CMSIS DSP library
Dependents: performance_timer Surfboard_ gps2rtty Capstone ... more
arm_fir_sparse_q7.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010-2014 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 19. March 2015 00005 * $Revision: V.1.4.5 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_fir_sparse_q7.c 00009 * 00010 * Description: Q7 sparse FIR filter processing function. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 00013 * 00014 * Redistribution and use in source and binary forms, with or without 00015 * modification, are permitted provided that the following conditions 00016 * are met: 00017 * - Redistributions of source code must retain the above copyright 00018 * notice, this list of conditions and the following disclaimer. 00019 * - Redistributions in binary form must reproduce the above copyright 00020 * notice, this list of conditions and the following disclaimer in 00021 * the documentation and/or other materials provided with the 00022 * distribution. 00023 * - Neither the name of ARM LIMITED nor the names of its contributors 00024 * may be used to endorse or promote products derived from this 00025 * software without specific prior written permission. 00026 * 00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00028 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00029 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00030 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00031 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00032 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00033 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00034 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00035 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00036 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00037 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00038 * POSSIBILITY OF SUCH DAMAGE. 00039 * ------------------------------------------------------------------- */ 00040 #include "arm_math.h" 00041 00042 00043 /** 00044 * @ingroup groupFilters 00045 */ 00046 00047 /** 00048 * @addtogroup FIR_Sparse 00049 * @{ 00050 */ 00051 00052 00053 /** 00054 * @brief Processing function for the Q7 sparse FIR filter. 00055 * @param[in] *S points to an instance of the Q7 sparse FIR structure. 00056 * @param[in] *pSrc points to the block of input data. 00057 * @param[out] *pDst points to the block of output data 00058 * @param[in] *pScratchIn points to a temporary buffer of size blockSize. 00059 * @param[in] *pScratchOut points to a temporary buffer of size blockSize. 00060 * @param[in] blockSize number of input samples to process per call. 00061 * @return none. 00062 * 00063 * <b>Scaling and Overflow Behavior:</b> 00064 * \par 00065 * The function is implemented using a 32-bit internal accumulator. 00066 * Both coefficients and state variables are represented in 1.7 format and multiplications yield a 2.14 result. 00067 * The 2.14 intermediate results are accumulated in a 32-bit accumulator in 18.14 format. 00068 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. 00069 * The accumulator is then converted to 18.7 format by discarding the low 7 bits. 00070 * Finally, the result is truncated to 1.7 format. 00071 */ 00072 00073 void arm_fir_sparse_q7( 00074 arm_fir_sparse_instance_q7 * S, 00075 q7_t * pSrc, 00076 q7_t * pDst, 00077 q7_t * pScratchIn, 00078 q31_t * pScratchOut, 00079 uint32_t blockSize) 00080 { 00081 00082 q7_t *pState = S->pState; /* State pointer */ 00083 q7_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ 00084 q7_t *px; /* Scratch buffer pointer */ 00085 q7_t *py = pState; /* Temporary pointers for state buffer */ 00086 q7_t *pb = pScratchIn; /* Temporary pointers for scratch buffer */ 00087 q7_t *pOut = pDst; /* Destination pointer */ 00088 int32_t *pTapDelay = S->pTapDelay; /* Pointer to the array containing offset of the non-zero tap values. */ 00089 uint32_t delaySize = S->maxDelay + blockSize; /* state length */ 00090 uint16_t numTaps = S->numTaps; /* Filter order */ 00091 int32_t readIndex; /* Read index of the state buffer */ 00092 uint32_t tapCnt, blkCnt; /* loop counters */ 00093 q7_t coeff = *pCoeffs++; /* Read the coefficient value */ 00094 q31_t *pScr2 = pScratchOut; /* Working pointer for scratch buffer of output values */ 00095 q31_t in; 00096 00097 00098 #ifndef ARM_MATH_CM0_FAMILY 00099 00100 /* Run the below code for Cortex-M4 and Cortex-M3 */ 00101 00102 q7_t in1, in2, in3, in4; 00103 00104 /* BlockSize of Input samples are copied into the state buffer */ 00105 /* StateIndex points to the starting position to write in the state buffer */ 00106 arm_circularWrite_q7(py, (int32_t) delaySize, &S->stateIndex, 1, pSrc, 1, 00107 blockSize); 00108 00109 /* Loop over the number of taps. */ 00110 tapCnt = numTaps; 00111 00112 /* Read Index, from where the state buffer should be read, is calculated. */ 00113 readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++; 00114 00115 /* Wraparound of readIndex */ 00116 if(readIndex < 0) 00117 { 00118 readIndex += (int32_t) delaySize; 00119 } 00120 00121 /* Working pointer for state buffer is updated */ 00122 py = pState; 00123 00124 /* blockSize samples are read from the state buffer */ 00125 arm_circularRead_q7(py, (int32_t) delaySize, &readIndex, 1, pb, pb, 00126 (int32_t) blockSize, 1, blockSize); 00127 00128 /* Working pointer for the scratch buffer of state values */ 00129 px = pb; 00130 00131 /* Working pointer for scratch buffer of output values */ 00132 pScratchOut = pScr2; 00133 00134 /* Loop over the blockSize. Unroll by a factor of 4. 00135 * Compute 4 multiplications at a time. */ 00136 blkCnt = blockSize >> 2; 00137 00138 while(blkCnt > 0u) 00139 { 00140 /* Perform multiplication and store in the scratch buffer */ 00141 *pScratchOut++ = ((q31_t) * px++ * coeff); 00142 *pScratchOut++ = ((q31_t) * px++ * coeff); 00143 *pScratchOut++ = ((q31_t) * px++ * coeff); 00144 *pScratchOut++ = ((q31_t) * px++ * coeff); 00145 00146 /* Decrement the loop counter */ 00147 blkCnt--; 00148 } 00149 00150 /* If the blockSize is not a multiple of 4, 00151 * compute the remaining samples */ 00152 blkCnt = blockSize % 0x4u; 00153 00154 while(blkCnt > 0u) 00155 { 00156 /* Perform multiplication and store in the scratch buffer */ 00157 *pScratchOut++ = ((q31_t) * px++ * coeff); 00158 00159 /* Decrement the loop counter */ 00160 blkCnt--; 00161 } 00162 00163 /* Load the coefficient value and 00164 * increment the coefficient buffer for the next set of state values */ 00165 coeff = *pCoeffs++; 00166 00167 /* Read Index, from where the state buffer should be read, is calculated. */ 00168 readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++; 00169 00170 /* Wraparound of readIndex */ 00171 if(readIndex < 0) 00172 { 00173 readIndex += (int32_t) delaySize; 00174 } 00175 00176 /* Loop over the number of taps. */ 00177 tapCnt = (uint32_t) numTaps - 2u; 00178 00179 while(tapCnt > 0u) 00180 { 00181 /* Working pointer for state buffer is updated */ 00182 py = pState; 00183 00184 /* blockSize samples are read from the state buffer */ 00185 arm_circularRead_q7(py, (int32_t) delaySize, &readIndex, 1, pb, pb, 00186 (int32_t) blockSize, 1, blockSize); 00187 00188 /* Working pointer for the scratch buffer of state values */ 00189 px = pb; 00190 00191 /* Working pointer for scratch buffer of output values */ 00192 pScratchOut = pScr2; 00193 00194 /* Loop over the blockSize. Unroll by a factor of 4. 