An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.

Committer:
mjr
Date:
Fri Jan 27 23:47:15 2017 +0000
Revision:
74:822a92bc11d2
Parent:
73:4e8ce0b18915
Child:
75:677892300e7a
SBX/PBX extensions for multiple virtual LedWiz units on client; PWM GPIO update fixes; LedWiz pulse speed settings changed to match real LedWiz

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 48:058ace2aed1d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 74:822a92bc11d2 42 // - Plunger position sensing, with multiple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 35:e959ffba78fd 50 // The Pinscape software supports optical sensors (the TAOS TSL1410R and TSL1412R
mjr 35:e959ffba78fd 51 // linear sensor arrays) as well as slide potentiometers. The specific equipment
mjr 35:e959ffba78fd 52 // that's supported, along with physical mounting and wiring details, can be found
mjr 35:e959ffba78fd 53 // in the Build Guide.
mjr 35:e959ffba78fd 54 //
mjr 38:091e511ce8a0 55 // Note VP has built-in support for plunger devices like this one, but some VP
mjr 38:091e511ce8a0 56 // tables can't use it without some additional scripting work. The Build Guide has
mjr 38:091e511ce8a0 57 // advice on adjusting tables to add plunger support when necessary.
mjr 5:a70c0bce770d 58 //
mjr 6:cc35eb643e8f 59 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 60 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 61 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 62 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 17:ab3cec0c8bf4 63 // sensor or the mechanical plunger, since their alignment shift change slightly
mjr 17:ab3cec0c8bf4 64 // when you put everything back together.) You can optionally install a
mjr 17:ab3cec0c8bf4 65 // dedicated momentary switch or pushbutton to activate the calibration mode;
mjr 17:ab3cec0c8bf4 66 // this is describe in the project documentation. If you don't want to bother
mjr 17:ab3cec0c8bf4 67 // with the extra button, you can also trigger calibration using the Windows
mjr 17:ab3cec0c8bf4 68 // setup software, which you can find on the Pinscape project page.
mjr 6:cc35eb643e8f 69 //
mjr 17:ab3cec0c8bf4 70 // The calibration procedure is described in the project documentation. Briefly,
mjr 17:ab3cec0c8bf4 71 // when you trigger calibration mode, the software will scan the CCD for about
mjr 17:ab3cec0c8bf4 72 // 15 seconds, during which you should simply pull the physical plunger back
mjr 17:ab3cec0c8bf4 73 // all the way, hold it for a moment, and then slowly return it to the rest
mjr 17:ab3cec0c8bf4 74 // position. (DON'T just release it from the retracted position, since that
mjr 17:ab3cec0c8bf4 75 // let it shoot forward too far. We want to measure the range from the park
mjr 17:ab3cec0c8bf4 76 // position to the fully retracted position only.)
mjr 5:a70c0bce770d 77 //
mjr 13:72dda449c3c0 78 // - Button input wiring. 24 of the KL25Z's GPIO ports are mapped as digital inputs
mjr 38:091e511ce8a0 79 // for buttons and switches. You can wire each input to a physical pinball-style
mjr 38:091e511ce8a0 80 // button or switch, such as flipper buttons, Start buttons, coin chute switches,
mjr 38:091e511ce8a0 81 // tilt bobs, and service buttons. Each button can be configured to be reported
mjr 38:091e511ce8a0 82 // to the PC as a joystick button or as a keyboard key (you can select which key
mjr 38:091e511ce8a0 83 // is used for each button).
mjr 13:72dda449c3c0 84 //
mjr 53:9b2611964afc 85 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 86 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 87 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 88 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 89 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 90 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 91 // attached devices without any modifications.
mjr 5:a70c0bce770d 92 //
mjr 53:9b2611964afc 93 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 94 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 95 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 96 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 97 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 98 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 99 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 100 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 101 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 102 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 103 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 104 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 105 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 106 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 107 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 108 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 109 //
mjr 26:cb71c4af2912 110 // - Enhanced LedWiz emulation with TLC5940 PWM controller chips. You can attach
mjr 26:cb71c4af2912 111 // external PWM controller chips for controlling device outputs, instead of using
mjr 53:9b2611964afc 112 // the on-board GPIO ports as described above. The software can control a set of
mjr 53:9b2611964afc 113 // daisy-chained TLC5940 chips. Each chip provides 16 PWM outputs, so you just
mjr 53:9b2611964afc 114 // need two of them to get the full complement of 32 output ports of a real LedWiz.
mjr 53:9b2611964afc 115 // You can hook up even more, though. Four chips gives you 64 ports, which should
mjr 53:9b2611964afc 116 // be plenty for nearly any virtual pinball project. To accommodate the larger
mjr 53:9b2611964afc 117 // supply of ports possible with the PWM chips, the controller software provides
mjr 53:9b2611964afc 118 // a custom, extended version of the LedWiz protocol that can handle up to 128
mjr 53:9b2611964afc 119 // ports. PC software designed only for the real LedWiz obviously won't know
mjr 53:9b2611964afc 120 // about the extended protocol and won't be able to take advantage of its extra
mjr 53:9b2611964afc 121 // capabilities, but the latest version of DOF (DirectOutput Framework) *does*
mjr 53:9b2611964afc 122 // know the new language and can take full advantage. Older software will still
mjr 53:9b2611964afc 123 // work, though - the new extensions are all backward compatible, so old software
mjr 53:9b2611964afc 124 // that only knows about the original LedWiz protocol will still work, with the
mjr 53:9b2611964afc 125 // obvious limitation that it can only access the first 32 ports.
mjr 53:9b2611964afc 126 //
mjr 53:9b2611964afc 127 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 128 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 129 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 130 // outputs with full PWM control and power handling for high-current devices
mjr 53:9b2611964afc 131 // built in to the boards.
mjr 26:cb71c4af2912 132 //
mjr 38:091e511ce8a0 133 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 134 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 135 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 136 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 137 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 138 //
mjr 38:091e511ce8a0 139 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 140 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 141 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 142 // To use this feature, you have to build some external circuitry to allow the
mjr 38:091e511ce8a0 143 // software to sense the power supply status, and you have to run wires to your
mjr 38:091e511ce8a0 144 // TV's on/off button, which requires opening the case on your TV. The Build
mjr 38:091e511ce8a0 145 // Guide has details on the necessary circuitry and connections to the TV.
mjr 38:091e511ce8a0 146 //
mjr 35:e959ffba78fd 147 //
mjr 35:e959ffba78fd 148 //
mjr 33:d832bcab089e 149 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 150 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 151 //
mjr 48:058ace2aed1d 152 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 153 //
mjr 48:058ace2aed1d 154 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 155 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 156 // has been established)
mjr 48:058ace2aed1d 157 //
mjr 48:058ace2aed1d 158 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 159 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 160 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 161 //
mjr 38:091e511ce8a0 162 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 163 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 164 // transmissions are failing.
mjr 38:091e511ce8a0 165 //
mjr 73:4e8ce0b18915 166 // medium blue flash = TV ON delay timer running. This means that the
mjr 73:4e8ce0b18915 167 // power to the secondary PSU has just been turned on, and the TV ON
mjr 73:4e8ce0b18915 168 // timer is waiting for the configured delay time before pulsing the
mjr 73:4e8ce0b18915 169 // TV power button relay. This is only shown if the TV ON feature is
mjr 73:4e8ce0b18915 170 // enabled.
mjr 73:4e8ce0b18915 171 //
mjr 6:cc35eb643e8f 172 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 173 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 174 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 175 // no plunger sensor configured.
mjr 6:cc35eb643e8f 176 //
mjr 38:091e511ce8a0 177 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 178 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 179 //
mjr 48:058ace2aed1d 180 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 181 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 182 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 183 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 184 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 185 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 186 //
mjr 48:058ace2aed1d 187 //
mjr 48:058ace2aed1d 188 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 189 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 190 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 191 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 192 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 193 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 194 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 195 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 196
mjr 33:d832bcab089e 197
mjr 0:5acbbe3f4cf4 198 #include "mbed.h"
mjr 6:cc35eb643e8f 199 #include "math.h"
mjr 74:822a92bc11d2 200 #include "diags.h"
mjr 48:058ace2aed1d 201 #include "pinscape.h"
mjr 0:5acbbe3f4cf4 202 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 203 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 204 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 205 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 206 #include "crc32.h"
mjr 26:cb71c4af2912 207 #include "TLC5940.h"
mjr 34:6b981a2afab7 208 #include "74HC595.h"
mjr 35:e959ffba78fd 209 #include "nvm.h"
mjr 35:e959ffba78fd 210 #include "plunger.h"
mjr 35:e959ffba78fd 211 #include "ccdSensor.h"
mjr 35:e959ffba78fd 212 #include "potSensor.h"
mjr 35:e959ffba78fd 213 #include "nullSensor.h"
mjr 48:058ace2aed1d 214 #include "TinyDigitalIn.h"
mjr 74:822a92bc11d2 215
mjr 2:c174f9ee414a 216
mjr 21:5048e16cc9ef 217 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 218 #include "config.h"
mjr 17:ab3cec0c8bf4 219
mjr 53:9b2611964afc 220
mjr 53:9b2611964afc 221 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 222 //
mjr 53:9b2611964afc 223 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 224 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 225 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 226 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 227 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 228 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 229 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 230 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 231 // interface.
mjr 53:9b2611964afc 232 //
mjr 53:9b2611964afc 233 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 234 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 235 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 236 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 237 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 238 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 239 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 240 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 241 //
mjr 53:9b2611964afc 242 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 243 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 244 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 245 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 246 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 247 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 248 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 249 //
mjr 53:9b2611964afc 250 const char *getOpenSDAID()
mjr 53:9b2611964afc 251 {
mjr 53:9b2611964afc 252 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 253 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 254 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 255
mjr 53:9b2611964afc 256 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 257 }
mjr 53:9b2611964afc 258
mjr 53:9b2611964afc 259 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 260 //
mjr 53:9b2611964afc 261 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 262 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 263 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 264 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 265 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 266 // want from this.
mjr 53:9b2611964afc 267 //
mjr 53:9b2611964afc 268 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 269 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 270 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 271 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 272 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 273 // macros.
mjr 53:9b2611964afc 274 //
mjr 53:9b2611964afc 275 const char *getBuildID()
mjr 53:9b2611964afc 276 {
mjr 53:9b2611964afc 277 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 278 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 279 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 280
mjr 53:9b2611964afc 281 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 282 }
mjr 53:9b2611964afc 283
mjr 74:822a92bc11d2 284 // --------------------------------------------------------------------------
mjr 74:822a92bc11d2 285 // Main loop iteration timing statistics. Collected only if
mjr 74:822a92bc11d2 286 // ENABLE_DIAGNOSTICS is set in diags.h.
mjr 74:822a92bc11d2 287 float mainLoopIterTime, mainLoopIterCount;
mjr 74:822a92bc11d2 288 float mainLoopMsgTime, mainLoopMsgCount;
mjr 53:9b2611964afc 289
mjr 48:058ace2aed1d 290 // --------------------------------------------------------------------------
mjr 48:058ace2aed1d 291 //
mjr 59:94eb9265b6d7 292 // Custom memory allocator. We use our own version of malloc() for more
mjr 59:94eb9265b6d7 293 // efficient memory usage, and to provide diagnostics if we run out of heap.
mjr 48:058ace2aed1d 294 //
mjr 59:94eb9265b6d7 295 // We can implement a more efficient malloc than the library can because we
mjr 59:94eb9265b6d7 296 // can make an assumption that the library can't: allocations are permanent.
mjr 59:94eb9265b6d7 297 // The normal malloc has to assume that allocations can be freed, so it has
mjr 59:94eb9265b6d7 298 // to track blocks individually. For the purposes of this program, though,
mjr 59:94eb9265b6d7 299 // we don't have to do this because virtually all of our allocations are
mjr 59:94eb9265b6d7 300 // de facto permanent. We only allocate dyanmic memory during setup, and
mjr 59:94eb9265b6d7 301 // once we set things up, we never delete anything. This means that we can
mjr 59:94eb9265b6d7 302 // allocate memory in bare blocks without any bookkeeping overhead.
mjr 59:94eb9265b6d7 303 //
mjr 59:94eb9265b6d7 304 // In addition, we can make a much larger overall pool of memory available
mjr 59:94eb9265b6d7 305 // in a custom allocator. The mbed library malloc() seems to have a pool
mjr 59:94eb9265b6d7 306 // of about 3K to work with, even though there's really about 9K of RAM
mjr 59:94eb9265b6d7 307 // left over after counting the static writable data and reserving space
mjr 59:94eb9265b6d7 308 // for a reasonable stack. I haven't looked at the mbed malloc to see why
mjr 59:94eb9265b6d7 309 // they're so stingy, but it appears from empirical testing that we can
mjr 59:94eb9265b6d7 310 // create a static array up to about 9K before things get crashy.
mjr 59:94eb9265b6d7 311
mjr 73:4e8ce0b18915 312 // Dynamic memory pool. We'll reserve space for all dynamic
mjr 73:4e8ce0b18915 313 // allocations by creating a simple C array of bytes. The size
mjr 73:4e8ce0b18915 314 // of this array is the maximum number of bytes we can allocate
mjr 73:4e8ce0b18915 315 // with malloc or operator 'new'.
mjr 73:4e8ce0b18915 316 //
mjr 73:4e8ce0b18915 317 // The maximum safe size for this array is, in essence, the
mjr 73:4e8ce0b18915 318 // amount of physical KL25Z RAM left over after accounting for
mjr 73:4e8ce0b18915 319 // static data throughout the rest of the program, the run-time
mjr 73:4e8ce0b18915 320 // stack, and any other space reserved for compiler or MCU
mjr 73:4e8ce0b18915 321 // overhead. Unfortunately, it's not straightforward to
mjr 73:4e8ce0b18915 322 // determine this analytically. The big complication is that
mjr 73:4e8ce0b18915 323 // the minimum stack size isn't easily predictable, as the stack
mjr 73:4e8ce0b18915 324 // grows according to what the program does. In addition, the
mjr 73:4e8ce0b18915 325 // mbed platform tools don't give us detailed data on the
mjr 73:4e8ce0b18915 326 // compiler/linker memory map. All we get is a generic total
mjr 73:4e8ce0b18915 327 // RAM requirement, which doesn't necessarily account for all
mjr 73:4e8ce0b18915 328 // overhead (e.g., gaps inserted to get proper alignment for
mjr 73:4e8ce0b18915 329 // particular memory blocks).
mjr 73:4e8ce0b18915 330 //
mjr 73:4e8ce0b18915 331 // A very rough estimate: the total RAM size reported by the
mjr 73:4e8ce0b18915 332 // linker is about 3.5K (currently - that can obviously change
mjr 73:4e8ce0b18915 333 // as the project evolves) out of 16K total. Assuming about a
mjr 73:4e8ce0b18915 334 // 3K stack, that leaves in the ballpark of 10K. Empirically,
mjr 73:4e8ce0b18915 335 // that seems pretty close. In testing, we start to see some
mjr 73:4e8ce0b18915 336 // instability at 10K, while 9K seems safe. To be conservative,
mjr 73:4e8ce0b18915 337 // we'll reduce this to 8K.
mjr 73:4e8ce0b18915 338 //
mjr 73:4e8ce0b18915 339 // Our measured total usage in the base configuration (22 GPIO
mjr 73:4e8ce0b18915 340 // output ports, TSL1410R plunger sensor) is about 4000 bytes.
mjr 73:4e8ce0b18915 341 // A pretty fully decked-out configuration (121 output ports,
mjr 73:4e8ce0b18915 342 // with 8 TLC5940 chips and 3 74HC595 chips, plus the TSL1412R
mjr 73:4e8ce0b18915 343 // sensor with the higher pixel count, and all expansion board
mjr 73:4e8ce0b18915 344 // features enabled) comes to about 6700 bytes. That leaves
mjr 73:4e8ce0b18915 345 // us with about 1.5K free out of our 8K, so we still have a
mjr 73:4e8ce0b18915 346 // little more headroom for future expansion.
mjr 73:4e8ce0b18915 347 //
mjr 73:4e8ce0b18915 348 // For comparison, the standard mbed malloc() runs out of
mjr 73:4e8ce0b18915 349 // memory at about 6K. That's what led to this custom malloc:
mjr 73:4e8ce0b18915 350 // we can just fit the base configuration into that 4K, but
mjr 73:4e8ce0b18915 351 // it's not enough space for more complex setups. There's
mjr 73:4e8ce0b18915 352 // still a little room for squeezing out unnecessary space
mjr 73:4e8ce0b18915 353 // from the mbed library code, but at this point I'd prefer
mjr 73:4e8ce0b18915 354 // to treat that as a last resort, since it would mean having
mjr 73:4e8ce0b18915 355 // to fork private copies of the libraries.
mjr 73:4e8ce0b18915 356 static const size_t XMALLOC_POOL_SIZE = 8*1024;
mjr 73:4e8ce0b18915 357 static char xmalloc_pool[XMALLOC_POOL_SIZE];
mjr 73:4e8ce0b18915 358 static char *xmalloc_nxt = xmalloc_pool;
mjr 73:4e8ce0b18915 359 static size_t xmalloc_rem = XMALLOC_POOL_SIZE;
mjr 73:4e8ce0b18915 360
mjr 48:058ace2aed1d 361 void *xmalloc(size_t siz)
mjr 48:058ace2aed1d 362 {
mjr 59:94eb9265b6d7 363 // align to a 4-byte increment
mjr 59:94eb9265b6d7 364 siz = (siz + 3) & ~3;
mjr 59:94eb9265b6d7 365
mjr 59:94eb9265b6d7 366 // If insufficient memory is available, halt and show a fast red/purple
mjr 59:94eb9265b6d7 367 // diagnostic flash. We don't want to return, since we assume throughout
mjr 59:94eb9265b6d7 368 // the program that all memory allocations must succeed. Note that this
mjr 59:94eb9265b6d7 369 // is generally considered bad programming practice in applications on
mjr 59:94eb9265b6d7 370 // "real" computers, but for the purposes of this microcontroller app,
mjr 59:94eb9265b6d7 371 // there's no point in checking for failed allocations individually
mjr 59:94eb9265b6d7 372 // because there's no way to recover from them. It's better in this
mjr 59:94eb9265b6d7 373 // context to handle failed allocations as fatal errors centrally. We
mjr 59:94eb9265b6d7 374 // can't recover from these automatically, so we have to resort to user
mjr 59:94eb9265b6d7 375 // intervention, which we signal with the diagnostic LED flashes.
