CMSIS DSP library
Dependents: performance_timer Surfboard_ gps2rtty Capstone ... more
arm_fir_decimate_q15.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010-2014 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 19. March 2015 00005 * $Revision: V.1.4.5 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_fir_decimate_q15.c 00009 * 00010 * Description: Q15 FIR Decimator. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 00013 * 00014 * Redistribution and use in source and binary forms, with or without 00015 * modification, are permitted provided that the following conditions 00016 * are met: 00017 * - Redistributions of source code must retain the above copyright 00018 * notice, this list of conditions and the following disclaimer. 00019 * - Redistributions in binary form must reproduce the above copyright 00020 * notice, this list of conditions and the following disclaimer in 00021 * the documentation and/or other materials provided with the 00022 * distribution. 00023 * - Neither the name of ARM LIMITED nor the names of its contributors 00024 * may be used to endorse or promote products derived from this 00025 * software without specific prior written permission. 00026 * 00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00028 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00029 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00030 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00031 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00032 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00033 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00034 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00035 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00036 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00037 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00038 * POSSIBILITY OF SUCH DAMAGE. 00039 * -------------------------------------------------------------------- */ 00040 00041 #include "arm_math.h" 00042 00043 /** 00044 * @ingroup groupFilters 00045 */ 00046 00047 /** 00048 * @addtogroup FIR_decimate 00049 * @{ 00050 */ 00051 00052 /** 00053 * @brief Processing function for the Q15 FIR decimator. 00054 * @param[in] *S points to an instance of the Q15 FIR decimator structure. 00055 * @param[in] *pSrc points to the block of input data. 00056 * @param[out] *pDst points to the location where the output result is written. 00057 * @param[in] blockSize number of input samples to process per call. 00058 * @return none. 00059 * 00060 * <b>Scaling and Overflow Behavior:</b> 00061 * \par 00062 * The function is implemented using a 64-bit internal accumulator. 00063 * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result. 00064 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. 00065 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. 00066 * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits. 00067 * Lastly, the accumulator is saturated to yield a result in 1.15 format. 00068 * 00069 * \par 00070 * Refer to the function <code>arm_fir_decimate_fast_q15()</code> for a faster but less precise implementation of this function for Cortex-M3 and Cortex-M4. 