mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

targets/hal/TARGET_RENESAS/TARGET_RZ_A1H/ethernet_api.c

Committer:
mbed_official
Date:
2015-09-11
Revision:
621:9c82b0f79f3d
Parent:
482:d9a48e768ce0

File content as of revision 621:9c82b0f79f3d:

/* mbed Microcontroller Library
 * Copyright (c) 2006-2013 ARM Limited
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include <string.h>
#include "ethernet_api.h"
#include "cmsis.h"
#include "mbed_interface.h"
#include "toolchain.h"
#include "mbed_error.h"
#include "ether_iodefine.h"
#include "ethernetext_api.h"

/* Descriptor info */
#define NUM_OF_TX_DESCRIPTOR    (16)
#define NUM_OF_RX_DESCRIPTOR    (16)
#define SIZE_OF_BUFFER          (1600)     /* Must be an integral multiple of 32 */
#define MAX_SEND_SIZE           (1514)
/* Ethernet Descriptor Value Define */
#define TD0_TFP_TOP_BOTTOM      (0x30000000)
#define TD0_TACT                (0x80000000)
#define TD0_TDLE                (0x40000000)
#define RD0_RACT                (0x80000000)
#define RD0_RDLE                (0x40000000)
#define RD0_RFE                 (0x08000000)
#define RD0_RCSE                (0x04000000)
#define RD0_RFS                 (0x03FF0000)
#define RD0_RCS                 (0x0000FFFF)
#define RD0_RFS_RFOF            (0x02000000)
#define RD0_RFS_RUAF            (0x00400000)
#define RD0_RFS_RRF             (0x00100000)
#define RD0_RFS_RTLF            (0x00080000)
#define RD0_RFS_RTSF            (0x00040000)
#define RD0_RFS_PRE             (0x00020000)
#define RD0_RFS_CERF            (0x00010000)
#define RD0_RFS_ERROR           (RD0_RFS_RFOF | RD0_RFS_RUAF | RD0_RFS_RRF | RD0_RFS_RTLF | \
                                 RD0_RFS_RTSF | RD0_RFS_PRE | RD0_RFS_CERF)
#define RD1_RDL_MSK             (0x0000FFFF)
/* PHY Register */
#define BASIC_MODE_CONTROL_REG  (0)
#define BASIC_MODE_STATUS_REG   (1)
#define PHY_IDENTIFIER1_REG     (2)
#define PHY_IDENTIFIER2_REG     (3)
#define PHY_SP_CTL_STS_REG      (31)
/* MII management interface access */
#define PHY_ADDR                (0)        /* Confirm the pin connection of the PHY-LSI */
#define PHY_ST                  (1)
#define PHY_WRITE               (1)
#define PHY_READ                (2)
#define MDC_WAIT                (6)        /* 400ns/4 */
#define BASIC_STS_MSK_LINK      (0x0004)   /* Link Status */
#define BASIC_STS_MSK_AUTO_CMP  (0x0010)   /* Auto-Negotiate Complete */
#define M_PHY_ID                (0xFFFFFFF0)
#define PHY_ID_LAN8710A         (0x0007C0F0)
/* ETHERPIR0 */
#define PIR0_MDI                (0x00000008)
#define PIR0_MDO                (0x00000004)
#define PIR0_MMD                (0x00000002)
#define PIR0_MDC                (0x00000001)
#define PIR0_MDC_HIGH           (0x00000001)
#define PIR0_MDC_LOW            (0x00000000)
/* ETHEREDRRR0 */
#define EDRRR0_RR               (0x00000001)
/* ETHEREDTRR0 */
#define EDTRR0_TR               (0x00000003)
/* software wait */
#define LOOP_100us              (6700)     /* Loop counter for software wait  6666=100us/((1/400MHz)*6cyc) */

#define EDMAC_EESIPR_INI_RECV   (0x0205001F)    /* 0x02000000 : Detect reception suspended */
                                                /* 0x00040000 : Detect frame reception */
                                                /* 0x00010000 : Receive FIFO overflow */
                                                /* 0x00000010 : Residual bit frame reception */
                                                /* 0x00000008 : Long frame reception */
                                                /* 0x00000004 : Short frame reception */
                                                /* 0x00000002 : PHY-LSI reception error */
                                                /* 0x00000001 : Receive frame CRC error */
#define EDMAC_EESIPR_INI_EtherC (0x00400000)    /* 0x00400000 : E-MAC status register */