mjr 73:4e8ce0b18915 376 if (siz > xmalloc_rem)
mjr 59:94eb9265b6d7 377 {
mjr 59:94eb9265b6d7 378 // halt with the diagnostic display (by looping forever)
mjr 59:94eb9265b6d7 379 for (;;)
mjr 59:94eb9265b6d7 380 {
mjr 59:94eb9265b6d7 381 diagLED(1, 0, 0);
mjr 59:94eb9265b6d7 382 wait_us(200000);
mjr 59:94eb9265b6d7 383 diagLED(1, 0, 1);
mjr 59:94eb9265b6d7 384 wait_us(200000);
mjr 59:94eb9265b6d7 385 }
mjr 59:94eb9265b6d7 386 }
mjr 48:058ace2aed1d 387
mjr 59:94eb9265b6d7 388 // get the next free location from the pool to return
mjr 73:4e8ce0b18915 389 char *ret = xmalloc_nxt;
mjr 59:94eb9265b6d7 390
mjr 59:94eb9265b6d7 391 // advance the pool pointer and decrement the remaining size counter
mjr 73:4e8ce0b18915 392 xmalloc_nxt += siz;
mjr 73:4e8ce0b18915 393 xmalloc_rem -= siz;
mjr 59:94eb9265b6d7 394
mjr 59:94eb9265b6d7 395 // return the allocated block
mjr 59:94eb9265b6d7 396 return ret;
mjr 73:4e8ce0b18915 397 };
mjr 73:4e8ce0b18915 398
mjr 73:4e8ce0b18915 399 // our malloc() replacement
mjr 48:058ace2aed1d 400
mjr 59:94eb9265b6d7 401 // Overload operator new to call our custom malloc. This ensures that
mjr 59:94eb9265b6d7 402 // all 'new' allocations throughout the program (including library code)
mjr 59:94eb9265b6d7 403 // go through our private allocator.
mjr 48:058ace2aed1d 404 void *operator new(size_t siz) { return xmalloc(siz); }
mjr 48:058ace2aed1d 405 void *operator new[](size_t siz) { return xmalloc(siz); }
mjr 5:a70c0bce770d 406
mjr 59:94eb9265b6d7 407 // Since we don't do bookkeeping to track released memory, 'delete' does
mjr 59:94eb9265b6d7 408 // nothing. In actual testing, this routine appears to never be called.
mjr 59:94eb9265b6d7 409 // If it *is* ever called, it will simply leave the block in place, which
mjr 59:94eb9265b6d7 410 // will make it unavailable for re-use but will otherwise be harmless.
mjr 59:94eb9265b6d7 411 void operator delete(void *ptr) { }
mjr 59:94eb9265b6d7 412
mjr 59:94eb9265b6d7 413
mjr 5:a70c0bce770d 414 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 415 //
mjr 38:091e511ce8a0 416 // Forward declarations
mjr 38:091e511ce8a0 417 //
mjr 38:091e511ce8a0 418 void setNightMode(bool on);
mjr 38:091e511ce8a0 419 void toggleNightMode();
mjr 38:091e511ce8a0 420
mjr 38:091e511ce8a0 421 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 422 // utilities
mjr 17:ab3cec0c8bf4 423
mjr 26:cb71c4af2912 424 // floating point square of a number
mjr 26:cb71c4af2912 425 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 426
mjr 26:cb71c4af2912 427 // floating point rounding
mjr 26:cb71c4af2912 428 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 429
mjr 17:ab3cec0c8bf4 430
mjr 33:d832bcab089e 431 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 432 //
mjr 40:cc0d9814522b 433 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 434 // the running state.
mjr 40:cc0d9814522b 435 //
mjr 40:cc0d9814522b 436 class Timer2: public Timer
mjr 40:cc0d9814522b 437 {
mjr 40:cc0d9814522b 438 public:
mjr 40:cc0d9814522b 439 Timer2() : running(false) { }
mjr 40:cc0d9814522b 440
mjr 40:cc0d9814522b 441 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 442 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 443
mjr 40:cc0d9814522b 444 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 445
mjr 40:cc0d9814522b 446 private:
mjr 40:cc0d9814522b 447 bool running;
mjr 40:cc0d9814522b 448 };
mjr 40:cc0d9814522b 449
mjr 53:9b2611964afc 450
mjr 53:9b2611964afc 451 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 452 //
mjr 53:9b2611964afc 453 // Reboot timer. When we have a deferred reboot operation pending, we
mjr 53:9b2611964afc 454 // set the target time and start the timer.
mjr 53:9b2611964afc 455 Timer2 rebootTimer;
mjr 53:9b2611964afc 456 long rebootTime_us;
mjr 53:9b2611964afc 457
mjr 40:cc0d9814522b 458 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 459 //
mjr 33:d832bcab089e 460 // USB product version number
mjr 5:a70c0bce770d 461 //
mjr 47:df7a88cd249c 462 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 463
mjr 33:d832bcab089e 464 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 465 //
mjr 6:cc35eb643e8f 466 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 467 //
mjr 6:cc35eb643e8f 468 #define JOYMAX 4096
mjr 6:cc35eb643e8f 469
mjr 9:fd65b0a94720 470
mjr 17:ab3cec0c8bf4 471 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 472 //
mjr 40:cc0d9814522b 473 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 474 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 475 //
mjr 35:e959ffba78fd 476
mjr 35:e959ffba78fd 477 // unsigned 16-bit integer
mjr 35:e959ffba78fd 478 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 479 {
mjr 35:e959ffba78fd 480 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 481 }
mjr 40:cc0d9814522b 482 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 483 {
mjr 40:cc0d9814522b 484 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 485 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 486 }
mjr 35:e959ffba78fd 487
mjr 35:e959ffba78fd 488 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 489 {
mjr 35:e959ffba78fd 490 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 491 }
mjr 40:cc0d9814522b 492 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 493 {
mjr 40:cc0d9814522b 494 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 495 }
mjr 35:e959ffba78fd 496
mjr 35:e959ffba78fd 497 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 498 {
mjr 35:e959ffba78fd 499 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 500 }
mjr 40:cc0d9814522b 501 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 502 {
mjr 40:cc0d9814522b 503 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 504 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 505 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 506 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 507 }
mjr 35:e959ffba78fd 508
mjr 35:e959ffba78fd 509 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 510 {
mjr 35:e959ffba78fd 511 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 512 }
mjr 35:e959ffba78fd 513
mjr 53:9b2611964afc 514 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 515 //
mjr 53:9b2611964afc 516 // The internal mbed PinName format is
mjr 53:9b2611964afc 517 //
mjr 53:9b2611964afc 518 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 519 //
mjr 53:9b2611964afc 520 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 521 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 522 //
mjr 53:9b2611964afc 523 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 524 // pin name fits in 8 bits:
mjr 53:9b2611964afc 525 //
mjr 53:9b2611964afc 526 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 527 //
mjr 53:9b2611964afc 528 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 529 //
mjr 53:9b2611964afc 530 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 531 //
mjr 53:9b2611964afc 532 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 533 {
mjr 53:9b2611964afc 534 if (c == 0xFF)
mjr 53:9b2611964afc 535 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 536 else
mjr 53:9b2611964afc 537 return PinName(
mjr 53:9b2611964afc 538 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 539 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 540 }
mjr 40:cc0d9814522b 541 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 542 {
mjr 53:9b2611964afc 543 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 544 }
mjr 35:e959ffba78fd 545
mjr 35:e959ffba78fd 546
mjr 35:e959ffba78fd 547 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 548 //
mjr 38:091e511ce8a0 549 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 550 //
mjr 38:091e511ce8a0 551 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 552 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 553 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 554 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 555 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 556 // SPI capability.
mjr 38:091e511ce8a0 557 //
mjr 38:091e511ce8a0 558 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 559
mjr 73:4e8ce0b18915 560 // Power on timer state for diagnostics. We flash the blue LED when
mjr 73:4e8ce0b18915 561 // nothing else is going on. State 0-1 = off, 2-3 = on
mjr 73:4e8ce0b18915 562 uint8_t powerTimerDiagState = 0;
mjr 73:4e8ce0b18915 563
mjr 38:091e511ce8a0 564 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 565 // on, and -1 is no change (leaves the current setting intact).
mjr 73:4e8ce0b18915 566 static uint8_t diagLEDState = 0;
mjr 38:091e511ce8a0 567 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 568 {
mjr 73:4e8ce0b18915 569 // remember the new state
mjr 73:4e8ce0b18915 570 diagLEDState = r | (g << 1) | (b << 2);
mjr 73:4e8ce0b18915 571
mjr 73:4e8ce0b18915 572 // if turning everything off, use the power timer state instead,
mjr 73:4e8ce0b18915 573 // applying it to the blue LED
mjr 73:4e8ce0b18915 574 if (diagLEDState == 0)
mjr 73:4e8ce0b18915 575 b = (powerTimerDiagState >= 2);
mjr 73:4e8ce0b18915 576
mjr 73:4e8ce0b18915 577 // set the new state
mjr 38:091e511ce8a0 578 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 579 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 580 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 581 }
mjr 38:091e511ce8a0 582
mjr 73:4e8ce0b18915 583 // update the LEDs with the current state
mjr 73:4e8ce0b18915 584 void diagLED(void)
mjr 73:4e8ce0b18915 585 {
mjr 73:4e8ce0b18915 586 diagLED(
mjr 73:4e8ce0b18915 587 diagLEDState & 0x01,
mjr 73:4e8ce0b18915 588 (diagLEDState >> 1) & 0x01,
mjr 73:4e8ce0b18915 589 (diagLEDState >> 1) & 0x02);
mjr 73:4e8ce0b18915 590 }
mjr 73:4e8ce0b18915 591
mjr 38:091e511ce8a0 592 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 593 // an on-board LED segment
mjr 38:091e511ce8a0 594 struct LedSeg
mjr 38:091e511ce8a0 595 {
mjr 38:091e511ce8a0 596 bool r, g, b;
mjr 38:091e511ce8a0 597 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 598
mjr 38:091e511ce8a0 599 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 600 {
mjr 38:091e511ce8a0 601 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 602 // our on-board LED segments
mjr 38:091e511ce8a0 603 int t = pc.typ;
mjr 38:091e511ce8a0 604 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 605 {
mjr 38:091e511ce8a0 606 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 607 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 608 if (pin == LED1)
mjr 38:091e511ce8a0 609 r = true;
mjr 38:091e511ce8a0 610 else if (pin == LED2)
mjr 38:091e511ce8a0 611 g = true;
mjr 38:091e511ce8a0 612 else if (pin == LED3)
mjr 38:091e511ce8a0 613 b = true;
mjr 38:091e511ce8a0 614 }
mjr 38:091e511ce8a0 615 }
mjr 38:091e511ce8a0 616 };
mjr 38:091e511ce8a0 617
mjr 38:091e511ce8a0 618 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 619 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 620 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 621 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 622 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 623 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 624 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 625 {
mjr 38:091e511ce8a0 626 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 627 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 628 LedSeg l;
mjr 38:091e511ce8a0 629 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 630 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 631
mjr 38:091e511ce8a0 632 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 633 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 634 // LedWiz use.
mjr 38:091e511ce8a0 635 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 636 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 637 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 638 }
mjr 38:091e511ce8a0 639
mjr 38:091e511ce8a0 640
mjr 38:091e511ce8a0 641 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 642 //
mjr 29:582472d0bc57 643 // LedWiz emulation, and enhanced TLC5940 output controller
mjr 5:a70c0bce770d 644 //
mjr 26:cb71c4af2912 645 // There are two modes for this feature. The default mode uses the on-board
mjr 26:cb71c4af2912 646 // GPIO ports to implement device outputs - each LedWiz software port is
mjr 26:cb71c4af2912 647 // connected to a physical GPIO pin on the KL25Z. The KL25Z only has 10
mjr 26:cb71c4af2912 648 // PWM channels, so in this mode only 10 LedWiz ports will be dimmable; the
mjr 26:cb71c4af2912 649 // rest are strictly on/off. The KL25Z also has a limited number of GPIO
mjr 26:cb71c4af2912 650 // ports overall - not enough for the full complement of 32 LedWiz ports
mjr 26:cb71c4af2912 651 // and 24 VP joystick inputs, so it's necessary to trade one against the
mjr 26:cb71c4af2912 652 // other if both features are to be used.
mjr 26:cb71c4af2912 653 //
mjr 26:cb71c4af2912 654 // The alternative, enhanced mode uses external TLC5940 PWM controller
mjr 26:cb71c4af2912 655 // chips to control device outputs. In this mode, each LedWiz software
mjr 26:cb71c4af2912 656 // port is mapped to an output on one of the external TLC5940 chips.
mjr 26:cb71c4af2912 657 // Two 5940s is enough for the full set of 32 LedWiz ports, and we can
mjr 26:cb71c4af2912 658 // support even more chips for even more outputs (although doing so requires
mjr 26:cb71c4af2912 659 // breaking LedWiz compatibility, since the LedWiz USB protocol is hardwired
mjr 26:cb71c4af2912 660 // for 32 outputs). Every port in this mode has full PWM support.
mjr 26:cb71c4af2912 661 //
mjr 5:a70c0bce770d 662
mjr 29:582472d0bc57 663
mjr 26:cb71c4af2912 664 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 665 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 666 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 667 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 668 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 669
mjr 26:cb71c4af2912 670 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 671 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 672 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 673 class LwOut
mjr 6:cc35eb643e8f 674 {
mjr 6:cc35eb643e8f 675 public:
mjr 40:cc0d9814522b 676 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 677 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 678 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 679 };
mjr 26:cb71c4af2912 680
mjr 35:e959ffba78fd 681 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 682 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 683 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 684 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 685 // numbering.
mjr 35:e959ffba78fd 686 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 687 {
mjr 33:d832bcab089e 688 public:
mjr 35:e959ffba78fd 689 LwVirtualOut() { }
mjr 40:cc0d9814522b 690 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 691 };
mjr 26:cb71c4af2912 692
mjr 34:6b981a2afab7 693 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 694 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 695 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 696 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 697 {
mjr 34:6b981a2afab7 698 public:
mjr 34:6b981a2afab7 699 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 700 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 701
mjr 34:6b981a2afab7 702 private:
mjr 53:9b2611964afc 703 // underlying physical output
mjr 34:6b981a2afab7 704 LwOut *out;
mjr 34:6b981a2afab7 705 };
mjr 34:6b981a2afab7 706
mjr 53:9b2611964afc 707 // Global ZB Launch Ball state
mjr 53:9b2611964afc 708 bool zbLaunchOn = false;
mjr 53:9b2611964afc 709
mjr 53:9b2611964afc 710 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 711 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 712 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 713 {
mjr 53:9b2611964afc 714 public:
mjr 53:9b2611964afc 715 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 716 virtual void set(uint8_t val)
mjr 53:9b2611964afc 717 {
mjr 53:9b2611964afc 718 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 719 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 720
mjr 53:9b2611964afc 721 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 722 out->set(val);
mjr 53:9b2611964afc 723 }
mjr 53:9b2611964afc 724
mjr 53:9b2611964afc 725 private:
mjr 53:9b2611964afc 726 // underlying physical or virtual output
mjr 53:9b2611964afc 727 LwOut *out;
mjr 53:9b2611964afc 728 };
mjr 53:9b2611964afc 729
mjr 53:9b2611964afc 730
mjr 40:cc0d9814522b 731 // Gamma correction table for 8-bit input values
mjr 40:cc0d9814522b 732 static const uint8_t gamma[] = {
mjr 40:cc0d9814522b 733 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 734 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 735 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 736 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 737 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 738 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 739 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 740 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 741 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 742 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 743 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 744 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 745 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 746 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 747 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 748 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 749 };
mjr 40:cc0d9814522b 750
mjr 40:cc0d9814522b 751 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 752 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 753 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 754 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 755 {
mjr 40:cc0d9814522b 756 public:
mjr 40:cc0d9814522b 757 LwGammaOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 758 virtual void set(uint8_t val) { out->set(gamma[val]); }
mjr 40:cc0d9814522b 759
mjr 40:cc0d9814522b 760 private:
mjr 40:cc0d9814522b 761 LwOut *out;
mjr 40:cc0d9814522b 762 };
mjr 40:cc0d9814522b 763
mjr 53:9b2611964afc 764 // global night mode flag
mjr 53:9b2611964afc 765 static bool nightMode = false;
mjr 53:9b2611964afc 766
mjr 40:cc0d9814522b 767 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 768 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 769 // mode is engaged.
mjr 40:cc0d9814522b 770 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 771 {
mjr 40:cc0d9814522b 772 public:
mjr 40:cc0d9814522b 773 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 774 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 775
mjr 53:9b2611964afc 776 private:
mjr 53:9b2611964afc 777 LwOut *out;
mjr 53:9b2611964afc 778 };
mjr 53:9b2611964afc 779
mjr 53:9b2611964afc 780 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 781 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 782 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 783 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 784 {
mjr 53:9b2611964afc 785 public:
mjr 53:9b2611964afc 786 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 787 virtual void set(uint8_t)
mjr 53:9b2611964afc 788 {
mjr 53:9b2611964afc 789 // ignore the host value and simply show the current
mjr 53:9b2611964afc 790 // night mode setting
mjr 53:9b2611964afc 791 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 792 }
mjr 40:cc0d9814522b 793
mjr 40:cc0d9814522b 794 private:
mjr 40:cc0d9814522b 795 LwOut *out;
mjr 40:cc0d9814522b 796 };
mjr 40:cc0d9814522b 797
mjr 26:cb71c4af2912 798
mjr 35:e959ffba78fd 799 //
mjr 35:e959ffba78fd 800 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 801 // assignments set in config.h.
mjr 33:d832bcab089e 802 //
mjr 35:e959ffba78fd 803 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 804 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 805 {
mjr 35:e959ffba78fd 806 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 807 {
mjr 53:9b2611964afc 808 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 809 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 810 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 811 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 812 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 813 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 814 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 815 }
mjr 35:e959ffba78fd 816 }
mjr 26:cb71c4af2912 817
mjr 40:cc0d9814522b 818 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 819 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 820 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 821 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 822 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 823 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 824 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 825 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 826 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 827 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 828 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 829 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 830 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 831 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 832 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 833 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 834 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 835 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 836 };
mjr 40:cc0d9814522b 837
mjr 40:cc0d9814522b 838 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 839 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 840 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 841 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 842 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 843 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 844 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 845 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 846 // are always 8 bits.
mjr 40:cc0d9814522b 847 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 848 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 849 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 850 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 851 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 852 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 853 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 854 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 855 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 856 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 857 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 858 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 859 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 860 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 861 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 862 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 863 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 864 };
mjr 40:cc0d9814522b 865
mjr 26:cb71c4af2912 866 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 867 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 868 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 869 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 870 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 871 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 872 {
mjr 26:cb71c4af2912 873 public:
mjr 60:f38da020aa13 874 Lw5940Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 875 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 876 {
mjr 26:cb71c4af2912 877 if (val != prv)
mjr 40:cc0d9814522b 878 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 879 }
mjr 60:f38da020aa13 880 uint8_t idx;
mjr 40:cc0d9814522b 881 uint8_t prv;
mjr 26:cb71c4af2912 882 };
mjr 26:cb71c4af2912 883
mjr 40:cc0d9814522b 884 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 885 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 886 {
mjr 40:cc0d9814522b 887 public:
mjr 60:f38da020aa13 888 Lw5940GammaOut(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 889 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 890 {
mjr 40:cc0d9814522b 891 if (val != prv)
mjr 40:cc0d9814522b 892 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 893 }
mjr 60:f38da020aa13 894 uint8_t idx;
mjr 40:cc0d9814522b 895 uint8_t prv;
mjr 40:cc0d9814522b 896 };
mjr 40:cc0d9814522b 897
mjr 40:cc0d9814522b 898
mjr 33:d832bcab089e 899
mjr 34:6b981a2afab7 900 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 901 // config.h.
