An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Wed Dec 28 23:32:38 2016 +0000
Revision:
69:cc5039284fac
Parent:
67:c39e66c4e000
Child:
77:0b96f6867312
Slope-based edge detection; disable filtering in plunger readings;

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 17:ab3cec0c8bf4 1 // Pinscape Controller Configuration
mjr 17:ab3cec0c8bf4 2 //
mjr 55:4db125cd11a0 3 // New for 2016: dynamic configuration! To configure the controller,
mjr 55:4db125cd11a0 4 // connect the KL25Z to your PC, install the STANDARD pre-compiled .bin
mjr 55:4db125cd11a0 5 // file, and run the Windows config tool. There's no need (as there was in
mjr 55:4db125cd11a0 6 // the past) to edit the source code or to compile a custom version of the
mjr 55:4db125cd11a0 7 // binary just to customize setup options.
mjr 35:e959ffba78fd 8 //
mjr 55:4db125cd11a0 9 // In earlier versions, configuration was handled mostly with #ifdef and
mjr 55:4db125cd11a0 10 // similar constructs. To customize the setup, you had to create a private
mjr 55:4db125cd11a0 11 // forked copy of the source code, edit the constants defined in config.h,
mjr 55:4db125cd11a0 12 // and compile a custom binary. That's no longer necessary!
mjr 35:e959ffba78fd 13 //
mjr 35:e959ffba78fd 14 // The new approach is to do everything (or as much as possible, anyway)
mjr 35:e959ffba78fd 15 // via the Windows config tool. You shouldn't have to recompile a custom
mjr 35:e959ffba78fd 16 // version just to make a configurable change. Of course, you're still free
mjr 55:4db125cd11a0 17 // to create a custom version if you want to add entirely new features or
mjr 55:4db125cd11a0 18 // make changes that go beyond what the setup tool exposes.
mjr 35:e959ffba78fd 19 //
mjr 35:e959ffba78fd 20
mjr 55:4db125cd11a0 21 // Pre-packaged configuration selection.
mjr 55:4db125cd11a0 22 //
mjr 55:4db125cd11a0 23 // IMPORTANT! If you just want to create a custom configuration, DON'T
mjr 55:4db125cd11a0 24 // modify this file, DON'T use these macros, and DON'T compiler on mbed.
mjr 55:4db125cd11a0 25 // Instead, use the unmodified standard build and configure your system
mjr 55:4db125cd11a0 26 // using the Pinscape Config Tool on Windows. That's easier and better
mjr 55:4db125cd11a0 27 // because the config tool will be able to back up your settings to a
mjr 55:4db125cd11a0 28 // local file on your PC, and will automatically preserve your settings
mjr 55:4db125cd11a0 29 // across upgrades. You won't have to worry about merging your changes
mjr 55:4db125cd11a0 30 // into every update of the repository source code, since you'll never
mjr 55:4db125cd11a0 31 // have to change the source code.
mjr 55:4db125cd11a0 32 //
mjr 55:4db125cd11a0 33 // The different configurations here are purely for testing purposes.
mjr 55:4db125cd11a0 34 // The standard build uses the STANDARD_CONFIG settings, which are the
mjr 55:4db125cd11a0 35 // same as the original version where you had to modify config.h by hand
mjr 55:4db125cd11a0 36 // to customize your system.
mjr 55:4db125cd11a0 37 //
mjr 55:4db125cd11a0 38 #define STANDARD_CONFIG 1 // standard settings, based on v1 base settings
mjr 55:4db125cd11a0 39 #define TEST_CONFIG_EXPAN 0 // configuration for the expansion boards
mjr 55:4db125cd11a0 40 #define TEST_KEEP_PRINTF 0 // for debugging purposes, keep printf() enabled
mjr 55:4db125cd11a0 41 // by leaving the SDA UART GPIO pins unallocated
mjr 48:058ace2aed1d 42
mjr 17:ab3cec0c8bf4 43
mjr 25:e22b88bd783a 44 #ifndef CONFIG_H
mjr 25:e22b88bd783a 45 #define CONFIG_H
mjr 17:ab3cec0c8bf4 46
mjr 35:e959ffba78fd 47 // Plunger type codes
mjr 35:e959ffba78fd 48 // NOTE! These values are part of the external USB interface. New
mjr 35:e959ffba78fd 49 // values can be added, but the meaning of an existing assigned number
mjr 35:e959ffba78fd 50 // should remain fixed to keep the PC-side config tool compatible across
mjr 35:e959ffba78fd 51 // versions.
mjr 35:e959ffba78fd 52 const int PlungerType_None = 0; // no plunger
mjr 35:e959ffba78fd 53 const int PlungerType_TSL1410RS = 1; // TSL1410R linear image sensor (1280x1 pixels, 400dpi), serial mode
mjr 35:e959ffba78fd 54 const int PlungerType_TSL1410RP = 2; // TSL1410R, parallel mode (reads the two sensor sections concurrently)
mjr 69:cc5039284fac 55 const int PlungerType_TSL1412SS = 3; // TSL1412S linear image sensor (1536x1 pixels, 400dpi), serial mode
mjr 69:cc5039284fac 56 const int PlungerType_TSL1412SP = 4; // TSL1412S, parallel mode
mjr 35:e959ffba78fd 57 const int PlungerType_Pot = 5; // potentionmeter
mjr 35:e959ffba78fd 58 const int PlungerType_OptQuad = 6; // AEDR8300 optical quadrature sensor
mjr 35:e959ffba78fd 59 const int PlungerType_MagQuad = 7; // AS5304 magnetic quadrature sensor
mjr 21:5048e16cc9ef 60
mjr 35:e959ffba78fd 61 // Accelerometer orientation codes
mjr 35:e959ffba78fd 62 // These values are part of the external USB interface
mjr 35:e959ffba78fd 63 const int OrientationFront = 0; // USB ports pointed toward front of cabinet
mjr 35:e959ffba78fd 64 const int OrientationLeft = 1; // ports pointed toward left side of cabinet
mjr 35:e959ffba78fd 65 const int OrientationRight = 2; // ports pointed toward right side of cabinet
mjr 35:e959ffba78fd 66 const int OrientationRear = 3; // ports pointed toward back of cabinet
mjr 25:e22b88bd783a 67
mjr 35:e959ffba78fd 68 // input button types
mjr 53:9b2611964afc 69 const int BtnTypeNone = 0; // unused
mjr 35:e959ffba78fd 70 const int BtnTypeJoystick = 1; // joystick button
mjr 53:9b2611964afc 71 const int BtnTypeKey = 2; // keyboard key
mjr 67:c39e66c4e000 72 const int BtnTypeMedia = 3; // media control key
mjr 38:091e511ce8a0 73
mjr 38:091e511ce8a0 74 // input button flags
mjr 38:091e511ce8a0 75 const uint8_t BtnFlagPulse = 0x01; // pulse mode - reports each change in the physical switch state
mjr 38:091e511ce8a0 76 // as a brief press of the logical button/keyboard key
mjr 40:cc0d9814522b 77
mjr 40:cc0d9814522b 78 // button setup structure
mjr 40:cc0d9814522b 79 struct ButtonCfg
mjr 40:cc0d9814522b 80 {
mjr 66:2e3583fbd2f4 81 // physical GPIO pin - a Wire-to-PinName mapping index
mjr 66:2e3583fbd2f4 82 uint8_t pin;
mjr 66:2e3583fbd2f4 83
mjr 66:2e3583fbd2f4 84 // Key type and value reported to the PC
mjr 40:cc0d9814522b 85 uint8_t typ; // key type reported to PC - a BtnTypeXxx value
mjr 53:9b2611964afc 86 uint8_t val; // key value reported - meaning depends on 'typ' value:
mjr 53:9b2611964afc 87 // none -> no PC input reports (val is unused)
mjr 53:9b2611964afc 88 // joystick -> val is joystick button number (1..32)
mjr 53:9b2611964afc 89 // keyboard -> val is USB scan code
mjr 66:2e3583fbd2f4 90
mjr 66:2e3583fbd2f4 91 // Shifted key type and value. These used when the button is pressed
mjr 66:2e3583fbd2f4 92 // while the Local Shift Button is being held down. We send the key
mjr 66:2e3583fbd2f4 93 // code given here instead of the regular typ/val code in this case.