/* Send descriptor */
typedef struct tag_edmac_send_desc {
    uint32_t    td0;
    uint32_t    td1;
    uint8_t     *td2;
    uint32_t    padding4;
} edmac_send_desc_t;

/* Receive descriptor */
typedef struct tag_edmac_recv_desc {
    uint32_t    rd0;
    uint32_t    rd1;
    uint8_t     *rd2;
    uint32_t    padding4;
} edmac_recv_desc_t;

/* memory */
/* The whole transmit/receive descriptors (must be allocated in 16-byte boundaries) */
/* Transmit/receive buffers (must be allocated in 16-byte boundaries) */
static uint8_t ehernet_nc_memory[(sizeof(edmac_send_desc_t) * NUM_OF_TX_DESCRIPTOR) +
                                 (sizeof(edmac_recv_desc_t) * NUM_OF_RX_DESCRIPTOR) +
                                 (NUM_OF_TX_DESCRIPTOR * SIZE_OF_BUFFER) +
                                 (NUM_OF_RX_DESCRIPTOR * SIZE_OF_BUFFER)]
                                 __attribute((section("NC_BSS"),aligned(16)));  //16 bytes aligned!
static int32_t            rx_read_offset;   /* read offset */
static int32_t            tx_wite_offset;   /* write offset */
static uint32_t           send_top_index;
static uint32_t           recv_top_index;
static int32_t            Interrupt_priority;
static edmac_send_desc_t  *p_eth_desc_dsend = NULL;
static edmac_recv_desc_t  *p_eth_desc_drecv = NULL;
static edmac_recv_desc_t  *p_recv_end_desc  = NULL;
static ethernetext_cb_fnc *p_recv_cb_fnc    = NULL;
static char               mac_addr[6]       = {0x00, 0x02, 0xF7, 0xF0, 0x00, 0x00}; /* MAC Address */
static uint32_t           phy_id            = 0;
static uint32_t           start_stop        = 1;  /* 0:stop  1:start */

/* function */
static void lan_reg_reset(void);
static void lan_desc_create(void);
static void lan_reg_set(int32_t link);
static uint16_t phy_reg_read(uint16_t reg_addr);
static void phy_reg_write(uint16_t reg_addr, uint16_t data);
static void mii_preamble(void);
static void mii_cmd(uint16_t reg_addr, uint32_t option);
static void mii_reg_read(uint16_t *data);
static void mii_reg_write(uint16_t data);
static void mii_z(void);
static void mii_write_1(void);
static void mii_write_0(void);
static void set_ether_pir(uint32_t set_data);
static void wait_100us(int32_t wait_cnt);


int ethernetext_init(ethernet_cfg_t *p_ethcfg) {
    int32_t  i;
    uint16_t val;

    CPGSTBCR7 &= ~(CPG_STBCR7_BIT_MSTP74);  /* enable ETHER clock */

    /* P4_2(PHY Reset) */
    GPIOP4      &= ~0x0004;         /* Outputs low level */
    GPIOPMC4    &= ~0x0004;         /* Port mode */
    GPIOPM4     &= ~0x0004;         /* Output mode */

    /* GPIO P1  P1_14(ET_COL) */
    GPIOPMC1    |=  0x4000;
    GPIOPFCAE1  &= ~0x4000;
    GPIOPFCE1   |=  0x4000;
    GPIOPFC1    |=  0x4000;

    /* P3_0(ET_TXCLK), P3_3(ET_MDIO), P3_4(ET_RXCLK), P3_5(ET_RXER), P3_6(ET_RXDV) */
    GPIOPMC3    |=  0x0079;
    GPIOPFCAE3  &= ~0x0079;
    GPIOPFCE3   &= ~0x0079;
    GPIOPFC3    |=  0x0079;
    GPIOPIPC3   |=  0x0079;

    /* P5_9(ET_MDC) */
    GPIOPMC5    |=  0x0200;
    GPIOPFCAE5  &= ~0x0200;
    GPIOPFCE5   &= ~0x0200;
    GPIOPFC5    |=  0x0200;
    GPIOPIPC5   |=  0x0200;