mjr 35:e959ffba78fd 902 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 903
mjr 35:e959ffba78fd 904 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 905 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 906 {
mjr 35:e959ffba78fd 907 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 908 {
mjr 53:9b2611964afc 909 hc595 = new HC595(
mjr 53:9b2611964afc 910 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 911 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 912 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 913 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 914 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 915 hc595->init();
mjr 35:e959ffba78fd 916 hc595->update();
mjr 35:e959ffba78fd 917 }
mjr 35:e959ffba78fd 918 }
mjr 34:6b981a2afab7 919
mjr 34:6b981a2afab7 920 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 921 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 922 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 923 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 924 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 925 class Lw595Out: public LwOut
mjr 33:d832bcab089e 926 {
mjr 33:d832bcab089e 927 public:
mjr 60:f38da020aa13 928 Lw595Out(uint8_t idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 929 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 930 {
mjr 34:6b981a2afab7 931 if (val != prv)
mjr 40:cc0d9814522b 932 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 933 }
mjr 60:f38da020aa13 934 uint8_t idx;
mjr 40:cc0d9814522b 935 uint8_t prv;
mjr 33:d832bcab089e 936 };
mjr 33:d832bcab089e 937
mjr 26:cb71c4af2912 938
mjr 40:cc0d9814522b 939
mjr 64:ef7ca92dff36 940 // Conversion table - 8-bit DOF output level to PWM duty cycle,
mjr 64:ef7ca92dff36 941 // normalized to 0.0 to 1.0 scale.
mjr 74:822a92bc11d2 942 static const float dof_to_pwm[] = {
mjr 64:ef7ca92dff36 943 0.000000f, 0.003922f, 0.007843f, 0.011765f, 0.015686f, 0.019608f, 0.023529f, 0.027451f,
mjr 64:ef7ca92dff36 944 0.031373f, 0.035294f, 0.039216f, 0.043137f, 0.047059f, 0.050980f, 0.054902f, 0.058824f,
mjr 64:ef7ca92dff36 945 0.062745f, 0.066667f, 0.070588f, 0.074510f, 0.078431f, 0.082353f, 0.086275f, 0.090196f,
mjr 64:ef7ca92dff36 946 0.094118f, 0.098039f, 0.101961f, 0.105882f, 0.109804f, 0.113725f, 0.117647f, 0.121569f,
mjr 64:ef7ca92dff36 947 0.125490f, 0.129412f, 0.133333f, 0.137255f, 0.141176f, 0.145098f, 0.149020f, 0.152941f,
mjr 64:ef7ca92dff36 948 0.156863f, 0.160784f, 0.164706f, 0.168627f, 0.172549f, 0.176471f, 0.180392f, 0.184314f,
mjr 64:ef7ca92dff36 949 0.188235f, 0.192157f, 0.196078f, 0.200000f, 0.203922f, 0.207843f, 0.211765f, 0.215686f,
mjr 64:ef7ca92dff36 950 0.219608f, 0.223529f, 0.227451f, 0.231373f, 0.235294f, 0.239216f, 0.243137f, 0.247059f,
mjr 64:ef7ca92dff36 951 0.250980f, 0.254902f, 0.258824f, 0.262745f, 0.266667f, 0.270588f, 0.274510f, 0.278431f,
mjr 64:ef7ca92dff36 952 0.282353f, 0.286275f, 0.290196f, 0.294118f, 0.298039f, 0.301961f, 0.305882f, 0.309804f,
mjr 64:ef7ca92dff36 953 0.313725f, 0.317647f, 0.321569f, 0.325490f, 0.329412f, 0.333333f, 0.337255f, 0.341176f,
mjr 64:ef7ca92dff36 954 0.345098f, 0.349020f, 0.352941f, 0.356863f, 0.360784f, 0.364706f, 0.368627f, 0.372549f,
mjr 64:ef7ca92dff36 955 0.376471f, 0.380392f, 0.384314f, 0.388235f, 0.392157f, 0.396078f, 0.400000f, 0.403922f,
mjr 64:ef7ca92dff36 956 0.407843f, 0.411765f, 0.415686f, 0.419608f, 0.423529f, 0.427451f, 0.431373f, 0.435294f,
mjr 64:ef7ca92dff36 957 0.439216f, 0.443137f, 0.447059f, 0.450980f, 0.454902f, 0.458824f, 0.462745f, 0.466667f,
mjr 64:ef7ca92dff36 958 0.470588f, 0.474510f, 0.478431f, 0.482353f, 0.486275f, 0.490196f, 0.494118f, 0.498039f,
mjr 64:ef7ca92dff36 959 0.501961f, 0.505882f, 0.509804f, 0.513725f, 0.517647f, 0.521569f, 0.525490f, 0.529412f,
mjr 64:ef7ca92dff36 960 0.533333f, 0.537255f, 0.541176f, 0.545098f, 0.549020f, 0.552941f, 0.556863f, 0.560784f,
mjr 64:ef7ca92dff36 961 0.564706f, 0.568627f, 0.572549f, 0.576471f, 0.580392f, 0.584314f, 0.588235f, 0.592157f,
mjr 64:ef7ca92dff36 962 0.596078f, 0.600000f, 0.603922f, 0.607843f, 0.611765f, 0.615686f, 0.619608f, 0.623529f,
mjr 64:ef7ca92dff36 963 0.627451f, 0.631373f, 0.635294f, 0.639216f, 0.643137f, 0.647059f, 0.650980f, 0.654902f,
mjr 64:ef7ca92dff36 964 0.658824f, 0.662745f, 0.666667f, 0.670588f, 0.674510f, 0.678431f, 0.682353f, 0.686275f,
mjr 64:ef7ca92dff36 965 0.690196f, 0.694118f, 0.698039f, 0.701961f, 0.705882f, 0.709804f, 0.713725f, 0.717647f,
mjr 64:ef7ca92dff36 966 0.721569f, 0.725490f, 0.729412f, 0.733333f, 0.737255f, 0.741176f, 0.745098f, 0.749020f,
mjr 64:ef7ca92dff36 967 0.752941f, 0.756863f, 0.760784f, 0.764706f, 0.768627f, 0.772549f, 0.776471f, 0.780392f,
mjr 64:ef7ca92dff36 968 0.784314f, 0.788235f, 0.792157f, 0.796078f, 0.800000f, 0.803922f, 0.807843f, 0.811765f,
mjr 64:ef7ca92dff36 969 0.815686f, 0.819608f, 0.823529f, 0.827451f, 0.831373f, 0.835294f, 0.839216f, 0.843137f,
mjr 64:ef7ca92dff36 970 0.847059f, 0.850980f, 0.854902f, 0.858824f, 0.862745f, 0.866667f, 0.870588f, 0.874510f,
mjr 64:ef7ca92dff36 971 0.878431f, 0.882353f, 0.886275f, 0.890196f, 0.894118f, 0.898039f, 0.901961f, 0.905882f,
mjr 64:ef7ca92dff36 972 0.909804f, 0.913725f, 0.917647f, 0.921569f, 0.925490f, 0.929412f, 0.933333f, 0.937255f,
mjr 64:ef7ca92dff36 973 0.941176f, 0.945098f, 0.949020f, 0.952941f, 0.956863f, 0.960784f, 0.964706f, 0.968627f,
mjr 64:ef7ca92dff36 974 0.972549f, 0.976471f, 0.980392f, 0.984314f, 0.988235f, 0.992157f, 0.996078f, 1.000000f
mjr 40:cc0d9814522b 975 };
mjr 26:cb71c4af2912 976
mjr 64:ef7ca92dff36 977
mjr 64:ef7ca92dff36 978 // Conversion table for 8-bit DOF level to pulse width in microseconds,
mjr 64:ef7ca92dff36 979 // with gamma correction. We could use the layered gamma output on top
mjr 64:ef7ca92dff36 980 // of the regular LwPwmOut class for this, but we get better precision
mjr 64:ef7ca92dff36 981 // with a dedicated table, because we apply gamma correction to the
mjr 64:ef7ca92dff36 982 // 32-bit microsecond values rather than the 8-bit DOF levels.
mjr 64:ef7ca92dff36 983 static const float dof_to_gamma_pwm[] = {
mjr 64:ef7ca92dff36 984 0.000000f, 0.000000f, 0.000001f, 0.000004f, 0.000009f, 0.000017f, 0.000028f, 0.000042f,
mjr 64:ef7ca92dff36 985 0.000062f, 0.000086f, 0.000115f, 0.000151f, 0.000192f, 0.000240f, 0.000296f, 0.000359f,
mjr 64:ef7ca92dff36 986 0.000430f, 0.000509f, 0.000598f, 0.000695f, 0.000803f, 0.000920f, 0.001048f, 0.001187f,
mjr 64:ef7ca92dff36 987 0.001337f, 0.001499f, 0.001673f, 0.001860f, 0.002059f, 0.002272f, 0.002498f, 0.002738f,
mjr 64:ef7ca92dff36 988 0.002993f, 0.003262f, 0.003547f, 0.003847f, 0.004162f, 0.004494f, 0.004843f, 0.005208f,
mjr 64:ef7ca92dff36 989 0.005591f, 0.005991f, 0.006409f, 0.006845f, 0.007301f, 0.007775f, 0.008268f, 0.008781f,
mjr 64:ef7ca92dff36 990 0.009315f, 0.009868f, 0.010442f, 0.011038f, 0.011655f, 0.012293f, 0.012954f, 0.013637f,
mjr 64:ef7ca92dff36 991 0.014342f, 0.015071f, 0.015823f, 0.016599f, 0.017398f, 0.018223f, 0.019071f, 0.019945f,
mjr 64:ef7ca92dff36 992 0.020844f, 0.021769f, 0.022720f, 0.023697f, 0.024701f, 0.025731f, 0.026789f, 0.027875f,
mjr 64:ef7ca92dff36 993 0.028988f, 0.030129f, 0.031299f, 0.032498f, 0.033726f, 0.034983f, 0.036270f, 0.037587f,
mjr 64:ef7ca92dff36 994 0.038935f, 0.040313f, 0.041722f, 0.043162f, 0.044634f, 0.046138f, 0.047674f, 0.049243f,
mjr 64:ef7ca92dff36 995 0.050844f, 0.052478f, 0.054146f, 0.055847f, 0.057583f, 0.059353f, 0.061157f, 0.062996f,
mjr 64:ef7ca92dff36 996 0.064870f, 0.066780f, 0.068726f, 0.070708f, 0.072726f, 0.074780f, 0.076872f, 0.079001f,
mjr 64:ef7ca92dff36 997 0.081167f, 0.083371f, 0.085614f, 0.087895f, 0.090214f, 0.092572f, 0.094970f, 0.097407f,
mjr 64:ef7ca92dff36 998 0.099884f, 0.102402f, 0.104959f, 0.107558f, 0.110197f, 0.112878f, 0.115600f, 0.118364f,
mjr 64:ef7ca92dff36 999 0.121170f, 0.124019f, 0.126910f, 0.129844f, 0.132821f, 0.135842f, 0.138907f, 0.142016f,
mjr 64:ef7ca92dff36 1000 0.145170f, 0.148367f, 0.151610f, 0.154898f, 0.158232f, 0.161611f, 0.165037f, 0.168509f,
mjr 64:ef7ca92dff36 1001 0.172027f, 0.175592f, 0.179205f, 0.182864f, 0.186572f, 0.190327f, 0.194131f, 0.197983f,
mjr 64:ef7ca92dff36 1002 0.201884f, 0.205834f, 0.209834f, 0.213883f, 0.217982f, 0.222131f, 0.226330f, 0.230581f,
mjr 64:ef7ca92dff36 1003 0.234882f, 0.239234f, 0.243638f, 0.248094f, 0.252602f, 0.257162f, 0.261774f, 0.266440f,
mjr 64:ef7ca92dff36 1004 0.271159f, 0.275931f, 0.280756f, 0.285636f, 0.290570f, 0.295558f, 0.300601f, 0.305699f,
mjr 64:ef7ca92dff36 1005 0.310852f, 0.316061f, 0.321325f, 0.326645f, 0.332022f, 0.337456f, 0.342946f, 0.348493f,
mjr 64:ef7ca92dff36 1006 0.354098f, 0.359760f, 0.365480f, 0.371258f, 0.377095f, 0.382990f, 0.388944f, 0.394958f,
mjr 64:ef7ca92dff36 1007 0.401030f, 0.407163f, 0.413356f, 0.419608f, 0.425921f, 0.432295f, 0.438730f, 0.445226f,
mjr 64:ef7ca92dff36 1008 0.451784f, 0.458404f, 0.465085f, 0.471829f, 0.478635f, 0.485504f, 0.492436f, 0.499432f,
mjr 64:ef7ca92dff36 1009 0.506491f, 0.513614f, 0.520800f, 0.528052f, 0.535367f, 0.542748f, 0.550194f, 0.557705f,
mjr 64:ef7ca92dff36 1010 0.565282f, 0.572924f, 0.580633f, 0.588408f, 0.596249f, 0.604158f, 0.612133f, 0.620176f,
mjr 64:ef7ca92dff36 1011 0.628287f, 0.636465f, 0.644712f, 0.653027f, 0.661410f, 0.669863f, 0.678384f, 0.686975f,
mjr 64:ef7ca92dff36 1012 0.695636f, 0.704366f, 0.713167f, 0.722038f, 0.730979f, 0.739992f, 0.749075f, 0.758230f,
mjr 64:ef7ca92dff36 1013 0.767457f, 0.776755f, 0.786126f, 0.795568f, 0.805084f, 0.814672f, 0.824334f, 0.834068f,
mjr 64:ef7ca92dff36 1014 0.843877f, 0.853759f, 0.863715f, 0.873746f, 0.883851f, 0.894031f, 0.904286f, 0.914616f,
mjr 64:ef7ca92dff36 1015 0.925022f, 0.935504f, 0.946062f, 0.956696f, 0.967407f, 0.978194f, 0.989058f, 1.000000f
mjr 64:ef7ca92dff36 1016 };
mjr 64:ef7ca92dff36 1017
mjr 74:822a92bc11d2 1018 // MyPwmOut - a slight customization of the base mbed PwmOut class. The
mjr 74:822a92bc11d2 1019 // mbed version of PwmOut.write() resets the PWM cycle counter on every
mjr 74:822a92bc11d2 1020 // update. That's problematic, because the counter reset interrupts the
mjr 74:822a92bc11d2 1021 // cycle in progress, causing a momentary drop in brightness that's visible
mjr 74:822a92bc11d2 1022 // to the eye if the output is connected to an LED or other light source.
mjr 74:822a92bc11d2 1023 // This is especially noticeable when making gradual changes consisting of
mjr 74:822a92bc11d2 1024 // many updates in a short time, such as a slow fade, because the light
mjr 74:822a92bc11d2 1025 // visibly flickers on every step of the transition. This customized
mjr 74:822a92bc11d2 1026 // version removes the cycle reset, which makes for glitch-free updates
mjr 74:822a92bc11d2 1027 // and nice smooth fades.
mjr 74:822a92bc11d2 1028 //
mjr 74:822a92bc11d2 1029 // Initially, I thought the counter reset in the mbed code was simply a
mjr 74:822a92bc11d2 1030 // bug. According to the KL25Z hardware reference, you update the duty
mjr 74:822a92bc11d2 1031 // cycle by writing to the "compare values" (CvN) register. There's no
mjr 74:822a92bc11d2 1032 // hint that you should reset the cycle counter, and indeed, the hardware
mjr 74:822a92bc11d2 1033 // goes out of its way to allow updates mid-cycle (as we'll see shortly).
mjr 74:822a92bc11d2 1034 // They went to lengths specifically so that you *don't* have to reset
mjr 74:822a92bc11d2 1035 // that counter. And there's no comment in the mbed code explaining the
mjr 74:822a92bc11d2 1036 // cycle reset, so it looked to me like something that must have been
mjr 74:822a92bc11d2 1037 // added by someone who didn't read the manual carefully enough and didn't
mjr 74:822a92bc11d2 1038 // test the result thoroughly enough to find the glitch it causes.
mjr 74:822a92bc11d2 1039 //
mjr 74:822a92bc11d2 1040 // After some experimentation, though, I've come to think the code was
mjr 74:822a92bc11d2 1041 // added intentionally, as a workaround for a rather nasty KL25Z hardware
mjr 74:822a92bc11d2 1042 // bug. Whoever wrote the code didn't add any comments explaning why it's
mjr 74:822a92bc11d2 1043 // there, so we can't know for sure, but it does happen to work around the
mjr 74:822a92bc11d2 1044 // bug, so it's a good bet the original programmer found the same hardware
mjr 74:822a92bc11d2 1045 // problem and came up with the counter reset as an imperfect solution.
mjr 74:822a92bc11d2 1046 //
mjr 74:822a92bc11d2 1047 // We'll get to the KL25Z hardware bug shortly, but first we need to look at
mjr 74:822a92bc11d2 1048 // how the hardware is *supposed* to work. The KL25Z is *supposed* to make
mjr 74:822a92bc11d2 1049 // it super easy for software to do glitch-free updates of the duty cycle of
mjr 74:822a92bc11d2 1050 // a PWM channel. With PWM hardware in general, you have to be careful to
mjr 74:822a92bc11d2 1051 // update the duty cycle counter between grayscale cycles, beacuse otherwise
mjr 74:822a92bc11d2 1052 // you might interrupt the cycle in progress and cause a brightness glitch.
mjr 74:822a92bc11d2 1053 // The KL25Z TPM simplifies this with a "staging" register for the duty
mjr 74:822a92bc11d2 1054 // cycle counter. At the end of each cycle, the TPM moves the value from
mjr 74:822a92bc11d2 1055 // the staging register into its internal register that actually controls
mjr 74:822a92bc11d2 1056 // the duty cycle. The idea is that the software can write a new value to
mjr 74:822a92bc11d2 1057 // the staging register at any time, and the hardware will take care of
mjr 74:822a92bc11d2 1058 // synchronizing the actual internal update with the grayscale cycle. In
mjr 74:822a92bc11d2 1059 // principle, this frees the software of any special timing considerations
mjr 74:822a92bc11d2 1060 // for PWM updates.
mjr 74:822a92bc11d2 1061 //
mjr 74:822a92bc11d2 1062 // Now for the bug. The staging register works as advertised, except for
mjr 74:822a92bc11d2 1063 // one little detail: it seems to be implemented as a one-element queue
mjr 74:822a92bc11d2 1064 // that won't accept a new write until the existing value has been read.
mjr 74:822a92bc11d2 1065 // The read only happens at the start of the new cycle. So the effect is
mjr 74:822a92bc11d2 1066 // that we can only write one update per cycle. Any writes after the first
mjr 74:822a92bc11d2 1067 // are simply dropped, lost forever. That causes even worse problems than
mjr 74:822a92bc11d2 1068 // the original glitch. For example, if we're doing a fade-out, the last
mjr 74:822a92bc11d2 1069 // couple of updates in the fade might get lost, leaving the output slightly
mjr 74:822a92bc11d2 1070 // on at the end, when it's supposed to be completely off.
mjr 74:822a92bc11d2 1071 //
mjr 74:822a92bc11d2 1072 // The mbed workaround of resetting the cycle counter fixes the lost-update
mjr 74:822a92bc11d2 1073 // problem, but it causes the constant glitching during fades. So we need
mjr 74:822a92bc11d2 1074 // a third way that works around the hardware problem without causing
mjr 74:822a92bc11d2 1075 // update glitches.
