mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

targets/hal/TARGET_RENESAS/TARGET_RZ_A1H/spi_api.c

Committer:
mbed_official
Date:
2015-09-11
Revision:
621:9c82b0f79f3d
Parent:
552:a1b9575155a3

File content as of revision 621:9c82b0f79f3d:

/* mbed Microcontroller Library
 * Copyright (c) 2006-2013 ARM Limited
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "mbed_assert.h"
#include <math.h>

#include "spi_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "mbed_error.h"
#include "RZ_A1_Init.h"

static const PinMap PinMap_SPI_SCLK[] = {
    {P10_12, SPI_0, 4},
    {P4_4  , SPI_1, 2},
    {P11_12, SPI_1, 2},
    {P8_3  , SPI_2, 3},
    {NC    , NC   , 0}
};

static const PinMap PinMap_SPI_SSEL[] = {
    {P10_13, SPI_0, 4},
    {P4_5  , SPI_1, 2},
    {P11_13, SPI_1, 2},
    {P8_4  , SPI_2, 3},
    {NC    , NC   , 0}
};

static const PinMap PinMap_SPI_MOSI[] = {
    {P10_14, SPI_0, 4},
    {P4_6  , SPI_1, 2},
    {P11_14, SPI_1, 2},
    {P8_5  , SPI_2, 3},
    {NC    , NC   , 0}
};

static const PinMap PinMap_SPI_MISO[] = {
    {P10_15, SPI_0, 4},
    {P4_7  , SPI_1, 2},
    {P11_15, SPI_1, 2},
    {P8_6  , SPI_2, 3},
    {NC    , NC   , 0}
};

static const struct st_rspi *RSPI[] = RSPI_ADDRESS_LIST;

static inline void spi_disable(spi_t *obj);
static inline void spi_enable(spi_t *obj);
static inline int spi_readable(spi_t *obj);
static inline void spi_write(spi_t *obj, int value);
static inline int spi_read(spi_t *obj);

void spi_init(spi_t *obj, PinName mosi, PinName miso, PinName sclk, PinName ssel) {
    // determine the SPI to use
    volatile uint8_t dummy;
    uint32_t spi_mosi = pinmap_peripheral(mosi, PinMap_SPI_MOSI);
    uint32_t spi_miso = pinmap_peripheral(miso, PinMap_SPI_MISO);
    uint32_t spi_sclk = pinmap_peripheral(sclk, PinMap_SPI_SCLK);
    uint32_t spi_ssel = pinmap_peripheral(ssel, PinMap_SPI_SSEL);
    uint32_t spi_data = pinmap_merge(spi_mosi, spi_miso);
    uint32_t spi_cntl = pinmap_merge(spi_sclk, spi_ssel);
    uint32_t spi      = pinmap_merge(spi_data, spi_cntl);

    MBED_ASSERT((int)spi != NC);

    obj->spi = (struct st_rspi *)RSPI[spi];

    // enable power and clocking
    switch (spi) {
        case SPI_0: CPGSTBCR10 &= ~(0x80); break;
        case SPI_1: CPGSTBCR10 &= ~(0x40); break;
        case SPI_2: CPGSTBCR10 &= ~(0x20); break;
    }
    dummy = CPGSTBCR10;

    obj->spi->SPCR   = 0x00;  // CTRL to 0
    obj->spi->SPSCR  = 0x00;  // no sequential operation
    obj->spi->SSLP   = 0x00;  // SSL 'L' active 
    obj->spi->SPDCR  = 0x20;  // byte access
    obj->spi->SPCKD  = 0x00;  // SSL -> enable CLK delay : 1RSPCK
    obj->spi->SSLND  = 0x00;  // CLK end -> SSL neg delay : 1RSPCK
    obj->spi->SPND   = 0x00;  // delay between CMD : 1RSPCK + 2P1CLK
    obj->spi->SPPCR  = 0x20;  // MOSI Idle fixed value equals 0
    obj->spi->SPBFCR = 0xf0;  // and set trigger count: read 1, write 1
    obj->spi->SPBFCR = 0x30;  // and reset buffer