    /* P10_1(ET_TXER), P10_2(ET_TXEN), P10_3(ET_CRS), P10_4(ET_TXD0), P10_5(ET_TXD1) */
    /* P10_6(ET_TXD2), P10_7(ET_TXD3), P10_8(ET_RXD0), P10_9(ET_RXD1), P10_10(ET_RXD2), P10_11(ET_RXD3) */
    GPIOPMC10   |=  0x0FFE;
    GPIOPFCAE10 &= ~0x0FFE;
    GPIOPFCE10  |=  0x0FFE;
    GPIOPFC10   |=  0x0FFE;
    GPIOPIPC10  |=  0x0FFE;

    /* Resets the E-MAC,E-DMAC */
    lan_reg_reset();

    /* PHY Reset */
    GPIOP4      &= ~0x0004;         /* P4_2 Outputs low level */
    wait_100us(250);                /* 25msec */
    GPIOP4      |=  0x0004;         /* P4_2 Outputs high level */
    wait_100us(100);                /* 10msec */

    /* Resets the PHY-LSI */
    phy_reg_write(BASIC_MODE_CONTROL_REG, 0x8000);
    for (i = 10000; i > 0; i--) {
        val = phy_reg_read(BASIC_MODE_CONTROL_REG);
        if (((uint32_t)val & 0x8000uL) == 0) {
            break;                  /* Reset complete */
        }
    }

    phy_id = ((uint32_t)phy_reg_read(PHY_IDENTIFIER1_REG) << 16)
           |  (uint32_t)phy_reg_read(PHY_IDENTIFIER2_REG);

    Interrupt_priority = p_ethcfg->int_priority;
    p_recv_cb_fnc      = p_ethcfg->recv_cb;
    start_stop         = 1;

    if (p_ethcfg->ether_mac != NULL) {
        (void)memcpy(mac_addr, p_ethcfg->ether_mac, sizeof(mac_addr));
    } else {
		ethernet_address(mac_addr); /* Get MAC Address */
    }

    return 0;
}

void ethernetext_start_stop(int32_t mode) {
    if (mode == 1) {
        /* start */
        ETHEREDTRR0 |= EDTRR0_TR;
        ETHEREDRRR0 |= EDRRR0_RR;
        start_stop   = 1;
    } else {
        /* stop */
        ETHEREDTRR0 &= ~EDTRR0_TR;
        ETHEREDRRR0 &= ~EDRRR0_RR;
        start_stop   = 0;
    }
}

int ethernetext_chk_link_mode(void) {
    int32_t  link;
    uint16_t data;

    if ((phy_id & M_PHY_ID) == PHY_ID_LAN8710A) {
        data = phy_reg_read(PHY_SP_CTL_STS_REG);
        switch (((uint32_t)data >> 2) & 0x00000007) {
            case 0x0001:
                link = HALF_10M;
                break;
            case 0x0005:
                link = FULL_10M;
                break;
            case 0x0002:
                link = HALF_TX;
                break;
            case 0x0006:
                link = FULL_TX;
                break;
            default:
                link = NEGO_FAIL;
                break;
        }
    } else {
        link = NEGO_FAIL;
    }

    return link;
}

void ethernetext_set_link_mode(int32_t link) {
    lan_reg_reset();            /* Resets the E-MAC,E-DMAC */
    lan_desc_create();          /* Initialize of buffer memory */
    lan_reg_set(link);          /* E-DMAC, E-MAC initialization */
}

int ethernet_init() {
    ethernet_cfg_t ethcfg;

    ethcfg.int_priority = 5;
    ethcfg.recv_cb      = NULL;
    ethcfg.ether_mac    = NULL;
    ethernetext_init(&ethcfg);
    ethernet_set_link(-1, 0);   /* Auto-Negotiation */

    return 0;
}

void ethernet_free() {
    ETHERARSTR |= 0x00000001;            /* ETHER software reset */
    CPGSTBCR7  |= CPG_STBCR7_BIT_MSTP74; /* disable ETHER clock */
}

int ethernet_write(const char *data, int slen) {
    edmac_send_desc_t *p_send_desc;
    int32_t           copy_size;