00195 * Compute 4 MACS at a time. */ 00196 blkCnt = blockSize >> 2; 00197 00198 while(blkCnt > 0u) 00199 { 00200 /* Perform Multiply-Accumulate */ 00201 in = *pScratchOut + ((q31_t) * px++ * coeff); 00202 *pScratchOut++ = in; 00203 in = *pScratchOut + ((q31_t) * px++ * coeff); 00204 *pScratchOut++ = in; 00205 in = *pScratchOut + ((q31_t) * px++ * coeff); 00206 *pScratchOut++ = in; 00207 in = *pScratchOut + ((q31_t) * px++ * coeff); 00208 *pScratchOut++ = in; 00209 00210 /* Decrement the loop counter */ 00211 blkCnt--; 00212 } 00213 00214 /* If the blockSize is not a multiple of 4, 00215 * compute the remaining samples */ 00216 blkCnt = blockSize % 0x4u; 00217 00218 while(blkCnt > 0u) 00219 { 00220 /* Perform Multiply-Accumulate */ 00221 in = *pScratchOut + ((q31_t) * px++ * coeff); 00222 *pScratchOut++ = in; 00223 00224 /* Decrement the loop counter */ 00225 blkCnt--; 00226 } 00227 00228 /* Load the coefficient value and 00229 * increment the coefficient buffer for the next set of state values */ 00230 coeff = *pCoeffs++; 00231 00232 /* Read Index, from where the state buffer should be read, is calculated. */ 00233 readIndex = ((int32_t) S->stateIndex - 00234 (int32_t) blockSize) - *pTapDelay++; 00235 00236 /* Wraparound of readIndex */ 00237 if(readIndex < 0) 00238 { 00239 readIndex += (int32_t) delaySize; 00240 } 00241 00242 /* Decrement the tap loop counter */ 00243 tapCnt--; 00244 } 00245 00246 /* Compute last tap without the final read of pTapDelay */ 00247 00248 /* Working pointer for state buffer is updated */ 00249 py = pState; 00250 00251 /* blockSize samples are read from the state buffer */ 00252 arm_circularRead_q7(py, (int32_t) delaySize, &readIndex, 1, pb, pb, 00253 (int32_t) blockSize, 1, blockSize); 00254 00255 /* Working pointer for the scratch buffer of state values */ 00256 px = pb; 00257 00258 /* Working pointer for scratch buffer of output values */ 00259 pScratchOut = pScr2; 00260 00261 /* Loop over the blockSize. Unroll by a factor of 4. 00262 * Compute 4 MACS at a time. */ 00263 blkCnt = blockSize >> 2; 00264 00265 while(blkCnt > 0u) 00266 { 00267 /* Perform Multiply-Accumulate */ 00268 in = *pScratchOut + ((q31_t) * px++ * coeff); 00269 *pScratchOut++ = in; 00270 in = *pScratchOut + ((q31_t) * px++ * coeff); 00271 *pScratchOut++ = in; 00272 in = *pScratchOut + ((q31_t) * px++ * coeff); 00273 *pScratchOut++ = in; 00274 in = *pScratchOut + ((q31_t) * px++ * coeff); 00275 *pScratchOut++ = in; 00276 00277 /* Decrement the loop counter */ 00278 blkCnt--; 00279 } 00280 00281 /* If the blockSize is not a multiple of 4, 00282 * compute the remaining samples */ 00283 blkCnt = blockSize % 0x4u; 00284 00285 while(blkCnt > 0u) 00286 { 00287 /* Perform Multiply-Accumulate */ 00288 in = *pScratchOut + ((q31_t) * px++ * coeff); 00289 *pScratchOut++ = in; 00290 00291 /* Decrement the loop counter */ 00292 blkCnt--; 00293 } 00294 00295 /* All the output values are in pScratchOut buffer. 00296 Convert them into 1.15 format, saturate and store in the destination buffer. */ 00297 /* Loop over the blockSize. */ 00298 blkCnt = blockSize >> 2; 00299 00300 while(blkCnt > 0u) 00301 { 00302 in1 = (q7_t) __SSAT(*pScr2++ >> 7, 8); 00303 in2 = (q7_t) __SSAT(*pScr2++ >> 7, 8); 00304 in3 = (q7_t) __SSAT(*pScr2++ >> 7, 8); 00305 in4 = (q7_t) __SSAT(*pScr2++ >> 7, 8); 00306 00307 *__SIMD32(pOut)++ = __PACKq7(in1, in2, in3, in4); 00308 00309 /* Decrement the blockSize loop counter */ 00310 blkCnt--; 00311 } 00312 00313 /* If the blockSize is not a multiple of 4, 00314 remaining samples are processed in the below loop */ 00315 blkCnt = blockSize % 0x4u; 00316 00317 while(blkCnt > 0u) 00318 { 00319 *pOut++ = (q7_t) __SSAT(*pScr2++ >> 7, 8); 00320 00321 /* Decrement the blockSize loop counter */ 00322 blkCnt--; 00323 } 00324 00325 #else 00326 00327 /* Run the below code for Cortex-M0 */ 00328 00329 /* BlockSize of Input samples are copied into the state buffer */ 00330 /* StateIndex points to the starting position to write in the state buffer */ 00331 arm_circularWrite_q7(py, (int32_t) delaySize, &S->stateIndex, 1, pSrc, 1, 00332 blockSize); 00333 00334 /* Loop over the number of taps. */ 00335 tapCnt = numTaps; 00336 00337 /* Read Index, from where the state buffer should be read, is calculated. */ 00338 readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++; 00339 00340 /* Wraparound of readIndex */ 00341 if(readIndex < 0) 00342 { 00343 