CMSIS DSP library
Dependents: performance_timer Surfboard_ gps2rtty Capstone ... more
arm_mat_mult_fast_q15.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010-2014 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 19. March 2015 00005 * $Revision: V.1.4.5 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_mat_mult_fast_q15.c 00009 * 00010 * Description: Q15 matrix multiplication (fast variant) 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3 00013 * 00014 * Redistribution and use in source and binary forms, with or without 00015 * modification, are permitted provided that the following conditions 00016 * are met: 00017 * - Redistributions of source code must retain the above copyright 00018 * notice, this list of conditions and the following disclaimer. 00019 * - Redistributions in binary form must reproduce the above copyright 00020 * notice, this list of conditions and the following disclaimer in 00021 * the documentation and/or other materials provided with the 00022 * distribution. 00023 * - Neither the name of ARM LIMITED nor the names of its contributors 00024 * may be used to endorse or promote products derived from this 00025 * software without specific prior written permission. 00026 * 00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00028 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00029 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00030 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00031 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00032 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00033 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00034 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00035 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00036 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00037 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00038 * POSSIBILITY OF SUCH DAMAGE. 00039 * -------------------------------------------------------------------- */ 00040 00041 #include "arm_math.h" 00042 00043 /** 00044 * @ingroup groupMatrix 00045 */ 00046 00047 /** 00048 * @addtogroup MatrixMult 00049 * @{ 00050 */ 00051 00052 00053 /** 00054 * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 00055 * @param[in] *pSrcA points to the first input matrix structure 00056 * @param[in] *pSrcB points to the second input matrix structure 00057 * @param[out] *pDst points to output matrix structure 00058 * @param[in] *pState points to the array for storing intermediate results 00059 * @return The function returns either 00060 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. 00061 * 00062 * @details 00063 * <b>Scaling and Overflow Behavior:</b> 00064 * 00065 * \par 00066 * The difference between the function arm_mat_mult_q15() and this fast variant is that 00067 * the fast variant use a 32-bit rather than a 64-bit accumulator. 00068 * The result of each 1.15 x 1.15 multiplication is truncated to 00069 * 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30 00070 * format. Finally, the accumulator is saturated and converted to a 1.15 result. 00071 * 00072 * \par 00073 * The fast version has the same overflow behavior as the standard version but provides 00074 * less precision since it discards the low 16 bits of each multiplication result. 00075 * In order to avoid overflows completely the input signals must be scaled down. 00076 * Scale down one of the input matrices by log2(numColsA) bits to 00077 * avoid overflows, as a total of numColsA additions are computed internally for each 00078 * output element. 00079 * 00080 * \par 00081 * See <code>arm_mat_mult_q15()</code> for a slower implementation of this function 00082 * which uses 64-bit accumulation to provide higher precision. 00083 */ 00084 00085 arm_status arm_mat_mult_fast_q15( 00086 const arm_matrix_instance_q15 * pSrcA, 00087 const arm_matrix_instance_q15 * pSrcB, 00088 arm_matrix_instance_q15 * pDst, 00089 q15_t * pState) 00090 { 00091 q31_t sum; /* accumulator */ 00092 q15_t *pSrcBT = pState; /* input data matrix pointer for transpose */ 00093 q15_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q15 type */ 00094 q15_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q15 type */ 00095 q15_t *px; /* Temporary output data matrix pointer */ 00096 uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */ 00097 uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */ 00098 uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */ 00099 uint16_t numRowsB = pSrcB->numRows; /* number of rows of input matrix A */ 00100 uint16_t col, i = 0u, row = numRowsB, colCnt; /* loop counters */ 00101 arm_status status; /* status of matrix multiplication */ 00102 00103 #ifndef UNALIGNED_SUPPORT_DISABLE 00104 00105 q31_t in; /* Temporary variable to hold the input value */ 00106 q31_t inA1, inA2, inB1, inB2; 00107 00108 #else 00109 00110 q15_t in; /* Temporary variable to hold the input value */ 00111 q15_t inA1, inA2, inB1, inB2; 00112 00113 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ 00114 00115 #ifdef ARM_MATH_MATRIX_CHECK 00116 /* Check for matrix mismatch condition */ 00117 if((pSrcA->numCols != pSrcB->numRows) || 00118 (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols)) 00119 { 00120 /* Set status as ARM_MATH_SIZE_MISMATCH */ 00121 status = ARM_MATH_SIZE_MISMATCH; 00122 } 00123 else 00124 #endif 00125 { 00126 /* Matrix transpose */ 00127 do 00128 { 00129 /* Apply loop unrolling and exchange the columns with row elements */ 00130 col = numColsB >> 2; 00131 00132 /* The pointer px is set to starting address of the column being processed */ 00133 px = pSrcBT + i; 00134 00135 /* First part of the processing with loop unrolling. Compute 4 outputs at a time. 00136 ** a second loop below computes the remaining 1 to 3 samples. */ 00137 while(col > 0u) 00138 { 00139 #ifndef UNALIGNED_SUPPORT_DISABLE 00140 /* Read two elements from the row */ 