mjr 74:822a92bc11d2 1076 //
mjr 74:822a92bc11d2 1077 // Here's my solution: we basically implement our own staging register,
mjr 74:822a92bc11d2 1078 // using the same principle as the hardware staging register, but hopefully
mjr 74:822a92bc11d2 1079 // with an implementation that actually works! First, when we update a PWM
mjr 74:822a92bc11d2 1080 // output, we won't actually write the value to the hardware register.
mjr 74:822a92bc11d2 1081 // Instead, we'll just stash it internally, effectively in our own staging
mjr 74:822a92bc11d2 1082 // register (but actually just a member variable of this object). Then
mjr 74:822a92bc11d2 1083 // we'll periodically transfer these staged updates to the actual hardware
mjr 74:822a92bc11d2 1084 // registers, being careful to do this no more than once per PWM cycle.
mjr 74:822a92bc11d2 1085 // One way to do this would be to use an interrupt handler that fires at
mjr 74:822a92bc11d2 1086 // the end of the PWM cycle, but that would be fairly complex because we
mjr 74:822a92bc11d2 1087 // have many (up to 10) PWM channels. Instead, we'll just use polling:
mjr 74:822a92bc11d2 1088 // we'll call a routine periodically in our main loop, and we'll transfer
mjr 74:822a92bc11d2 1089 // updates for all of the channels that have been updated since the last
mjr 74:822a92bc11d2 1090 // pass. We can get away with this simple polling approach because the
mjr 74:822a92bc11d2 1091 // hardware design *partially* works: it does manage to free us from the
mjr 74:822a92bc11d2 1092 // need to synchronize updates with the exact end of a PWM cycle. As long
mjr 74:822a92bc11d2 1093 // as we do no more than one write per cycle, we're golden. That's easy
mjr 74:822a92bc11d2 1094 // to accomplish, too: all we need to do is make sure that our polling
mjr 74:822a92bc11d2 1095 // interval is slightly longer than the PWM period. That ensures that
mjr 74:822a92bc11d2 1096 // we can never have two updates during one PWM cycle. It does mean that
mjr 74:822a92bc11d2 1097 // we might have zero updates on some cycles, causing a one-cycle delay
mjr 74:822a92bc11d2 1098 // before an update is actually put into effect, but that shouldn't ever
mjr 74:822a92bc11d2 1099 // be noticeable since the cycles are so short. Specifically, we'll use
mjr 74:822a92bc11d2 1100 // the mbed default 20ms PWM period, and we'll do our update polling
mjr 74:822a92bc11d2 1101 // every 25ms.
mjr 74:822a92bc11d2 1102 class LessGlitchyPwmOut: public PwmOut
mjr 74:822a92bc11d2 1103 {
mjr 74:822a92bc11d2 1104 public:
mjr 74:822a92bc11d2 1105 LessGlitchyPwmOut(PinName pin) : PwmOut(pin) { }
mjr 74:822a92bc11d2 1106
mjr 74:822a92bc11d2 1107 void write(float value)
mjr 74:822a92bc11d2 1108 {
mjr 74:822a92bc11d2 1109 // Update the counter without resetting the counter.
mjr 74:822a92bc11d2 1110 //
mjr 74:822a92bc11d2 1111 // NB: this causes problems if there are multiple writes in one
mjr 74:822a92bc11d2 1112 // PWM cycle: the first write will be applied and later writes
mjr 74:822a92bc11d2 1113 // during the same cycle will be lost. Callers must take care
mjr 74:822a92bc11d2 1114 // to limit writes to one per cycle.
mjr 74:822a92bc11d2 1115 *_pwm.CnV = uint32_t((*_pwm.MOD + 1) * value);
mjr 74:822a92bc11d2 1116 }
mjr 74:822a92bc11d2 1117 };
mjr 74:822a92bc11d2 1118
mjr 74:822a92bc11d2 1119
mjr 74:822a92bc11d2 1120 // Collection of PwmOut objects to update on each polling cycle. The
mjr 74:822a92bc11d2 1121 // KL25Z has 10 physical PWM channels, so we need at most 10 polled outputs.
mjr 74:822a92bc11d2 1122 static int numPolledPwm;
mjr 74:822a92bc11d2 1123 static class LwPwmOut *polledPwm[10];
mjr 74:822a92bc11d2 1124
mjr 74:822a92bc11d2 1125 // LwOut class for a PWM-capable GPIO port.
mjr 6:cc35eb643e8f 1126 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 1127 {
mjr 6:cc35eb643e8f 1128 public:
mjr 43:7a6364d82a41 1129 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 1130 {
mjr 74:822a92bc11d2 1131 // set the cycle time to 20ms
mjr 74:822a92bc11d2 1132 p.period_ms(20);
mjr 74:822a92bc11d2 1133
mjr 74:822a92bc11d2 1134 // add myself to the list of polled outputs for periodic updates
mjr 74:822a92bc11d2 1135 if (numPolledPwm < countof(polledPwm))
mjr 74:822a92bc11d2 1136 polledPwm[numPolledPwm++] = this;
mjr 74:822a92bc11d2 1137
mjr 74:822a92bc11d2 1138 // set the initial value, and an explicitly different previous value
mjr 74:822a92bc11d2 1139 prv = ~initVal;
mjr 43:7a6364d82a41 1140 set(initVal);
mjr 43:7a6364d82a41 1141 }
mjr 74:822a92bc11d2 1142
mjr 40:cc0d9814522b 1143 virtual void set(uint8_t val)
mjr 74:822a92bc11d2 1144 {
mjr 74:822a92bc11d2 1145 // on set, just save the value for a later 'commit'
mjr 74:822a92bc11d2 1146 this->val = val;
mjr 13:72dda449c3c0 1147 }
mjr 74:822a92bc11d2 1148
mjr 74:822a92bc11d2 1149 // handle periodic update polling
mjr 74:822a92bc11d2 1150 void poll()
mjr 74:822a92bc11d2 1151 {
mjr 74:822a92bc11d2 1152 // if the value has changed, commit it
mjr 74:822a92bc11d2 1153 if (val != prv)
mjr 74:822a92bc11d2 1154 {
mjr 74:822a92bc11d2 1155 prv = val;
mjr 74:822a92bc11d2 1156 commit(val);
mjr 74:822a92bc11d2 1157 }
mjr 74:822a92bc11d2 1158 }
mjr 74:822a92bc11d2 1159
mjr 74:822a92bc11d2 1160 protected:
mjr 74:822a92bc11d2 1161 virtual void commit(uint8_t v)
mjr 74:822a92bc11d2 1162 {
mjr 74:822a92bc11d2 1163 // write the current value to the PWM controller if it's changed
mjr 74:822a92bc11d2 1164 p.write(dof_to_pwm[v]);
mjr 74:822a92bc11d2 1165 }
mjr 74:822a92bc11d2 1166
mjr 74:822a92bc11d2 1167 LessGlitchyPwmOut p;
mjr 74:822a92bc11d2 1168 uint8_t val, prv;
mjr 6:cc35eb643e8f 1169 };
mjr 26:cb71c4af2912 1170
mjr 74:822a92bc11d2 1171 // Gamma corrected PWM GPIO output. This works exactly like the regular
mjr 74:822a92bc11d2 1172 // PWM output, but translates DOF values through the gamma-corrected
mjr 74:822a92bc11d2 1173 // table instead of the regular linear table.
mjr 64:ef7ca92dff36 1174 class LwPwmGammaOut: public LwPwmOut
mjr 64:ef7ca92dff36 1175 {
mjr 64:ef7ca92dff36 1176 public:
mjr 64:ef7ca92dff36 1177 LwPwmGammaOut(PinName pin, uint8_t initVal)
mjr 64:ef7ca92dff36 1178 : LwPwmOut(pin, initVal)
mjr 64:ef7ca92dff36 1179 {
mjr 64:ef7ca92dff36 1180 }
mjr 74:822a92bc11d2 1181
mjr 74:822a92bc11d2 1182 protected:
mjr 74:822a92bc11d2 1183 virtual void commit(uint8_t v)
mjr 64:ef7ca92dff36 1184 {
mjr 74:822a92bc11d2 1185 // write the current value to the PWM controller if it's changed
mjr 74:822a92bc11d2 1186 p.write(dof_to_gamma_pwm[v]);
mjr 64:ef7ca92dff36 1187 }
mjr 64:ef7ca92dff36 1188 };
mjr 64:ef7ca92dff36 1189
mjr 74:822a92bc11d2 1190 // poll the PWM outputs
mjr 74:822a92bc11d2 1191 Timer polledPwmTimer;
mjr 74:822a92bc11d2 1192 float polledPwmTotalTime, polledPwmRunCount;
mjr 74:822a92bc11d2 1193 void pollPwmUpdates()
mjr 74:822a92bc11d2 1194 {
mjr 74:822a92bc11d2 1195 // if it's been at least 25ms since the last update, do another update
mjr 74:822a92bc11d2 1196 if (polledPwmTimer.read_us() >= 25000)
mjr 74:822a92bc11d2 1197 {
mjr 74:822a92bc11d2 1198 // time the run for statistics collection
mjr 74:822a92bc11d2 1199 IF_DIAG(
mjr 74:822a92bc11d2 1200 Timer t;
mjr 74:822a92bc11d2 1201 t.start();
mjr 74:822a92bc11d2 1202 )
mjr 74:822a92bc11d2 1203
mjr 74:822a92bc11d2 1204 // poll each output
mjr 74:822a92bc11d2 1205 for (int i = numPolledPwm ; i > 0 ; )
mjr 74:822a92bc11d2 1206 polledPwm[--i]->poll();
mjr 74:822a92bc11d2 1207
mjr 74:822a92bc11d2 1208 // reset the timer for the next cycle
mjr 74:822a92bc11d2 1209 polledPwmTimer.reset();
mjr 74:822a92bc11d2 1210
mjr 74:822a92bc11d2 1211 // collect statistics
mjr 74:822a92bc11d2 1212 IF_DIAG(
mjr 74:822a92bc11d2 1213 polledPwmTotalTime += t.read();
mjr 74:822a92bc11d2 1214 polledPwmRunCount += 1;
mjr 74:822a92bc11d2 1215 )
mjr 74:822a92bc11d2 1216 }
mjr 74:822a92bc11d2 1217 }
mjr 64:ef7ca92dff36 1218
mjr 26:cb71c4af2912 1219 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 1220 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 1221 {
mjr 6:cc35eb643e8f 1222 public:
mjr 43:7a6364d82a41 1223 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 1224 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 1225 {
mjr 13:72dda449c3c0 1226 if (val != prv)
mjr 40:cc0d9814522b 1227 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 1228 }
mjr 6:cc35eb643e8f 1229 DigitalOut p;
mjr 40:cc0d9814522b 1230 uint8_t prv;
mjr 6:cc35eb643e8f 1231 };
mjr 26:cb71c4af2912 1232
mjr 29:582472d0bc57 1233 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 1234 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 1235 // port n (0-based).
mjr 35:e959ffba78fd 1236 //
mjr 35:e959ffba78fd 1237 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 1238 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 1239 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 1240 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 1241 // 74HC595 ports).
mjr 33:d832bcab089e 1242 static int numOutputs;
mjr 33:d832bcab089e 1243 static LwOut **lwPin;
mjr 33:d832bcab089e 1244
mjr 73:4e8ce0b18915 1245 // LedWiz output states.
mjr 73:4e8ce0b18915 1246 //
mjr 73:4e8ce0b18915 1247 // The LedWiz protocol has two separate control axes for each output.
mjr 73:4e8ce0b18915 1248 // One axis is its on/off state; the other is its "profile" state, which
mjr 73:4e8ce0b18915 1249 // is either a fixed brightness or a blinking pattern for the light.
mjr 73:4e8ce0b18915 1250 // The two axes are independent.
mjr 73:4e8ce0b18915 1251 //
mjr 73:4e8ce0b18915 1252 // Even though the original LedWiz protocol can only access 32 ports, we
mjr 73:4e8ce0b18915 1253 // maintain LedWiz state for every port, even if we have more than 32. Our
mjr 74:822a92bc11d2 1254 // extended protocol allows the client to send LedWiz-style messages that
mjr 74:822a92bc11d2 1255 // control any set of ports. A replacement LEDWIZ.DLL can make a single
mjr 74:822a92bc11d2 1256 // Pinscape unit look like multiple virtual LedWiz units to legacy clients,
mjr 74:822a92bc11d2 1257 // allowing them to control all of our ports. The clients will still be
mjr 74:822a92bc11d2 1258 // using LedWiz-style states to control the ports, so we need to support
mjr 74:822a92bc11d2 1259 // the LedWiz scheme with separate on/off and brightness control per port.
mjr 73:4e8ce0b18915 1260
mjr 73:4e8ce0b18915 1261 // on/off state for each LedWiz output
mjr 73:4e8ce0b18915 1262 static uint8_t *wizOn;
mjr 73:4e8ce0b18915 1263
mjr 73:4e8ce0b18915 1264 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 73:4e8ce0b18915 1265 // for each LedWiz output. If the output was last updated through an
mjr 73:4e8ce0b18915 1266 // LedWiz protocol message, it will have one of these values:
mjr 73:4e8ce0b18915 1267 //
mjr 73:4e8ce0b18915 1268 // 0-48 = fixed brightness 0% to 100%
mjr 73:4e8ce0b18915 1269 // 49 = fixed brightness 100% (equivalent to 48)
mjr 73:4e8ce0b18915 1270 // 129 = ramp up / ramp down
mjr 73:4e8ce0b18915 1271 // 130 = flash on / off
mjr 73:4e8ce0b18915 1272 // 131 = on / ramp down
mjr 73:4e8ce0b18915 1273 // 132 = ramp up / on
mjr 73:4e8ce0b18915 1274 //
mjr 73:4e8ce0b18915 1275 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 73:4e8ce0b18915 1276 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 73:4e8ce0b18915 1277 // it, so we need to accept it for compatibility.)
mjr 73:4e8ce0b18915 1278 static uint8_t *wizVal;
mjr 73:4e8ce0b18915 1279
mjr 73:4e8ce0b18915 1280 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 74:822a92bc11d2 1281 // rate for lights in blinking states. The LedWiz API doesn't document
mjr 74:822a92bc11d2 1282 // what the numbers mean in real time units, but by observation, the
mjr 74:822a92bc11d2 1283 // "speed" setting represents the period of the flash cycle in 0.25s
mjr 74:822a92bc11d2 1284 // units, so speed 1 = 0.25 period = 4Hz, speed 7 = 1.75s period = 0.57Hz.
mjr 74:822a92bc11d2 1285 // The period is the full cycle time of the flash waveform.
mjr 74:822a92bc11d2 1286 //
mjr 74:822a92bc11d2 1287 // Each bank of 32 lights has its independent own pulse rate, so we need
mjr 74:822a92bc11d2 1288 // one entry per bank. Each bank has 32 outputs, so we need a total of
mjr 74:822a92bc11d2 1289 // ceil(number_of_physical_outputs/32) entries. Note that we could allocate
mjr 74:822a92bc11d2 1290 // this dynamically once we know the number of actual outputs, but the
mjr 74:822a92bc11d2 1291 // upper limit is low enough that it's more efficient to use a fixed array
mjr 74:822a92bc11d2 1292 // at the maximum size.
mjr 73:4e8ce0b18915 1293 static const int MAX_LW_BANKS = (MAX_OUT_PORTS+31)/32;
mjr 73:4e8ce0b18915 1294 static uint8_t wizSpeed[MAX_LW_BANKS];
mjr 73:4e8ce0b18915 1295
mjr 74:822a92bc11d2 1296 // LedWiz cycle counters. These must be updated before calling wizState().
mjr 73:4e8ce0b18915 1297 static uint8_t wizFlashCounter[MAX_LW_BANKS];
mjr 35:e959ffba78fd 1298
mjr 74:822a92bc11d2 1299
mjr 63:5cd1a5f3a41b 1300 // Current absolute brightness levels for all outputs. These are
mjr 63:5cd1a5f3a41b 1301 // DOF brightness level value, from 0 for fully off to 255 for fully
mjr 63:5cd1a5f3a41b 1302 // on. These are always used for extended ports (33 and above), and
mjr 63:5cd1a5f3a41b 1303 // are used for LedWiz ports (1-32) when we're in extended protocol
mjr 63:5cd1a5f3a41b 1304 // mode (i.e., ledWizMode == false).
mjr 40:cc0d9814522b 1305 static uint8_t *outLevel;
mjr 38:091e511ce8a0 1306
mjr 38:091e511ce8a0 1307 // create a single output pin
mjr 53:9b2611964afc 1308 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 1309 {
mjr 38:091e511ce8a0 1310 // get this item's values
mjr 38:091e511ce8a0 1311 int typ = pc.typ;
mjr 38:091e511ce8a0 1312 int pin = pc.pin;
mjr 38:091e511ce8a0 1313 int flags = pc.flags;
mjr 40:cc0d9814522b 1314 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 1315 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 1316 int gamma = flags & PortFlagGamma;
mjr 38:091e511ce8a0 1317
mjr 38:091e511ce8a0 1318 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 1319 LwOut *lwp;
mjr 38:091e511ce8a0 1320 switch (typ)
mjr 38:091e511ce8a0 1321 {
mjr 38:091e511ce8a0 1322 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 1323 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 1324 if (pin != 0)
mjr 64:ef7ca92dff36 1325 {
mjr 64:ef7ca92dff36 1326 // If gamma correction is to be used, and we're not inverting the output,
mjr 64:ef7ca92dff36 1327 // use the combined Pwmout + Gamma output class; otherwise use the plain
mjr 64:ef7ca92dff36 1328 // PwmOut class. We can't use the combined class for inverted outputs
mjr 64:ef7ca92dff36 1329 // because we have to apply gamma correction before the inversion.
mjr 64:ef7ca92dff36 1330 if (gamma && !activeLow)
mjr 64:ef7ca92dff36 1331 {
mjr 64:ef7ca92dff36 1332 // use the gamma-corrected PwmOut type
mjr 64:ef7ca92dff36 1333 lwp = new LwPwmGammaOut(wirePinName(pin), 0);
mjr 64:ef7ca92dff36 1334
mjr 64:ef7ca92dff36 1335 // don't apply further gamma correction to this output
mjr 64:ef7ca92dff36 1336 gamma = false;
mjr 64:ef7ca92dff36 1337 }
mjr 64:ef7ca92dff36 1338 else
mjr 64:ef7ca92dff36 1339 {
mjr 64:ef7ca92dff36 1340 // no gamma correction - use the standard PwmOut class
mjr 64:ef7ca92dff36 1341 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 64:ef7ca92dff36 1342 }
mjr 64:ef7ca92dff36 1343 }
mjr 48:058ace2aed1d 1344 else
mjr 48:058ace2aed1d 1345 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1346 break;
mjr 38:091e511ce8a0 1347
mjr 38:091e511ce8a0 1348 case PortTypeGPIODig:
mjr 38:091e511ce8a0 1349 // Digital GPIO port
mjr 48:058ace2aed1d 1350 if (pin != 0)
mjr 48:058ace2aed1d 1351 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 1352 else
mjr 48:058ace2aed1d 1353 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1354 break;
mjr 38:091e511ce8a0 1355
mjr 38:091e511ce8a0 1356 case PortTypeTLC5940:
mjr 38:091e511ce8a0 1357 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 1358 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 1359 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 1360 {
mjr 40:cc0d9814522b 1361 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 1362 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 1363 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 1364 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 1365 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 1366 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 1367 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 1368 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 1369 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 1370 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 1371 // for this unlikely case.
