1865 // mode and return to reporting the true physical position.
mjr 17:ab3cec0c8bf4 1866 if (firing)
mjr 6:cc35eb643e8f 1867 {
mjr 17:ab3cec0c8bf4 1868 // Firing in progress. Keep reporting the park position
mjr 17:ab3cec0c8bf4 1869 // until the physical plunger position comes to rest.
mjr 17:ab3cec0c8bf4 1870 const int restTol = JOYMAX/24;
mjr 17:ab3cec0c8bf4 1871 if (firing == 1)
mjr 6:cc35eb643e8f 1872 {
mjr 17:ab3cec0c8bf4 1873 // For the first couple of frames, show the plunger shooting
mjr 17:ab3cec0c8bf4 1874 // forward past the zero point, to simulate the momentum carrying
mjr 17:ab3cec0c8bf4 1875 // it forward to bounce off of the barrel spring. Show the
mjr 17:ab3cec0c8bf4 1876 // bounce as proportional to the distance it was retracted
mjr 17:ab3cec0c8bf4 1877 // in the prior report.
mjr 17:ab3cec0c8bf4 1878 z = zBounce = -z0/6;
mjr 17:ab3cec0c8bf4 1879 ++firing;
mjr 6:cc35eb643e8f 1880 }
mjr 17:ab3cec0c8bf4 1881 else if (firing == 2)
mjr 9:fd65b0a94720 1882 {
mjr 17:ab3cec0c8bf4 1883 // second frame - keep the bounce a little longer
mjr 17:ab3cec0c8bf4 1884 z = zBounce;
mjr 17:ab3cec0c8bf4 1885 ++firing;
mjr 17:ab3cec0c8bf4 1886 }
mjr 17:ab3cec0c8bf4 1887 else if (firing > 4
mjr 17:ab3cec0c8bf4 1888 && abs(znew - z0) < restTol
mjr 17:ab3cec0c8bf4 1889 && abs(znew - z1) < restTol
mjr 17:ab3cec0c8bf4 1890 && abs(znew - z2) < restTol)
mjr 17:ab3cec0c8bf4 1891 {
mjr 17:ab3cec0c8bf4 1892 // The physical plunger has come to rest. Exit firing
mjr 17:ab3cec0c8bf4 1893 // mode and resume reporting the actual position.
mjr 17:ab3cec0c8bf4 1894 firing = false;
mjr 17:ab3cec0c8bf4 1895 z = znew;
mjr 9:fd65b0a94720 1896 }
mjr 9:fd65b0a94720 1897 else
mjr 9:fd65b0a94720 1898 {
mjr 17:ab3cec0c8bf4 1899 // until the physical plunger comes to rest, simply
mjr 17:ab3cec0c8bf4 1900 // report the park position
mjr 9:fd65b0a94720 1901 z = 0;
mjr 17:ab3cec0c8bf4 1902 ++firing;
mjr 9:fd65b0a94720 1903 }
mjr 6:cc35eb643e8f 1904 }
mjr 6:cc35eb643e8f 1905 else
mjr 6:cc35eb643e8f 1906 {
mjr 17:ab3cec0c8bf4 1907 // not in firing mode - report the true physical position
mjr 17:ab3cec0c8bf4 1908 z = znew;
mjr 6:cc35eb643e8f 1909 }
mjr 17:ab3cec0c8bf4 1910
mjr 17:ab3cec0c8bf4 1911 // shift the new reading into the recent history buffer
mjr 6:cc35eb643e8f 1912 z2 = z1;
mjr 6:cc35eb643e8f 1913 z1 = z0;
mjr 6:cc35eb643e8f 1914 z0 = znew;
mjr 2:c174f9ee414a 1915 }
mjr 6:cc35eb643e8f 1916
mjr 11:bd9da7088e6e 1917 // update the buttons
mjr 18:5e890ebd0023 1918 uint32_t buttons = readButtons();
mjr 17:ab3cec0c8bf4 1919
mjr 21:5048e16cc9ef 1920 #ifdef ENABLE_JOYSTICK
mjr 17:ab3cec0c8bf4 1921 // If it's been long enough since our last USB status report,
mjr 17:ab3cec0c8bf4 1922 // send the new report. We throttle the report rate because
mjr 17:ab3cec0c8bf4 1923 // it can overwhelm the PC side if we report too frequently.