mjr 66:2e3583fbd2f4 94 // If typ2 is BtnTypeNone, we use the regular typ/val code whether or
mjr 66:2e3583fbd2f4 95 // not the shift button is being held.
mjr 66:2e3583fbd2f4 96 uint8_t typ2; // shifted key type
mjr 66:2e3583fbd2f4 97 uint8_t val2; // shifted key value
mjr 66:2e3583fbd2f4 98
mjr 66:2e3583fbd2f4 99 // key flags - a bitwise combination of BtnFlagXxx values
mjr 66:2e3583fbd2f4 100 uint8_t flags;
mjr 40:cc0d9814522b 101
mjr 40:cc0d9814522b 102 void set(uint8_t pin, uint8_t typ, uint8_t val, uint8_t flags = 0)
mjr 40:cc0d9814522b 103 {
mjr 40:cc0d9814522b 104 this->pin = pin;
mjr 40:cc0d9814522b 105 this->typ = typ;
mjr 40:cc0d9814522b 106 this->val = val;
mjr 40:cc0d9814522b 107 this->flags = flags;
mjr 40:cc0d9814522b 108 }
mjr 40:cc0d9814522b 109
mjr 40:cc0d9814522b 110 } __attribute__((packed));
mjr 40:cc0d9814522b 111
mjr 33:d832bcab089e 112
mjr 65:739875521aae 113 // maximum number of input button mappings in configuration
mjr 65:739875521aae 114 const int MAX_BUTTONS = 48;
mjr 65:739875521aae 115
mjr 65:739875521aae 116 // extra slots for virtual buttons (ZB Launch Ball)
mjr 65:739875521aae 117 const int VIRTUAL_BUTTONS = 1; // total number of buttons
mjr 65:739875521aae 118 const int ZBL_BUTTON_CFG = MAX_BUTTONS; // index of ZB Launch Ball slot
mjr 33:d832bcab089e 119
mjr 35:e959ffba78fd 120 // LedWiz output port type codes
mjr 35:e959ffba78fd 121 // These values are part of the external USB interface
mjr 35:e959ffba78fd 122 const int PortTypeDisabled = 0; // port is disabled - not visible to LedWiz/DOF host
mjr 35:e959ffba78fd 123 const int PortTypeGPIOPWM = 1; // GPIO port, PWM enabled
mjr 35:e959ffba78fd 124 const int PortTypeGPIODig = 2; // GPIO port, digital out
mjr 35:e959ffba78fd 125 const int PortTypeTLC5940 = 3; // TLC5940 port
mjr 35:e959ffba78fd 126 const int PortType74HC595 = 4; // 74HC595 port
mjr 53:9b2611964afc 127 const int PortTypeVirtual = 5; // Virtual port - visible to host software, but not connected
mjr 53:9b2611964afc 128 // to a physical output
mjr 17:ab3cec0c8bf4 129
mjr 35:e959ffba78fd 130 // LedWiz output port flag bits
mjr 38:091e511ce8a0 131 const uint8_t PortFlagActiveLow = 0x01; // physical output is active-low
mjr 38:091e511ce8a0 132 const uint8_t PortFlagNoisemaker = 0x02; // noisemaker device - disable when night mode is engaged
mjr 40:cc0d9814522b 133 const uint8_t PortFlagGamma = 0x04; // apply gamma correction to this output
mjr 35:e959ffba78fd 134
mjr 35:e959ffba78fd 135 // maximum number of output ports
mjr 48:058ace2aed1d 136 const int MAX_OUT_PORTS = 128;
mjr 33:d832bcab089e 137
mjr 38:091e511ce8a0 138 // port configuration data
mjr 38:091e511ce8a0 139 struct LedWizPortCfg
mjr 38:091e511ce8a0 140 {
mjr 38:091e511ce8a0 141 uint8_t typ; // port type: a PortTypeXxx value
mjr 38:091e511ce8a0 142 uint8_t pin; // physical output pin: for a GPIO port, this is an index in the
mjr 38:091e511ce8a0 143 // USB-to-PinName mapping list; for a TLC5940 or 74HC595 port, it's
mjr 38:091e511ce8a0 144 // the output number, starting from 0 for OUT0 on the first chip in
mjr 38:091e511ce8a0 145 // the daisy chain. For inactive and virtual ports, it's unused.
mjr 38:091e511ce8a0 146 uint8_t flags; // flags: a combination of PortFlagXxx values
mjr 40:cc0d9814522b 147
mjr 40:cc0d9814522b 148 void set(uint8_t typ, uint8_t pin, uint8_t flags = 0)
mjr 40:cc0d9814522b 149 {
mjr 40:cc0d9814522b 150 this->typ = typ;
mjr 40:cc0d9814522b 151 this->pin = pin;
mjr 40:cc0d9814522b 152 this->flags = flags;
mjr 40:cc0d9814522b 153 }
mjr 40:cc0d9814522b 154
mjr 38:091e511ce8a0 155 } __attribute__((packed));
mjr 38:091e511ce8a0 156
mjr 38:091e511ce8a0 157
mjr 53:9b2611964afc 158 // Convert a physical pin name to a wire pin name
mjr 53:9b2611964afc 159 #define PINNAME_TO_WIRE(p) \
mjr 53:9b2611964afc 160 uint8_t((p) == NC ? 0xFF : \
mjr 53:9b2611964afc 161 (((p) & 0xF000 ) >> (PORT_SHIFT - 5)) | (((p) & 0xFF) >> 2))
mjr 53:9b2611964afc 162
mjr 35:e959ffba78fd 163 struct Config
mjr 35:e959ffba78fd 164 {
mjr 35:e959ffba78fd 165 // set all values to factory defaults
mjr 35:e959ffba78fd 166 void setFactoryDefaults()
mjr 35:e959ffba78fd 167 {
mjr 35:e959ffba78fd 168 // By default, pretend to be LedWiz unit #8. This can be from 1 to 16. Real
mjr 35:e959ffba78fd 169 // LedWiz units have their unit number set at the factory, and the vast majority
mjr 35:e959ffba78fd 170 // are set up as unit #1, since that's the default for anyone who doesn't ask
mjr 35:e959ffba78fd 171 // for a different setting. It seems rare for anyone to use more than one unit
mjr 35:e959ffba78fd 172 // in a pin cab, but for the few who do, the others will probably be numbered
mjr 35:e959ffba78fd 173 // sequentially as #2, #3, etc. It seems safe to assume that no one out there
mjr 48:058ace2aed1d 174 // has a unit #8, so we'll use that as our default. This can be changed from
mjr 48:058ace2aed1d 175 // the config tool, but for the sake of convenience, it's better to pick a
mjr 48:058ace2aed1d 176 // default that most people won't have to change.