mjr 40:cc0d9814522b 1372 if (gamma && !activeLow)
mjr 40:cc0d9814522b 1373 {
mjr 40:cc0d9814522b 1374 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 1375 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 1376
mjr 40:cc0d9814522b 1377 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 1378 gamma = false;
mjr 40:cc0d9814522b 1379 }
mjr 40:cc0d9814522b 1380 else
mjr 40:cc0d9814522b 1381 {
mjr 40:cc0d9814522b 1382 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 1383 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 1384 }
mjr 40:cc0d9814522b 1385 }
mjr 38:091e511ce8a0 1386 else
mjr 40:cc0d9814522b 1387 {
mjr 40:cc0d9814522b 1388 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 1389 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 1390 }
mjr 38:091e511ce8a0 1391 break;
mjr 38:091e511ce8a0 1392
mjr 38:091e511ce8a0 1393 case PortType74HC595:
mjr 38:091e511ce8a0 1394 // 74HC595 port (if we don't have an HC595 controller object, or it's not a valid
mjr 38:091e511ce8a0 1395 // output number, create a virtual port)
mjr 38:091e511ce8a0 1396 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 1397 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 1398 else
mjr 38:091e511ce8a0 1399 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1400 break;
mjr 38:091e511ce8a0 1401
mjr 38:091e511ce8a0 1402 case PortTypeVirtual:
mjr 43:7a6364d82a41 1403 case PortTypeDisabled:
mjr 38:091e511ce8a0 1404 default:
mjr 38:091e511ce8a0 1405 // virtual or unknown
mjr 38:091e511ce8a0 1406 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 1407 break;
mjr 38:091e511ce8a0 1408 }
mjr 38:091e511ce8a0 1409
mjr 40:cc0d9814522b 1410 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 1411 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 1412 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 1413 if (activeLow)
mjr 38:091e511ce8a0 1414 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 1415
mjr 40:cc0d9814522b 1416 // If it's a noisemaker, layer on a night mode switch. Note that this
mjr 40:cc0d9814522b 1417 // needs to be
mjr 40:cc0d9814522b 1418 if (noisy)
mjr 40:cc0d9814522b 1419 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 1420
mjr 40:cc0d9814522b 1421 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 1422 if (gamma)
mjr 40:cc0d9814522b 1423 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 1424
mjr 53:9b2611964afc 1425 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 64:ef7ca92dff36 1426 // that the nominal port numbering in the config starts at 1, but we're
mjr 53:9b2611964afc 1427 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 1428 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 1429 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 1430
mjr 53:9b2611964afc 1431 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 1432 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 1433 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 1434
mjr 38:091e511ce8a0 1435 // turn it off initially
mjr 38:091e511ce8a0 1436 lwp->set(0);
mjr 38:091e511ce8a0 1437
mjr 38:091e511ce8a0 1438 // return the pin
mjr 38:091e511ce8a0 1439 return lwp;
mjr 38:091e511ce8a0 1440 }
mjr 38:091e511ce8a0 1441
mjr 6:cc35eb643e8f 1442 // initialize the output pin array
mjr 35:e959ffba78fd 1443 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 1444 {
mjr 35:e959ffba78fd 1445 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 1446 // total number of ports.
mjr 35:e959ffba78fd 1447 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 1448 int i;
mjr 35:e959ffba78fd 1449 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 1450 {
mjr 35:e959ffba78fd 1451 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 1452 {
mjr 35:e959ffba78fd 1453 numOutputs = i;
mjr 34:6b981a2afab7 1454 break;
mjr 34:6b981a2afab7 1455 }
mjr 33:d832bcab089e 1456 }
mjr 33:d832bcab089e 1457
mjr 73:4e8ce0b18915 1458 // allocate the pin array
mjr 73:4e8ce0b18915 1459 lwPin = new LwOut*[numOutputs];
mjr 35:e959ffba78fd 1460
mjr 73:4e8ce0b18915 1461 // Allocate the current brightness array
mjr 73:4e8ce0b18915 1462 outLevel = new uint8_t[numOutputs];
mjr 33:d832bcab089e 1463
mjr 73:4e8ce0b18915 1464 // allocate the LedWiz output state arrays
mjr 73:4e8ce0b18915 1465 wizOn = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1466 wizVal = new uint8_t[numOutputs];
mjr 73:4e8ce0b18915 1467
mjr 73:4e8ce0b18915 1468 // initialize all LedWiz outputs to off and brightness 48
mjr 73:4e8ce0b18915 1469 memset(wizOn, 0, numOutputs);
mjr 73:4e8ce0b18915 1470 memset(wizVal, 48, numOutputs);
mjr 73:4e8ce0b18915 1471
mjr 73:4e8ce0b18915 1472 // set all LedWiz virtual unit flash speeds to 2
mjr 73:4e8ce0b18915 1473 for (i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1474 wizSpeed[i] = 2;
mjr 33:d832bcab089e 1475
mjr 35:e959ffba78fd 1476 // create the pin interface object for each port
mjr 35:e959ffba78fd 1477 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 1478 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 1479 }
mjr 6:cc35eb643e8f 1480
mjr 63:5cd1a5f3a41b 1481 // LedWiz/Extended protocol mode.
mjr 63:5cd1a5f3a41b 1482 //
mjr 63:5cd1a5f3a41b 1483 // We implement output port control using both the legacy LedWiz
mjr 63:5cd1a5f3a41b 1484 // protocol and a private extended protocol (which is 100% backwards
mjr 63:5cd1a5f3a41b 1485 // compatible with the LedWiz protocol: we recognize all valid legacy
mjr 63:5cd1a5f3a41b 1486 // protocol commands and handle them the same way a real LedWiz does).
mjr 74:822a92bc11d2 1487 //
mjr 74:822a92bc11d2 1488 // The legacy LedWiz protocol has only two message types, which
mjr 74:822a92bc11d2 1489 // set output port states for a fixed set of 32 outputs. One message
mjr 74:822a92bc11d2 1490 // sets the "switch" state (on/off) of the ports, and the other sets
mjr 74:822a92bc11d2 1491 // the "profile" state (brightness or flash pattern). The two states
mjr 74:822a92bc11d2 1492 // are stored independently, so turning a port off via the switch state
mjr 74:822a92bc11d2 1493 // doesn't forget or change its brightness: turning it back on will
mjr 74:822a92bc11d2 1494 // restore the same brightness or flash pattern as before. The "profile"
mjr 74:822a92bc11d2 1495 // state can be a brightness level from 1 to 49, or one of four flash
mjr 74:822a92bc11d2 1496 // patterns, identified by a value from 129 to 132. The flash pattern
mjr 74:822a92bc11d2 1497 // and brightness levels are mutually exclusive, since the single
mjr 74:822a92bc11d2 1498 // "profile" setting per port selects which is used.
mjr 63:5cd1a5f3a41b 1499 //
mjr 74:822a92bc11d2 1500 // The extended protocol discards the flash pattern options and instead
mjr 74:822a92bc11d2 1501 // uses the full byte range 0..255 for brightness levels. Modern clients
mjr 74:822a92bc11d2 1502 // based on DOF don't use the flash patterns, since DOF simply sends
mjr 74:822a92bc11d2 1503 // the individual brightness updates when it wants to create fades or
mjr 74:822a92bc11d2 1504 // flashes. What we gain by dropping the flash options is finer
mjr 74:822a92bc11d2 1505 // gradations of brightness - 256 levels rather than the LedWiz's 48.
mjr 74:822a92bc11d2 1506 // This makes for noticeably smoother fades and a wider gamut for RGB
mjr 74:822a92bc11d2 1507 // color mixing. The extended protocol also drops the LedWiz notion of
mjr 74:822a92bc11d2 1508 // separate "switch" and "profile" settings, and instead combines the
mjr 74:822a92bc11d2 1509 // two into the single brightness setting, with brightness 0 meaning off.
mjr 74:822a92bc11d2 1510 // This also is the way DOF thinks about the problem, so it's a better
mjr 74:822a92bc11d2 1511 // match to modern clients.
mjr 63:5cd1a5f3a41b 1512 //
mjr 74:822a92bc11d2 1513 // To reconcile the different approaches in the two protocols to setting
mjr 74:822a92bc11d2 1514 // output port states, we use a global mode: LedWiz mode or Pinscape mode.
mjr 74:822a92bc11d2 1515 // Whenever an output port message is received, we switch this flag to the
mjr 74:822a92bc11d2 1516 // mode of the message. The assumption is that only one client at a time
mjr 74:822a92bc11d2 1517 // will be manipulating output ports, and that any given client uses one
mjr 74:822a92bc11d2 1518 // protocol exclusively. There's no reason a client should mix the
mjr 74:822a92bc11d2 1519 // protocols; if a client is aware of the Pinscape protocol at all, it
mjr 74:822a92bc11d2 1520 // should use it exclusively.
mjr 63:5cd1a5f3a41b 1521 static uint8_t ledWizMode = true;
mjr 63:5cd1a5f3a41b 1522
mjr 40:cc0d9814522b 1523 // translate an LedWiz brightness level (0-49) to a DOF brightness
mjr 40:cc0d9814522b 1524 // level (0-255)
mjr 40:cc0d9814522b 1525 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 1526 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 1527 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 1528 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 1529 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 1530 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 1531 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 1532 255, 255
mjr 40:cc0d9814522b 1533 };
mjr 40:cc0d9814522b 1534
mjr 74:822a92bc11d2 1535 // LedWiz flash cycle tables. For efficiency, we use a lookup table
mjr 74:822a92bc11d2 1536 // rather than calculating these on the fly. The flash cycles are
mjr 74:822a92bc11d2 1537 // generated by the following formulas, where 'c' is the current
mjr 74:822a92bc11d2 1538 // cycle counter, from 0 to 255:
mjr 74:822a92bc11d2 1539 //
mjr 74:822a92bc11d2 1540 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1541 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1542 // mode 131 = on/ramp down = (c < 128 ? 255 : (255-c)*2)
mjr 74:822a92bc11d2 1543 // mode 132 = ramp up/on = (c < 128 ? c*2 : 255)
mjr 74:822a92bc11d2 1544 //
mjr 74:822a92bc11d2 1545 // To look up the current output value for a given mode and a given
mjr 74:822a92bc11d2 1546 // cycle counter 'c', index the table with ((mode-129)*256)+c.
mjr 74:822a92bc11d2 1547 static const uint8_t wizFlashLookup[] = {
mjr 74:822a92bc11d2 1548 // mode 129 = sawtooth = (c < 128 ? c*2 + 1 : (255-c)*2)
mjr 74:822a92bc11d2 1549 0x01, 0x03, 0x05, 0x07, 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f,
mjr 74:822a92bc11d2 1550 0x21, 0x23, 0x25, 0x27, 0x29, 0x2b, 0x2d, 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f,
mjr 74:822a92bc11d2 1551 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d, 0x4f, 0x51, 0x53, 0x55, 0x57, 0x59, 0x5b, 0x5d, 0x5f,
mjr 74:822a92bc11d2 1552 0x61, 0x63, 0x65, 0x67, 0x69, 0x6b, 0x6d, 0x6f, 0x71, 0x73, 0x75, 0x77, 0x79, 0x7b, 0x7d, 0x7f,
mjr 74:822a92bc11d2 1553 0x81, 0x83, 0x85, 0x87, 0x89, 0x8b, 0x8d, 0x8f, 0x91, 0x93, 0x95, 0x97, 0x99, 0x9b, 0x9d, 0x9f,
mjr 74:822a92bc11d2 1554 0xa1, 0xa3, 0xa5, 0xa7, 0xa9, 0xab, 0xad, 0xaf, 0xb1, 0xb3, 0xb5, 0xb7, 0xb9, 0xbb, 0xbd, 0xbf,
mjr 74:822a92bc11d2 1555 0xc1, 0xc3, 0xc5, 0xc7, 0xc9, 0xcb, 0xcd, 0xcf, 0xd1, 0xd3, 0xd5, 0xd7, 0xd9, 0xdb, 0xdd, 0xdf,
mjr 74:822a92bc11d2 1556 0xe1, 0xe3, 0xe5, 0xe7, 0xe9, 0xeb, 0xed, 0xef, 0xf1, 0xf3, 0xf5, 0xf7, 0xf9, 0xfb, 0xfd, 0xff,
mjr 74:822a92bc11d2 1557 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1558 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1559 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1560 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1561 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1562 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1563 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1564 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1565
mjr 74:822a92bc11d2 1566 // mode 130 = flash on/off = (c < 128 ? 255 : 0)
mjr 74:822a92bc11d2 1567 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1568 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1569 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1570 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1571 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1572 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1573 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1574 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1575 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1576 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1577 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1578 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1579 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1580 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1581 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1582 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
mjr 74:822a92bc11d2 1583
mjr 74:822a92bc11d2 1584 // mode 131 = on/ramp down = c < 128 ? 255 : (255 - c)*2
mjr 74:822a92bc11d2 1585 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1586 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1587 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1588 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1589 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1590 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1591 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1592 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1593 0xfe, 0xfc, 0xfa, 0xf8, 0xf6, 0xf4, 0xf2, 0xf0, 0xee, 0xec, 0xea, 0xe8, 0xe6, 0xe4, 0xe2, 0xe0,
mjr 74:822a92bc11d2 1594 0xde, 0xdc, 0xda, 0xd8, 0xd6, 0xd4, 0xd2, 0xd0, 0xce, 0xcc, 0xca, 0xc8, 0xc6, 0xc4, 0xc2, 0xc0,
mjr 74:822a92bc11d2 1595 0xbe, 0xbc, 0xba, 0xb8, 0xb6, 0xb4, 0xb2, 0xb0, 0xae, 0xac, 0xaa, 0xa8, 0xa6, 0xa4, 0xa2, 0xa0,
mjr 74:822a92bc11d2 1596 0x9e, 0x9c, 0x9a, 0x98, 0x96, 0x94, 0x92, 0x90, 0x8e, 0x8c, 0x8a, 0x88, 0x86, 0x84, 0x82, 0x80,
mjr 74:822a92bc11d2 1597 0x7e, 0x7c, 0x7a, 0x78, 0x76, 0x74, 0x72, 0x70, 0x6e, 0x6c, 0x6a, 0x68, 0x66, 0x64, 0x62, 0x60,
mjr 74:822a92bc11d2 1598 0x5e, 0x5c, 0x5a, 0x58, 0x56, 0x54, 0x52, 0x50, 0x4e, 0x4c, 0x4a, 0x48, 0x46, 0x44, 0x42, 0x40,
mjr 74:822a92bc11d2 1599 0x3e, 0x3c, 0x3a, 0x38, 0x36, 0x34, 0x32, 0x30, 0x2e, 0x2c, 0x2a, 0x28, 0x26, 0x24, 0x22, 0x20,
mjr 74:822a92bc11d2 1600 0x1e, 0x1c, 0x1a, 0x18, 0x16, 0x14, 0x12, 0x10, 0x0e, 0x0c, 0x0a, 0x08, 0x06, 0x04, 0x02, 0x00,
mjr 74:822a92bc11d2 1601
mjr 74:822a92bc11d2 1602 // mode 132 = ramp up/on = c < 128 ? c*2 : 255
mjr 74:822a92bc11d2 1603 0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
mjr 74:822a92bc11d2 1604 0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
mjr 74:822a92bc11d2 1605 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
mjr 74:822a92bc11d2 1606 0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
mjr 74:822a92bc11d2 1607 0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
mjr 74:822a92bc11d2 1608 0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
mjr 74:822a92bc11d2 1609 0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
mjr 74:822a92bc11d2 1610 0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
mjr 74:822a92bc11d2 1611 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1612 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1613 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1614 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1615 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1616 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1617 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
mjr 74:822a92bc11d2 1618 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
mjr 74:822a92bc11d2 1619 };
mjr 74:822a92bc11d2 1620
mjr 40:cc0d9814522b 1621 // Translate an LedWiz output (ports 1-32) to a DOF brightness level.
mjr 74:822a92bc11d2 1622 // Note: update all wizFlashCounter[] entries before calling this to
mjr 74:822a92bc11d2 1623 // ensure that we're at the right place in each flash cycle.
mjr 74:822a92bc11d2 1624 //
mjr 74:822a92bc11d2 1625 // Important: the caller must update the wizFlashCounter[] array before
mjr 74:822a92bc11d2 1626 // calling this. We leave it to the caller to update the array rather
mjr 74:822a92bc11d2 1627 // than doing it here, because each set of 32 outputs shares the same
mjr 74:822a92bc11d2 1628 // counter entry.
mjr 40:cc0d9814522b 1629 static uint8_t wizState(int idx)
mjr 0:5acbbe3f4cf4 1630 {
mjr 63:5cd1a5f3a41b 1631 // If we're in extended protocol mode, ignore the LedWiz setting
mjr 63:5cd1a5f3a41b 1632 // for the port and use the new protocol setting instead.
mjr 63:5cd1a5f3a41b 1633 if (!ledWizMode)
mjr 29:582472d0bc57 1634 return outLevel[idx];
mjr 29:582472d0bc57 1635
mjr 29:582472d0bc57 1636 // if it's off, show at zero intensity
mjr 29:582472d0bc57 1637 if (!wizOn[idx])
mjr 29:582472d0bc57 1638 return 0;
mjr 29:582472d0bc57 1639
mjr 29:582472d0bc57 1640 // check the state
mjr 29:582472d0bc57 1641 uint8_t val = wizVal[idx];
mjr 40:cc0d9814522b 1642 if (val <= 49)
mjr 29:582472d0bc57 1643 {
mjr 29:582472d0bc57 1644 // PWM brightness/intensity level. Rescale from the LedWiz
mjr 29:582472d0bc57 1645 // 0..48 integer range to our internal PwmOut 0..1 float range.
mjr 29:582472d0bc57 1646 // Note that on the actual LedWiz, level 48 is actually about
mjr 29:582472d0bc57 1647 // 98% on - contrary to the LedWiz documentation, level 49 is
mjr 29:582472d0bc57 1648 // the true 100% level. (In the documentation, level 49 is
mjr 29:582472d0bc57 1649 // simply not a valid setting.) Even so, we treat level 48 as
mjr 29:582472d0bc57 1650 // 100% on to match the documentation. This won't be perfectly
mjr 73:4e8ce0b18915 1651 // compatible with the actual LedWiz, but it makes for such a
mjr 29:582472d0bc57 1652 // small difference in brightness (if the output device is an
mjr 29:582472d0bc57 1653 // LED, say) that no one should notice. It seems better to
mjr 29:582472d0bc57 1654 // err in this direction, because while the difference in
mjr 29:582472d0bc57 1655 // brightness when attached to an LED won't be noticeable, the
mjr 29:582472d0bc57 1656 // difference in duty cycle when attached to something like a
mjr 29:582472d0bc57 1657 // contactor *can* be noticeable - anything less than 100%
mjr 29:582472d0bc57 1658 // can cause a contactor or relay to chatter. There's almost
mjr 29:582472d0bc57 1659 // never a situation where you'd want values other than 0% and
mjr 29:582472d0bc57 1660 // 100% for a contactor or relay, so treating level 48 as 100%
mjr 29:582472d0bc57 1661 // makes us work properly with software that's expecting the
mjr 29:582472d0bc57 1662 // documented LedWiz behavior and therefore uses level 48 to
mjr 29:582472d0bc57 1663 // turn a contactor or relay fully on.