mjr 17:ab3cec0c8bf4 1924 // VP only wants to sync with the real world in 10ms intervals,
mjr 17:ab3cec0c8bf4 1925 // so reporting more frequently only creates i/o overhead
mjr 17:ab3cec0c8bf4 1926 // without doing anything to improve the simulation.
mjr 17:ab3cec0c8bf4 1927 if (reportTimer.read_ms() > 15)
mjr 17:ab3cec0c8bf4 1928 {
mjr 17:ab3cec0c8bf4 1929 // read the accelerometer
mjr 17:ab3cec0c8bf4 1930 int xa, ya;
mjr 17:ab3cec0c8bf4 1931 accel.get(xa, ya);
mjr 17:ab3cec0c8bf4 1932
mjr 17:ab3cec0c8bf4 1933 // confine the results to our joystick axis range
mjr 17:ab3cec0c8bf4 1934 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 17:ab3cec0c8bf4 1935 if (xa > JOYMAX) xa = JOYMAX;
mjr 17:ab3cec0c8bf4 1936 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 17:ab3cec0c8bf4 1937 if (ya > JOYMAX) ya = JOYMAX;
mjr 17:ab3cec0c8bf4 1938
mjr 17:ab3cec0c8bf4 1939 // store the updated accelerometer coordinates
mjr 17:ab3cec0c8bf4 1940 x = xa;
mjr 17:ab3cec0c8bf4 1941 y = ya;
mjr 17:ab3cec0c8bf4 1942
mjr 21:5048e16cc9ef 1943 // Report the current plunger position UNLESS the ZB Launch Ball
mjr 21:5048e16cc9ef 1944 // signal is on, in which case just report a constant 0 value.
mjr 21:5048e16cc9ef 1945 // ZB Launch Ball turns off the plunger position because it
mjr 21:5048e16cc9ef 1946 // tells us that the table has a Launch Ball button instead of
mjr 21:5048e16cc9ef 1947 // a traditional plunger.
mjr 21:5048e16cc9ef 1948 int zrep = (ZBLaunchBallPort != 0 && wizOn[ZBLaunchBallPort-1] ? 0 : z);
mjr 21:5048e16cc9ef 1949
mjr 25:e22b88bd783a 1950 // Send the status report. Note that we have to map the X and Y
mjr 25:e22b88bd783a 1951 // axes from the accelerometer to match the Windows joystick axes.
mjr 25:e22b88bd783a 1952 // The mapping is determined according to the mounting direction
mjr 25:e22b88bd783a 1953 // set in config.h via the ORIENTATION_xxx macros.
mjr 25:e22b88bd783a 1954 js.update(JOY_X(x,y), JOY_Y(x,y), zrep, buttons | simButtons, statusFlags);
mjr 17:ab3cec0c8bf4 1955
mjr 17:ab3cec0c8bf4 1956 // we've just started a new report interval, so reset the timer
mjr 17:ab3cec0c8bf4 1957 reportTimer.reset();
mjr 17:ab3cec0c8bf4 1958 }
mjr 21:5048e16cc9ef 1959
mjr 10:976666ffa4ef 1960 // If we're in pixel dump mode, report all pixel exposure values
mjr 10:976666ffa4ef 1961 if (reportPix)
mjr 10:976666ffa4ef 1962 {
mjr 17:ab3cec0c8bf4 1963 // send the report
mjr 17:ab3cec0c8bf4 1964 plungerSensor.sendExposureReport(js);
mjr 17:ab3cec0c8bf4 1965
mjr 10:976666ffa4ef 1966 // we have satisfied this request
mjr 10:976666ffa4ef 1967 reportPix = false;
mjr 10:976666ffa4ef 1968 }
mjr 10:976666ffa4ef 1969
mjr 21:5048e16cc9ef 1970 #else // ENABLE_JOYSTICK
mjr 21:5048e16cc9ef 1971 // We're a secondary controller, with no joystick reporting. Send
mjr 21:5048e16cc9ef 1972 // a generic status report to the host periodically for the sake of
mjr 21:5048e16cc9ef 1973 // the Windows config tool.