    if ((p_eth_desc_dsend == NULL) || (data == NULL) || (slen < 0)
     || (tx_wite_offset < 0) || (tx_wite_offset >= MAX_SEND_SIZE)) {
        copy_size = 0;
    } else {
        p_send_desc = &p_eth_desc_dsend[send_top_index];   /* Current descriptor */
        if ((p_send_desc->td0 & TD0_TACT) != 0) {
            copy_size = 0;
        } else {
            copy_size = MAX_SEND_SIZE - tx_wite_offset;
            if (copy_size > slen) {
                copy_size = slen;
            }
            (void)memcpy(&p_send_desc->td2[tx_wite_offset], data, copy_size);
            tx_wite_offset += copy_size;
        }
    }

    return copy_size;
}

int ethernet_send() {
    edmac_send_desc_t *p_send_desc;
    int32_t           ret;

    if ((p_eth_desc_dsend == NULL) || (tx_wite_offset <= 0)) {
        ret = 0;
    } else {
        /* Transfer 1 frame */
        p_send_desc = &p_eth_desc_dsend[send_top_index];   /* Current descriptor */

        /* Sets the frame length */
        p_send_desc->td1 = ((uint32_t)tx_wite_offset << 16);
        tx_wite_offset   = 0;

        /* Sets the transmit descriptor to transmit again */
        p_send_desc->td0 &= (TD0_TACT | TD0_TDLE | TD0_TFP_TOP_BOTTOM);
        p_send_desc->td0 |= TD0_TACT;
        if ((start_stop == 1) && ((ETHEREDTRR0 & EDTRR0_TR) != EDTRR0_TR)) {
            ETHEREDTRR0 |= EDTRR0_TR;
        }

        /* Update the current descriptor */
        send_top_index++;
        if (send_top_index >= NUM_OF_TX_DESCRIPTOR) {
            send_top_index = 0;
        }
        ret = 1;
    }

    return ret;
}

int ethernet_receive() {
    edmac_recv_desc_t *p_recv_desc;
    int32_t           receive_size = 0;

    if (p_eth_desc_drecv != NULL) {
        if (p_recv_end_desc != NULL) {
            /* Sets the receive descriptor to receive again */
            p_recv_end_desc->rd0 &= (RD0_RACT | RD0_RDLE);
            p_recv_end_desc->rd0 |= RD0_RACT;
            if ((start_stop == 1) && ((ETHEREDRRR0 & EDRRR0_RR) == 0)) {
                ETHEREDRRR0 |= EDRRR0_RR;
            }
            p_recv_end_desc = NULL;
        }

        p_recv_desc = &p_eth_desc_drecv[recv_top_index];   /* Current descriptor */
        if ((p_recv_desc->rd0 & RD0_RACT) == 0) {
            /* Receives 1 frame */
            if (((p_recv_desc->rd0 & RD0_RFE) != 0) && ((p_recv_desc->rd0 & RD0_RFS_ERROR) != 0)) {
                /* Receive frame error */
                /* Sets the receive descriptor to receive again */
                p_recv_desc->rd0 &= (RD0_RACT | RD0_RDLE);
                p_recv_desc->rd0 |= RD0_RACT;
                if ((start_stop == 1) && ((ETHEREDRRR0 & EDRRR0_RR) == 0)) {
                    ETHEREDRRR0 |= EDRRR0_RR;
                }
            } else {
                /* Copies the received frame */
                rx_read_offset  = 0;
                p_recv_end_desc = p_recv_desc;
                receive_size    = (p_recv_desc->rd1 & RD1_RDL_MSK);    /* number of bytes received */
            }

            /* Update the current descriptor */
            recv_top_index++;
            if (recv_top_index >= NUM_OF_TX_DESCRIPTOR) {
                recv_top_index = 0;
            }
        }
    }

    return receive_size;
}

int ethernet_read(char *data, int dlen) {
    edmac_recv_desc_t *p_recv_desc = p_recv_end_desc;                   /* Read top descriptor */
    int32_t           copy_size;

    if ((data == NULL) || (dlen < 0) || (p_recv_desc == NULL)) {
        copy_size = 0;
    } else {
        copy_size = (p_recv_desc->rd1 & RD1_RDL_MSK) - rx_read_offset;
        if (copy_size > dlen) {
            copy_size = dlen;
        }
        (void)memcpy(data, &p_recv_desc->rd2[rx_read_offset], (size_t)copy_size);
        rx_read_offset += copy_size;
    }

    return copy_size;
}

void ethernet_address(char *mac) {
    if (mac != NULL) {
		mbed_mac_address(mac); /* Get MAC Address */
    }
}