mjr 54:fd77a6b2f76c 177 usbVendorID = 0xFAFA; // LedWiz vendor code
mjr 48:058ace2aed1d 178 usbProductID = 0x00F7; // LedWiz product code for unit #8
mjr 61:3c7e6e9ec355 179
mjr 55:4db125cd11a0 180 // Set the default Pinscape unit number to #1. This is a separate identifier
mjr 55:4db125cd11a0 181 // from the LedWiz ID, so you don't have to worry about making this different
mjr 55:4db125cd11a0 182 // from your LedWiz units. Each Pinscape unit should have a unique value for
mjr 55:4db125cd11a0 183 // this ID, though.
mjr 55:4db125cd11a0 184 //
mjr 55:4db125cd11a0 185 // Note that Pinscape unit #1 corresponds to DOF Pinscape #51, PS 2 -> DOF 52,
mjr 55:4db125cd11a0 186 // and so on - just add 50 to get the DOF ID.
mjr 55:4db125cd11a0 187 psUnitNo = 1;
mjr 35:e959ffba78fd 188
mjr 51:57eb311faafa 189 // set a disconnect reboot timeout of 10 seconds by default
mjr 55:4db125cd11a0 190 disconnectRebootTimeout = 10;
mjr 51:57eb311faafa 191
mjr 35:e959ffba78fd 192 // enable joystick reports
mjr 35:e959ffba78fd 193 joystickEnabled = true;
mjr 35:e959ffba78fd 194
mjr 35:e959ffba78fd 195 // assume standard orientation, with USB ports toward front of cabinet
mjr 35:e959ffba78fd 196 orientation = OrientationFront;
mjr 25:e22b88bd783a 197
mjr 52:8298b2a73eb2 198 // assume a basic setup with no expansion boards
mjr 53:9b2611964afc 199 expan.typ = 0;
mjr 53:9b2611964afc 200 expan.vsn = 0;
mjr 53:9b2611964afc 201 memset(expan.ext, 0, sizeof(expan.ext));
mjr 52:8298b2a73eb2 202
mjr 35:e959ffba78fd 203 // assume no plunger is attached
mjr 35:e959ffba78fd 204 plunger.enabled = false;
mjr 35:e959ffba78fd 205 plunger.sensorType = PlungerType_None;
mjr 35:e959ffba78fd 206
mjr 55:4db125cd11a0 207 #if TEST_CONFIG_EXPAN || STANDARD_CONFIG
mjr 43:7a6364d82a41 208 plunger.enabled = true;
mjr 43:7a6364d82a41 209 plunger.sensorType = PlungerType_TSL1410RS;
mjr 53:9b2611964afc 210 plunger.sensorPin[0] = PINNAME_TO_WIRE(PTE20); // SI
mjr 53:9b2611964afc 211 plunger.sensorPin[1] = PINNAME_TO_WIRE(PTE21); // SCLK
mjr 53:9b2611964afc 212 plunger.sensorPin[2] = PINNAME_TO_WIRE(PTB0); // AO1 = PTB0 = ADC0_SE8
mjr 53:9b2611964afc 213 plunger.sensorPin[3] = PINNAME_TO_WIRE(PTE22); // AO2 (parallel mode) = PTE22 = ADC0_SE3
mjr 43:7a6364d82a41 214 #endif
mjr 43:7a6364d82a41 215
mjr 48:058ace2aed1d 216 // default plunger calibration button settings
mjr 55:4db125cd11a0 217 plunger.cal.features = 0x03; // 0x01 = enable button, 0x02 = enable indicator lamp
mjr 55:4db125cd11a0 218 plunger.cal.btn = PINNAME_TO_WIRE(PTE29); // button input (DigitalIn port)
mjr 55:4db125cd11a0 219 plunger.cal.led = PINNAME_TO_WIRE(PTE23); // button output (DigitalOut port)
mjr 35:e959ffba78fd 220
mjr 44:b5ac89b9cd5d 221 // set the default plunger calibration
mjr 44:b5ac89b9cd5d 222 plunger.cal.setDefaults();
mjr 35:e959ffba78fd 223
mjr 35:e959ffba78fd 224 // disable the ZB Launch Ball by default
mjr 53:9b2611964afc 225 plunger.zbLaunchBall.port = 0; // 0 = disabled
mjr 65:739875521aae 226 plunger.zbLaunchBall.keytype = BtnTypeKey; // keyboard key
mjr 61:3c7e6e9ec355 227 plunger.zbLaunchBall.keycode = 0x28; // USB keyboard scan code for Enter key
mjr 61:3c7e6e9ec355 228 plunger.zbLaunchBall.pushDistance = 63; // 63/1000 in == .063" == about 1/16"
mjr 35:e959ffba78fd 229
mjr 35:e959ffba78fd 230 // assume no TV ON switch
mjr 53:9b2611964afc 231 TVON.statusPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 232 TVON.latchPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 233 TVON.relayPin = PINNAME_TO_WIRE(NC);
mjr 53:9b2611964afc 234 TVON.delayTime = 700; // 7 seconds
mjr 55:4db125cd11a0 235
mjr 55:4db125cd11a0 236 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 237 // expansion board TV ON wiring
mjr 53:9b2611964afc 238 TVON.statusPin = PINNAME_TO_WIRE(PTD2);
mjr 53:9b2611964afc 239 TVON.latchPin = PINNAME_TO_WIRE(PTE0);
mjr 53:9b2611964afc 240 TVON.relayPin = PINNAME_TO_WIRE(PTD3);
mjr 53:9b2611964afc 241 TVON.delayTime = 700; // 7 seconds
mjr 38:091e511ce8a0 242 #endif
mjr 53:9b2611964afc 243
mjr 53:9b2611964afc 244 // assume no night mode switch or indicator lamp
mjr 53:9b2611964afc 245 nightMode.btn = 0;
mjr 53:9b2611964afc 246 nightMode.flags = 0;
mjr 53:9b2611964afc 247 nightMode.port = 0;
mjr 35:e959ffba78fd 248
mjr 35:e959ffba78fd 249 // assume no TLC5940 chips
mjr 35:e959ffba78fd 250 tlc5940.nchips = 0;
mjr 55:4db125cd11a0 251
mjr 55:4db125cd11a0 252 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 253 // for expansion board testing purposes, assume the common setup
mjr 55:4db125cd11a0 254 // with one main board and one power board
mjr 48:058ace2aed1d 255 tlc5940.nchips = 4;
mjr 38:091e511ce8a0 256 #endif
mjr 38:091e511ce8a0 257
mjr 55:4db125cd11a0 258 // Default TLC5940 pin assignments. Note that it's harmless to set
mjr 55:4db125cd11a0 259 // these to valid pins even if no TLC5940 chips are actually present,
mjr 55:4db125cd11a0 260 // since the main program won't allocate the connections if 'nchips'
mjr 55:4db125cd11a0 261 // is zero. This means that the pins are free to be used for other
mjr 55:4db125cd11a0 262 // purposes (such as output ports) if not using TLC5940 chips.
