mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

targets/hal/TARGET_RENESAS/TARGET_RZ_A1H/serial_api.c

Committer:
mbed_official
Date:
2015-09-11
Revision:
621:9c82b0f79f3d
Parent:
500:04797f1feae2

File content as of revision 621:9c82b0f79f3d:

/* mbed Microcontroller Library
 * Copyright (c) 2006-2015 ARM Limited
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
// math.h required for floating point operations for baud rate calculation
#include "mbed_assert.h"
#include <math.h>
#include <string.h>
#include <stdlib.h>

#include "serial_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "gpio_api.h"

#include "scif_iodefine.h"
#include "cpg_iodefine.h"

/******************************************************************************
 * INITIALIZATION
 ******************************************************************************/
#define PCLK (66666666)     // Define the peripheral clock P1 frequency.

#define UART_NUM    8
#define IRQ_NUM     2

static void uart0_tx_irq(void);
static void uart1_tx_irq(void);
static void uart2_tx_irq(void);
static void uart3_tx_irq(void);
static void uart4_tx_irq(void);
static void uart5_tx_irq(void);
static void uart6_tx_irq(void);
static void uart7_tx_irq(void);
static void uart0_rx_irq(void);
static void uart1_rx_irq(void);
static void uart2_rx_irq(void);
static void uart3_rx_irq(void);
static void uart4_rx_irq(void);
static void uart5_rx_irq(void);
static void uart6_rx_irq(void);
static void uart7_rx_irq(void);


static const PinMap PinMap_UART_TX[] = {
    {P2_14 , UART0, 6},
    {P2_5  , UART1, 6},
    {P4_12 , UART1, 7},
    {P6_3  , UART2, 7},
    {P4_14 , UART2, 7},
    {P5_3  , UART3, 5},
    {P8_8  , UART3, 7},
    {P5_0  , UART4, 5},
    {P8_14 , UART4, 7},
    {P8_13 , UART5, 5},
    {P11_10, UART5, 3},
    {P6_6  , UART5, 5},
    {P5_6  , UART6, 5},
    {P11_1 , UART6, 4},
    {P7_4  , UART7, 4},
    {NC    , NC   , 0}
};

static const PinMap PinMap_UART_RX[] = {
    {P2_15 , UART0, 6},
    {P2_6  , UART1, 6},
    {P4_13 , UART1, 7},
    {P6_2  , UART2, 7},
    {P4_15 , UART2, 7},
    {P5_4  , UART3, 5},
    {P8_9  , UART3, 7},
    {P5_1  , UART4, 5},
    {P8_15 , UART4, 7},
    {P8_11 , UART5, 5},
    {P11_11, UART5, 3},
    {P6_7  , UART5, 5},
    {P5_7  , UART6, 5},
    {P11_2 , UART6, 4},
    {P7_5  , UART7, 4},
    {NC    , NC   , 0}
};

static const PinMap PinMap_UART_CTS[] = {
    {P2_3  , UART1, 6},
    {P11_7 , UART5, 3},
    {P7_6  , UART7, 4},
    {NC    , NC   , 0}
};
static const PinMap PinMap_UART_RTS[] = {
    {P2_7  , UART1, 6},
    {P11_8 , UART5, 3},
    {P7_7  , UART7, 4},
    {NC    , NC   , 0}
};



static const struct st_scif *SCIF[] = SCIF_ADDRESS_LIST;
static uart_irq_handler irq_handler;

int stdio_uart_inited = 0;
serial_t stdio_uart;

struct serial_global_data_s {
    uint32_t serial_irq_id;
    gpio_t sw_rts, sw_cts;
    uint8_t count, rx_irq_set_flow, rx_irq_set_api;
};

static struct serial_global_data_s uart_data[UART_NUM];

static const IRQn_Type irq_set_tbl[UART_NUM][IRQ_NUM] = {
    {SCIFRXI0_IRQn, SCIFTXI0_IRQn},
    {SCIFRXI1_IRQn, SCIFTXI1_IRQn},
    {SCIFRXI2_IRQn, SCIFTXI2_IRQn},
    {SCIFRXI3_IRQn, SCIFTXI3_IRQn},
    {SCIFRXI4_IRQn, SCIFTXI4_IRQn},
    {SCIFRXI5_IRQn, SCIFTXI5_IRQn},
    {SCIFRXI6_IRQn, SCIFTXI6_IRQn},
    {SCIFRXI7_IRQn, SCIFTXI7_IRQn}
};