    // pin out the spi pins
    pinmap_pinout(mosi, PinMap_SPI_MOSI);
    pinmap_pinout(miso, PinMap_SPI_MISO);
    pinmap_pinout(sclk, PinMap_SPI_SCLK);
    if ((int)ssel != NC) {
        pinmap_pinout(ssel, PinMap_SPI_SSEL);
    }
}

void spi_free(spi_t *obj) {}

void spi_format(spi_t *obj, int bits, int mode, int slave) {
    int      DSS;      // DSS (data select size)
    int      polarity  = (mode & 0x2) ? 1 : 0;
    int      phase     = (mode & 0x1) ? 1 : 0;
    uint16_t tmp       = 0;
    uint16_t mask      = 0xf03;
    uint16_t wk_spcmd0;
    uint8_t  splw;

    switch (mode) {
        case 0:
        case 1:
        case 2:
        case 3:
            // Do Nothing
            break;
        default:
            error("SPI format error");
            return;
    }

    switch (bits) {
        case 8:
            DSS  = 0x7;
            splw = 0x20;
            break;
        case 16:
            DSS  = 0xf;
            splw = 0x40;
            break;
        case 32:
            DSS  = 0x2;
            splw = 0x60;
            break;
        default:
            error("SPI module don't support other than 8/16/32bits");
            return;
    }
    tmp |= phase;
    tmp |= (polarity << 1);
    tmp |= (DSS << 8);
    obj->bits = bits;

    spi_disable(obj);
    wk_spcmd0 = obj->spi->SPCMD0;
    wk_spcmd0 &= ~mask;
    wk_spcmd0 |= (mask & tmp);
    obj->spi->SPCMD0 = wk_spcmd0;
    obj->spi->SPDCR   = splw;
    if (slave) {
        obj->spi->SPCR &=~(1 << 3);  // MSTR to 0
    } else {
        obj->spi->SPCR |= (1 << 3);  // MSTR to 1
    }
    spi_enable(obj);
}

void spi_frequency(spi_t *obj, int hz) {
    uint32_t  pclk_base;
    uint32_t  div;
    uint32_t  brdv = 0;
    uint32_t  hz_max;
    uint32_t  hz_min;
    uint16_t  mask = 0x000c;
    uint16_t  wk_spcmd0;

    /* set PCLK */
    if (RZ_A1_IsClockMode0() == false) {
        pclk_base = CM1_RENESAS_RZ_A1_P1_CLK;
    } else {
        pclk_base = CM0_RENESAS_RZ_A1_P1_CLK;
    }

    hz_min = pclk_base / 2 / 256 / 8;
    hz_max = pclk_base / 2;
    if ((hz < hz_min) || (hz > hz_max)) {
        error("Couldn't setup requested SPI frequency");
        return;
    }

    div = (pclk_base / hz / 2);
    while (div > 256) {
        div >>= 1;
        brdv++;
    }
    div  -= 1;
    brdv  = (brdv << 2);

    spi_disable(obj);
    obj->spi->SPBR = div;
    wk_spcmd0 = obj->spi->SPCMD0;
    wk_spcmd0 &= ~mask;
    wk_spcmd0 |= (mask & brdv);
    obj->spi->SPCMD0 = wk_spcmd0;
    spi_enable(obj);
}

static inline void spi_disable(spi_t *obj) {
    obj->spi->SPCR &= ~(1 << 6);       // SPE to 0
}

static inline void spi_enable(spi_t *obj) {
    obj->spi->SPCR |=  (1 << 6);       // SPE to 1
}

static inline int spi_readable(spi_t *obj) {
    return obj->spi->SPSR & (1 << 7);  // SPRF
}

static inline int spi_tend(spi_t *obj) {
    return obj->spi->SPSR & (1 << 6);  // TEND
}

static inline void spi_write(spi_t *obj, int value) {
    if (obj->bits == 8) {
        obj->spi->SPDR.UINT8[0]  = (uint8_t)value;
    } else if (obj->bits == 16) {
        obj->spi->SPDR.UINT16[0] = (uint16_t)value;
    } else {
        obj->spi->SPDR.UINT32    = (uint32_t)value;
    }
}

static inline int spi_read(spi_t *obj) {
    int read_data;

    if (obj->bits == 8) {
        read_data = obj->spi->SPDR.UINT8[0];
    } else if (obj->bits == 16) {
        read_data = obj->spi->SPDR.UINT16[0];
    } else {
        read_data = obj->spi->SPDR.UINT32;
    }

    return read_data;
}

int spi_master_write(spi_t *obj, int value) {
    spi_write(obj, value);
    while(!spi_tend(obj));
    return spi_read(obj);
}

int spi_slave_receive(spi_t *obj) {
    return (spi_readable(obj) && !spi_busy(obj)) ? (1) : (0);
}

int spi_slave_read(spi_t *obj) {
    return spi_read(obj);
}

void spi_slave_write(spi_t *obj, int value) {
    spi_write(obj, value);
}

int spi_busy(spi_t *obj) {
    return 0;
}