mjr 53:9b2611964afc 263 tlc5940.sin = PINNAME_TO_WIRE(PTC6);
mjr 53:9b2611964afc 264 tlc5940.sclk = PINNAME_TO_WIRE(PTC5);
mjr 53:9b2611964afc 265 tlc5940.xlat = PINNAME_TO_WIRE(PTC10);
mjr 59:94eb9265b6d7 266 tlc5940.blank = PINNAME_TO_WIRE(PTC7);
mjr 59:94eb9265b6d7 267 #if TEST_KEEP_PRINTF
mjr 59:94eb9265b6d7 268 tlc5940.gsclk = PINNAME_TO_WIRE(PTA13); // PTA1 is reserved for SDA printf()
mjr 59:94eb9265b6d7 269 #else
mjr 53:9b2611964afc 270 tlc5940.gsclk = PINNAME_TO_WIRE(PTA1);
mjr 59:94eb9265b6d7 271 #endif
mjr 35:e959ffba78fd 272
mjr 35:e959ffba78fd 273 // assume no 74HC595 chips
mjr 35:e959ffba78fd 274 hc595.nchips = 0;
mjr 55:4db125cd11a0 275
mjr 55:4db125cd11a0 276 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 277 // for expansion board testing purposes, assume one chime board
mjr 48:058ace2aed1d 278 hc595.nchips = 1;
mjr 40:cc0d9814522b 279 #endif
mjr 40:cc0d9814522b 280
mjr 55:4db125cd11a0 281 // Default 74HC595 pin assignments. As with the TLC5940 pins, it's
mjr 55:4db125cd11a0 282 // harmless to assign pins here even if no 74HC595 chips are used,
mjr 55:4db125cd11a0 283 // since the main program won't actually allocate the pins if 'nchips'
mjr 55:4db125cd11a0 284 // is zero.
mjr 53:9b2611964afc 285 hc595.sin = PINNAME_TO_WIRE(PTA5);
mjr 53:9b2611964afc 286 hc595.sclk = PINNAME_TO_WIRE(PTA4);
mjr 53:9b2611964afc 287 hc595.latch = PINNAME_TO_WIRE(PTA12);
mjr 53:9b2611964afc 288 hc595.ena = PINNAME_TO_WIRE(PTD4);
mjr 38:091e511ce8a0 289
mjr 35:e959ffba78fd 290 // initially configure with no LedWiz output ports
mjr 35:e959ffba78fd 291 outPort[0].typ = PortTypeDisabled;
mjr 66:2e3583fbd2f4 292
mjr 66:2e3583fbd2f4 293 // initially configure with no shift key
mjr 66:2e3583fbd2f4 294 shiftButton = 0;
mjr 53:9b2611964afc 295
mjr 35:e959ffba78fd 296 // initially configure with no input buttons
mjr 35:e959ffba78fd 297 for (int i = 0 ; i < MAX_BUTTONS ; ++i)
mjr 53:9b2611964afc 298 button[i].set(PINNAME_TO_WIRE(NC), BtnTypeNone, 0);
mjr 38:091e511ce8a0 299
mjr 55:4db125cd11a0 300 #if STANDARD_CONFIG | TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 301 // For the standard configuration, assign 24 input ports to
mjr 55:4db125cd11a0 302 // joystick buttons 1-24. Assign the same GPIO pins used
mjr 55:4db125cd11a0 303 // in the original v1 default configuration. For expansion
mjr 55:4db125cd11a0 304 // board testing purposes, also assign the input ports, with
mjr 55:4db125cd11a0 305 // the noted differences.
mjr 38:091e511ce8a0 306 for (int i = 0 ; i < 24 ; ++i) {
mjr 55:4db125cd11a0 307 static const int bp[] = {
mjr 53:9b2611964afc 308 PINNAME_TO_WIRE(PTC2), // 1
mjr 53:9b2611964afc 309 PINNAME_TO_WIRE(PTB3), // 2
mjr 53:9b2611964afc 310 PINNAME_TO_WIRE(PTB2), // 3
mjr 53:9b2611964afc 311 PINNAME_TO_WIRE(PTB1), // 4
mjr 53:9b2611964afc 312 PINNAME_TO_WIRE(PTE30), // 5
mjr 48:058ace2aed1d 313 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 314 PINNAME_TO_WIRE(PTC11), // 6 - expansion boards use PTC11 for this, since PTE22
mjr 55:4db125cd11a0 315 // is reserved for a plunger connection
mjr 55:4db125cd11a0 316 #elif STANDARD_CONFIG
mjr 55:4db125cd11a0 317 PINNAME_TO_WIRE(PTE22), // 6 - original standalone setup uses PTE22
mjr 48:058ace2aed1d 318 #endif
mjr 53:9b2611964afc 319 PINNAME_TO_WIRE(PTE5), // 7
mjr 53:9b2611964afc 320 PINNAME_TO_WIRE(PTE4), // 8
mjr 53:9b2611964afc 321 PINNAME_TO_WIRE(PTE3), // 9
mjr 53:9b2611964afc 322 PINNAME_TO_WIRE(PTE2), // 10
mjr 53:9b2611964afc 323 PINNAME_TO_WIRE(PTB11), // 11
mjr 53:9b2611964afc 324 PINNAME_TO_WIRE(PTB10), // 12
mjr 53:9b2611964afc 325 PINNAME_TO_WIRE(PTB9), // 13
mjr 53:9b2611964afc 326 PINNAME_TO_WIRE(PTB8), // 14
mjr 53:9b2611964afc 327 PINNAME_TO_WIRE(PTC12), // 15
mjr 53:9b2611964afc 328 PINNAME_TO_WIRE(PTC13), // 16
mjr 53:9b2611964afc 329 PINNAME_TO_WIRE(PTC16), // 17
mjr 53:9b2611964afc 330 PINNAME_TO_WIRE(PTC17), // 18
mjr 53:9b2611964afc 331 PINNAME_TO_WIRE(PTA16), // 19
mjr 53:9b2611964afc 332 PINNAME_TO_WIRE(PTA17), // 20
mjr 53:9b2611964afc 333 PINNAME_TO_WIRE(PTE31), // 21
mjr 53:9b2611964afc 334 PINNAME_TO_WIRE(PTD6), // 22
mjr 53:9b2611964afc 335 PINNAME_TO_WIRE(PTD7), // 23
mjr 53:9b2611964afc 336 PINNAME_TO_WIRE(PTE1) // 24
mjr 40:cc0d9814522b 337 };
mjr 48:058ace2aed1d 338 button[i].set(bp[i],
mjr 48:058ace2aed1d 339 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 340 // For expansion board testing only, assign the inputs
mjr 55:4db125cd11a0 341 // to keyboard keys A, B, etc. This isn't useful; it's
mjr 55:4db125cd11a0 342 // just for testing purposes. Note that the USB key code
mjr 55:4db125cd11a0 343 // for "A" is 4, "B" is 5, and so on sequentially through
mjr 55:4db125cd11a0 344 // the alphabet.
mjr 55:4db125cd11a0 345 BtnTypeKey, i+4);
mjr 55:4db125cd11a0 346 #elif STANDARD_CONFIG
mjr 55:4db125cd11a0 347 // For the standard configuration, assign the input to
mjr 55:4db125cd11a0 348 // joystick buttons 1-24, as in the original v1 default
mjr 55:4db125cd11a0 349 // configuration.
mjr 55:4db125cd11a0 350 BtnTypeJoystick, i+1);
mjr 48:058ace2aed1d 351 #endif
mjr 48:058ace2aed1d 352
mjr 38:091e511ce8a0 353 }
mjr 38:091e511ce8a0 354 #endif
mjr 38:091e511ce8a0 355
mjr 55:4db125cd11a0 356 #if TEST_CONFIG_EXPAN
mjr 55:4db125cd11a0 357 // For testing purposes, configure the basic complement of
mjr 55:4db125cd11a0 358 // expansion board ports. AS MENTIONED ABOVE, THIS IS PURELY FOR
mjr 55:4db125cd11a0 359 // TESTING. DON'T USE THIS METHOD TO CONFIGURE YOUR EXPANSION
mjr 55:4db125cd11a0 360 // BOARDS FOR ACTUAL DEPLOYMENT. It's much easier and cleaner
mjr 55:4db125cd11a0 361 // to use the unmodified standard build, and customize your
mjr 55:4db125cd11a0 362 // installation with the Pinscape Config Tool on Windows.
