CMSIS DSP library
Dependents: performance_timer Surfboard_ gps2rtty Capstone ... more
arm_cmplx_mult_cmplx_f32.c
00001 /* ---------------------------------------------------------------------- 00002 * Copyright (C) 2010-2014 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 19. March 2015 00005 * $Revision: V.1.4.5 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_cmplx_mult_cmplx_f32.c 00009 * 00010 * Description: Floating-point complex-by-complex multiplication 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 00013 * 00014 * Redistribution and use in source and binary forms, with or without 00015 * modification, are permitted provided that the following conditions 00016 * are met: 00017 * - Redistributions of source code must retain the above copyright 00018 * notice, this list of conditions and the following disclaimer. 00019 * - Redistributions in binary form must reproduce the above copyright 00020 * notice, this list of conditions and the following disclaimer in 00021 * the documentation and/or other materials provided with the 00022 * distribution. 00023 * - Neither the name of ARM LIMITED nor the names of its contributors 00024 * may be used to endorse or promote products derived from this 00025 * software without specific prior written permission. 00026 * 00027 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 00028 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 00029 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 00030 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 00031 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 00032 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 00033 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 00034 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 00035 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 00036 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 00037 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 00038 * POSSIBILITY OF SUCH DAMAGE. 00039 * -------------------------------------------------------------------- */ 00040 #include "arm_math.h" 00041 00042 /** 00043 * @ingroup groupCmplxMath 00044 */ 00045 00046 /** 00047 * @defgroup CmplxByCmplxMult Complex-by-Complex Multiplication 00048 * 00049 * Multiplies a complex vector by another complex vector and generates a complex result. 00050 * The data in the complex arrays is stored in an interleaved fashion 00051 * (real, imag, real, imag, ...). 00052 * The parameter <code>numSamples</code> represents the number of complex 00053 * samples processed. The complex arrays have a total of <code>2*numSamples</code> 00054 * real values. 00055 * 00056 * The underlying algorithm is used: 00057 * 00058 * <pre> 00059 * for(n=0; n<numSamples; n++) { 00060 * pDst[(2*n)+0] = pSrcA[(2*n)+0] * pSrcB[(2*n)+0] - pSrcA[(2*n)+1] * pSrcB[(2*n)+1]; 00061 * pDst[(2*n)+1] = pSrcA[(2*n)+0] * pSrcB[(2*n)+1] + pSrcA[(2*n)+1] * pSrcB[(2*n)+0]; 00062 * } 00063 * </pre> 00064 * 00065 * There are separate functions for floating-point, Q15, and Q31 data types. 00066 */ 00067 00068 /** 00069 * @addtogroup CmplxByCmplxMult 00070 * @{ 00071 */ 00072 00073 00074 /** 00075 * @brief Floating-point complex-by-complex multiplication 00076 * @param[in] *pSrcA points to the first input vector 00077 * @param[in] *pSrcB points to the second input vector 00078 * @param[out] *pDst points to the output vector 00079 * @param[in] numSamples number of complex samples in each vector 00080 * @return none. 00081 */ 00082 00083 void arm_cmplx_mult_cmplx_f32( 00084 float32_t * pSrcA, 00085 float32_t * pSrcB, 00086 float32_t * pDst, 00087 uint32_t numSamples) 00088 { 00089 float32_t