mjr 40:cc0d9814522b 1664 //
mjr 40:cc0d9814522b 1665 // Note that value 49 is undefined in the LedWiz documentation,
mjr 40:cc0d9814522b 1666 // but real LedWiz units treat it as 100%, equivalent to 48.
mjr 40:cc0d9814522b 1667 // Some software on the PC side uses this, so we need to treat
mjr 40:cc0d9814522b 1668 // it the same way for compatibility.
mjr 40:cc0d9814522b 1669 return lw_to_dof[val];
mjr 29:582472d0bc57 1670 }
mjr 74:822a92bc11d2 1671 else if (val >= 129 && val <= 132)
mjr 29:582472d0bc57 1672 {
mjr 74:822a92bc11d2 1673 // flash mode - get the current counter for the bank, and look
mjr 74:822a92bc11d2 1674 // up the current position in the cycle for the mode
mjr 73:4e8ce0b18915 1675 const int c = wizFlashCounter[idx/32];
mjr 74:822a92bc11d2 1676 return wizFlashLookup[((val-129)*256) + c];
mjr 29:582472d0bc57 1677 }
mjr 29:582472d0bc57 1678 else
mjr 13:72dda449c3c0 1679 {
mjr 29:582472d0bc57 1680 // Other values are undefined in the LedWiz documentation. Hosts
mjr 29:582472d0bc57 1681 // *should* never send undefined values, since whatever behavior an
mjr 29:582472d0bc57 1682 // LedWiz unit exhibits in response is accidental and could change
mjr 29:582472d0bc57 1683 // in a future version. We'll treat all undefined values as equivalent
mjr 29:582472d0bc57 1684 // to 48 (fully on).
mjr 40:cc0d9814522b 1685 return 255;
mjr 0:5acbbe3f4cf4 1686 }
mjr 0:5acbbe3f4cf4 1687 }
mjr 0:5acbbe3f4cf4 1688
mjr 74:822a92bc11d2 1689 // LedWiz flash cycle timer. This runs continuously. On each update,
mjr 74:822a92bc11d2 1690 // we use this to figure out where we are on the cycle for each bank.
mjr 74:822a92bc11d2 1691 Timer wizCycleTimer;
mjr 74:822a92bc11d2 1692
mjr 74:822a92bc11d2 1693 // Update the LedWiz flash cycle counters
mjr 74:822a92bc11d2 1694 static void updateWizCycleCounts()
mjr 74:822a92bc11d2 1695 {
mjr 74:822a92bc11d2 1696 // Update the LedWiz flash cycle positions. Each cycle is 2/N
mjr 74:822a92bc11d2 1697 // seconds long, where N is the speed setting for the bank. N
mjr 74:822a92bc11d2 1698 // ranges from 1 to 7.
mjr 74:822a92bc11d2 1699 //
mjr 74:822a92bc11d2 1700 // Note that we treat the microsecond clock as a 32-bit unsigned
mjr 74:822a92bc11d2 1701 // int. This rolls over (i.e., exceeds 0xffffffff) every 71 minutes.
mjr 74:822a92bc11d2 1702 // We only care about the phase of the current LedWiz cycle, so we
mjr 74:822a92bc11d2 1703 // don't actually care about the absolute time - we only care about
mjr 74:822a92bc11d2 1704 // the time relative to some arbitrary starting point. Whenever the
mjr 74:822a92bc11d2 1705 // clock rolls over, it effectively sets a new starting point; since
mjr 74:822a92bc11d2 1706 // we only need an arbitrary starting point, that's largely okay.
mjr 74:822a92bc11d2 1707 // The one drawback is that these epoch resets can obviously occur
mjr 74:822a92bc11d2 1708 // in the middle of a cycle. When this occurs, the update just before
mjr 74:822a92bc11d2 1709 // the rollover and the update just after the rollover will use
mjr 74:822a92bc11d2 1710 // different epochs, so their phases might be misaligned. That could
mjr 74:822a92bc11d2 1711 // cause a sudden jump in brightness between the two updates and a
mjr 74:822a92bc11d2 1712 // shorter-than-usual or longer-than-usual time for that cycle. To
mjr 74:822a92bc11d2 1713 // avoid that, we'd have to use a higher-precision clock (say, a 64-bit
mjr 74:822a92bc11d2 1714 // microsecond counter) and do all of the calculations at the higher
mjr 74:822a92bc11d2 1715 // precision. Given that the rollover only happens once every 71
mjr 74:822a92bc11d2 1716 // minutes, and that the only problem it causes is a momentary glitch
mjr 74:822a92bc11d2 1717 // in the flash pattern, I think it's an equitable trade for the slightly
mjr 74:822a92bc11d2 1718 // faster processing in the 32-bit domain. This routine is called
mjr 74:822a92bc11d2 1719 // frequently from the main loop, so it's critial to minimize execution
mjr 74:822a92bc11d2 1720 // time.
mjr 74:822a92bc11d2 1721 uint32_t tcur = wizCycleTimer.read_us();
mjr 74:822a92bc11d2 1722 for (int i = 0 ; i < MAX_LW_BANKS ; ++i)
mjr 74:822a92bc11d2 1723 {
mjr 74:822a92bc11d2 1724 // Figure the point in the cycle. The LedWiz "speed" setting is
mjr 74:822a92bc11d2 1725 // waveform period in 0.25s units. (There's no official LedWiz
mjr 74:822a92bc11d2 1726 // documentation of what the speed means in real units, so this is
mjr 74:822a92bc11d2 1727 // based on observations.)
mjr 74:822a92bc11d2 1728 //
mjr 74:822a92bc11d2 1729 // We do this calculation frequently from the main loop, since we
mjr 74:822a92bc11d2 1730 // have to do it every time we update the output flash cycles,
mjr 74:822a92bc11d2 1731 // which in turn has to be done frequently to make the cycles
mjr 74:822a92bc11d2 1732 // appear smooth to users. So we're going to get a bit tricky
mjr 74:822a92bc11d2 1733 // with integer arithmetic to streamline it. The goal is to find
mjr 74:822a92bc11d2 1734 // the current phase position in the output waveform; in abstract
mjr 74:822a92bc11d2 1735 // terms, we're trying to find the angle, 0 to 2*pi, in the current
mjr 74:822a92bc11d2 1736 // cycle. Floating point arithmetic is expensive on the KL25Z
mjr 74:822a92bc11d2 1737 // since it's all done in software, so we'll do everything in
mjr 74:822a92bc11d2 1738 // integers. To do that, rather than trying to find the phase
mjr 74:822a92bc11d2 1739 // angle as a continuous quantity, we'll quantize it, into 256
mjr 74:822a92bc11d2 1740 // quanta per cycle. Each quantum is 1/256 of the cycle length,
mjr 74:822a92bc11d2 1741 // so for a 1-second cycle (LedWiz speed 4), each quantum is
mjr 74:822a92bc11d2 1742 // 1/256 of second or about 3.9ms. To find the phase, then, we
mjr 74:822a92bc11d2 1743 // simply take the current time (as an elapsed time from an
mjr 74:822a92bc11d2 1744 // arbitrary zero point aka epoch), quantize it into 3.9ms chunks,
mjr 74:822a92bc11d2 1745 // and calculate the remainder mod 256. Remainder mod 256 is a
mjr 74:822a92bc11d2 1746 // fast operation since it's equivalent to bit masking with 0xFF.
mjr 74:822a92bc11d2 1747 // (That's why we chose a power of two for the number of quanta
mjr 74:822a92bc11d2 1748 // per cycle.) Our timer gives us microseconds since it started,
mjr 74:822a92bc11d2 1749 // so to convert to quanta, we divide by microseconds per quantum;
mjr 74:822a92bc11d2 1750 // in the case of speed 1 with its 3.906ms quanta, we divide by
mjr 74:822a92bc11d2 1751 // 3906. But we can take this one step further, getting really
mjr 74:822a92bc11d2 1752 // tricky now. Dividing by N is the same as muliplying by X/N
mjr 74:822a92bc11d2 1753 // for some X, and then dividing the result by X. Why, you ask,
mjr 74:822a92bc11d2 1754 // would we want to do two operations where we could do one?
mjr 74:822a92bc11d2 1755 // Because if we're clever, the two operations will be much
mjr 74:822a92bc11d2 1756 // faster the the one. The M0+ has no DIVIDE instruction, so
mjr 74:822a92bc11d2 1757 // integer division has to be done in software, at a cost of about
mjr 74:822a92bc11d2 1758 // 100 clocks per operation. The KL25Z M0+ has a one-cycle
mjr 74:822a92bc11d2 1759 // hardware multiplier, though. But doesn't that leave that
mjr 74:822a92bc11d2 1760 // second division still to do? Yes, but if we choose a power
mjr 74:822a92bc11d2 1761 // of 2 for X, we can do that division with a bit shift, another
mjr 74:822a92bc11d2 1762 // single-cycle operation. So we can do the division in two
mjr 74:822a92bc11d2 1763 // cycles by breaking it up into a multiply + shift.
mjr 74:822a92bc11d2 1764 //
mjr 74:822a92bc11d2 1765 // Each entry in this array represents X/N for the corresponding
mjr 74:822a92bc11d2 1766 // LedWiz speed, where N is the number of time quanta per cycle
mjr 74:822a92bc11d2 1767 // and X is 2^24. The time quanta are chosen such that 256
mjr 74:822a92bc11d2 1768 // quanta add up to approximately (LedWiz speed setting * 0.25s).
mjr 74:822a92bc11d2 1769 //
mjr 74:822a92bc11d2 1770 // Note that the calculation has an implicit bit mask (result & 0xFF)
mjr 74:822a92bc11d2 1771 // to get the final result mod 256. But we don't have to actually
mjr 74:822a92bc11d2 1772 // do that work because we're using 32-bit ints and a 2^24 fixed
mjr 74:822a92bc11d2 1773 // point base (X in the narrative above). The final shift right by
mjr 74:822a92bc11d2 1774 // 24 bits to divide out the base will leave us with only 8 bits in
mjr 74:822a92bc11d2 1775 // the result, since we started with 32.
mjr 74:822a92bc11d2 1776 #if 1
mjr 74:822a92bc11d2 1777 static const uint32_t inv_us_per_quantum[] = { // indexed by LedWiz speed
mjr 74:822a92bc11d2 1778 0, 17172, 8590, 5726, 4295, 3436, 2863, 2454
mjr 74:822a92bc11d2 1779 };
mjr 74:822a92bc11d2 1780 wizFlashCounter[i] = ((tcur * inv_us_per_quantum[wizSpeed[i]]) >> 24);
mjr 74:822a92bc11d2 1781 #else
mjr 74:822a92bc11d2 1782 // Old, slightly less tricky way: this is almost the same as
mjr 74:822a92bc11d2 1783 // above, but does the division the straightforward way. The
mjr 74:822a92bc11d2 1784 // array gives us the length of the quantum per microsecond for
mjr 74:822a92bc11d2 1785 // each speed setting, so we just divide the microsecond counter
mjr 74:822a92bc11d2 1786 // by the quantum size to get the current time in quantum units,
mjr 74:822a92bc11d2 1787 // then figure the remainder mod 256 of the result to get the
mjr 74:822a92bc11d2 1788 // current cycle phase position.
mjr 74:822a92bc11d2 1789 static const uint32_t us_per_quantum[] = { // indexed by LedWiz "speed"
mjr 74:822a92bc11d2 1790 0, 977, 1953, 2930, 3906, 4883, 5859, 6836
mjr 74:822a92bc11d2 1791 };
mjr 74:822a92bc11d2 1792 wizFlashCounter[i] = (tcur/us_per_quantum[wizSpeed[i]]) & 0xFF;
mjr 74:822a92bc11d2 1793 #endif
mjr 74:822a92bc11d2 1794 }
mjr 74:822a92bc11d2 1795 }
mjr 74:822a92bc11d2 1796
mjr 74:822a92bc11d2 1797 // LedWiz flash timer pulse. The main loop calls this periodically
mjr 74:822a92bc11d2 1798 // to update outputs set to LedWiz flash modes.
mjr 74:822a92bc11d2 1799 Timer wizPulseTimer;
mjr 74:822a92bc11d2 1800 float wizPulseTotalTime, wizPulseRunCount;
mjr 74:822a92bc11d2 1801 const uint32_t WIZ_INTERVAL_US = 8000;
mjr 29:582472d0bc57 1802 static void wizPulse()
mjr 29:582472d0bc57 1803 {
mjr 74:822a92bc11d2 1804 // if it's been long enough, update the LedWiz outputs
mjr 74:822a92bc11d2 1805 if (wizPulseTimer.read_us() >= WIZ_INTERVAL_US)
mjr 73:4e8ce0b18915 1806 {
mjr 74:822a92bc11d2 1807 // reset the timer for the next round
mjr 74:822a92bc11d2 1808 wizPulseTimer.reset();
mjr 74:822a92bc11d2 1809
mjr 74:822a92bc11d2 1810 // if we're in LedWiz mode, update flashing outputs
mjr 74:822a92bc11d2 1811 if (ledWizMode)
mjr 29:582472d0bc57 1812 {
mjr 74:822a92bc11d2 1813 // start a timer for statistics collection
mjr 74:822a92bc11d2 1814 IF_DIAG(
mjr 74:822a92bc11d2 1815 Timer t;
mjr 74:822a92bc11d2 1816 t.start();
mjr 74:822a92bc11d2 1817 )
mjr 74:822a92bc11d2 1818
mjr 74:822a92bc11d2 1819 // update the cycle counters
mjr 74:822a92bc11d2 1820 updateWizCycleCounts();
mjr 74:822a92bc11d2 1821
mjr 74:822a92bc11d2 1822 // update all outputs set to flashing values
mjr 74:822a92bc11d2 1823 for (int i = numOutputs ; i > 0 ; )
mjr 29:582472d0bc57 1824 {
mjr 74:822a92bc11d2 1825 if (wizOn[--i])
mjr 74:822a92bc11d2 1826 {
mjr 74:822a92bc11d2 1827 // If the "brightness" is in the range 129..132, it's a
mjr 74:822a92bc11d2 1828 // flash mode. Note that we only have to check the high
mjr 74:822a92bc11d2 1829 // bit here, because the protocol message handler validates
mjr 74:822a92bc11d2 1830 // the wizVal[] entries when storing them: the only valid
mjr 74:822a92bc11d2 1831 // values with the high bit set are 129..132. Skipping
mjr 74:822a92bc11d2 1832 // validation here saves us a tiny bit of work, which we
mjr 74:822a92bc11d2 1833 // care about because we have to loop over all outputs
mjr 74:822a92bc11d2 1834 // here, and we invoke this frequently from the main loop.
mjr 74:822a92bc11d2 1835 const uint8_t val = wizVal[i];
mjr 74:822a92bc11d2 1836 if ((val & 0x80) != 0)
mjr 74:822a92bc11d2 1837 {
mjr 74:822a92bc11d2 1838 // get the current cycle time, then look up the
mjr 74:822a92bc11d2 1839 // value for the mode at the cycle time
mjr 74:822a92bc11d2 1840 const int c = wizFlashCounter[i >> 5];
mjr 74:822a92bc11d2 1841 lwPin[i]->set(wizFlashLookup[((val-129) << 8) + c]);
mjr 74:822a92bc11d2 1842 }
mjr 74:822a92bc11d2 1843 }
mjr 29:582472d0bc57 1844 }
mjr 74:822a92bc11d2 1845
mjr 74:822a92bc11d2 1846 // flush changes to 74HC595 chips, if attached
mjr 74:822a92bc11d2 1847 if (hc595 != 0)
mjr 74:822a92bc11d2 1848 hc595->update();
mjr 74:822a92bc11d2 1849
mjr 74:822a92bc11d2 1850 // collect timing statistics
mjr 74:822a92bc11d2 1851 IF_DIAG(
mjr 74:822a92bc11d2 1852 wizPulseTotalTime += t.read();
mjr 74:822a92bc11d2 1853 wizPulseRunCount += 1;
mjr 74:822a92bc11d2 1854 )
mjr 29:582472d0bc57 1855 }
mjr 29:582472d0bc57 1856 }
mjr 29:582472d0bc57 1857 }
mjr 29:582472d0bc57 1858
mjr 29:582472d0bc57 1859 // Update the physical outputs connected to the LedWiz ports. This is
mjr 29:582472d0bc57 1860 // called after any update from an LedWiz protocol message.
mjr 1:d913e0afb2ac 1861 static void updateWizOuts()
mjr 1:d913e0afb2ac 1862 {
mjr 74:822a92bc11d2 1863 // update the cycle counters
mjr 74:822a92bc11d2 1864 updateWizCycleCounts();
mjr 74:822a92bc11d2 1865
mjr 29:582472d0bc57 1866 // update each output
mjr 73:4e8ce0b18915 1867 for (int i = 0 ; i < numOutputs ; ++i)
mjr 40:cc0d9814522b 1868 lwPin[i]->set(wizState(i));
mjr 29:582472d0bc57 1869
mjr 34:6b981a2afab7 1870 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 1871 if (hc595 != 0)
mjr 35:e959ffba78fd 1872 hc595->update();
mjr 1:d913e0afb2ac 1873 }
mjr 38:091e511ce8a0 1874
mjr 38:091e511ce8a0 1875 // Update all physical outputs. This is called after a change to a global
mjr 38:091e511ce8a0 1876 // setting that affects all outputs, such as engaging or canceling Night Mode.
mjr 38:091e511ce8a0 1877 static void updateAllOuts()
mjr 38:091e511ce8a0 1878 {
mjr 74:822a92bc11d2 1879 // update LedWiz states
mjr 74:822a92bc11d2 1880 updateWizOuts();
mjr 73:4e8ce0b18915 1881 }
mjr 73:4e8ce0b18915 1882
mjr 73:4e8ce0b18915 1883 //
mjr 73:4e8ce0b18915 1884 // Turn off all outputs and restore everything to the default LedWiz
mjr 73:4e8ce0b18915 1885 // state. This sets outputs #1-32 to LedWiz profile value 48 (full
mjr 73:4e8ce0b18915 1886 // brightness) and switch state Off, sets all extended outputs (#33
mjr 73:4e8ce0b18915 1887 // and above) to zero brightness, and sets the LedWiz flash rate to 2.
mjr 73:4e8ce0b18915 1888 // This effectively restores the power-on conditions.