mjr 40:cc0d9814522b 363 //
mjr 55:4db125cd11a0 364 // For this testing setup, we'll configure one main board, one
mjr 55:4db125cd11a0 365 // power board, and one chime board. The *physical* ports on
mjr 55:4db125cd11a0 366 // the board are shown below. The logical (LedWiz/DOF) numbering
mjr 55:4db125cd11a0 367 // ISN'T sequential through the physical ports, because we want
mjr 55:4db125cd11a0 368 // to arrange the DOF ports so that the most important and most
mjr 55:4db125cd11a0 369 // common toys are assigned to ports 1-32. Those ports are
mjr 55:4db125cd11a0 370 // special because they're accessible to ALL software on the PC,
mjr 55:4db125cd11a0 371 // including older LedWiz-only software such as Future Pinball.
mjr 55:4db125cd11a0 372 // Ports above 32 are accessible only to modern DOF software,
mjr 55:4db125cd11a0 373 // like Visual Pinball and PinballX.
mjr 40:cc0d9814522b 374 //
mjr 40:cc0d9814522b 375 // Main board
mjr 40:cc0d9814522b 376 // TLC ports 0-15 -> flashers
mjr 40:cc0d9814522b 377 // TLC ports 16 -> strobe
mjr 40:cc0d9814522b 378 // TLC ports 17-31 -> flippers
mjr 40:cc0d9814522b 379 // Dig GPIO PTC8 -> knocker (timer-protected outputs)
mjr 40:cc0d9814522b 380 //
mjr 40:cc0d9814522b 381 // Power board:
mjr 40:cc0d9814522b 382 // TLC ports 32-63 -> general purpose outputs
mjr 40:cc0d9814522b 383 //
mjr 40:cc0d9814522b 384 // Chime board:
mjr 40:cc0d9814522b 385 // HC595 ports 0-7 -> timer-protected outputs
mjr 40:cc0d9814522b 386 //
mjr 38:091e511ce8a0 387 {
mjr 38:091e511ce8a0 388 int n = 0;
mjr 40:cc0d9814522b 389
mjr 40:cc0d9814522b 390 // 1-15 = flashers (TLC ports 0-15)
mjr 40:cc0d9814522b 391 // 16 = strobe (TLC port 15)
mjr 40:cc0d9814522b 392 for (int i = 0 ; i < 16 ; ++i)
mjr 40:cc0d9814522b 393 outPort[n++].set(PortTypeTLC5940, i, PortFlagGamma);
mjr 40:cc0d9814522b 394
mjr 53:9b2611964afc 395 // 17 = knocker (PTC8)
mjr 53:9b2611964afc 396 outPort[n++].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC8));
mjr 35:e959ffba78fd 397
mjr 40:cc0d9814522b 398 // 18-49 = power board outputs 1-32 (TLC ports 32-63)
mjr 40:cc0d9814522b 399 for (int i = 0 ; i < 32 ; ++i)
mjr 40:cc0d9814522b 400 outPort[n++].set(PortTypeTLC5940, i+32);
mjr 40:cc0d9814522b 401
mjr 40:cc0d9814522b 402 // 50-65 = flipper RGB (TLC ports 16-31)
mjr 40:cc0d9814522b 403 for (int i = 0 ; i < 16 ; ++i)
mjr 40:cc0d9814522b 404 outPort[n++].set(PortTypeTLC5940, i+16, PortFlagGamma);
mjr 59:94eb9265b6d7 405
mjr 40:cc0d9814522b 406 // 66-73 = chime board ports 1-8 (74HC595 ports 0-7)
mjr 40:cc0d9814522b 407 for (int i = 0 ; i < 8 ; ++i)
mjr 40:cc0d9814522b 408 outPort[n++].set(PortType74HC595, i);
mjr 59:94eb9265b6d7 409
mjr 40:cc0d9814522b 410 // set Disabled to signify end of configured outputs
mjr 38:091e511ce8a0 411 outPort[n].typ = PortTypeDisabled;
mjr 38:091e511ce8a0 412 }
mjr 38:091e511ce8a0 413 #endif
mjr 48:058ace2aed1d 414
mjr 55:4db125cd11a0 415 #if STANDARD_CONFIG
mjr 55:4db125cd11a0 416 //
mjr 55:4db125cd11a0 417 // For the standard build, set up the original complement
mjr 55:4db125cd11a0 418 // of 22 ports from the v1 default onfiguration.
mjr 55:4db125cd11a0 419 //
mjr 55:4db125cd11a0 420 // IMPORTANT! As mentioned above, don't edit this file to
mjr 55:4db125cd11a0 421 // customize this for your machine. Instead, use the unmodified
mjr 55:4db125cd11a0 422 // standard build, and customize your installation using the
mjr 55:4db125cd11a0 423 // Pinscape Config Tool on Windows.
mjr 55:4db125cd11a0 424 //
mjr 48:058ace2aed1d 425 #if TEST_KEEP_PRINTF
mjr 55:4db125cd11a0 426 outPort[ 0].set(PortTypeVirtual, PINNAME_TO_WIRE(NC)); // port 1 = NC to keep debug printf (PTA1 is SDA UART)
mjr 55:4db125cd11a0 427 outPort[ 1].set(PortTypeVirtual, PINNAME_TO_WIRE(NC)); // port 2 = NC to keep debug printf (PTA2 is SDA UART)
mjr 48:058ace2aed1d 428 #else
mjr 53:9b2611964afc 429 outPort[ 0].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA1)); // port 1 = PTA1
mjr 53:9b2611964afc 430 outPort[ 1].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA2)); // port 2 = PTA2
mjr 48:058ace2aed1d 431 #endif
mjr 53:9b2611964afc 432 outPort[ 2].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD4)); // port 3 = PTD4
mjr 53:9b2611964afc 433 outPort[ 3].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA12)); // port 4 = PTA12
mjr 53:9b2611964afc 434 outPort[ 4].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA4)); // port 5 = PTA4
mjr 53:9b2611964afc 435 outPort[ 5].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA5)); // port 6 = PTA5
mjr 53:9b2611964afc 436 outPort[ 6].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTA13)); // port 7 = PTA13
mjr 53:9b2611964afc 437 outPort[ 7].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD5)); // port 8 = PTD5
mjr 53:9b2611964afc 438 outPort[ 8].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD0)); // port 9 = PTD0
mjr 53:9b2611964afc 439 outPort[ 9].set(PortTypeGPIOPWM, PINNAME_TO_WIRE(PTD3)); // port 10 = PTD3
mjr 53:9b2611964afc 440 outPort[10].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTD2)); // port 11 = PTD2
mjr 53:9b2611964afc 441 outPort[11].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC8)); // port 12 = PTC8
mjr 53:9b2611964afc 442 outPort[12].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC9)); // port 13 = PTC9
mjr 53:9b2611964afc 443 outPort[13].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC7)); // port 14 = PTC7
mjr 53:9b2611964afc 444 outPort[14].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC0)); // port 15 = PTC0
mjr 53:9b2611964afc 445 outPort[15].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC3)); // port 16 = PTC3
mjr 53:9b2611964afc 446 outPort[16].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC4)); // port 17 = PTC4
mjr 53:9b2611964afc 447 outPort[17].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC5)); // port 18 = PTC5
mjr 53:9b2611964afc 448 outPort[18].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC6)); // port 19 = PTC6
mjr 53:9b2611964afc 449 outPort[19].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC10)); // port 20 = PTC10
mjr 53:9b2611964afc 450 outPort[20].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTC11)); // port 21 = PTC11
mjr 53:9b2611964afc 451 outPort[21].set(PortTypeGPIODig, PINNAME_TO_WIRE(PTE0)); // port 22 = PTE0
mjr 48:058ace2aed1d 452 #endif
mjr 35:e959ffba78fd 453 }
mjr 35:e959ffba78fd 454
mjr 35:e959ffba78fd 455 // --- USB DEVICE CONFIGURATION ---
mjr 35:e959ffba78fd 456
mjr 35:e959ffba78fd 457 // USB device identification - vendor ID and product ID. For LedLWiz
mjr 35:e959ffba78fd 458 // emulation, use vendor ID 0xFAFA and product ID 0x00EF + unit#, where
mjr 35:e959ffba78fd 459 // unit# is the nominal LedWiz unit number from 1 to 16. Alternatively,
mjr 35:e959ffba78fd 460 // if LedWiz emulation isn't desired or causes any driver conflicts on
mjr 35:e959ffba78fd 461 // the host, we have a private Pinscape assignment as vendor ID 0x1209
mjr 35:e959ffba78fd 462 // and product ID 0xEAEA (registered with http://pid.codes, a registry
mjr 35:e959ffba78fd 463 // for open-source USB projects).
