mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

targets/hal/TARGET_RENESAS/TARGET_RZ_A1H/pwmout_api.c

Committer:
mbed_official
Date:
2015-03-31
Revision:
500:04797f1feae2
Parent:
441:d2c15dda23c1
Child:
591:474d026f7d79

File content as of revision 500:04797f1feae2:

/* mbed Microcontroller Library
 * Copyright (c) 2006-2013 ARM Limited
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include "mbed_assert.h"
#include "pwmout_api.h"
#include "cmsis.h"
#include "pinmap.h"
#include "RZ_A1_Init.h"
#include "cpg_iodefine.h"
#include "pwm_iodefine.h"

//  PORT ID, PWM ID, Pin function
static const PinMap PinMap_PWM[] = {
    {P4_4     , PWM0_PIN , 4},
    {P3_2     , PWM1_PIN , 7},
    {P4_6     , PWM2_PIN , 4},
    {P4_7     , PWM3_PIN , 4},
    {P8_14    , PWM4_PIN , 6},
    {P8_15    , PWM5_PIN , 6},
    {P8_13    , PWM6_PIN , 6},
    {P8_11    , PWM7_PIN , 6},
    {P8_8     , PWM8_PIN , 6},
    {P10_0    , PWM9_PIN , 3},
    {P8_12    , PWM10_PIN, 6},
    {P8_9     , PWM11_PIN, 6},
    {P8_10    , PWM12_PIN, 6},
    {P4_5     , PWM13_PIN, 4},
    {NC, NC, 0}
};

static PWMType PORT[] = {
     PWM2E,          // PWM0_PIN
     PWM2C,          // PWM1_PIN
     PWM2G,          // PWM2_PIN
     PWM2H,          // PWM3_PIN
     PWM1G,          // PWM4_PIN
     PWM1H,          // PWM5_PIN
     PWM1F,          // PWM6_PIN
     PWM1D,          // PWM7_PIN
     PWM1A,          // PWM8_PIN
     PWM2A,          // PWM9_PIN
     PWM1E,          // PWM10_PIN
     PWM1B,          // PWM11_PIN
     PWM1C,          // PWM12_PIN
     PWM2F,          // PWM13_PIN
};

static __IO uint16_t *PWM_MATCH[] = {
    &PWMPWBFR_2E,    // PWM0_PIN
    &PWMPWBFR_2C,    // PWM1_PIN
    &PWMPWBFR_2G,    // PWM2_PIN
    &PWMPWBFR_2G,    // PWM3_PIN
    &PWMPWBFR_1G,    // PWM4_PIN
    &PWMPWBFR_1G,    // PWM5_PIN
    &PWMPWBFR_1E,    // PWM6_PIN
    &PWMPWBFR_1C,    // PWM7_PIN
    &PWMPWBFR_1A,    // PWM8_PIN
    &PWMPWBFR_2A,    // PWM9_PIN
    &PWMPWBFR_1E,    // PWM10_PIN
    &PWMPWBFR_1A,    // PWM11_PIN
    &PWMPWBFR_1C,    // PWM12_PIN
    &PWMPWBFR_2E,    // PWM13_PIN
};

static uint16_t init_period_ch1 = 0;
static uint16_t init_period_ch2 = 0;
static int32_t  period_ch1 = 1;
static int32_t  period_ch2 = 1;

void pwmout_init(pwmout_t* obj, PinName pin) {
    // determine the channel
    PWMName pwm = (PWMName)pinmap_peripheral(pin, PinMap_PWM);
    MBED_ASSERT(pwm != (PWMName)NC);

    // power on
    CPGSTBCR3 &= ~(1<<0);

    obj->pwm = pwm;
    if (((uint32_t)PORT[obj->pwm] & 0x00000010) != 0) {
        obj->ch  = 2;
        PWMPWPR_2_BYTE_L = 0x00;
    } else {
        obj->ch  = 1;
        PWMPWPR_1_BYTE_L = 0x00;
    }

    // Wire pinout
    pinmap_pinout(pin, PinMap_PWM);

    // default to 491us: standard for servos, and fine for e.g. brightness control
    pwmout_write(obj, 0);
    if ((obj->ch == 2) && (init_period_ch2 == 0)) {
        pwmout_period_us(obj, 491);
        init_period_ch2 = 1;
    }
    if ((obj->ch == 1) && (init_period_ch1 == 0)) {
        pwmout_period_us(obj, 491);
        init_period_ch1 = 1;
    }
}

void pwmout_free(pwmout_t* obj) {
    pwmout_write(obj, 0);
}

void pwmout_write(pwmout_t* obj, float value) {
    uint32_t wk_cycle;
    uint16_t v;

    if (value < 0.0f) {
        value = 0.0f;
    } else if (value > 1.0f) {
        value = 1.0f;
    } else {
        // Do Nothing
    }

    if (obj->ch == 2) {
        wk_cycle = PWMPWCYR_2 & 0x03ff;
    } else {
        wk_cycle = PWMPWCYR_1 & 0x03ff;
    }