static const IRQHandler hander_set_tbl[UART_NUM][IRQ_NUM] = {
    {uart0_rx_irq, uart0_tx_irq},
    {uart1_rx_irq, uart1_tx_irq},
    {uart2_rx_irq, uart2_tx_irq},
    {uart3_rx_irq, uart3_tx_irq},
    {uart4_rx_irq, uart4_tx_irq},
    {uart5_rx_irq, uart5_tx_irq},
    {uart6_rx_irq, uart6_tx_irq},
    {uart7_rx_irq, uart7_tx_irq}
};

static __IO uint16_t *SCSCR_MATCH[] = {
    &SCSCR_0,
    &SCSCR_1,
    &SCSCR_2,
    &SCSCR_3,
    &SCSCR_4,
    &SCSCR_5,
    &SCSCR_6,
    &SCSCR_7,
};

static __IO uint16_t *SCFSR_MATCH[] = {
    &SCFSR_0,
    &SCFSR_1,
    &SCFSR_2,
    &SCFSR_3,
    &SCFSR_4,
    &SCFSR_5,
    &SCFSR_6,
    &SCFSR_7,
};


void serial_init(serial_t *obj, PinName tx, PinName rx) {
    volatile uint8_t dummy ;
    int is_stdio_uart = 0;
    // determine the UART to use
    uint32_t uart_tx = pinmap_peripheral(tx, PinMap_UART_TX);
    uint32_t uart_rx = pinmap_peripheral(rx, PinMap_UART_RX);
    uint32_t uart = pinmap_merge(uart_tx, uart_rx);

    MBED_ASSERT((int)uart != NC);

    obj->uart = (struct st_scif *)SCIF[uart];
    // enable power
    switch (uart) {
    case UART0:
        CPG.STBCR4 &= ~(1 <<  7);
        break;
    case UART1:
        CPG.STBCR4 &= ~(1 <<  6);
        break;
    case UART2:
        CPG.STBCR4 &= ~(1 <<  5);
        break;
    case UART3:
        CPG.STBCR4 &= ~(1 <<  4);
        break;
    case UART4:
        CPG.STBCR4 &= ~(1 <<  3);
        break;
    case UART5:
        CPG.STBCR4 &= ~(1 <<  2);
        break;
    case UART6:
        CPG.STBCR4 &= ~(1 <<  1);
        break;
    case UART7:
        CPG.STBCR4 &= ~(1 <<  0);
        break;
    }
    dummy = CPG.STBCR4;

    /* ==== SCIF initial setting ==== */
    /* ---- Serial control register (SCSCR) setting ---- */
    /* B'00 : Internal CLK */
    obj->uart->SCSCR = 0x0000u;          /* SCIF transmitting and receiving operations stop */

    /* ---- FIFO control register (SCFCR) setting ---- */
    /* Transmit FIFO reset & Receive FIFO data register reset */
    obj->uart->SCFCR = 0x0006;

    /* ---- Serial status register (SCFSR) setting ---- */
    dummy = obj->uart->SCFSR;
    obj->uart->SCFSR = (dummy & 0xFF6Cu);         /* ER,BRK,DR bit clear */

    /* ---- Line status register (SCLSR) setting ---- */
    /* ORER bit clear */
    obj->uart->SCLSR = 0;

    /* ---- Serial extension mode register (SCEMR) setting ----
    b7 BGDM - Baud rate generator double-speed mode  : Normal mode
    b0 ABCS - Base clock select in asynchronous mode : Base clock is 16 times the bit rate */
    obj->uart->SCEMR = 0x0000u;

    /* ---- Bit rate register (SCBRR) setting ---- */
    serial_baud  (obj, 9600);
    serial_format(obj, 8, ParityNone, 1);

    /* ---- FIFO control register (SCFCR) setting ---- */
    obj->uart->SCFCR = 0x0030u;

    /* ---- Serial port register (SCSPTR) setting ----
    b1 SPB2IO - Serial port break output : disabled
    b0 SPB2DT - Serial port break data   : High-level */
    obj->uart->SCSPTR = 0x0003u;    // SPB2IO = 1, SPB2DT = 1

    /* ---- Line status register (SCLSR) setting ----
    b0 ORER - Overrun error detect : clear */

    if (obj->uart->SCLSR & 0x0001) {
        obj->uart->SCLSR = 0u;      // ORER clear
    }