int ethernet_link(void) {
    int32_t  ret;
    uint16_t data;

    data = phy_reg_read(BASIC_MODE_STATUS_REG);
    if (((uint32_t)data & BASIC_STS_MSK_LINK) != 0) {
        ret = 1;
    } else {
        ret = 0;
    }

    return ret;
}

void ethernet_set_link(int speed, int duplex) {
    uint16_t data;
    int32_t  i;
    int32_t  link;

    if ((speed < 0) || (speed > 1)) {
        data = 0x1000;      /* Auto-Negotiation Enable */
        phy_reg_write(BASIC_MODE_CONTROL_REG, data);
        data = phy_reg_read(BASIC_MODE_STATUS_REG);
        for (i = 0; i < 1000; i++) {
            if (((uint32_t)data & BASIC_STS_MSK_AUTO_CMP) != 0) {
                break;
            }
            wait_100us(10);
        }
    } else {
        data = (uint16_t)(((uint32_t)speed << 13) | ((uint32_t)duplex << 8));
        phy_reg_write(BASIC_MODE_CONTROL_REG, data);
        wait_100us(1);
    }

    link = ethernetext_chk_link_mode();
    ethernetext_set_link_mode(link);
}

void INT_Ether(void) {
    uint32_t stat_edmac;
    uint32_t stat_etherc;

    /* Clear the interrupt request flag */
    stat_edmac = (ETHEREESR0 & ETHEREESIPR0);       /* Targets are restricted to allowed interrupts */
    ETHEREESR0 = stat_edmac;
    /* Reception-related */
    if (stat_edmac & EDMAC_EESIPR_INI_RECV) {
        if (p_recv_cb_fnc != NULL) {
            p_recv_cb_fnc();
        }
    }
    /* E-MAC-related */
    if (stat_edmac & EDMAC_EESIPR_INI_EtherC) {
        /* Clear the interrupt request flag */
        stat_etherc = (ETHERECSR0 & ETHERECSIPR0);  /* Targets are restricted to allowed interrupts */
        ETHERECSR0  = stat_etherc;
    }
}

static void lan_reg_reset(void) {
    volatile int32_t j = 400;    /* Wait for B dia 256 cycles  ((I dia/B dia)*256)/6cyc = 8*256/6 = 342 */

    ETHERARSTR      |= 0x00000001;      /* ETHER software reset */
    while (j--) {
        /* Do Nothing */
    }

    ETHEREDSR0      |= 0x00000003;      /* E-DMAC software reset */
    ETHEREDMR0      |= 0x00000003;      /* Set SWRR and SWRT simultaneously */

    /* Check clear software reset */
    while ((ETHEREDMR0 & 0x00000003) != 0) {
        /* Do Nothing */
    }
}

static void lan_desc_create(void) {
    int32_t i;
    uint8_t *p_memory_top;

    (void)memset((void *)ehernet_nc_memory, 0, sizeof(ehernet_nc_memory));
    p_memory_top = ehernet_nc_memory;

    /* Descriptor area configuration */
    p_eth_desc_dsend  = (edmac_send_desc_t *)p_memory_top;
    p_memory_top     += (sizeof(edmac_send_desc_t) * NUM_OF_TX_DESCRIPTOR);
    p_eth_desc_drecv  = (edmac_recv_desc_t *)p_memory_top;
    p_memory_top     += (sizeof(edmac_recv_desc_t) * NUM_OF_RX_DESCRIPTOR);

    /* Transmit descriptor */
    for (i = 0; i < NUM_OF_TX_DESCRIPTOR; i++) {
        p_eth_desc_dsend[i].td2  = p_memory_top;                     /* TD2 TBA */
        p_memory_top            += SIZE_OF_BUFFER;
        p_eth_desc_dsend[i].td1  = 0;                                /* TD1 TDL */
        p_eth_desc_dsend[i].td0  = TD0_TFP_TOP_BOTTOM;               /* TD0:1frame/1buf1buf, transmission disabled */
    }
    p_eth_desc_dsend[i - 1].td0 |= TD0_TDLE;                         /* Set the last descriptor */

