CMSIS DSP library
Dependents: performance_timer Surfboard_ gps2rtty Capstone ... more
arm_mat_cmplx_mult_q31.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010-2014 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 19. March 2015 00005 * $Revision: V.1.4.5 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_mat_cmplx_mult_q31.c 00009 * 00010 * Description: Floating-point matrix multiplication. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 00013 * 00014 * Redistribution and use in source and binary forms, with or without 00015 * modification, are permitted provided that the following conditions 00016 * are met: 00017 * - Redistributions of source code must retain the above copyright 00018 * notice, this list of conditions and the following disclaimer. 00019 * - Redistributions in binary form must reproduce the above copyright 00020 * notice, this list of conditions and the following disclaimer in 00021 * the documentation and/or other materials provided with the 00022 * distribution. 00023 * - Neither the name of ARM LIMITED nor the names of its contributors 00024 * may be used to endorse or promote products derived from this 00025 * software without specific prior written permission. 00026 * 00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00028 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00029 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00030 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00031 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00032 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00033 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00034 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00035 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00036 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00037 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00038 * POSSIBILITY OF SUCH DAMAGE. 00039 * -------------------------------------------------------------------- */ 00040 #include "arm_math.h" 00041 00042 /** 00043 * @ingroup groupMatrix 00044 */ 00045 00046 /** 00047 * @addtogroup CmplxMatrixMult 00048 * @{ 00049 */ 00050 00051 /** 00052 * @brief Q31 Complex matrix multiplication 00053 * @param[in] *pSrcA points to the first input complex matrix structure 00054 * @param[in] *pSrcB points to the second input complex matrix structure 00055 * @param[out] *pDst points to output complex matrix structure 00056 * @return The function returns either 00057 * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking. 00058 * 00059 * @details 00060 * <b>Scaling and Overflow Behavior:</b> 00061 * 00062 * \par 00063 * The function is implemented using an internal 64-bit accumulator. 00064 * The accumulator has a 2.62 format and maintains full precision of the intermediate 00065 * multiplication results but provides only a single guard bit. There is no saturation 00066 * on intermediate additions. Thus, if the accumulator overflows it wraps around and 00067 * distorts the result. The input signals should be scaled down to avoid intermediate 00068 * overflows. The input is thus scaled down by log2(numColsA) bits 00069 * to avoid overflows, as a total of numColsA additions are performed internally. 00070 * The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result. 00071 * 00072 * 00073 */ 00074 00075 arm_status arm_mat_cmplx_mult_q31( 00076 const arm_matrix_instance_q31 * pSrcA, 00077 const arm_matrix_instance_q31 * pSrcB, 00078 arm_matrix_instance_q31 * pDst) 00079 { 00080 q31_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */ 00081 q31_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */ 00082 q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */ 00083 q31_t *pOut = pDst->pData; /* output data matrix pointer */ 00084 q31_t *px; /* Temporary output data matrix pointer */ 00085 uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */ 00086 uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */ 00087 uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */ 00088 q63_t sumReal1, sumImag1; /* accumulator */ 00089 q31_t a0, b0, c0, d0; 00090 q31_t a1, b1, c1, d1; 00091 00092 00093 /* Run the below code for Cortex-M4 and Cortex-M3 */ 00094 00095 uint16_t col, i = 0u, j, row = numRowsA, colCnt; /* loop counters */ 00096 arm_status status; /* status of matrix multiplication */ 00097 00098 #ifdef ARM_MATH_MATRIX_CHECK 00099 00100 00101 /* Check for matrix mismatch condition */ 00102 if((pSrcA->numCols != pSrcB->numRows) || 00103 (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols)) 00104 { 00105 00106 /* Set status as ARM_MATH_SIZE_MISMATCH */ 00107 status = ARM_MATH_SIZE_MISMATCH; 00108 } 00109 else 00110 #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ 00111 00112 { 00113 /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ 00114 /* row loop */ 00115 do 00116 { 00117 /* Output pointer is set to starting address of the row being processed */ 00118 px = pOut + 2 * i; 00119 00120 /* For every row wise process, the column loop counter is to be initiated */ 00121 col = numColsB; 00122 00123 /* For every row wise process, the pIn2 pointer is set 00124 ** to the starting address of the pSrcB data */ 00125 pIn2 = pSrcB->pData; 00126 00127 j = 0u; 00128 00129 /* column loop */ 00130 do 00131 { 00132 /* Set the variable sum, that acts as accumulator, to zero */ 00133 sumReal1 = 0.0; 00134 sumImag1 = 0.0; 00135 00136 /* Initiate the pointer pIn1 to point to the starting address of the column being processed */ 00137 pIn1 = pInA; 00138 00139 /* Apply loop unrolling and compute 4 MACs simultaneously. */ 00140 colCnt = numColsA >> 2; 00141 00142 /* matrix multiplication */ 00143 while(colCnt > 0u) 00144 { 00145 00146 /* Reading real part of complex matrix A */ 00147 a0 = *pIn1; 00148 00149 /* Reading real part of complex matrix B */ 00150 c0 = *pIn2; 00151 00152 /* Reading imaginary part of complex matrix A */ 00153 b0 = *(pIn1 + 1u); 00154 00155 /* Reading imaginary part of complex matrix B */ 00156 d0 = *(pIn2 + 1u); 00157 00158 /* Multiply and Accumlates */ 00159 sumReal1 += (q63_t) a0 *c0; 00160 sumImag1 += (q63_t) b0 *c0; 00161 00162 /* update pointers */ 00163 pIn1 += 2u; 00164 pIn2 += 2 * numColsB; 00165 00166 /* Multiply and Accumlates */ 00167 sumReal1 -= (q63_t) b0 *d0; 00168 sumImag1 += (q63_t) a0 *d0; 00169 00170 /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ 00171 00172 /* read real and imag values from pSrcA and pSrcB buffer */ 00173 a1 = *pIn1; 00174 c1 = *pIn2; 00175 b1 = *(pIn1 + 1u); 00176 d1 = *(pIn2 + 1u); 00177 00178 /* Multiply and Accumlates */ 00179 sumReal1 += (q63_t) a1 *c1; 00180 sumImag1 += (q63_t) b1 *c1; 00181 00182 /* update pointers */ 00183 pIn1 += 2u; 00184 pIn2 += 2 * numColsB; 00185 00186 /* Multiply and Accumlates */ 00187 sumReal1 -= (q63_t) b1 *d1; 00188 sumImag1 += (q63_t) a1 *d1; 00189 00190 a0 = *pIn1; 00191 c0 = *pIn2; 00192 00193 b0 = *(pIn1 + 1u); 00194 d0 = *(pIn2 + 1u); 00195 00196 /* Multiply and Accumlates */ 00197 sumReal1 += (q63_t) a0 *c0; 00198 sumImag1 += (q63_t) b0 *c0; 00199 00200 /* update pointers */ 00201 pIn1 += 2u; 00202 pIn2 += 2 * numColsB; 00203 00204 /* Multiply and Accumlates */ 00205 sumReal1 -= (q63_t) b0 *d0; 00206 sumImag1 += (q63_t) a0 *d0; 00207 00208 /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ 00209 00210 a1 = *pIn1; 00211 c1 = *pIn2; 00212 00213 b1 = *(pIn1 + 1u); 00214 d1 = *(pIn2 + 1u); 00215 00216 /* Multiply and Accumlates */ 00217 sumReal1 += (q63_t) a1 *c1; 00218 sumImag1 += (q63_t) b1 *c1; 00219 00220 /* update pointers */ 00221 pIn1 += 2u; 00222 pIn2 += 2 * numColsB; 00223 00224 /* Multiply and Accumlates */ 00225 sumReal1 -= (q63_t) b1 *d1; 00226 sumImag1 += (q63_t) a1 *d1; 00227 00228 /* Decrement the loop count */ 00229 colCnt--; 00230 } 00231 00232 /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here. 00233 ** No loop unrolling is used. */ 00234 colCnt = numColsA % 0x4u; 00235 00236 while(colCnt > 0u) 00237 { 00238 /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ 00239 a1 = *pIn1; 00240 c1 = *pIn2; 00241 00242 b1 = *(pIn1 + 1u); 00243 d1 = *(pIn2 + 1u); 00244 00245 /* Multiply and Accumlates */ 00246 sumReal1 += (q63_t) a1 *c1; 00247 sumImag1 += (q63_t) b1 *c1; 00248 00249 /* update pointers */ 00250 pIn1 += 2u; 00251 pIn2 += 2 * numColsB; 00252 00253 /* Multiply and Accumlates */ 00254 sumReal1 -= (q63_t) b1 *d1; 00255 sumImag1 += (q63_t) a1 *d1; 00256 00257 /* Decrement the loop counter */ 00258 colCnt--; 00259 } 00260 00261 /* Store the result in the destination buffer */ 00262 *px++ = (q31_t) clip_q63_to_q31(sumReal1 >> 31); 00263 *px++ = (q31_t) clip_q63_to_q31(sumImag1 >> 31); 00264 00265 /* Update the pointer pIn2 to point to the starting address of the next column */ 00266 j++; 00267 pIn2 = pSrcB->pData + 2u * j; 00268 00269 /* Decrement the column loop counter */ 00270 col--; 00271 00272 } while(col > 0u); 00273 00274 /* Update the pointer pInA to point to the starting address of the next row */ 00275 i = i + numColsB; 00276 pInA = pInA + 2 * numColsA; 00277 00278 /* Decrement the row loop counter */ 00279 row--; 00280 00281 } while(row > 0u); 00282 00283 /* Set status as ARM_MATH_SUCCESS */ 00284 status = ARM_MATH_SUCCESS; 00285 } 00286 00287 /* Return to application */ 00288 return (status); 00289 } 00290 00291 /** 00292 * @} end of MatrixMult group 00293 */
Generated on Tue Jul 12 2022 11:59:18 by 1.7.2