CMSIS DSP library

Dependents:   performance_timer Surfboard_ gps2rtty Capstone ... more

Legacy Warning

This is an mbed 2 library. To learn more about mbed OS 5, visit the docs.

cmsis_dsp/FilteringFunctions/arm_lms_norm_q15.c

Committer:
emilmont
Date:
2012-11-28
Revision:
1:fdd22bb7aa52
Child:
2:da51fb522205

File content as of revision 1:fdd22bb7aa52:

/* ----------------------------------------------------------------------    
* Copyright (C) 2010 ARM Limited. All rights reserved.    
*    
* $Date:        15. February 2012  
* $Revision:     V1.1.0  
*    
* Project:         CMSIS DSP Library    
* Title:        arm_lms_norm_q15.c    
*    
* Description:    Q15 NLMS filter.    
*    
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Version 1.1.0 2012/02/15 
*    Updated with more optimizations, bug fixes and minor API changes.  
*   
* Version 1.0.10 2011/7/15  
*    Big Endian support added and Merged M0 and M3/M4 Source code.   
*    
* Version 1.0.3 2010/11/29   
*    Re-organized the CMSIS folders and updated documentation.    
*     
* Version 1.0.2 2010/11/11    
*    Documentation updated.     
*    
* Version 1.0.1 2010/10/05     
*    Production release and review comments incorporated.    
*    
* Version 1.0.0 2010/09/20     
*    Production release and review comments incorporated    
*    
* Version 0.0.7  2010/06/10     
*    Misra-C changes done    
* -------------------------------------------------------------------- */

#include "arm_math.h"

/**    
 * @ingroup groupFilters    
 */

/**    
 * @addtogroup LMS_NORM    
 * @{    
 */

/**    
* @brief Processing function for Q15 normalized LMS filter.    
* @param[in] *S points to an instance of the Q15 normalized LMS filter structure.    
* @param[in] *pSrc points to the block of input data.    
* @param[in] *pRef points to the block of reference data.    
* @param[out] *pOut points to the block of output data.    
* @param[out] *pErr points to the block of error data.    
* @param[in] blockSize number of samples to process.    
* @return none.    
*    
* <b>Scaling and Overflow Behavior:</b>     
* \par     
* The function is implemented using a 64-bit internal accumulator.     
* Both coefficients and state variables are represented in 1.15 format and    
* multiplications yield a 2.30 result. The 2.30 intermediate results are    
* accumulated in a 64-bit accumulator in 34.30 format.     
* There is no risk of internal overflow with this approach and the full    
* precision of intermediate multiplications is preserved. After all additions    
* have been performed, the accumulator is truncated to 34.15 format by    
* discarding low 15 bits. Lastly, the accumulator is saturated to yield a    
* result in 1.15 format.    
*    
* \par   
*     In this filter, filter coefficients are updated for each sample and the updation of filter cofficients are saturted.    
*    
 */

void arm_lms_norm_q15(
  arm_lms_norm_instance_q15 * S,
  q15_t * pSrc,
  q15_t * pRef,
  q15_t * pOut,
  q15_t * pErr,
  uint32_t blockSize)
{
  q15_t *pState = S->pState;                     /* State pointer */
  q15_t *pCoeffs = S->pCoeffs;                   /* Coefficient pointer */
  q15_t *pStateCurnt;                            /* Points to the current sample of the state */
  q15_t *px, *pb;                                /* Temporary pointers for state and coefficient buffers */
  q15_t mu = S->mu;                              /* Adaptive factor */
  uint32_t numTaps = S->numTaps;                 /* Number of filter coefficients in the filter */
  uint32_t tapCnt, blkCnt;                       /* Loop counters */
  q31_t energy;                                  /* Energy of the input */
  q63_t acc;                                     /* Accumulator */
  q15_t e = 0, d = 0;                            /* error, reference data sample */
  q15_t w = 0, in;                               /* weight factor and state */
  q15_t x0;                                      /* temporary variable to hold input sample */
  //uint32_t shift = (uint32_t) S->postShift + 1u; /* Shift to be applied to the output */ 
  q15_t errorXmu, oneByEnergy;                   /* Temporary variables to store error and mu product and reciprocal of energy */
  q15_t postShift;                               /* Post shift to be applied to weight after reciprocal calculation */
  q31_t coef;                                    /* Teporary variable for coefficient */
  q31_t acc_l, acc_h;
  int32_t lShift = (15 - (int32_t) S->postShift);       /*  Post shift  */
  int32_t uShift = (32 - lShift);