mjr 21:5048e16cc9ef 1974 if (reportTimer.read_ms() > 200)
mjr 21:5048e16cc9ef 1975 {
mjr 21:5048e16cc9ef 1976 js.updateStatus(0);
mjr 21:5048e16cc9ef 1977 }
mjr 21:5048e16cc9ef 1978
mjr 21:5048e16cc9ef 1979 #endif // ENABLE_JOYSTICK
mjr 21:5048e16cc9ef 1980
mjr 6:cc35eb643e8f 1981 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 1982 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 1983 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 1984 #endif
mjr 6:cc35eb643e8f 1985
mjr 6:cc35eb643e8f 1986 // provide a visual status indication on the on-board LED
mjr 5:a70c0bce770d 1987 if (calBtnState < 2 && hbTimer.read_ms() > 1000)
mjr 1:d913e0afb2ac 1988 {
mjr 5:a70c0bce770d 1989 if (js.isSuspended() || !js.isConnected())
mjr 2:c174f9ee414a 1990 {
mjr 5:a70c0bce770d 1991 // suspended - turn off the LED
mjr 4:02c7cd7b2183 1992 ledR = 1;
mjr 4:02c7cd7b2183 1993 ledG = 1;
mjr 4:02c7cd7b2183 1994 ledB = 1;
mjr 5:a70c0bce770d 1995
mjr 5:a70c0bce770d 1996 // show a status flash every so often
mjr 5:a70c0bce770d 1997 if (hbcnt % 3 == 0)
mjr 5:a70c0bce770d 1998 {
mjr 6:cc35eb643e8f 1999 // disconnected = red/red flash; suspended = red
mjr 5:a70c0bce770d 2000 for (int n = js.isConnected() ? 1 : 2 ; n > 0 ; --n)
mjr 5:a70c0bce770d 2001 {
mjr 5:a70c0bce770d 2002 ledR = 0;
mjr 5:a70c0bce770d 2003 wait(0.05);
mjr 5:a70c0bce770d 2004 ledR = 1;
mjr 5:a70c0bce770d 2005 wait(0.25);
mjr 5:a70c0bce770d 2006 }
mjr 5:a70c0bce770d 2007 }
mjr 2:c174f9ee414a 2008 }
mjr 6:cc35eb643e8f 2009 else if (needReset)
mjr 2:c174f9ee414a 2010 {
mjr 6:cc35eb643e8f 2011 // connected, need to reset due to changes in config parameters -
mjr 6:cc35eb643e8f 2012 // flash red/green
mjr 6:cc35eb643e8f 2013 hb = !hb;
mjr 6:cc35eb643e8f 2014 ledR = (hb ? 0 : 1);
mjr 6:cc35eb643e8f 2015 ledG = (hb ? 1 : 0);
mjr 6:cc35eb643e8f 2016 ledB = 0;
mjr 6:cc35eb643e8f 2017 }
mjr 17:ab3cec0c8bf4 2018 else if (cfg.d.plungerEnabled && !cfg.d.plungerCal)
mjr 6:cc35eb643e8f 2019 {
mjr 6:cc35eb643e8f 2020 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 2021 hb = !hb;
mjr 6:cc35eb643e8f 2022 ledR = (hb ? 0 : 1);
mjr 6:cc35eb643e8f 2023 ledG = 0;
mjr 6:cc35eb643e8f 2024 ledB = 1;
mjr 6:cc35eb643e8f 2025 }
mjr 6:cc35eb643e8f 2026 else
mjr 6:cc35eb643e8f 2027 {
mjr 6:cc35eb643e8f 2028 // connected - flash blue/green
mjr 2:c174f9ee414a 2029 hb = !hb;
mjr 4:02c7cd7b2183 2030 ledR = 1;
mjr 4:02c7cd7b2183 2031 ledG = (hb ? 0 : 1);
mjr 4:02c7cd7b2183 2032 ledB = (hb ? 1 : 0);
mjr 2:c174f9ee414a 2033 }
mjr 1:d913e0afb2ac 2034
mjr 1:d913e0afb2ac 2035 // reset the heartbeat timer
mjr 1:d913e0afb2ac 2036 hbTimer.reset();
mjr 5:a70c0bce770d 2037 ++hbcnt;
mjr 1:d913e0afb2ac 2038 }
mjr 1:d913e0afb2ac 2039 }
mjr 0:5acbbe3f4cf4 2040 }