00071 */ 00072 00073 #ifndef ARM_MATH_CM0_FAMILY 00074 00075 #ifndef UNALIGNED_SUPPORT_DISABLE 00076 00077 void arm_fir_decimate_q15( 00078 const arm_fir_decimate_instance_q15 * S, 00079 q15_t * pSrc, 00080 q15_t * pDst, 00081 uint32_t blockSize) 00082 { 00083 q15_t *pState = S->pState; /* State pointer */ 00084 q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ 00085 q15_t *pStateCurnt; /* Points to the current sample of the state */ 00086 q15_t *px; /* Temporary pointer for state buffer */ 00087 q15_t *pb; /* Temporary pointer coefficient buffer */ 00088 q31_t x0, x1, c0, c1; /* Temporary variables to hold state and coefficient values */ 00089 q63_t sum0; /* Accumulators */ 00090 q63_t acc0, acc1; 00091 q15_t *px0, *px1; 00092 uint32_t blkCntN3; 00093 uint32_t numTaps = S->numTaps; /* Number of taps */ 00094 uint32_t i, blkCnt, tapCnt, outBlockSize = blockSize / S->M; /* Loop counters */ 00095 00096 00097 /* S->pState buffer contains previous frame (numTaps - 1) samples */ 00098 /* pStateCurnt points to the location where the new input data should be written */ 00099 pStateCurnt = S->pState + (numTaps - 1u); 00100 00101 00102 /* Total number of output samples to be computed */ 00103 blkCnt = outBlockSize / 2; 00104 blkCntN3 = outBlockSize - (2 * blkCnt); 00105 00106 00107 while(blkCnt > 0u) 00108 { 00109 /* Copy decimation factor number of new input samples into the state buffer */ 00110 i = 2 * S->M; 00111 00112 do 00113 { 00114 *pStateCurnt++ = *pSrc++; 00115 00116 } while(--i); 00117 00118 /* Set accumulator to zero */ 00119 acc0 = 0; 00120 acc1 = 0; 00121 00122 /* Initialize state pointer */ 00123 px0 = pState; 00124 00125 px1 = pState + S->M; 00126 00127 00128 /* Initialize coeff pointer */ 00129 pb = pCoeffs; 00130 00131 /* Loop unrolling. Process 4 taps at a time. */ 00132 tapCnt = numTaps >> 2; 00133 00134 /* Loop over the number of taps. Unroll by a factor of 4. 00135 ** Repeat until we've computed numTaps-4 coefficients. */ 00136 while(tapCnt > 0u) 00137 { 00138 /* Read the Read b[numTaps-1] and b[numTaps-2] coefficients */ 00139 c0 = *__SIMD32(pb)++; 00140 00141 /* Read x[n-numTaps-1] and x[n-numTaps-2]sample */ 00142 x0 = *__SIMD32(px0)++; 00143 00144 x1 = *__SIMD32(px1)++; 00145 00146 /* Perform the multiply-accumulate */ 00147 acc0 = __SMLALD(x0, c0, acc0); 00148 00149 acc1 = __SMLALD(x1, c0, acc1); 00150 00151 /* Read the b[numTaps-3] and b[numTaps-4] coefficient */ 00152 c0 = *__SIMD32(pb)++; 00153 00154 /* Read x[n-numTaps-2] and x[n-numTaps-3] sample */ 00155 x0 = *__SIMD32(px0)++; 00156 00157 x1 = *__SIMD32(px1)++; 00158 00159 /* Perform the multiply-accumulate */ 00160 acc0 = __SMLALD(x0, c0, acc0); 00161 00162 acc1 = __SMLALD(x1, c0, acc1); 00163 00164 /* Decrement the loop counter */ 00165 tapCnt--; 00166 } 00167 00168 /* If the filter length is not a multiple of 4, compute the remaining filter taps */ 00169 tapCnt = numTaps % 0x4u; 00170 00171 while(tapCnt > 0u) 00172 { 00173 /* Read coefficients */ 00174 c0 = *pb++; 00175 00176 /* Fetch 1 state variable */ 00177 x0 = *px0++; 00178 00179 x1 = *px1++; 00180 00181 /* Perform the multiply-accumulate */ 00182 acc0 = __SMLALD(x0, c0, acc0); 00183 acc1 = __SMLALD(x1, c0, acc1); 00184 00185 /* Decrement the loop counter */ 00186 tapCnt--; 00187 } 00188 00189 /* Advance the state pointer by the decimation factor 00190 * to process the next group of decimation factor number samples */ 00191 pState = pState + S->M * 2; 00192 00193 /* Store filter output, smlad returns