readIndex += (int32_t) delaySize; 00344 } 00345 00346 /* Working pointer for state buffer is updated */ 00347 py = pState; 00348 00349 /* blockSize samples are read from the state buffer */ 00350 arm_circularRead_q7(py, (int32_t) delaySize, &readIndex, 1, pb, pb, 00351 (int32_t) blockSize, 1, blockSize); 00352 00353 /* Working pointer for the scratch buffer of state values */ 00354 px = pb; 00355 00356 /* Working pointer for scratch buffer of output values */ 00357 pScratchOut = pScr2; 00358 00359 /* Loop over the blockSize */ 00360 blkCnt = blockSize; 00361 00362 while(blkCnt > 0u) 00363 { 00364 /* Perform multiplication and store in the scratch buffer */ 00365 *pScratchOut++ = ((q31_t) * px++ * coeff); 00366 00367 /* Decrement the loop counter */ 00368 blkCnt--; 00369 } 00370 00371 /* Load the coefficient value and 00372 * increment the coefficient buffer for the next set of state values */ 00373 coeff = *pCoeffs++; 00374 00375 /* Read Index, from where the state buffer should be read, is calculated. */ 00376 readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++; 00377 00378 /* Wraparound of readIndex */ 00379 if(readIndex < 0) 00380 { 00381 readIndex += (int32_t) delaySize; 00382 } 00383 00384 /* Loop over the number of taps. */ 00385 tapCnt = (uint32_t) numTaps - 2u; 00386 00387 while(tapCnt > 0u) 00388 { 00389 /* Working pointer for state buffer is updated */ 00390 py = pState; 00391 00392 /* blockSize samples are read from the state buffer */ 00393 arm_circularRead_q7(py, (int32_t) delaySize, &readIndex, 1, pb, pb, 00394 (int32_t) blockSize, 1, blockSize); 00395 00396 /* Working pointer for the scratch buffer of state values */ 00397 px = pb; 00398 00399 /* Working pointer for scratch buffer of output values */ 00400 pScratchOut = pScr2; 00401 00402 /* Loop over the blockSize */ 00403 blkCnt = blockSize; 00404 00405 while(blkCnt > 0u) 00406 { 00407 /* Perform Multiply-Accumulate */ 00408 in = *pScratchOut + ((q31_t) * px++ * coeff); 00409 *pScratchOut++ = in; 00410 00411 /* Decrement the loop counter */ 00412 blkCnt--; 00413 } 00414 00415 /* Load the coefficient value and 00416 * increment the coefficient buffer for the next set of state values */ 00417 coeff = *pCoeffs++; 00418 00419 /* Read Index, from where the state buffer should be read, is calculated. */ 00420 readIndex = 00421 ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++; 00422 00423 /* Wraparound of readIndex */ 00424 if(readIndex < 0) 00425 { 00426 readIndex += (int32_t) delaySize; 00427 } 00428 00429 /* Decrement the tap loop counter */ 00430 tapCnt--; 00431 } 00432 00433 /* Compute last tap without the final read of pTapDelay */ 00434 00435 /* Working pointer for state buffer is updated */ 00436 py = pState; 00437 00438 /* blockSize samples are read from the state buffer */ 00439 arm_circularRead_q7(py, (int32_t) delaySize, &readIndex, 1, pb, pb, 00440 (int32_t) blockSize, 1, blockSize); 00441 00442 /* Working pointer for the scratch buffer of state values */ 00443 px = pb; 00444 00445 /* Working pointer for scratch buffer of output values */ 00446 pScratchOut = pScr2; 00447 00448 /* Loop over the blockSize */ 00449 blkCnt = blockSize; 00450 00451 while(blkCnt > 0u) 00452 { 00453 /* Perform Multiply-Accumulate */ 00454 in = *pScratchOut + ((q31_t) * px++ * coeff); 00455 *pScratchOut++ = in; 00456 00457 /* Decrement the loop counter */ 00458 blkCnt--; 00459 } 00460 00461 /* All the output values are in pScratchOut buffer. 00462 Convert them into 1.15 format, saturate and store in the destination buffer. */ 00463 /* Loop over the blockSize. */ 00464 blkCnt = blockSize; 00465 00466 while(blkCnt > 0u) 00467 { 00468 *pOut++ = (q7_t) __SSAT(*pScr2++ >> 7, 8); 00469 00470 /* Decrement the blockSize loop counter */ 00471 blkCnt--; 00472 } 00473 00474 #endif /* #ifndef ARM_MATH_CM0_FAMILY */ 00475 00476 } 00477 00478 /** 00479 * @} end of FIR_Sparse group 00480 */
Generated on Tue Jul 12 2022 11:59:17 by 1.7.2