    /* Receive descriptor */
    for (i = 0; i < NUM_OF_RX_DESCRIPTOR; i++) {
        p_eth_desc_drecv[i].rd2  = p_memory_top;                     /* RD2 RBA */
        p_memory_top            += SIZE_OF_BUFFER;
        p_eth_desc_drecv[i].rd1  = ((uint32_t)SIZE_OF_BUFFER << 16); /* RD1 RBL */
        p_eth_desc_drecv[i].rd0  = RD0_RACT;                         /* RD0:reception enabled */
    }
    p_eth_desc_drecv[i - 1].rd0 |= RD0_RDLE;                         /* Set the last descriptor */

    /* Initialize descriptor management information */
    send_top_index  = 0;
    recv_top_index  = 0;
    rx_read_offset  = 0;
    tx_wite_offset  = 0;
    p_recv_end_desc = NULL;
}

static void lan_reg_set(int32_t link) {
    /* MAC address setting */
    ETHERMAHR0      = ((uint32_t)mac_addr[0] << 24)
                    | ((uint32_t)mac_addr[1] << 16)
                    | ((uint32_t)mac_addr[2] << 8)
                    |  (uint32_t)mac_addr[3];
    ETHERMALR0      = ((uint32_t)mac_addr[4] << 8)
                    |  (uint32_t)mac_addr[5];

    /* E-DMAC */
    ETHERTDLAR0     = (uint32_t)&p_eth_desc_dsend[0];
    ETHERRDLAR0     = (uint32_t)&p_eth_desc_drecv[0];
    ETHERTDFAR0     = (uint32_t)&p_eth_desc_dsend[0];
    ETHERRDFAR0     = (uint32_t)&p_eth_desc_drecv[0];
    ETHERTDFXR0     = (uint32_t)&p_eth_desc_dsend[NUM_OF_TX_DESCRIPTOR - 1];
    ETHERRDFXR0     = (uint32_t)&p_eth_desc_drecv[NUM_OF_RX_DESCRIPTOR - 1];
    ETHERTDFFR0    |=  0x00000001;      /* TDLF  Transmit Descriptor Queue Last Flag : Last descriptor (1) */
    ETHERRDFFR0    |=  0x00000001;      /* RDLF  Receive Descriptor Queue Last Flag : Last descriptor (1) */
    ETHEREDMR0     |=  0x00000040;      /* Little endian */
    ETHERTRSCER0   &= ~0x0003009F;      /* All clear */
    ETHERTFTR0     &= ~0x000007FF;      /* TFT[10:0]  Transmit FIFO Threshold : Store and forward modes (H'000) */
    ETHERFDR0      |=  0x00000707;      /* Transmit FIFO Size:2048 bytes, Receive FIFO Size:2048 bytes */
    ETHERRMCR0     |=  0x00000001;      /* RNC  Receive Enable Control : Continuous reception enabled (1) */
    ETHERFCFTR0    &= ~0x001F00FF;
    ETHERFCFTR0    |=  0x00070007;
    ETHERRPADIR0   &= ~0x001FFFFF;      /* Padding Size:No padding insertion, Padding Slot:Inserts at first byte */

    /* E-MAC */
    ETHERECMR0     &= ~0x04BF2063;      /* All clear */
    ETHERRFLR0     &= ~0x0003FFFF;      /* RFL[17:0]  Receive Frame Length : 1518 bytes (H'00000) */
    ETHERAPR0      &= ~0x0000FFFF;      /* AP[15:0]   Automatic PAUSE : Flow control is disabled (H'0000) */
    ETHERMPR0      &= ~0x0000FFFF;      /* MP[15:0]   Manual PAUSE : Flow control is disabled (H'0000) */
    ETHERTPAUSER0  &= ~0x0000FFFF;      /* Upper Limit for Automatic PAUSE Frame : Retransmit count is unlimited */
    ETHERCSMR      &= ~0xC000003F;      /* The result of checksum is not written back to the receive descriptor */
    if ((link == FULL_TX) || (link == FULL_10M) || (link == NEGO_FAIL)) {
        ETHERECMR0 |= 0x00000002;       /* Set to full-duplex mode */
    } else {
        ETHERECMR0 &= ~0x00000002;      /* Set to half-duplex mode */
    }