the values in 2.14 format */ 00194 /* so downsacle by 15 to get output in 1.15 */ 00195 *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16)); 00196 *pDst++ = (q15_t) (__SSAT((acc1 >> 15), 16)); 00197 00198 /* Decrement the loop counter */ 00199 blkCnt--; 00200 } 00201 00202 00203 00204 while(blkCntN3 > 0u) 00205 { 00206 /* Copy decimation factor number of new input samples into the state buffer */ 00207 i = S->M; 00208 00209 do 00210 { 00211 *pStateCurnt++ = *pSrc++; 00212 00213 } while(--i); 00214 00215 /*Set sum to zero */ 00216 sum0 = 0; 00217 00218 /* Initialize state pointer */ 00219 px = pState; 00220 00221 /* Initialize coeff pointer */ 00222 pb = pCoeffs; 00223 00224 /* Loop unrolling. Process 4 taps at a time. */ 00225 tapCnt = numTaps >> 2; 00226 00227 /* Loop over the number of taps. Unroll by a factor of 4. 00228 ** Repeat until we've computed numTaps-4 coefficients. */ 00229 while(tapCnt > 0u) 00230 { 00231 /* Read the Read b[numTaps-1] and b[numTaps-2] coefficients */ 00232 c0 = *__SIMD32(pb)++; 00233 00234 /* Read x[n-numTaps-1] and x[n-numTaps-2]sample */ 00235 x0 = *__SIMD32(px)++; 00236 00237 /* Read the b[numTaps-3] and b[numTaps-4] coefficient */ 00238 c1 = *__SIMD32(pb)++; 00239 00240 /* Perform the multiply-accumulate */ 00241 sum0 = __SMLALD(x0, c0, sum0); 00242 00243 /* Read x[n-numTaps-2] and x[n-numTaps-3] sample */ 00244 x0 = *__SIMD32(px)++; 00245 00246 /* Perform the multiply-accumulate */ 00247 sum0 = __SMLALD(x0, c1, sum0); 00248 00249 /* Decrement the loop counter */ 00250 tapCnt--; 00251 } 00252 00253 /* If the filter length is not a multiple of 4, compute the remaining filter taps */ 00254 tapCnt = numTaps % 0x4u; 00255 00256 while(tapCnt > 0u) 00257 { 00258 /* Read coefficients */ 00259 c0 = *pb++; 00260 00261 /* Fetch 1 state variable */ 00262 x0 = *px++; 00263 00264 /* Perform the multiply-accumulate */ 00265 sum0 = __SMLALD(x0, c0, sum0); 00266 00267 /* Decrement the loop counter */ 00268 tapCnt--; 00269 } 00270 00271 /* Advance the state pointer by the decimation factor 00272 * to process the next group of decimation factor number samples */ 00273 pState = pState + S->M; 00274 00275 /* Store filter output, smlad returns the values in 2.14 format */ 00276 /* so downsacle by 15 to get output in 1.15 */ 00277 *pDst++ = (q15_t) (__SSAT((sum0 >> 15), 16)); 00278 00279 /* Decrement the loop counter */ 00280 blkCntN3--; 00281 } 00282 00283 /* Processing is complete. 00284 ** Now copy the last numTaps - 1 samples to the satrt of the state buffer. 00285 ** This prepares the state buffer for the next function call. */ 00286 00287 /* Points to the start of the state buffer */ 00288 pStateCurnt = S->pState; 00289 00290 i = (numTaps - 1u) >> 2u; 00291 00292 /* copy data */ 00293 while(i > 0u) 00294 { 00295 *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++; 00296 *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++; 00297 00298 /* Decrement the loop counter */ 00299 i--; 00300 } 00301 00302 i = (numTaps - 1u) % 0x04u; 00303 00304 /* copy data */ 00305 while(i > 0u) 00306 { 00307 *pStateCurnt++ = *pState++; 00308 00309 /* Decrement the loop counter */ 00310 i--; 00311 } 00312 } 00313 00314 #else 00315 00316 00317 void arm_fir_decimate_q15( 00318 const arm_fir_decimate_instance_q15 * S, 00319 q15_t * pSrc, 00320 q15_t * pDst, 00321 uint32_t