mjr 35:e959ffba78fd 464 uint16_t usbVendorID;
mjr 35:e959ffba78fd 465 uint16_t usbProductID;
mjr 35:e959ffba78fd 466
mjr 35:e959ffba78fd 467 // Pinscape Controller unit number. This is the nominal unit number,
mjr 35:e959ffba78fd 468 // from 1 to 16. We report this in the status query; DOF uses it to
mjr 53:9b2611964afc 469 // distinguish among Pinscape units. Note that this doesn't affect
mjr 35:e959ffba78fd 470 // the LedWiz unit numbering, which is implied by the USB Product ID.
mjr 35:e959ffba78fd 471 uint8_t psUnitNo;
mjr 35:e959ffba78fd 472
mjr 35:e959ffba78fd 473 // Are joystick reports enabled? Joystick reports can be turned off, to
mjr 35:e959ffba78fd 474 // use the device as purely an output controller.
mjr 35:e959ffba78fd 475 char joystickEnabled;
mjr 35:e959ffba78fd 476
mjr 51:57eb311faafa 477 // Timeout for rebooting the KL25Z when the connection is lost. On some
mjr 51:57eb311faafa 478 // hosts, the mbed USB stack has problems reconnecting after an initial
mjr 51:57eb311faafa 479 // connection is dropped. As a workaround, we can automatically reboot
mjr 51:57eb311faafa 480 // the KL25Z when it detects that it's no longer connected, after the
mjr 51:57eb311faafa 481 // interval set here expires. The timeout is in seconds; setting this
mjr 51:57eb311faafa 482 // to 0 disables the automatic reboot.
mjr 51:57eb311faafa 483 uint8_t disconnectRebootTimeout;
mjr 35:e959ffba78fd 484
mjr 35:e959ffba78fd 485 // --- ACCELEROMETER ---
mjr 35:e959ffba78fd 486
mjr 35:e959ffba78fd 487 // accelerometer orientation (ORIENTATION_xxx value)
mjr 35:e959ffba78fd 488 char orientation;
mjr 35:e959ffba78fd 489
mjr 35:e959ffba78fd 490
mjr 52:8298b2a73eb2 491 // --- EXPANSION BOARDS ---
mjr 52:8298b2a73eb2 492 struct
mjr 52:8298b2a73eb2 493 {
mjr 53:9b2611964afc 494 uint8_t typ; // expansion board set type:
mjr 53:9b2611964afc 495 // 1 -> Pinscape expansion boards
mjr 53:9b2611964afc 496 uint8_t vsn; // board set interface version
mjr 53:9b2611964afc 497 uint8_t ext[3]; // board set type-specific extended data
mjr 52:8298b2a73eb2 498
mjr 52:8298b2a73eb2 499 } expan;
mjr 52:8298b2a73eb2 500
mjr 52:8298b2a73eb2 501
mjr 35:e959ffba78fd 502 // --- PLUNGER CONFIGURATION ---
mjr 35:e959ffba78fd 503 struct
mjr 35:e959ffba78fd 504 {
mjr 35:e959ffba78fd 505 // plunger enabled/disabled
mjr 35:e959ffba78fd 506 char enabled;
mjr 33:d832bcab089e 507
mjr 35:e959ffba78fd 508 // plunger sensor type
mjr 35:e959ffba78fd 509 char sensorType;
mjr 35:e959ffba78fd 510
mjr 35:e959ffba78fd 511 // Plunger sensor pins. To accommodate a wide range of sensor types,
mjr 35:e959ffba78fd 512 // we keep a generic list of 4 pin assignments. The use of each pin
mjr 35:e959ffba78fd 513 // varies by sensor. The lists below are in order of the generic
mjr 35:e959ffba78fd 514 // pins; NC means that the pin isn't used by the sensor. Each pin's
mjr 35:e959ffba78fd 515 // GPIO usage is also listed. Certain usages limit which physical
mjr 35:e959ffba78fd 516 // pins can be assigned (e.g., AnalogIn or PwmOut).
mjr 35:e959ffba78fd 517 //
mjr 35:e959ffba78fd 518 // TSL1410R/1412R, serial: SI (DigitalOut), CLK (DigitalOut), AO (AnalogIn), NC
mjr 35:e959ffba78fd 519 // TSL1410R/1412R, parallel: SI (DigitalOut), CLK (DigitalOut), AO1 (AnalogIn), AO2 (AnalogIn)
mjr 35:e959ffba78fd 520 // Potentiometer: AO (AnalogIn), NC, NC, NC
mjr 35:e959ffba78fd 521 // AEDR8300: A (InterruptIn), B (InterruptIn), NC, NC
mjr 35:e959ffba78fd 522 // AS5304: A (InterruptIn), B (InterruptIn), NC, NC
mjr 53:9b2611964afc 523 //
mjr 53:9b2611964afc 524 // Note! These are stored in uint8_t WIRE format, not PinName format.
mjr 53:9b2611964afc 525 uint8_t sensorPin[4];
mjr 35:e959ffba78fd 526
mjr 53:9b2611964afc 527 // ZB LAUNCH BALL button setup.
mjr 35:e959ffba78fd 528 //
mjr 35:e959ffba78fd 529 // This configures the "ZB Launch Ball" feature in DOF, based on Zeb's (of
mjr 35:e959ffba78fd 530 // zebsboards.com) scheme for using a mechanical plunger as a Launch button.
mjr 35:e959ffba78fd 531 // Set the port to 0 to disable the feature.
mjr 35:e959ffba78fd 532 //
mjr 35:e959ffba78fd 533 // The port number is an LedWiz port number that we monitor for activation.
mjr 53:9b2611964afc 534 // This port isn't meant to be connected to a physical device, although it
mjr 53:9b2611964afc 535 // can be if desired. It's primarily to let the host tell the controller
mjr 53:9b2611964afc 536 // when the ZB Launch feature is active. The port numbering starts at 1;
mjr 53:9b2611964afc 537 // set this to zero to disable the feature.