a1, b1, c1, d1; /* Temporary variables to store real and imaginary values */ 00090 uint32_t blkCnt; /* loop counters */ 00091 00092 #ifndef ARM_MATH_CM0_FAMILY 00093 00094 /* Run the below code for Cortex-M4 and Cortex-M3 */ 00095 float32_t a2, b2, c2, d2; /* Temporary variables to store real and imaginary values */ 00096 float32_t acc1, acc2, acc3, acc4; 00097 00098 00099 /* loop Unrolling */ 00100 blkCnt = numSamples >> 2u; 00101 00102 /* First part of the processing with loop unrolling. Compute 4 outputs at a time. 00103 ** a second loop below computes the remaining 1 to 3 samples. */ 00104 while(blkCnt > 0u) 00105 { 00106 /* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */ 00107 /* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */ 00108 a1 = *pSrcA; /* A[2 * i] */ 00109 c1 = *pSrcB; /* B[2 * i] */ 00110 00111 b1 = *(pSrcA + 1); /* A[2 * i + 1] */ 00112 acc1 = a1 * c1; /* acc1 = A[2 * i] * B[2 * i] */ 00113 00114 a2 = *(pSrcA + 2); /* A[2 * i + 2] */ 00115 acc2 = (b1 * c1); /* acc2 = A[2 * i + 1] * B[2 * i] */ 00116 00117 d1 = *(pSrcB + 1); /* B[2 * i + 1] */ 00118 c2 = *(pSrcB + 2); /* B[2 * i + 2] */ 00119 acc1 -= b1 * d1; /* acc1 = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1] */ 00120 00121 d2 = *(pSrcB + 3); /* B[2 * i + 3] */ 00122 acc3 = a2 * c2; /* acc3 = A[2 * i + 2] * B[2 * i + 2] */ 00123 00124 b2 = *(pSrcA + 3); /* A[2 * i + 3] */ 00125 acc2 += (a1 * d1); /* acc2 = A[2 * i + 1] * B[2 * i] + A[2 * i] * B[2 * i + 1] */ 00126 00127 a1 = *(pSrcA + 4); /* A[2 * i + 4] */ 00128 acc4 = (a2 * d2); /* acc4 = A[2 * i + 2] * B[2 * i + 3] */ 00129 00130 c1 = *(pSrcB + 4); /* B[2 * i + 4] */ 00131 acc3 -= (b2 * d2); /* acc3 = A[2 * i + 2] * B[2 * i + 2] - A[2 * i + 3] * B[2 * i + 3] */ 00132 *pDst = acc1; /* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1] */ 00133 00134 b1 = *(pSrcA + 5); /* A[2 * i + 5] */ 00135 acc4 += b2 * c2; /* acc4 = A[2 * i + 2] * B[2 * i + 3] + A[2 * i + 3] * B[2 * i + 2] */ 00136 00137 *(pDst + 1) = acc2; /* C[2 * i + 1] = A[2 * i + 1] * B[2 * i] + A[2 * i] * B[2 * i + 1] */ 00138 acc1 = (a1 * c1); 00139 00140 d1 = *(pSrcB + 5); 00141 acc2 = (b1 * c1); 00142 00143 *(pDst + 2) = acc3; 00144 *(pDst + 3) = acc4; 00145 00146 a2 = *(pSrcA + 6); 00147 acc1 -= (b1 * d1); 00148 00149 c2 = *(pSrcB + 6); 00150 acc2 += (a1 * d1); 00151 00152 b2 = *(pSrcA + 7); 00153 acc3 = (a2 * c2); 00154 00155 d2 = *(pSrcB + 7); 00156 acc4 = (b2 * c2); 00157 00158 *(pDst + 4) = acc1; 00159 pSrcA += 8u; 00160 00161 acc3 -= (b2 * d2); 00162 acc4 += (a2 * d2); 00163 00164 *(pDst + 5) = acc2; 00165 pSrcB += 8u; 00166 00167 *(pDst + 6) = acc3; 00168 *(pDst + 7) = acc4; 00169 00170 pDst += 8u; 00171 00172 /* Decrement the numSamples loop counter */ 00173 blkCnt--; 00174 } 00175 00176 /* If the numSamples is not a multiple of 4, compute any remaining output samples here. 00177 ** No loop unrolling is used. */ 00178 blkCnt = numSamples % 0x4u; 00179 00180 #else 00181 00182 /* Run the below code for Cortex-M0 */ 00183 blkCnt = numSamples; 00184 00185 #endif /* #ifndef ARM_MATH_CM0_FAMILY */ 00186 00187 while(blkCnt > 0u) 00188 { 00189 /* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */ 00190 /* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */ 00191 a1 = *pSrcA++; 00192 b1 = *pSrcA++; 00193 c1 = *pSrcB++; 00194 d1 = *pSrcB++; 00195 00196 /* store the result in the destination buffer. */ 00197 *pDst++ = (a1 * c1) - (b1 * d1); 00198 *pDst++ = (a1 * d1) + (b1 * c1); 00199 00200 /* Decrement the numSamples loop counter */ 00201 blkCnt--; 00202 } 00203 } 00204 00205 /** 00206 * @} end of CmplxByCmplxMult group 00207 */
Generated on Tue Jul 12 2022 11:59:15 by 1.7.2