blockSize) 00322 { 00323 q15_t *pState = S->pState; /* State pointer */ 00324 q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ 00325 q15_t *pStateCurnt; /* Points to the current sample of the state */ 00326 q15_t *px; /* Temporary pointer for state buffer */ 00327 q15_t *pb; /* Temporary pointer coefficient buffer */ 00328 q15_t x0, x1, c0; /* Temporary variables to hold state and coefficient values */ 00329 q63_t sum0; /* Accumulators */ 00330 q63_t acc0, acc1; 00331 q15_t *px0, *px1; 00332 uint32_t blkCntN3; 00333 uint32_t numTaps = S->numTaps; /* Number of taps */ 00334 uint32_t i, blkCnt, tapCnt, outBlockSize = blockSize / S->M; /* Loop counters */ 00335 00336 00337 /* S->pState buffer contains previous frame (numTaps - 1) samples */ 00338 /* pStateCurnt points to the location where the new input data should be written */ 00339 pStateCurnt = S->pState + (numTaps - 1u); 00340 00341 00342 /* Total number of output samples to be computed */ 00343 blkCnt = outBlockSize / 2; 00344 blkCntN3 = outBlockSize - (2 * blkCnt); 00345 00346 while(blkCnt > 0u) 00347 { 00348 /* Copy decimation factor number of new input samples into the state buffer */ 00349 i = 2 * S->M; 00350 00351 do 00352 { 00353 *pStateCurnt++ = *pSrc++; 00354 00355 } while(--i); 00356 00357 /* Set accumulator to zero */ 00358 acc0 = 0; 00359 acc1 = 0; 00360 00361 /* Initialize state pointer */ 00362 px0 = pState; 00363 00364 px1 = pState + S->M; 00365 00366 00367 /* Initialize coeff pointer */ 00368 pb = pCoeffs; 00369 00370 /* Loop unrolling. Process 4 taps at a time. */ 00371 tapCnt = numTaps >> 2; 00372 00373 /* Loop over the number of taps. Unroll by a factor of 4. 00374 ** Repeat until we've computed numTaps-4 coefficients. */ 00375 while(tapCnt > 0u) 00376 { 00377 /* Read the Read b[numTaps-1] coefficients */ 00378 c0 = *pb++; 00379 00380 /* Read x[n-numTaps-1] for sample 0 and for sample 1 */ 00381 x0 = *px0++; 00382 x1 = *px1++; 00383 00384 /* Perform the multiply-accumulate */ 00385 acc0 += x0 * c0; 00386 acc1 += x1 * c0; 00387 00388 /* Read the b[numTaps-2] coefficient */ 00389 c0 = *pb++; 00390 00391 /* Read x[n-numTaps-2] for sample 0 and sample 1 */ 00392 x0 = *px0++; 00393 x1 = *px1++; 00394 00395 /* Perform the multiply-accumulate */ 00396 acc0 += x0 * c0; 00397 acc1 += x1 * c0; 00398 00399 /* Read the b[numTaps-3] coefficients */ 00400 c0 = *pb++; 00401 00402 /* Read x[n-numTaps-3] for sample 0 and sample 1 */ 00403 x0 = *px0++; 00404 x1 = *px1++; 00405 00406 /* Perform the multiply-accumulate */ 00407 acc0 += x0 * c0; 00408 acc1 += x1 * c0; 00409 00410 /* Read the b[numTaps-4] coefficient */ 00411 c0 = *pb++; 00412 00413 /* Read x[n-numTaps-4] for sample 0 and sample 1 */ 00414 x0 = *px0++; 00415 x1 = *px1++; 00416 00417 /* Perform the multiply-accumulate */ 00418 acc0 += x0 * c0; 00419 acc1 += x1 * c0; 00420 00421 /* Decrement the loop counter */ 00422 tapCnt--; 00423 } 00424 00425 /* If the filter length is not a multiple of 4, compute the remaining filter taps */ 00426 tapCnt = numTaps % 0x4u; 00427 00428 while(tapCnt > 0u) 00429 { 00430 /* Read coefficients */ 00431 c0 = *pb++; 00432 00433 /* Fetch 1 state variable */ 00434 x0 = *px0++; 00435 x1 = *px1++; 00436 00437 /* Perform the multiply-accumulate */ 00438 acc0 += x0 * c0; 00439 acc1 += x1 * c0; 00440 00441 /* Decrement the loop counter */ 