    // set channel match to percentage
    v = (uint16_t)((float)wk_cycle * value);
    *PWM_MATCH[obj->pwm] = (v | ((PORT[obj->pwm] & 1) << 12));
}

float pwmout_read(pwmout_t* obj) {
    uint32_t wk_cycle;
    float value;

    if (obj->ch == 2) {
        wk_cycle = PWMPWCYR_2 & 0x03ff;
    } else {
        wk_cycle = PWMPWCYR_1 & 0x03ff;
    }
    value = ((float)(*PWM_MATCH[obj->pwm] & 0x03ff) / (float)wk_cycle);

    return (value > 1.0f) ? (1.0f) : (value);
}

void pwmout_period(pwmout_t* obj, float seconds) {
    pwmout_period_us(obj, seconds * 1000000.0f);
}

void pwmout_period_ms(pwmout_t* obj, int ms) {
    pwmout_period_us(obj, ms * 1000);
}

static void set_duty_again(__IO uint16_t *p_pwmpbfr, uint16_t last_cycle, uint16_t new_cycle){
    uint16_t wk_pwmpbfr;
    float    value;
    uint16_t v;

    wk_pwmpbfr = *p_pwmpbfr;
    value      = ((float)(wk_pwmpbfr & 0x03ff) / (float)last_cycle);
    v          = (uint16_t)((float)new_cycle * value);
    *p_pwmpbfr = (v | (wk_pwmpbfr & 0x1000));
}

// Set the PWM period, keeping the duty cycle the same.
void pwmout_period_us(pwmout_t* obj, int us) {
    uint32_t pclk_base;
    uint32_t wk_cycle;
    uint16_t wk_last_cycle;
    uint32_t wk_cks = 0;

    if (us > 491) {
        us = 491;
    } else if (us < 1) {
        us = 1;
    } else {
        // Do Nothing
    }

    if (RZ_A1_IsClockMode0() == false) {
        pclk_base = (uint32_t)CM1_RENESAS_RZ_A1_P0_CLK / 10000;
    } else {
        pclk_base = (uint32_t)CM0_RENESAS_RZ_A1_P0_CLK / 10000;
    }

    wk_cycle = pclk_base * us;
    while (wk_cycle >= 102350) {
        wk_cycle >>= 1;
        wk_cks++;
    }
    wk_cycle = (wk_cycle + 50) / 100;

    if (obj->ch == 2) {
        wk_last_cycle    = PWMPWCYR_2 & 0x03ff;
        PWMPWCR_2_BYTE_L = 0xc0 | wk_cks;
        PWMPWCYR_2       = (uint16_t)wk_cycle;

        // Set duty again
        set_duty_again(&PWMPWBFR_2A, wk_last_cycle, wk_cycle);
        set_duty_again(&PWMPWBFR_2C, wk_last_cycle, wk_cycle);
        set_duty_again(&PWMPWBFR_2E, wk_last_cycle, wk_cycle);
        set_duty_again(&PWMPWBFR_2G, wk_last_cycle, wk_cycle);

        // Counter Start
        PWMPWCR_2_BYTE_L |= 0x08;

        // Save for future use
        period_ch2 = us;
    } else {
        wk_last_cycle    = PWMPWCYR_1 & 0x03ff;
        PWMPWCR_1_BYTE_L = 0xc0 | wk_cks;
        PWMPWCYR_1       = (uint16_t)wk_cycle;

        // Set duty again
        set_duty_again(&PWMPWBFR_1A, wk_last_cycle, wk_cycle);
        set_duty_again(&PWMPWBFR_1C, wk_last_cycle, wk_cycle);
        set_duty_again(&PWMPWBFR_1E, wk_last_cycle, wk_cycle);
        set_duty_again(&PWMPWBFR_1G, wk_last_cycle, wk_cycle);

        // Counter Start
        PWMPWCR_1_BYTE_L |= 0x08;

        // Save for future use
        period_ch1 = us;
    }
}

void pwmout_pulsewidth(pwmout_t* obj, float seconds) {
    pwmout_pulsewidth_us(obj, seconds * 1000000.0f);
}

void pwmout_pulsewidth_ms(pwmout_t* obj, int ms) {
    pwmout_pulsewidth_us(obj, ms * 1000);
}

void pwmout_pulsewidth_us(pwmout_t* obj, int us) {
    float value = 0;

    if (obj->ch == 2) {
        if (period_ch2 != 0) {
            value = (float)us / (float)period_ch2;
        }
    } else {
        if (period_ch1 != 0) {
            value = (float)us / (float)period_ch1;
        }
    }

    pwmout_write(obj, value);
}