    // pinout the chosen uart
    pinmap_pinout(tx, PinMap_UART_TX);
    pinmap_pinout(rx, PinMap_UART_RX);

    switch (uart) {
    case UART0:
        obj->index = 0;
        break;
    case UART1:
        obj->index = 1;
        break;
    case UART2:
        obj->index = 2;
        break;
    case UART3:
        obj->index = 3;
        break;
    case UART4:
        obj->index = 4;
        break;
    case UART5:
        obj->index = 5;
        break;
    case UART6:
        obj->index = 6;
        break;
    case UART7:
        obj->index = 7;
        break;
    }
    uart_data[obj->index].sw_rts.pin = NC;
    uart_data[obj->index].sw_cts.pin = NC;

    /* ---- Serial control register (SCSCR) setting ---- */
    /* Setting the TE and RE bits enables the TxD and RxD pins to be used. */
    obj->uart->SCSCR = 0x00F0;

    is_stdio_uart = (uart == STDIO_UART) ? (1) : (0);

    if (is_stdio_uart) {
        stdio_uart_inited = 1;
        memcpy(&stdio_uart, obj, sizeof(serial_t));
    }
}

void serial_free(serial_t *obj) {
    uart_data[obj->index].serial_irq_id = 0;
}

// serial_baud
// set the baud rate, taking in to account the current SystemFrequency
void serial_baud(serial_t *obj, int baudrate) {
    uint16_t DL;

    obj->uart->SCSMR &= ~0x0003;

    if (baudrate > 32552) {
        obj->uart->SCEMR = 0x0081;  // BGDM = 1, ABCS = 1
        DL = PCLK / (8 * baudrate);
        if (DL > 0) {
            DL--;
        }
        obj->uart->SCBRR = (uint8_t)DL;
    } else if (baudrate > 16276) {
        obj->uart->SCEMR = 0x0080;  // BGDM = 1
        obj->uart->SCBRR = PCLK / (16 * baudrate) - 1;
    } else if (baudrate > 8138) {
        obj->uart->SCEMR = 0x0000;
        obj->uart->SCBRR = PCLK / (32 * baudrate) - 1;
    } else if (baudrate > 4169) {
        obj->uart->SCSMR |= 0x0001;
        obj->uart->SCEMR = 0x0080;  // BGDM = 1
        obj->uart->SCBRR = PCLK / (64 * baudrate) - 1;
    } else if (baudrate > 2034) {
        obj->uart->SCSMR |= 0x0001;
        obj->uart->SCEMR = 0x0000;
        obj->uart->SCBRR = PCLK / (128 * baudrate) - 1;
    } else if (baudrate > 1017) {
        obj->uart->SCSMR |= 0x0002;
        obj->uart->SCEMR = 0x0080;  // BGDM = 1
        obj->uart->SCBRR = PCLK / (256 * baudrate) - 1;
    } else if (baudrate > 508) {
        obj->uart->SCSMR |= 0x0002;
        obj->uart->SCEMR = 0x0000;
        obj->uart->SCBRR = PCLK / (512 * baudrate) - 1;
    } else if (baudrate > 254) {
        obj->uart->SCSMR |= 0x0003;
        obj->uart->SCEMR = 0x0080;  // BGDM = 1
        obj->uart->SCBRR = PCLK / (1024 * baudrate) - 1;
    } else if (baudrate > 127) {
        obj->uart->SCSMR |= 0x0003;
        obj->uart->SCEMR = 0x0000;
        obj->uart->SCBRR = PCLK / (2048 * baudrate) - 1;
    } else {
        obj->uart->SCSMR |= 0x0003;
        obj->uart->SCEMR = 0x0000;
        obj->uart->SCBRR = 0xFFu;
    }
}

void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) {
    int parity_enable;
    int parity_select;

    MBED_ASSERT((stop_bits == 1) || (stop_bits == 2)); // 0: 1 stop bits, 1: 2 stop bits
    MBED_ASSERT((data_bits > 4) && (data_bits < 9)); // 5: 5 data bits ... 3: 8 data bits
    MBED_ASSERT((parity == ParityNone) || (parity == ParityOdd) || (parity == ParityEven) ||
                (parity == ParityForced1) || (parity == ParityForced0));

    stop_bits = (stop_bits == 1)? 0:
                (stop_bits == 2)? 1:
                0; // must not to be

    data_bits = (data_bits == 8)? 0:
                (data_bits == 7)? 1:
                0; // must not to be

    switch (parity) {
    case ParityNone:
        parity_enable = 0;
        parity_select = 0;
        break;
    case ParityOdd:
        parity_enable = 1;
        parity_select = 1;
        break;
    case ParityEven:
        parity_enable = 1;
        parity_select = 0;
        break;
    case ParityForced1:
    case ParityForced0:
    default:
        parity_enable = 0;
        parity_select = 0;
        break;
    }

    obj->uart->SCSMR = data_bits          << 6
                       | parity_enable    << 5
                       | parity_select    << 4
                       | stop_bits        << 3;
}