00141 in = *__SIMD32(pInB)++; 00142 00143 /* Unpack and store one element in the destination */ 00144 #ifndef ARM_MATH_BIG_ENDIAN 00145 00146 *px = (q15_t) in; 00147 00148 #else 00149 00150 *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16); 00151 00152 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ 00153 00154 /* Update the pointer px to point to the next row of the transposed matrix */ 00155 px += numRowsB; 00156 00157 /* Unpack and store the second element in the destination */ 00158 #ifndef ARM_MATH_BIG_ENDIAN 00159 00160 *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16); 00161 00162 #else 00163 00164 *px = (q15_t) in; 00165 00166 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ 00167 00168 /* Update the pointer px to point to the next row of the transposed matrix */ 00169 px += numRowsB; 00170 00171 /* Read two elements from the row */ 00172 in = *__SIMD32(pInB)++; 00173 00174 /* Unpack and store one element in the destination */ 00175 #ifndef ARM_MATH_BIG_ENDIAN 00176 00177 *px = (q15_t) in; 00178 00179 #else 00180 00181 *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16); 00182 00183 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ 00184 00185 /* Update the pointer px to point to the next row of the transposed matrix */ 00186 px += numRowsB; 00187 00188 /* Unpack and store the second element in the destination */ 00189 00190 #ifndef ARM_MATH_BIG_ENDIAN 00191 00192 *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16); 00193 00194 #else 00195 00196 *px = (q15_t) in; 00197 00198 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */ 00199 00200 #else 00201 00202 /* Read one element from the row */ 00203 in = *pInB++; 00204 00205 /* Store one element in the destination */ 00206 *px = in; 00207 00208 /* Update the pointer px to point to the next row of the transposed matrix */ 00209 px += numRowsB; 00210 00211 /* Read one element from the row */ 00212 in = *pInB++; 00213 00214 /* Store one element in the destination */ 00215 *px = in; 00216 00217 /* Update the pointer px to point to the next row of the transposed matrix */ 00218 px += numRowsB; 00219 00220 /* Read one element from the row */ 00221 in = *pInB++; 00222 00223 /* Store one element in the destination */ 00224 *px = in; 00225 00226 /* Update the pointer px to point to the next row of the transposed matrix */ 00227 px += numRowsB; 00228 00229 /* Read one element from the row */ 00230 in = *pInB++; 00231 00232 /* Store one element in the destination */ 00233 *px = in; 00234 00235 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ 00236 00237 /* Update the pointer px to point to the next row of the transposed matrix */ 00238 px += numRowsB; 00239 00240 /* Decrement the column loop counter */ 00241 col--; 00242 } 00243 00244 /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here. 00245 ** No loop unrolling is used. */ 00246 col = numColsB % 0x4u; 00247 00248 while(col > 0u) 00249 { 00250 /* Read and store the input element in the destination */ 00251 *px = *pInB++; 00252 00253 /* Update the pointer px to point to the next row of the transposed matrix */ 00254 px += numRowsB; 00255 00256 /* Decrement the column loop counter */ 00257 col--; 00258 } 00259 00260 i++; 00261 00262 /* Decrement the row loop counter */ 00263 row--; 00264 00265 } while(row > 0u); 00266 00267 /* Reset the variables for the usage in the following multiplication process */ 00268 row = numRowsA; 00269 i = 0u; 00270 px = pDst->pData; 00271 00272 /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ 00273 /* row loop */ 00274 do 00275 { 00276 /* For every row wise process, the column loop counter is to be initiated */ 00277 col = numColsB; 00278 00279 /* For every row wise process, the pIn2 pointer is set 00280 ** to the starting address of the transposed pSrcB data */ 00281 pInB = pSrcBT; 00282 00283 /* column loop */ 00284 do 00285 { 00286 /* Set the variable sum, that acts as accumulator, to zero */ 00287 sum = 0; 00288 00289 /* Apply loop unrolling and compute 2 MACs simultaneously. */ 00290 colCnt = numColsA >> 2; 00291 00292 /* Initiate the pointer pIn1 to point to the starting address of the column being processed */ 00293 pInA = pSrcA->pData + i; 00294 00295 /* matrix multiplication */ 00296 while(colCnt > 0u) 00297 { 00298 /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ 00299 #ifndef UNALIGNED_SUPPORT_DISABLE 00300 00301 inA1 = *__SIMD32(pInA)++; 00302 inB1 = *__SIMD32(pInB)++; 00303 inA2 = *__SIMD32(pInA)++; 00304 inB2 = *__SIMD32(pInB)++; 00305 00306 sum = __SMLAD(inA1, inB1, sum); 00307 sum = __SMLAD(inA2, inB2, sum); 00308 00309 #else 00310 00311 inA1 = *pInA++; 00312 inB1 = *pInB++; 00313 inA2 = *pInA++; 00314 sum += inA1 * inB1; 00315 inB2 = *pInB++; 00316 00317 inA1 = *pInA++; 00318 inB1 = *pInB++; 00319 sum += inA2 * inB2; 00320 inA2 = *pInA++; 00321 inB2 = *pInB++; 00322 00323 sum += inA1 * inB1; 00324 sum += inA2 * inB2; 00325 00326 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ 00327 00328 /* Decrement the loop counter */ 00329 colCnt--; 00330 } 00331 00332 /* process odd column samples */ 00333 colCnt = numColsA % 0x4u; 00334 00335 while(colCnt > 0u) 00336 { 00337 /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ 00338 sum += (q31_t) (*pInA++) * (*pInB++); 00339 00340 colCnt--; 00341 } 00342 00343 /* Saturate and store the result in the destination buffer */ 00344 *px = (q15_t) (sum >> 15); 00345 px++; 00346 00347 /* Decrement the column loop counter */ 00348 col--; 00349 00350 } while(col > 0u); 00351 00352 i = i + numColsA; 00353 00354 /* Decrement the row loop counter */ 00355 row--; 00356 00357 } while(row > 0u); 00358 00359 /* set status as ARM_MATH_SUCCESS */ 00360 status = ARM_MATH_SUCCESS; 00361 } 00362 00363 /* Return to application */ 00364 return (status); 00365 } 00366 00367 /** 00368 * @} end of MatrixMult group 00369 */
Generated on Tue Jul 12 2022 11:59:18 by 1.7.2