00442 tapCnt--; 00443 } 00444 00445 /* Advance the state pointer by the decimation factor 00446 * to process the next group of decimation factor number samples */ 00447 pState = pState + S->M * 2; 00448 00449 /* Store filter output, smlad returns the values in 2.14 format */ 00450 /* so downsacle by 15 to get output in 1.15 */ 00451 00452 *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16)); 00453 *pDst++ = (q15_t) (__SSAT((acc1 >> 15), 16)); 00454 00455 /* Decrement the loop counter */ 00456 blkCnt--; 00457 } 00458 00459 while(blkCntN3 > 0u) 00460 { 00461 /* Copy decimation factor number of new input samples into the state buffer */ 00462 i = S->M; 00463 00464 do 00465 { 00466 *pStateCurnt++ = *pSrc++; 00467 00468 } while(--i); 00469 00470 /*Set sum to zero */ 00471 sum0 = 0; 00472 00473 /* Initialize state pointer */ 00474 px = pState; 00475 00476 /* Initialize coeff pointer */ 00477 pb = pCoeffs; 00478 00479 /* Loop unrolling. Process 4 taps at a time. */ 00480 tapCnt = numTaps >> 2; 00481 00482 /* Loop over the number of taps. Unroll by a factor of 4. 00483 ** Repeat until we've computed numTaps-4 coefficients. */ 00484 while(tapCnt > 0u) 00485 { 00486 /* Read the Read b[numTaps-1] coefficients */ 00487 c0 = *pb++; 00488 00489 /* Read x[n-numTaps-1] and sample */ 00490 x0 = *px++; 00491 00492 /* Perform the multiply-accumulate */ 00493 sum0 += x0 * c0; 00494 00495 /* Read the b[numTaps-2] coefficient */ 00496 c0 = *pb++; 00497 00498 /* Read x[n-numTaps-2] and sample */ 00499 x0 = *px++; 00500 00501 /* Perform the multiply-accumulate */ 00502 sum0 += x0 * c0; 00503 00504 /* Read the b[numTaps-3] coefficients */ 00505 c0 = *pb++; 00506 00507 /* Read x[n-numTaps-3] sample */ 00508 x0 = *px++; 00509 00510 /* Perform the multiply-accumulate */ 00511 sum0 += x0 * c0; 00512 00513 /* Read the b[numTaps-4] coefficient */ 00514 c0 = *pb++; 00515 00516 /* Read x[n-numTaps-4] sample */ 00517 x0 = *px++; 00518 00519 /* Perform the multiply-accumulate */ 00520 sum0 += x0 * c0; 00521 00522 /* Decrement the loop counter */ 00523 tapCnt--; 00524 } 00525 00526 /* If the filter length is not a multiple of 4, compute the remaining filter taps */ 00527 tapCnt = numTaps % 0x4u; 00528 00529 while(tapCnt > 0u) 00530 { 00531 /* Read coefficients */ 00532 c0 = *pb++; 00533 00534 /* Fetch 1 state variable */ 00535 x0 = *px++; 00536 00537 /* Perform the multiply-accumulate */ 00538 sum0 += x0 * c0; 00539 00540 /* Decrement the loop counter */ 00541 tapCnt--; 00542 } 00543 00544 /* Advance the state pointer by the decimation factor 00545 * to process the next group of decimation factor number samples */ 00546 pState = pState + S->M; 00547 00548 /* Store filter output, smlad returns the values in 2.14 format */ 00549 /* so downsacle by 15 to get output in 1.15 */ 00550 *pDst++ = (q15_t) (__SSAT((sum0 >> 15), 16)); 00551 00552 /* Decrement the loop counter */ 00553 blkCntN3--; 00554 } 00555 00556 /* Processing is complete. 00557 ** Now copy the last numTaps - 1 samples to the satrt of the state buffer. 