/******************************************************************************
 * INTERRUPTS HANDLING
 ******************************************************************************/

static void uart_tx_irq(IRQn_Type irq_num, uint32_t index) {
    __IO uint16_t *dmy_rd_scscr;
    __IO uint16_t *dmy_rd_scfsr;

    dmy_rd_scscr = SCSCR_MATCH[index];
    *dmy_rd_scscr &= 0x007B;                    // Clear TIE and Write to bit15~8,2 is always 0
    dmy_rd_scfsr = SCFSR_MATCH[index];
    *dmy_rd_scfsr = (*dmy_rd_scfsr & ~0x0020);  // Clear TDFE

    irq_handler(uart_data[index].serial_irq_id, TxIrq);
}

static void uart_rx_irq(IRQn_Type irq_num, uint32_t index) {
    __IO uint16_t *dmy_rd_scscr;
    __IO uint16_t *dmy_rd_scfsr;

    dmy_rd_scscr = SCSCR_MATCH[index];
    *dmy_rd_scscr &= 0x00B3;                    // Clear RIE,REIE and Write to bit15~8,2 is always 0
    dmy_rd_scfsr = SCFSR_MATCH[index];
    *dmy_rd_scfsr = (*dmy_rd_scfsr & ~0x0003);  // Clear RDF,DR

    irq_handler(uart_data[index].serial_irq_id, RxIrq);
}

/* TX handler */
static void uart0_tx_irq(void)  {
    uart_tx_irq(SCIFTXI0_IRQn, 0);
}
static void uart1_tx_irq(void)  {
    uart_tx_irq(SCIFTXI1_IRQn, 1);
}
static void uart2_tx_irq(void)  {
    uart_tx_irq(SCIFTXI2_IRQn, 2);
}
static void uart3_tx_irq(void)  {
    uart_tx_irq(SCIFTXI3_IRQn, 3);
}
static void uart4_tx_irq(void)  {
    uart_tx_irq(SCIFTXI4_IRQn, 4);
}
static void uart5_tx_irq(void)  {
    uart_tx_irq(SCIFTXI5_IRQn, 5);
}
static void uart6_tx_irq(void)  {
    uart_tx_irq(SCIFTXI6_IRQn, 6);
}
static void uart7_tx_irq(void)  {
    uart_tx_irq(SCIFTXI7_IRQn, 7);
}
/* RX handler */
static void uart0_rx_irq(void)  {
    uart_rx_irq(SCIFRXI0_IRQn, 0);
}
static void uart1_rx_irq(void)  {
    uart_rx_irq(SCIFRXI1_IRQn, 1);
}
static void uart2_rx_irq(void)  {
    uart_rx_irq(SCIFRXI2_IRQn, 2);
}
static void uart3_rx_irq(void)  {
    uart_rx_irq(SCIFRXI3_IRQn, 3);
}
static void uart4_rx_irq(void)  {
    uart_rx_irq(SCIFRXI4_IRQn, 4);
}
static void uart5_rx_irq(void)  {
    uart_rx_irq(SCIFRXI5_IRQn, 5);
}
static void uart6_rx_irq(void)  {
    uart_rx_irq(SCIFRXI6_IRQn, 6);
}
static void uart7_rx_irq(void)  {
    uart_rx_irq(SCIFRXI7_IRQn, 7);
}

void serial_irq_handler(serial_t *obj, uart_irq_handler handler, uint32_t id) {
    irq_handler = handler;
    uart_data[obj->index].serial_irq_id = id;
}

static void serial_irq_set_internal(serial_t *obj, SerialIrq irq, uint32_t enable) {
    IRQn_Type IRQn;
    IRQHandler handler;