mjr 35:e959ffba78fd 538 //
mjr 53:9b2611964afc 539 // The key type and code has the same meaning as for a button mapping. This
mjr 53:9b2611964afc 540 // sets the key input sent to the PC when the plunger triggers a launch when
mjr 53:9b2611964afc 541 // the mode is active. For example, set keytype=2 and keycode=0x28 to send
mjr 53:9b2611964afc 542 // the Enter key (which is the key almost all PC pinball software uses for
mjr 53:9b2611964afc 543 // plunger and Launch button input).
mjr 35:e959ffba78fd 544 //
mjr 40:cc0d9814522b 545 // The "push distance" is the distance, in 1/1000 inch units, for registering a
mjr 40:cc0d9814522b 546 // push on the plunger as a button push. If the player pushes the plunger
mjr 40:cc0d9814522b 547 // forward of the rest position by this amount, we'll treat it as pushing the
mjr 40:cc0d9814522b 548 // button, even if the player didn't pull back the plunger first. This lets
mjr 40:cc0d9814522b 549 // the player treat the plunger knob as a button for games where it's meaningful
mjr 35:e959ffba78fd 550 // to hold down the Launch button for specific intervals (e.g., "Championship
mjr 35:e959ffba78fd 551 // Pub").
mjr 35:e959ffba78fd 552 struct
mjr 35:e959ffba78fd 553 {
mjr 53:9b2611964afc 554 uint8_t port;
mjr 53:9b2611964afc 555 uint8_t keytype;
mjr 53:9b2611964afc 556 uint8_t keycode;
mjr 53:9b2611964afc 557 uint16_t pushDistance;
mjr 35:e959ffba78fd 558
mjr 35:e959ffba78fd 559 } zbLaunchBall;
mjr 35:e959ffba78fd 560
mjr 35:e959ffba78fd 561 // --- PLUNGER CALIBRATION ---
mjr 35:e959ffba78fd 562 struct
mjr 35:e959ffba78fd 563 {
mjr 35:e959ffba78fd 564 // has the plunger been calibrated?
mjr 53:9b2611964afc 565 bool calibrated;
mjr 55:4db125cd11a0 566
mjr 55:4db125cd11a0 567 // Feature enable mask:
mjr 55:4db125cd11a0 568 //
mjr 55:4db125cd11a0 569 // 0x01 = calibration button enabled
mjr 55:4db125cd11a0 570 // 0x02 = indicator light enabled
mjr 55:4db125cd11a0 571 uint8_t features;
mjr 35:e959ffba78fd 572
mjr 35:e959ffba78fd 573 // calibration button switch pin
mjr 53:9b2611964afc 574 uint8_t btn;
mjr 35:e959ffba78fd 575
mjr 35:e959ffba78fd 576 // calibration button indicator light pin
mjr 53:9b2611964afc 577 uint8_t led;
mjr 35:e959ffba78fd 578
mjr 48:058ace2aed1d 579 // Plunger calibration min, zero, and max. These are in terms of the
mjr 48:058ace2aed1d 580 // unsigned 16-bit scale (0x0000..0xffff) that we use for the raw sensor
mjr 48:058ace2aed1d 581 // readings.
mjr 48:058ace2aed1d 582 //
mjr 48:058ace2aed1d 583 // The zero point is the rest position (aka park position), where the
mjr 48:058ace2aed1d 584 // plunger is in equilibrium between the main spring and the barrel
mjr 48:058ace2aed1d 585 // spring. In the standard setup, the plunger can travel a small
mjr 48:058ace2aed1d 586 // distance forward of the rest position, because the barrel spring
mjr 48:058ace2aed1d 587 // can be compressed a bit. The minimum is the maximum forward point
mjr 48:058ace2aed1d 588 // where the barrel spring can't be compressed any further.
mjr 48:058ace2aed1d 589 uint16_t min;
mjr 48:058ace2aed1d 590 uint16_t zero;
mjr 48:058ace2aed1d 591 uint16_t max;
mjr 52:8298b2a73eb2 592
mjr 52:8298b2a73eb2 593 // Measured release time, in milliseconds.
mjr 52:8298b2a73eb2 594 uint8_t tRelease;
mjr 35:e959ffba78fd 595
mjr 44:b5ac89b9cd5d 596 // Reset the plunger calibration
mjr 44:b5ac89b9cd5d 597 void setDefaults()
mjr 35:e959ffba78fd 598 {
mjr 44:b5ac89b9cd5d 599 calibrated = false; // not calibrated
mjr 48:058ace2aed1d 600 min = 0; // assume we can go all the way forward...
mjr 48:058ace2aed1d 601 max = 0xffff; // ...and all the way back
mjr 48:058ace2aed1d 602 zero = max/6; // the rest position is usually around 1/2" back = 1/6 of total travel
mjr 52:8298b2a73eb2 603 tRelease = 65; // standard 65ms release time
mjr 44:b5ac89b9cd5d 604 }
mjr 44:b5ac89b9cd5d 605
mjr 44:b5ac89b9cd5d 606 // Begin calibration. This sets each limit to the worst
mjr 44:b5ac89b9cd5d 607 // case point - for example, we set the retracted position
mjr 44:b5ac89b9cd5d 608 // to all the way forward. Each actual reading that comes
mjr 44:b5ac89b9cd5d 609 // in is then checked against the current limit, and if it's
mjr 44:b5ac89b9cd5d 610 // outside of the limit, we reset the limit to the new reading.
mjr 44:b5ac89b9cd5d 611 void begin()
mjr 44:b5ac89b9cd5d 612 {
mjr 48:058ace2aed1d 613 min = 0; // we don't calibrate the maximum forward position, so keep this at zero
mjr 48:058ace2aed1d 614 zero = 0xffff; // set the zero position all the way back
mjr 48:058ace2aed1d 615 max = 0; // set the retracted position all the way forward
mjr 52:8298b2a73eb2 616 tRelease = 65; // revert to a default release time
mjr 35:e959ffba78fd 617 }
mjr 17:ab3cec0c8bf4 618
mjr 35:e959ffba78fd 619 } cal;
mjr 18:5e890ebd0023 620
mjr 35:e959ffba78fd 621 } plunger;
mjr 29:582472d0bc57 622
mjr 35:e959ffba78fd 623
mjr 35:e959ffba78fd 624 // --- TV ON SWITCH ---
mjr 35:e959ffba78fd 625 //
mjr 35:e959ffba78fd 626 // To use the TV ON switch feature, the special power sensing circuitry
mjr 35:e959ffba78fd 627 // implemented on the Expansion Board must be attached (or an equivalent
mjr 35:e959ffba78fd 628 // circuit, as described in the Build Guide). The circuitry lets us
mjr 35:e959ffba78fd 629 // detect power state changes on the secondary power supply.
mjr 35:e959ffba78fd 630 struct
mjr 35:e959ffba78fd 631 {
mjr 35:e959ffba78fd 632 // PSU2 power status sense (DigitalIn pin). This pin goes LOW when the
mjr 35:e959ffba78fd 633 // secondary power supply is turned off, and remains LOW until the LATCH
mjr 35:e959ffba78fd 634 // pin is raised high AND the secondary PSU is turned on. Once HIGH,
mjr 35:e959ffba78fd 635 // it remains HIGH as long as the secondary PSU is on.