00558 ** This prepares the state buffer for the next function call. */ 00559 00560 /* Points to the start of the state buffer */ 00561 pStateCurnt = S->pState; 00562 00563 i = (numTaps - 1u) >> 2u; 00564 00565 /* copy data */ 00566 while(i > 0u) 00567 { 00568 *pStateCurnt++ = *pState++; 00569 *pStateCurnt++ = *pState++; 00570 *pStateCurnt++ = *pState++; 00571 *pStateCurnt++ = *pState++; 00572 00573 /* Decrement the loop counter */ 00574 i--; 00575 } 00576 00577 i = (numTaps - 1u) % 0x04u; 00578 00579 /* copy data */ 00580 while(i > 0u) 00581 { 00582 *pStateCurnt++ = *pState++; 00583 00584 /* Decrement the loop counter */ 00585 i--; 00586 } 00587 } 00588 00589 00590 #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ 00591 00592 #else 00593 00594 00595 void arm_fir_decimate_q15( 00596 const arm_fir_decimate_instance_q15 * S, 00597 q15_t * pSrc, 00598 q15_t * pDst, 00599 uint32_t blockSize) 00600 { 00601 q15_t *pState = S->pState; /* State pointer */ 00602 q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ 00603 q15_t *pStateCurnt; /* Points to the current sample of the state */ 00604 q15_t *px; /* Temporary pointer for state buffer */ 00605 q15_t *pb; /* Temporary pointer coefficient buffer */ 00606 q31_t x0, c0; /* Temporary variables to hold state and coefficient values */ 00607 q63_t sum0; /* Accumulators */ 00608 uint32_t numTaps = S->numTaps; /* Number of taps */ 00609 uint32_t i, blkCnt, tapCnt, outBlockSize = blockSize / S->M; /* Loop counters */ 00610 00611 00612 00613 /* Run the below code for Cortex-M0 */ 00614 00615 /* S->pState buffer contains previous frame (numTaps - 1) samples */ 00616 /* pStateCurnt points to the location where the new input data should be written */ 00617 pStateCurnt = S->pState + (numTaps - 1u); 00618 00619 /* Total number of output samples to be computed */ 00620 blkCnt = outBlockSize; 00621 00622 while(blkCnt > 0u) 00623 { 00624 /* Copy decimation factor number of new input samples into the state buffer */ 00625 i = S->M; 00626 00627 do 00628 { 00629 *pStateCurnt++ = *pSrc++; 00630 00631 } while(--i); 00632 00633 /*Set sum to zero */ 00634 sum0 = 0; 00635 00636 /* Initialize state pointer */ 00637 px = pState; 00638 00639 /* Initialize coeff pointer */ 00640 pb = pCoeffs; 00641 00642 tapCnt = numTaps; 00643 00644 while(tapCnt > 0u) 00645 { 00646 /* Read coefficients */ 00647 c0 = *pb++; 00648 00649 /* Fetch 1 state variable */ 00650 x0 = *px++; 00651 00652 /* Perform the multiply-accumulate */ 00653 sum0 += (q31_t) x0 *c0; 00654 00655 /* Decrement the loop counter */ 00656 tapCnt--; 00657 } 00658 00659 /* Advance the state pointer by the decimation factor 00660 * to process the next group of decimation factor number samples */ 00661 pState = pState + S->M; 00662 00663 /*Store filter output , smlad will return the values in 2.14 format */ 00664 /* so downsacle by 15 to get output in 1.15 */ 00665 *pDst++ = (q15_t) (__SSAT((sum0 >> 15), 16)); 00666 00667 /* Decrement the loop counter */ 00668 blkCnt--; 00669 } 00670 00671 /* Processing is complete. 00672 ** Now copy the last numTaps - 1 samples to the start of the state buffer. 00673 ** This prepares the state buffer for the next function call. */ 00674 00675 /* Points to the start of the state buffer */ 00676 pStateCurnt = S->pState; 00677 00678 i = numTaps - 1u; 00679 00680 /* copy data */ 00681 while(i > 0u) 00682 { 00683 *pStateCurnt++ = *pState++; 00684 00685 /* Decrement the loop counter */ 00686 i--; 00687 } 00688 00689 00690 } 00691 #endif /* #ifndef ARM_MATH_CM0_FAMILY */ 00692 00693 00694 /** 00695 * @} end of FIR_decimate group 00696 */
Generated on Tue Jul 12 2022 11:59:17 by 1.7.2