mjr 73:4e8ce0b18915 1889 //
mjr 73:4e8ce0b18915 1890 void allOutputsOff()
mjr 73:4e8ce0b18915 1891 {
mjr 73:4e8ce0b18915 1892 // reset all LedWiz outputs to OFF/48
mjr 73:4e8ce0b18915 1893 for (int i = 0 ; i < numOutputs ; ++i)
mjr 73:4e8ce0b18915 1894 {
mjr 73:4e8ce0b18915 1895 outLevel[i] = 0;
mjr 73:4e8ce0b18915 1896 wizOn[i] = 0;
mjr 73:4e8ce0b18915 1897 wizVal[i] = 48;
mjr 73:4e8ce0b18915 1898 lwPin[i]->set(0);
mjr 73:4e8ce0b18915 1899 }
mjr 73:4e8ce0b18915 1900
mjr 73:4e8ce0b18915 1901 // restore default LedWiz flash rate
mjr 73:4e8ce0b18915 1902 for (int i = 0 ; i < countof(wizSpeed) ; ++i)
mjr 73:4e8ce0b18915 1903 wizSpeed[i] = 2;
mjr 38:091e511ce8a0 1904
mjr 74:822a92bc11d2 1905 // revert to LedWiz mode for output controls
mjr 74:822a92bc11d2 1906 ledWizMode = true;
mjr 73:4e8ce0b18915 1907
mjr 73:4e8ce0b18915 1908 // flush changes to hc595, if applicable
mjr 38:091e511ce8a0 1909 if (hc595 != 0)
mjr 38:091e511ce8a0 1910 hc595->update();
mjr 38:091e511ce8a0 1911 }
mjr 38:091e511ce8a0 1912
mjr 74:822a92bc11d2 1913 // Cary out an SBA or SBX message. portGroup is 0 for ports 1-32,
mjr 74:822a92bc11d2 1914 // 1 for ports 33-64, etc. Original protocol SBA messages always
mjr 74:822a92bc11d2 1915 // address port group 0; our private SBX extension messages can
mjr 74:822a92bc11d2 1916 // address any port group.
mjr 74:822a92bc11d2 1917 void sba_sbx(int portGroup, const uint8_t *data)
mjr 74:822a92bc11d2 1918 {
mjr 74:822a92bc11d2 1919 // switch to LedWiz protocol mode
mjr 74:822a92bc11d2 1920 ledWizMode = true;
mjr 74:822a92bc11d2 1921
mjr 74:822a92bc11d2 1922 // update all on/off states
mjr 74:822a92bc11d2 1923 for (int i = 0, bit = 1, imsg = 1, port = portGroup*32 ;
mjr 74:822a92bc11d2 1924 i < 32 && port < numOutputs ;
mjr 74:822a92bc11d2 1925 ++i, bit <<= 1, ++port)
mjr 74:822a92bc11d2 1926 {
mjr 74:822a92bc11d2 1927 // figure the on/off state bit for this output
mjr 74:822a92bc11d2 1928 if (bit == 0x100) {
mjr 74:822a92bc11d2 1929 bit = 1;
mjr 74:822a92bc11d2 1930 ++imsg;
mjr 74:822a92bc11d2 1931 }
mjr 74:822a92bc11d2 1932
mjr 74:822a92bc11d2 1933 // set the on/off state
mjr 74:822a92bc11d2 1934 wizOn[port] = ((data[imsg] & bit) != 0);
mjr 74:822a92bc11d2 1935 }
mjr 74:822a92bc11d2 1936
mjr 74:822a92bc11d2 1937 // set the flash speed for the port group
mjr 74:822a92bc11d2 1938 if (portGroup < countof(wizSpeed))
mjr 74:822a92bc11d2 1939 wizSpeed[portGroup] = (data[5] < 1 ? 1 : data[5] > 7 ? 7 : data[5]);
mjr 74:822a92bc11d2 1940
mjr 74:822a92bc11d2 1941 // update the physical outputs with the new LedWiz states
mjr 74:822a92bc11d2 1942 updateWizOuts();
mjr 74:822a92bc11d2 1943 }
mjr 74:822a92bc11d2 1944
mjr 74:822a92bc11d2 1945 // Carry out a PBA or PBX message.
mjr 74:822a92bc11d2 1946 void pba_pbx(int basePort, const uint8_t *data)
mjr 74:822a92bc11d2 1947 {
mjr 74:822a92bc11d2 1948 // switch LedWiz protocol mode
mjr 74:822a92bc11d2 1949 ledWizMode = true;
mjr 74:822a92bc11d2 1950
mjr 74:822a92bc11d2 1951 // update each wizVal entry from the brightness data
mjr 74:822a92bc11d2 1952 for (int i = 0, iwiz = basePort ; i < 8 && iwiz < numOutputs ; ++i, ++iwiz)
mjr 74:822a92bc11d2 1953 {
mjr 74:822a92bc11d2 1954 // get the value
mjr 74:822a92bc11d2 1955 uint8_t v = data[i];
mjr 74:822a92bc11d2 1956
mjr 74:822a92bc11d2 1957 // Validate it. The legal values are 0..49 for brightness
mjr 74:822a92bc11d2 1958 // levels, and 128..132 for flash modes. Set anything invalid
mjr 74:822a92bc11d2 1959 // to full brightness (48) instead. Note that 49 isn't actually
mjr 74:822a92bc11d2 1960 // a valid documented value, but in practice some clients send
mjr 74:822a92bc11d2 1961 // this to mean 100% brightness, and the real LedWiz treats it
mjr 74:822a92bc11d2 1962 // as such.
mjr 74:822a92bc11d2 1963 if ((v > 49 && v < 129) || v > 132)
mjr 74:822a92bc11d2 1964 v = 48;
mjr 74:822a92bc11d2 1965
mjr 74:822a92bc11d2 1966 // store it
mjr 74:822a92bc11d2 1967 wizVal[iwiz] = v;
mjr 74:822a92bc11d2 1968 }
mjr 74:822a92bc11d2 1969
mjr 74:822a92bc11d2 1970 // update the physical outputs
mjr 74:822a92bc11d2 1971 updateWizOuts();
mjr 74:822a92bc11d2 1972 }
mjr 74:822a92bc11d2 1973
mjr 74:822a92bc11d2 1974
mjr 11:bd9da7088e6e 1975 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 1976 //
mjr 11:bd9da7088e6e 1977 // Button input
mjr 11:bd9da7088e6e 1978 //
mjr 11:bd9da7088e6e 1979
mjr 18:5e890ebd0023 1980 // button state
mjr 18:5e890ebd0023 1981 struct ButtonState
mjr 18:5e890ebd0023 1982 {
mjr 38:091e511ce8a0 1983 ButtonState()
mjr 38:091e511ce8a0 1984 {
mjr 53:9b2611964afc 1985 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 1986 virtState = 0;
mjr 53:9b2611964afc 1987 dbState = 0;
mjr 38:091e511ce8a0 1988 pulseState = 0;
mjr 53:9b2611964afc 1989 pulseTime = 0;
mjr 38:091e511ce8a0 1990 }
mjr 35:e959ffba78fd 1991
mjr 53:9b2611964afc 1992 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 1993 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 1994 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 1995 //
mjr 53:9b2611964afc 1996 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 1997 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 1998 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 1999 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 2000 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 2001 void virtPress(bool on)
mjr 53:9b2611964afc 2002 {
mjr 53:9b2611964afc 2003 // Increment or decrement the current state
mjr 53:9b2611964afc 2004 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 2005 }
mjr 53:9b2611964afc 2006
mjr 53:9b2611964afc 2007 // DigitalIn for the button, if connected to a physical input
mjr 73:4e8ce0b18915 2008 TinyDigitalIn di;
mjr 38:091e511ce8a0 2009
mjr 65:739875521aae 2010 // Time of last pulse state transition.
mjr 65:739875521aae 2011 //
mjr 65:739875521aae 2012 // Each state change sticks for a minimum period; when the timer expires,
mjr 65:739875521aae 2013 // if the underlying physical switch is in a different state, we switch
mjr 65:739875521aae 2014 // to the next state and restart the timer. pulseTime is the time remaining
mjr 65:739875521aae 2015 // remaining before we can make another state transition, in microseconds.
mjr 65:739875521aae 2016 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 65:739875521aae 2017 // this guarantees that the parity of the pulse count always matches the
mjr 65:739875521aae 2018 // current physical switch state when the latter is stable, which makes
mjr 65:739875521aae 2019 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 65:739875521aae 2020 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 65:739875521aae 2021 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 65:739875521aae 2022 // This software system can't be fooled that way.)
mjr 65:739875521aae 2023 uint32_t pulseTime;
mjr 18:5e890ebd0023 2024
mjr 65:739875521aae 2025 // Config key index. This points to the ButtonCfg structure in the
mjr 65:739875521aae 2026 // configuration that contains the PC key mapping for the button.
mjr 65:739875521aae 2027 uint8_t cfgIndex;
mjr 53:9b2611964afc 2028
mjr 53:9b2611964afc 2029 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 2030 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 2031 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 2032 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 2033 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 2034 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 2035 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 2036 // and physical source states.
mjr 53:9b2611964afc 2037 uint8_t virtState;
mjr 38:091e511ce8a0 2038
mjr 38:091e511ce8a0 2039 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 2040 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 2041 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 2042 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 2043 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 2044 uint8_t dbState;
mjr 38:091e511ce8a0 2045
mjr 65:739875521aae 2046 // current PHYSICAL on/off state, after debouncing
mjr 65:739875521aae 2047 uint8_t physState : 1;
mjr 65:739875521aae 2048
mjr 65:739875521aae 2049 // current LOGICAL on/off state as reported to the host.
mjr 65:739875521aae 2050 uint8_t logState : 1;
mjr 65:739875521aae 2051
mjr 65:739875521aae 2052 // previous logical on/off state, when keys were last processed for USB
mjr 65:739875521aae 2053 // reports and local effects
mjr 65:739875521aae 2054 uint8_t prevLogState : 1;
mjr 65:739875521aae 2055
mjr 65:739875521aae 2056 // Pulse state
mjr 65:739875521aae 2057 //
mjr 65:739875521aae 2058 // A button in pulse mode (selected via the config flags for the button)
mjr 65:739875521aae 2059 // transmits a brief logical button press and release each time the attached
mjr 65:739875521aae 2060 // physical switch changes state. This is useful for cases where the host
mjr 65:739875521aae 2061 // expects a key press for each change in the state of the physical switch.
mjr 65:739875521aae 2062 // The canonical example is the Coin Door switch in VPinMAME, which requires
mjr 65:739875521aae 2063 // pressing the END key to toggle the open/closed state. This software design
mjr 65:739875521aae 2064 // isn't easily implemented in a physical coin door, though; the simplest
mjr 65:739875521aae 2065 // physical sensor for the coin door state is a switch that's on when the
mjr 65:739875521aae 2066 // door is open and off when the door is closed (or vice versa, but in either
mjr 65:739875521aae 2067 // case, the switch state corresponds to the current state of the door at any
mjr 65:739875521aae 2068 // given time, rather than pulsing on state changes). The "pulse mode"
mjr 65:739875521aae 2069 // option brdiges this gap by generating a toggle key event each time
mjr 65:739875521aae 2070 // there's a change to the physical switch's state.
mjr 38:091e511ce8a0 2071 //
mjr 38:091e511ce8a0 2072 // Pulse state:
mjr 38:091e511ce8a0 2073 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 2074 // 1 -> off
mjr 38:091e511ce8a0 2075 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 2076 // 3 -> on
mjr 38:091e511ce8a0 2077 // 4 -> transitioning on-off
mjr 65:739875521aae 2078 uint8_t pulseState : 3; // 5 states -> we need 3 bits
mjr 65:739875521aae 2079
mjr 65:739875521aae 2080 } __attribute__((packed));
mjr 65:739875521aae 2081
mjr 65:739875521aae 2082 ButtonState *buttonState; // live button slots, allocated on startup
mjr 65:739875521aae 2083 int8_t nButtons; // number of live button slots allocated
mjr 65:739875521aae 2084 int8_t zblButtonIndex = -1; // index of ZB Launch button slot; -1 if unused
mjr 18:5e890ebd0023 2085
mjr 66:2e3583fbd2f4 2086 // Shift button state
mjr 66:2e3583fbd2f4 2087 struct
mjr 66:2e3583fbd2f4 2088 {
mjr 66:2e3583fbd2f4 2089 int8_t index; // buttonState[] index of shift button; -1 if none
mjr 66:2e3583fbd2f4 2090 uint8_t state : 2; // current shift state:
mjr 66:2e3583fbd2f4 2091 // 0 = not shifted
mjr 66:2e3583fbd2f4 2092 // 1 = shift button down, no key pressed yet
mjr 66:2e3583fbd2f4 2093 // 2 = shift button down, key pressed
mjr 66:2e3583fbd2f4 2094 uint8_t pulse : 1; // sending pulsed keystroke on release
mjr 66:2e3583fbd2f4 2095 uint32_t pulseTime; // time of start of pulsed keystroke
mjr 66:2e3583fbd2f4 2096 }
mjr 66:2e3583fbd2f4 2097 __attribute__((packed)) shiftButton;
mjr 38:091e511ce8a0 2098
mjr 38:091e511ce8a0 2099 // Button data
mjr 38:091e511ce8a0 2100 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 2101
mjr 38:091e511ce8a0 2102 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 2103 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 2104 // modifier keys.
mjr 38:091e511ce8a0 2105 struct
mjr 38:091e511ce8a0 2106 {
mjr 38:091e511ce8a0 2107 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 2108 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 2109 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 2110 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 2111 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 2112
mjr 38:091e511ce8a0 2113 // Media key state
mjr 38:091e511ce8a0 2114 struct
mjr 38:091e511ce8a0 2115 {
mjr 38:091e511ce8a0 2116 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 2117 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 2118 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 2119
mjr 38:091e511ce8a0 2120 // button scan interrupt ticker
mjr 38:091e511ce8a0 2121 Ticker buttonTicker;
mjr 38:091e511ce8a0 2122
mjr 38:091e511ce8a0 2123 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 2124 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 2125 void scanButtons()
mjr 38:091e511ce8a0 2126 {
mjr 38:091e511ce8a0 2127 // scan all button input pins
mjr 73:4e8ce0b18915 2128 ButtonState *bs = buttonState, *last = bs + nButtons;
mjr 73:4e8ce0b18915 2129 for ( ; bs < last ; ++bs)
mjr 38:091e511ce8a0 2130 {
mjr 73:4e8ce0b18915 2131 // Shift the new state into the debounce history
mjr 73:4e8ce0b18915 2132 uint8_t db = (bs->dbState << 1) | bs->di.read();
mjr 73:4e8ce0b18915 2133 bs->dbState = db;
mjr 73:4e8ce0b18915 2134
mjr 73:4e8ce0b18915 2135 // If we have all 0's or 1's in the history for the required
mjr 73:4e8ce0b18915 2136 // debounce period, the key state is stable, so apply the new
mjr 73:4e8ce0b18915 2137 // physical state. Note that the pins are active low, so the
mjr 73:4e8ce0b18915 2138 // new button on/off state is the inverse of the GPIO state.
mjr 73:4e8ce0b18915 2139 const uint8_t stable = 0x1F; // 00011111b -> low 5 bits = last 5 readings
mjr 73:4e8ce0b18915 2140 db &= stable;
mjr 73:4e8ce0b18915 2141 if (db == 0 || db == stable)
mjr 73:4e8ce0b18915 2142 bs->physState = !db;
mjr 38:091e511ce8a0 2143 }
mjr 38:091e511ce8a0 2144 }
mjr 38:091e511ce8a0 2145
mjr 38:091e511ce8a0 2146 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 2147 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 2148 // in the physical button state.
mjr 38:091e511ce8a0 2149 Timer buttonTimer;
mjr 12:669df364a565 2150
mjr 65:739875521aae 2151 // Count a button during the initial setup scan
mjr 72:884207c0aab0 2152 void countButton(uint8_t typ, uint8_t shiftTyp, bool &kbKeys)
mjr 65:739875521aae 2153 {
mjr 65:739875521aae 2154 // count it
mjr 65:739875521aae 2155 ++nButtons;
mjr 65:739875521aae 2156
mjr 67:c39e66c4e000 2157 // if it's a keyboard key or media key, note that we need a USB
mjr 67:c39e66c4e000 2158 // keyboard interface
mjr 72:884207c0aab0 2159 if (typ == BtnTypeKey || typ == BtnTypeMedia
mjr 72:884207c0aab0 2160 || shiftTyp == BtnTypeKey || shiftTyp == BtnTypeMedia)
mjr 65:739875521aae 2161 kbKeys = true;
mjr 65:739875521aae 2162 }
mjr 65:739875521aae 2163
mjr 11:bd9da7088e6e 2164 // initialize the button inputs
mjr 35:e959ffba78fd 2165 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 2166 {
mjr 35:e959ffba78fd 2167 // presume we'll find no keyboard keys
mjr 35:e959ffba78fd 2168 kbKeys = false;
mjr 35:e959ffba78fd 2169
mjr 66:2e3583fbd2f4 2170 // presume no shift key
mjr 66:2e3583fbd2f4 2171 shiftButton.index = -1;
mjr 66:2e3583fbd2f4 2172
mjr 65:739875521aae 2173 // Count up how many button slots we'll need to allocate. Start
mjr 65:739875521aae 2174 // with assigned buttons from the configuration, noting that we
mjr 65:739875521aae 2175 // only need to create slots for buttons that are actually wired.
mjr 65:739875521aae 2176 nButtons = 0;
mjr 65:739875521aae 2177 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2178 {
mjr 65:739875521aae 2179 // it's valid if it's wired to a real input pin
mjr 65:739875521aae 2180 if (wirePinName(cfg.button[i].pin) != NC)
mjr 72:884207c0aab0 2181 countButton(cfg.button[i].typ, cfg.button[i].typ2, kbKeys);
mjr 65:739875521aae 2182 }
mjr 65:739875521aae 2183
mjr 65:739875521aae 2184 // Count virtual buttons
mjr 65:739875521aae 2185
mjr 65:739875521aae 2186 // ZB Launch
mjr 65:739875521aae 2187 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 65:739875521aae 2188 {
mjr 65:739875521aae 2189 // valid - remember the live button index
mjr 65:739875521aae 2190 zblButtonIndex = nButtons;
mjr 65:739875521aae 2191
mjr 65:739875521aae 2192 // count it
mjr 72:884207c0aab0 2193 countButton(cfg.plunger.zbLaunchBall.keytype, BtnTypeNone, kbKeys);
mjr 65:739875521aae 2194 }
mjr 65:739875521aae 2195
mjr 65:739875521aae 2196 // Allocate the live button slots
mjr 65:739875521aae 2197 ButtonState *bs = buttonState = new ButtonState[nButtons];
mjr 65:739875521aae 2198
mjr 65:739875521aae 2199 // Configure the physical inputs
mjr 65:739875521aae 2200 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 65:739875521aae 2201 {
mjr 65:739875521aae 2202 PinName pin = wirePinName(cfg.button[i].pin);
mjr 65:739875521aae 2203 if (pin != NC)
mjr 65:739875521aae 2204 {
mjr 65:739875521aae 2205 // point back to the config slot for the keyboard data
mjr 65:739875521aae 2206 bs->cfgIndex = i;
mjr 65:739875521aae 2207
mjr 65:739875521aae 2208 // set up the GPIO input pin for this button
mjr 73:4e8ce0b18915 2209 bs->di.assignPin(pin);
mjr 65:739875521aae 2210
mjr 65:739875521aae 2211 // if it's a pulse mode button, set the initial pulse state to Off
mjr 65:739875521aae 2212 if (cfg.button[i].flags & BtnFlagPulse)
mjr 65:739875521aae 2213 bs->pulseState = 1;
mjr 65:739875521aae 2214
mjr 66:2e3583fbd2f4 2215 // If this is the shift button, note its buttonState[] index.