    /* Interrupt-related */
    if (p_recv_cb_fnc != NULL) {
        ETHEREESR0     |=  0xFF7F009F;                     /* Clear all status (by writing 1) */
        ETHEREESIPR0   |=  0x00040000;                     /* FR  Frame Reception (1) */
        ETHERECSR0     |=  0x00000011;                     /* Clear all status (clear by writing 1) */
        ETHERECSIPR0   &= ~0x00000011;                     /* PFROIP Disable, ICDIP Disable */
        InterruptHandlerRegister(ETHERI_IRQn, INT_Ether);  /* Ethernet interrupt handler registration */
        GIC_SetPriority(ETHERI_IRQn, Interrupt_priority);  /* Ethernet interrupt priority */
        GIC_EnableIRQ(ETHERI_IRQn);                        /* Enables the E-DMAC interrupt */
    }

    ETHERECMR0     |=  0x00000060;      /* RE Enable, TE Enable */

    /* Enable transmission/reception */
    if ((start_stop == 1) && ((ETHEREDRRR0 & 0x00000001) == 0)) {
        ETHEREDRRR0 |= 0x00000001;       /* RR */
    }
}

static uint16_t phy_reg_read(uint16_t reg_addr) {
    uint16_t data;

    mii_preamble();
    mii_cmd(reg_addr, PHY_READ);
    mii_z();
    mii_reg_read(&data);
    mii_z();

    return data;
}

static void phy_reg_write(uint16_t reg_addr, uint16_t data) {
    mii_preamble();
    mii_cmd(reg_addr, PHY_WRITE);
    mii_write_1();
    mii_write_0();
    mii_reg_write(data);
    mii_z();
}

static void mii_preamble(void) {
    int32_t i = 32;

    for (i = 32; i > 0; i--) {
        /* 1 is output via the MII (Media Independent Interface) block. */
        mii_write_1();
    }
}

static void mii_cmd(uint16_t reg_addr, uint32_t option) {
    int32_t  i;
    uint16_t data = 0;

    data |= (PHY_ST << 14);             /* ST code      */
    data |= (option << 12);             /* OP code      */
    data |= (PHY_ADDR << 7);            /* PHY Address  */
    data |= (uint16_t)(reg_addr << 2);  /* Reg Address  */
    for (i = 14; i > 0; i--) {
        if ((data & 0x8000) == 0) {
            mii_write_0();
        } else {
            mii_write_1();
        }
        data <<= 1;
    }
}

static void mii_reg_read(uint16_t *data) {
    int32_t  i;
    uint16_t reg_data = 0;

    /* Data are read in one bit at a time */
    for (i = 16; i > 0; i--) {
        set_ether_pir(PIR0_MDC_LOW);
        set_ether_pir(PIR0_MDC_HIGH);
        reg_data <<= 1;
        reg_data |= (uint16_t)((ETHERPIR0 & PIR0_MDI) >> 3);  /* MDI read */
        set_ether_pir(PIR0_MDC_HIGH);
        set_ether_pir(PIR0_MDC_LOW);
    }
    *data = reg_data;
}

static void mii_reg_write(uint16_t data) {
    int32_t i;

    /* Data are written one bit at a time */
    for (i = 16; i > 0; i--) {
        if ((data & 0x8000) == 0) {
            mii_write_0();
        } else {
            mii_write_1();
        }
        data <<= 1;
    }
}

static void mii_z(void) {
    set_ether_pir(PIR0_MDC_LOW);
    set_ether_pir(PIR0_MDC_HIGH);
    set_ether_pir(PIR0_MDC_HIGH);
    set_ether_pir(PIR0_MDC_LOW);
}

static void mii_write_1(void) {
    set_ether_pir(PIR0_MDO | PIR0_MMD);
    set_ether_pir(PIR0_MDO | PIR0_MMD | PIR0_MDC);
    set_ether_pir(PIR0_MDO | PIR0_MMD | PIR0_MDC);
    set_ether_pir(PIR0_MDO | PIR0_MMD);
}

static void mii_write_0(void) {
    set_ether_pir(PIR0_MMD);
    set_ether_pir(PIR0_MMD | PIR0_MDC);
    set_ether_pir(PIR0_MMD | PIR0_MDC);
    set_ether_pir(PIR0_MMD);
}

static void set_ether_pir(uint32_t set_data) {
    int32_t i;

    for (i = MDC_WAIT; i > 0; i--) {
        ETHERPIR0 = set_data;
    }
}

static void wait_100us(int32_t wait_cnt) {
    volatile int32_t j = LOOP_100us * wait_cnt;

    while (--j) {
        /* Do Nothing */
    }
}