    IRQn = irq_set_tbl[obj->index][irq];
    handler = hander_set_tbl[obj->index][irq];

    if ((obj->index >= 0) && (obj->index <= 7)) {
        if (enable) {
            InterruptHandlerRegister(IRQn, (void (*)(uint32_t))handler);
            GIC_SetPriority(IRQn, 5);
            GIC_EnableIRQ(IRQn);
        } else {
            GIC_DisableIRQ(IRQn);
        }
    }
}

void serial_irq_set(serial_t *obj, SerialIrq irq, uint32_t enable) {
    if (RxIrq == irq) {
        uart_data[obj->index].rx_irq_set_api = enable;
    }
    serial_irq_set_internal(obj, irq, enable);
}

static void serial_flow_irq_set(serial_t *obj, uint32_t enable) {
    uart_data[obj->index].rx_irq_set_flow = enable;
    serial_irq_set_internal(obj, RxIrq, enable);
}

/******************************************************************************
 * READ/WRITE
 ******************************************************************************/
int serial_getc(serial_t *obj) {
    uint16_t err_read;
    int data;
    int was_masked;

    was_masked = __disable_irq();
    if (obj->uart->SCFSR & 0x93) {
        err_read = obj->uart->SCFSR;
        obj->uart->SCFSR = (err_read & ~0x93);
    }
    obj->uart->SCSCR |= 0x0040;     // Set RIE
    if (!was_masked) {
        __enable_irq();
    }

    if (obj->uart->SCLSR & 0x0001) {
        obj->uart->SCLSR = 0u;      // ORER clear
    }

    while (!serial_readable(obj));
    data = obj->uart->SCFRDR & 0xff;

    was_masked = __disable_irq();
    err_read = obj->uart->SCFSR;
    obj->uart->SCFSR = (err_read & 0xfffD);     // Clear RDF
    if (!was_masked) {
        __enable_irq();
    }

    if (err_read & 0x80) {
        data = -1;  //err
    }
    return data;
}

void serial_putc(serial_t *obj, int c) {
    uint16_t dummy_read;
    int was_masked;

    was_masked = __disable_irq();
    obj->uart->SCSCR |= 0x0080;     // Set TIE
    if (!was_masked) {
        __enable_irq();
    }
    while (!serial_writable(obj));
    obj->uart->SCFTDR = c;
    was_masked = __disable_irq();
    dummy_read = obj->uart->SCFSR;
    obj->uart->SCFSR = (dummy_read & 0xff9f);  // Clear TEND/TDFE
    if (!was_masked) {
        __enable_irq();
    }
    uart_data[obj->index].count++;
}

int serial_readable(serial_t *obj) {
    return ((obj->uart->SCFSR & 0x02) != 0);  // RDF
}

int serial_writable(serial_t *obj) {
    return ((obj->uart->SCFSR & 0x20) != 0);  // TDFE
}

void serial_clear(serial_t *obj) {
    int was_masked;
    was_masked = __disable_irq();

    obj->uart->SCFCR |=  0x06;          // TFRST = 1, RFRST = 1
    obj->uart->SCFCR &= ~0x06;          // TFRST = 0, RFRST = 0
    obj->uart->SCFSR &= ~0x0093u;       // ER, BRK, RDF, DR = 0

    if (!was_masked) {
        __enable_irq();
    }
}

void serial_pinout_tx(PinName tx) {
    pinmap_pinout(tx, PinMap_UART_TX);
}

void serial_break_set(serial_t *obj) {
    int was_masked;
    was_masked = __disable_irq();
    // TxD Output(L)
    obj->uart->SCSPTR &= ~0x0001u;  // SPB2DT = 0
    obj->uart->SCSCR &= ~0x0020u;   // TE = 0 (Output disable)
    if (!was_masked) {
        __enable_irq();
    }
}

void serial_break_clear(serial_t *obj) {
    int was_masked;
    was_masked = __disable_irq();
    obj->uart->SCSCR |= 0x0020u; // TE = 1 (Output enable)
    obj->uart->SCSPTR |= 0x0001u; // SPB2DT = 1
    if (!was_masked) {
        __enable_irq();
    }
}

void serial_set_flow_control(serial_t *obj, FlowControl type, PinName rxflow, PinName txflow) {
    // determine the UART to use
    int was_masked;

    serial_flow_irq_set(obj, 0);

    if (type == FlowControlRTSCTS) {
        was_masked = __disable_irq();
        obj->uart->SCFCR = 0x0008u;   // CTS/RTS enable
        if (!was_masked) {
            __enable_irq();
        }
        pinmap_pinout(rxflow, PinMap_UART_RTS);
        pinmap_pinout(txflow, PinMap_UART_CTS);
    } else {
        was_masked = __disable_irq();
        obj->uart->SCFCR = 0x0000u; // CTS/RTS diable
        if (!was_masked) {
            __enable_irq();
        }
    }
}