mjr 66:2e3583fbd2f4 2216 // We have to figure the buttonState[] index separately from
mjr 66:2e3583fbd2f4 2217 // the config index, because the indices can differ if some
mjr 66:2e3583fbd2f4 2218 // config slots are left unused.
mjr 66:2e3583fbd2f4 2219 if (cfg.shiftButton == i+1)
mjr 66:2e3583fbd2f4 2220 shiftButton.index = bs - buttonState;
mjr 66:2e3583fbd2f4 2221
mjr 65:739875521aae 2222 // advance to the next button
mjr 65:739875521aae 2223 ++bs;
mjr 65:739875521aae 2224 }
mjr 65:739875521aae 2225 }
mjr 65:739875521aae 2226
mjr 53:9b2611964afc 2227 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 2228 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 2229 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 2230 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 2231
mjr 53:9b2611964afc 2232 // ZB Launch Ball button
mjr 65:739875521aae 2233 if (cfg.plunger.zbLaunchBall.port != 0)
mjr 11:bd9da7088e6e 2234 {
mjr 65:739875521aae 2235 // Point back to the config slot for the keyboard data.
mjr 66:2e3583fbd2f4 2236 // We use a special extra slot for virtual buttons,
mjr 66:2e3583fbd2f4 2237 // so we also need to set up the slot data by copying
mjr 66:2e3583fbd2f4 2238 // the ZBL config data to our virtual button slot.
mjr 65:739875521aae 2239 bs->cfgIndex = ZBL_BUTTON_CFG;
mjr 65:739875521aae 2240 cfg.button[ZBL_BUTTON_CFG].pin = PINNAME_TO_WIRE(NC);
mjr 65:739875521aae 2241 cfg.button[ZBL_BUTTON_CFG].typ = cfg.plunger.zbLaunchBall.keytype;
mjr 65:739875521aae 2242 cfg.button[ZBL_BUTTON_CFG].val = cfg.plunger.zbLaunchBall.keycode;
mjr 65:739875521aae 2243
mjr 66:2e3583fbd2f4 2244 // advance to the next button
mjr 65:739875521aae 2245 ++bs;
mjr 11:bd9da7088e6e 2246 }
mjr 12:669df364a565 2247
mjr 38:091e511ce8a0 2248 // start the button scan thread
mjr 38:091e511ce8a0 2249 buttonTicker.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 2250
mjr 38:091e511ce8a0 2251 // start the button state transition timer
mjr 12:669df364a565 2252 buttonTimer.start();
mjr 11:bd9da7088e6e 2253 }
mjr 11:bd9da7088e6e 2254
mjr 67:c39e66c4e000 2255 // Media key mapping. This maps from an 8-bit USB media key
mjr 67:c39e66c4e000 2256 // code to the corresponding bit in our USB report descriptor.
mjr 67:c39e66c4e000 2257 // The USB key code is the index, and the value at the index
mjr 67:c39e66c4e000 2258 // is the report descriptor bit. See joystick.cpp for the
mjr 67:c39e66c4e000 2259 // media descriptor details. Our currently mapped keys are:
mjr 67:c39e66c4e000 2260 //
mjr 67:c39e66c4e000 2261 // 0xE2 -> Mute -> 0x01
mjr 67:c39e66c4e000 2262 // 0xE9 -> Volume Up -> 0x02
mjr 67:c39e66c4e000 2263 // 0xEA -> Volume Down -> 0x04
mjr 67:c39e66c4e000 2264 // 0xB5 -> Next Track -> 0x08
mjr 67:c39e66c4e000 2265 // 0xB6 -> Previous Track -> 0x10
mjr 67:c39e66c4e000 2266 // 0xB7 -> Stop -> 0x20
mjr 67:c39e66c4e000 2267 // 0xCD -> Play / Pause -> 0x40
mjr 67:c39e66c4e000 2268 //
mjr 67:c39e66c4e000 2269 static const uint8_t mediaKeyMap[] = {
mjr 67:c39e66c4e000 2270 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00-0F
mjr 67:c39e66c4e000 2271 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10-1F
mjr 67:c39e66c4e000 2272 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20-2F
mjr 67:c39e66c4e000 2273 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 30-3F
mjr 67:c39e66c4e000 2274 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40-4F
mjr 67:c39e66c4e000 2275 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 50-5F
mjr 67:c39e66c4e000 2276 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60-6F
mjr 67:c39e66c4e000 2277 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 70-7F
mjr 67:c39e66c4e000 2278 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 80-8F
mjr 67:c39e66c4e000 2279 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 90-9F
mjr 67:c39e66c4e000 2280 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A0-AF
mjr 67:c39e66c4e000 2281 0, 0, 0, 0, 0, 8, 16, 32, 0, 0, 0, 0, 0, 0, 0, 0, // B0-BF
mjr 67:c39e66c4e000 2282 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 0, 0, // C0-CF
mjr 67:c39e66c4e000 2283 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // D0-DF
mjr 67:c39e66c4e000 2284 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, // E0-EF
mjr 67:c39e66c4e000 2285 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 // F0-FF
mjr 67:c39e66c4e000 2286 };
mjr 67:c39e66c4e000 2287
mjr 67:c39e66c4e000 2288
mjr 38:091e511ce8a0 2289 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 2290 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 2291 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 2292 // mapped to special device functions (e.g., Night Mode).
mjr 53:9b2611964afc 2293 void processButtons(Config &cfg)
mjr 35:e959ffba78fd 2294 {
mjr 35:e959ffba78fd 2295 // start with an empty list of USB key codes
mjr 35:e959ffba78fd 2296 uint8_t modkeys = 0;
mjr 35:e959ffba78fd 2297 uint8_t keys[7] = { 0, 0, 0, 0, 0, 0, 0 };
mjr 35:e959ffba78fd 2298 int nkeys = 0;
mjr 11:bd9da7088e6e 2299
mjr 35:e959ffba78fd 2300 // clear the joystick buttons
mjr 36:b9747461331e 2301 uint32_t newjs = 0;
mjr 35:e959ffba78fd 2302
mjr 35:e959ffba78fd 2303 // start with no media keys pressed
mjr 35:e959ffba78fd 2304 uint8_t mediakeys = 0;
mjr 38:091e511ce8a0 2305
mjr 38:091e511ce8a0 2306 // calculate the time since the last run
mjr 53:9b2611964afc 2307 uint32_t dt = buttonTimer.read_us();
mjr 18:5e890ebd0023 2308 buttonTimer.reset();
mjr 66:2e3583fbd2f4 2309
mjr 66:2e3583fbd2f4 2310 // check the shift button state
mjr 66:2e3583fbd2f4 2311 if (shiftButton.index != -1)
mjr 66:2e3583fbd2f4 2312 {
mjr 66:2e3583fbd2f4 2313 ButtonState *sbs = &buttonState[shiftButton.index];
mjr 66:2e3583fbd2f4 2314 switch (shiftButton.state)
mjr 66:2e3583fbd2f4 2315 {
mjr 66:2e3583fbd2f4 2316 case 0:
mjr 66:2e3583fbd2f4 2317 // Not shifted. Check if the button is now down: if so,
mjr 66:2e3583fbd2f4 2318 // switch to state 1 (shift button down, no key pressed yet).
mjr 66:2e3583fbd2f4 2319 if (sbs->physState)
mjr 66:2e3583fbd2f4 2320 shiftButton.state = 1;
mjr 66:2e3583fbd2f4 2321 break;
mjr 66:2e3583fbd2f4 2322
mjr 66:2e3583fbd2f4 2323 case 1:
mjr 66:2e3583fbd2f4 2324 // Shift button down, no key pressed yet. If the button is
mjr 66:2e3583fbd2f4 2325 // now up, it counts as an ordinary button press instead of
mjr 66:2e3583fbd2f4 2326 // a shift button press, since the shift function was never
mjr 66:2e3583fbd2f4 2327 // used. Return to unshifted state and start a timed key
mjr 66:2e3583fbd2f4 2328 // pulse event.
mjr 66:2e3583fbd2f4 2329 if (!sbs->physState)
mjr 66:2e3583fbd2f4 2330 {
mjr 66:2e3583fbd2f4 2331 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 2332 shiftButton.pulse = 1;
mjr 66:2e3583fbd2f4 2333 shiftButton.pulseTime = 50000+dt; // 50 ms left on the key pulse
mjr 66:2e3583fbd2f4 2334 }
mjr 66:2e3583fbd2f4 2335 break;
mjr 66:2e3583fbd2f4 2336
mjr 66:2e3583fbd2f4 2337 case 2:
mjr 66:2e3583fbd2f4 2338 // Shift button down, other key was pressed. If the button is
mjr 66:2e3583fbd2f4 2339 // now up, simply clear the shift state without sending a key
mjr 66:2e3583fbd2f4 2340 // press for the shift button itself to the PC. The shift
mjr 66:2e3583fbd2f4 2341 // function was used, so its ordinary key press function is
mjr 66:2e3583fbd2f4 2342 // suppressed.
mjr 66:2e3583fbd2f4 2343 if (!sbs->physState)
mjr 66:2e3583fbd2f4 2344 shiftButton.state = 0;
mjr 66:2e3583fbd2f4 2345 break;
mjr 66:2e3583fbd2f4 2346 }
mjr 66:2e3583fbd2f4 2347 }
mjr 38:091e511ce8a0 2348
mjr 11:bd9da7088e6e 2349 // scan the button list
mjr 18:5e890ebd0023 2350 ButtonState *bs = buttonState;
mjr 65:739875521aae 2351 for (int i = 0 ; i < nButtons ; ++i, ++bs)
mjr 11:bd9da7088e6e 2352 {
mjr 66:2e3583fbd2f4 2353 // Check the button type:
mjr 66:2e3583fbd2f4 2354 // - shift button
mjr 66:2e3583fbd2f4 2355 // - pulsed button
mjr 66:2e3583fbd2f4 2356 // - regular button
mjr 66:2e3583fbd2f4 2357 if (shiftButton.index == i)
mjr 66:2e3583fbd2f4 2358 {
mjr 66:2e3583fbd2f4 2359 // This is the shift button. Its logical state for key
mjr 66:2e3583fbd2f4 2360 // reporting purposes is controlled by the shift buttton
mjr 66:2e3583fbd2f4 2361 // pulse timer. If we're in a pulse, its logical state
mjr 66:2e3583fbd2f4 2362 // is pressed.
mjr 66:2e3583fbd2f4 2363 if (shiftButton.pulse)
mjr 66:2e3583fbd2f4 2364 {
mjr 66:2e3583fbd2f4 2365 // deduct the current interval from the pulse time, ending
mjr 66:2e3583fbd2f4 2366 // the pulse if the time has expired
mjr 66:2e3583fbd2f4 2367 if (shiftButton.pulseTime > dt)
mjr 66:2e3583fbd2f4 2368 shiftButton.pulseTime -= dt;
mjr 66:2e3583fbd2f4 2369 else
mjr 66:2e3583fbd2f4 2370 shiftButton.pulse = 0;
mjr 66:2e3583fbd2f4 2371 }
mjr 66:2e3583fbd2f4 2372
mjr 66:2e3583fbd2f4 2373 // the button is logically pressed if we're in a pulse
mjr 66:2e3583fbd2f4 2374 bs->logState = shiftButton.pulse;
mjr 66:2e3583fbd2f4 2375 }
mjr 66:2e3583fbd2f4 2376 else if (bs->pulseState != 0)
mjr 18:5e890ebd0023 2377 {
mjr 38:091e511ce8a0 2378 // if the timer has expired, check for state changes
mjr 53:9b2611964afc 2379 if (bs->pulseTime > dt)
mjr 18:5e890ebd0023 2380 {
mjr 53:9b2611964afc 2381 // not expired yet - deduct the last interval
mjr 53:9b2611964afc 2382 bs->pulseTime -= dt;
mjr 53:9b2611964afc 2383 }
mjr 53:9b2611964afc 2384 else
mjr 53:9b2611964afc 2385 {
mjr 53:9b2611964afc 2386 // pulse time expired - check for a state change
mjr 53:9b2611964afc 2387 const uint32_t pulseLength = 200000UL; // 200 milliseconds
mjr 38:091e511ce8a0 2388 switch (bs->pulseState)
mjr 18:5e890ebd0023 2389 {
mjr 38:091e511ce8a0 2390 case 1:
mjr 38:091e511ce8a0 2391 // off - if the physical switch is now on, start a button pulse
mjr 53:9b2611964afc 2392 if (bs->physState)
mjr 53:9b2611964afc 2393 {
mjr 38:091e511ce8a0 2394 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 2395 bs->pulseState = 2;
mjr 53:9b2611964afc 2396 bs->logState = 1;
mjr 38:091e511ce8a0 2397 }
mjr 38:091e511ce8a0 2398 break;
mjr 18:5e890ebd0023 2399
mjr 38:091e511ce8a0 2400 case 2:
mjr 38:091e511ce8a0 2401 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 2402 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 2403 // change in state in the logical button
mjr 38:091e511ce8a0 2404 bs->pulseState = 3;
mjr 38:091e511ce8a0 2405 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 2406 bs->logState = 0;
mjr 38:091e511ce8a0 2407 break;
mjr 38:091e511ce8a0 2408
mjr 38:091e511ce8a0 2409 case 3:
mjr 38:091e511ce8a0 2410 // on - if the physical switch is now off, start a button pulse
mjr 53:9b2611964afc 2411 if (!bs->physState)
mjr 53:9b2611964afc 2412 {
mjr 38:091e511ce8a0 2413 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 2414 bs->pulseState = 4;
mjr 53:9b2611964afc 2415 bs->logState = 1;
mjr 38:091e511ce8a0 2416 }
mjr 38:091e511ce8a0 2417 break;
mjr 38:091e511ce8a0 2418
mjr 38:091e511ce8a0 2419 case 4:
mjr 38:091e511ce8a0 2420 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 2421 bs->pulseState = 1;
mjr 38:091e511ce8a0 2422 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 2423 bs->logState = 0;
mjr 38:091e511ce8a0 2424 break;
mjr 18:5e890ebd0023 2425 }
mjr 18:5e890ebd0023 2426 }
mjr 38:091e511ce8a0 2427 }
mjr 38:091e511ce8a0 2428 else
mjr 38:091e511ce8a0 2429 {
mjr 38:091e511ce8a0 2430 // not a pulse switch - the logical state is the same as the physical state
mjr 53:9b2611964afc 2431 bs->logState = bs->physState;
mjr 38:091e511ce8a0 2432 }
mjr 35:e959ffba78fd 2433
mjr 38:091e511ce8a0 2434 // carry out any edge effects from buttons changing states
mjr 53:9b2611964afc 2435 if (bs->logState != bs->prevLogState)
mjr 38:091e511ce8a0 2436 {
mjr 38:091e511ce8a0 2437 // check for special key transitions
mjr 53:9b2611964afc 2438 if (cfg.nightMode.btn == i + 1)
mjr 35:e959ffba78fd 2439 {
mjr 53:9b2611964afc 2440 // Check the switch type in the config flags. If flag 0x01 is set,
mjr 53:9b2611964afc 2441 // it's a persistent on/off switch, so the night mode state simply
mjr 53:9b2611964afc 2442 // follows the current state of the switch. Otherwise, it's a
mjr 53:9b2611964afc 2443 // momentary button, so each button push (i.e., each transition from
mjr 53:9b2611964afc 2444 // logical state OFF to ON) toggles the current night mode state.
mjr 53:9b2611964afc 2445 if (cfg.nightMode.flags & 0x01)
mjr 53:9b2611964afc 2446 {
mjr 69:cc5039284fac 2447 // on/off switch - when the button changes state, change
mjr 53:9b2611964afc 2448 // night mode to match the new state
mjr 53:9b2611964afc 2449 setNightMode(bs->logState);
mjr 53:9b2611964afc 2450 }
mjr 53:9b2611964afc 2451 else
mjr 53:9b2611964afc 2452 {
mjr 66:2e3583fbd2f4 2453 // Momentary switch - toggle the night mode state when the
mjr 53:9b2611964afc 2454 // physical button is pushed (i.e., when its logical state
mjr 66:2e3583fbd2f4 2455 // transitions from OFF to ON).
mjr 66:2e3583fbd2f4 2456 //
mjr 66:2e3583fbd2f4 2457 // In momentary mode, night mode flag 0x02 makes it the
mjr 66:2e3583fbd2f4 2458 // shifted version of the button. In this case, only
mjr 66:2e3583fbd2f4 2459 // proceed if the shift button is pressed.
mjr 66:2e3583fbd2f4 2460 bool pressed = bs->logState;
mjr 66:2e3583fbd2f4 2461 if ((cfg.nightMode.flags & 0x02) != 0)
mjr 66:2e3583fbd2f4 2462 {
mjr 66:2e3583fbd2f4 2463 // if the shift button is pressed but hasn't been used
mjr 66:2e3583fbd2f4 2464 // as a shift yet, mark it as used, so that it doesn't
mjr 66:2e3583fbd2f4 2465 // also generate its own key code on release
mjr 66:2e3583fbd2f4 2466 if (shiftButton.state == 1)
mjr 66:2e3583fbd2f4 2467 shiftButton.state = 2;
mjr 66:2e3583fbd2f4 2468
mjr 66:2e3583fbd2f4 2469 // if the shift button isn't even pressed
mjr 66:2e3583fbd2f4 2470 if (shiftButton.state == 0)
mjr 66:2e3583fbd2f4 2471 pressed = false;
mjr 66:2e3583fbd2f4 2472 }
mjr 66:2e3583fbd2f4 2473
mjr 66:2e3583fbd2f4 2474 // if it's pressed (even after considering the shift mode),
mjr 66:2e3583fbd2f4 2475 // toggle night mode
mjr 66:2e3583fbd2f4 2476 if (pressed)
mjr 53:9b2611964afc 2477 toggleNightMode();
mjr 53:9b2611964afc 2478 }
mjr 35:e959ffba78fd 2479 }
mjr 38:091e511ce8a0 2480
mjr 38:091e511ce8a0 2481 // remember the new state for comparison on the next run
mjr 53:9b2611964afc 2482 bs->prevLogState = bs->logState;
mjr 38:091e511ce8a0 2483 }
mjr 38:091e511ce8a0 2484
mjr 53:9b2611964afc 2485 // if it's pressed, physically or virtually, add it to the appropriate
mjr 53:9b2611964afc 2486 // key state list
mjr 53:9b2611964afc 2487 if (bs->logState || bs->virtState)
mjr 38:091e511ce8a0 2488 {
mjr 70:9f58735a1732 2489 // Get the key type and code. Start by assuming that we're
mjr 70:9f58735a1732 2490 // going to use the normal unshifted meaning.
mjr 65:739875521aae 2491 ButtonCfg *bc = &cfg.button[bs->cfgIndex];
mjr