mjr 53:9b2611964afc 636 uint8_t statusPin;
mjr 35:e959ffba78fd 637
mjr 35:e959ffba78fd 638 // PSU2 power status latch (DigitalOut pin)
mjr 53:9b2611964afc 639 uint8_t latchPin;
mjr 35:e959ffba78fd 640
mjr 35:e959ffba78fd 641 // TV ON relay pin (DigitalOut pin). This pin controls the TV switch
mjr 35:e959ffba78fd 642 // relay. Raising the pin HIGH turns the relay ON (energizes the coil).
mjr 53:9b2611964afc 643 uint8_t relayPin;
mjr 35:e959ffba78fd 644
mjr 40:cc0d9814522b 645 // TV ON delay time, in 1/100 second units. This is the interval between
mjr 40:cc0d9814522b 646 // sensing that the secondary power supply has turned on and pulsing the
mjr 40:cc0d9814522b 647 // TV ON switch relay.
mjr 40:cc0d9814522b 648 int delayTime;
mjr 35:e959ffba78fd 649
mjr 35:e959ffba78fd 650 } TVON;
mjr 35:e959ffba78fd 651
mjr 53:9b2611964afc 652 // --- Night Mode ---
mjr 53:9b2611964afc 653 struct
mjr 53:9b2611964afc 654 {
mjr 55:4db125cd11a0 655 uint8_t btn; // night mode button number (1..MAX_BUTTONS, 0 = no button)
mjr 53:9b2611964afc 656 uint8_t flags; // flags:
mjr 53:9b2611964afc 657 // 0x01 = on/off switch (if not set, it's a momentary button)
mjr 55:4db125cd11a0 658 uint8_t port; // indicator output port number (1..MAX_OUT_PORTS, 0 = no indicator)
mjr 53:9b2611964afc 659 } nightMode;
mjr 53:9b2611964afc 660
mjr 29:582472d0bc57 661
mjr 35:e959ffba78fd 662 // --- TLC5940NT PWM Controller Chip Setup ---
mjr 35:e959ffba78fd 663 struct
mjr 35:e959ffba78fd 664 {
mjr 35:e959ffba78fd 665 // number of TLC5940NT chips connected in daisy chain
mjr 35:e959ffba78fd 666 int nchips;
mjr 35:e959ffba78fd 667
mjr 53:9b2611964afc 668 // pin connections (wire pin IDs)
mjr 53:9b2611964afc 669 uint8_t sin; // Serial data - must connect to SPIO MOSI -> PTC6 or PTD2
mjr 53:9b2611964afc 670 uint8_t sclk; // Serial clock - must connect to SPIO SCLK -> PTC5 or PTD1
mjr 35:e959ffba78fd 671 // (but don't use PTD1, since it's hard-wired to the on-board blue LED)
mjr 53:9b2611964afc 672 uint8_t xlat; // XLAT (latch) signal - connect to any GPIO pin
mjr 53:9b2611964afc 673 uint8_t blank; // BLANK signal - connect to any GPIO pin
mjr 53:9b2611964afc 674 uint8_t gsclk; // Grayscale clock - must connect to a PWM-out capable pin
mjr 29:582472d0bc57 675
mjr 35:e959ffba78fd 676 } tlc5940;
mjr 35:e959ffba78fd 677
mjr 35:e959ffba78fd 678
mjr 35:e959ffba78fd 679 // --- 74HC595 Shift Register Setup ---
mjr 35:e959ffba78fd 680 struct
mjr 35:e959ffba78fd 681 {
mjr 35:e959ffba78fd 682 // number of 74HC595 chips attached in daisy chain
mjr 35:e959ffba78fd 683 int nchips;
mjr 35:e959ffba78fd 684
mjr 35:e959ffba78fd 685 // pin connections
mjr 53:9b2611964afc 686 uint8_t sin; // Serial data - use any GPIO pin
mjr 53:9b2611964afc 687 uint8_t sclk; // Serial clock - use any GPIO pin
mjr 53:9b2611964afc 688 uint8_t latch; // Latch - use any GPIO pin
mjr 53:9b2611964afc 689 uint8_t ena; // Enable signal - use any GPIO pin
mjr 35:e959ffba78fd 690
mjr 35:e959ffba78fd 691 } hc595;
mjr 34:6b981a2afab7 692
mjr 25:e22b88bd783a 693
mjr 35:e959ffba78fd 694 // --- Button Input Setup ---
mjr 65:739875521aae 695 ButtonCfg button[MAX_BUTTONS + VIRTUAL_BUTTONS] __attribute__((packed));
mjr 66:2e3583fbd2f4 696
mjr 66:2e3583fbd2f4 697 // Shift button index. If this is zero, there's no shift button. If this
mjr 66:2e3583fbd2f4 698 // is nonzero, it's the 1-based index of the shift button in the button[]
mjr 66:2e3583fbd2f4 699 // list.
mjr 66:2e3583fbd2f4 700 //
mjr 66:2e3583fbd2f4 701 // The shift button can also be used as a regular input key. If it is,
mjr 66:2e3583fbd2f4 702 // we DON'T send the input key to the PC as usual when the button is
mjr 66:2e3583fbd2f4 703 // pressed. Instead, we wait to see if the shift function is used:
mjr 66:2e3583fbd2f4 704 //
mjr 66:2e3583fbd2f4 705 // - If another button is pressed while the shift button is held down,
mjr 66:2e3583fbd2f4 706 // and the other button is programmed with a valid key for the shifted/
mjr 66:2e3583fbd2f4 707 // secondary meaning (i.e., typ2 is not BtnTypeNone), the shift function
mjr 66:2e3583fbd2f4 708 // is considered to have been used. We send the secondary meaning of
mjr 66:2e3583fbd2f4 709 // the other button to the PC. The shift key itself generates no PC
mjr 66:2e3583fbd2f4 710 // input in this case, since it has now performed its shift function.
mjr 66:2e3583fbd2f4 711 // Other shifted keys can also be pressed as long as the shift button
mjr 66:2e3583fbd2f4 712 // is held down, and they'll be sent to the PC with their shifted values
mjr 66:2e3583fbd2f4 713 // as well.
mjr 66:2e3583fbd2f4 714 //
mjr 66:2e3583fbd2f4 715 // - If the shift button is released before any other button with a
mjr 66:2e3583fbd2f4 716 // shifted key value is pressed, then the shift button press is taken to
mjr 66:2e3583fbd2f4 717 // be an ordinary key press instead of the shift function. In this case,
mjr 66:2e3583fbd2f4 718 // we report the shift button's key code to the PC when the button is
mjr 66:2e3583fbd2f4 719 // released. We can't report the key code to the PC until then because
mjr 66:2e3583fbd2f4 720 // we don't know until then that another key won't be pressed first.
mjr 66:2e3583fbd2f4 721 // The key press on release is a single timed pulse that's long enough
mjr 66:2e3583fbd2f4 722 // to register as a single key press on the PC, but not long enough to
mjr 66:2e3583fbd2f4 723 // trigger auto-repeat on the PC.
mjr 66:2e3583fbd2f4 724 uint8_t shiftButton;
mjr 17:ab3cec0c8bf4 725
mjr 35:e959ffba78fd 726 // --- LedWiz Output Port Setup ---
mjr 38:091e511ce8a0 727 LedWizPortCfg outPort[MAX_OUT_PORTS] __attribute__((packed)); // LedWiz & extended output ports
mjr 48:058ace2aed1d 728
mjr 17:ab3cec0c8bf4 729 };
mjr 17:ab3cec0c8bf4 730
mjr 35:e959ffba78fd 731 #endif