  energy = S->energy;
  x0 = S->x0;

  /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
  /* pStateCurnt points to the location where the new input data should be written */
  pStateCurnt = &(S->pState[(numTaps - 1u)]);

  /* Loop over blockSize number of values */
  blkCnt = blockSize;


#ifndef ARM_MATH_CM0

  /* Run the below code for Cortex-M4 and Cortex-M3 */

  while(blkCnt > 0u)
  {
    /* Copy the new input sample into the state buffer */
    *pStateCurnt++ = *pSrc;

    /* Initialize pState pointer */
    px = pState;

    /* Initialize coeff pointer */
    pb = (pCoeffs);

    /* Read the sample from input buffer */
    in = *pSrc++;

    /* Update the energy calculation */
    energy -= (((q31_t) x0 * (x0)) >> 15);
    energy += (((q31_t) in * (in)) >> 15);

    /* Set the accumulator to zero */
    acc = 0;

    /* Loop unrolling.  Process 4 taps at a time. */
    tapCnt = numTaps >> 2;

    while(tapCnt > 0u)
    {

      /* Perform the multiply-accumulate */
#ifndef UNALIGNED_SUPPORT_DISABLE

      acc = __SMLALD(*__SIMD32(px)++, (*__SIMD32(pb)++), acc);
      acc = __SMLALD(*__SIMD32(px)++, (*__SIMD32(pb)++), acc);

#else

      acc += (((q31_t) * px++ * (*pb++)));
      acc += (((q31_t) * px++ * (*pb++)));
      acc += (((q31_t) * px++ * (*pb++)));
      acc += (((q31_t) * px++ * (*pb++)));

#endif    /*    #ifndef UNALIGNED_SUPPORT_DISABLE    */

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* If the filter length is not a multiple of 4, compute the remaining filter taps */
    tapCnt = numTaps % 0x4u;

    while(tapCnt > 0u)
    {
      /* Perform the multiply-accumulate */
      acc += (((q31_t) * px++ * (*pb++)));

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* Calc lower part of acc */
    acc_l = acc & 0xffffffff;

    /* Calc upper part of acc */
    acc_h = (acc >> 32) & 0xffffffff;

    /* Apply shift for lower part of acc and upper part of acc */
    acc = (uint32_t) acc_l >> lShift | acc_h << uShift;

    /* Converting the result to 1.15 format and saturate the output */
    acc = __SSAT(acc, 16u);

    /* Store the result from accumulator into the destination buffer. */
    *pOut++ = (q15_t) acc;

    /* Compute and store error */
    d = *pRef++;
    e = d - (q15_t) acc;
    *pErr++ = e;

    /* Calculation of 1/energy */
    postShift = arm_recip_q15((q15_t) energy + DELTA_Q15,
                              &oneByEnergy, S->recipTable);

    /* Calculation of e * mu value */
    errorXmu = (q15_t) (((q31_t) e * mu) >> 15);

    /* Calculation of (e * mu) * (1/energy) value */
    acc = (((q31_t) errorXmu * oneByEnergy) >> (15 - postShift));

    /* Weighting factor for the normalized version */
    w = (q15_t) __SSAT((q31_t) acc, 16);

    /* Initialize pState pointer */
    px = pState;

    /* Initialize coeff pointer */
    pb = (pCoeffs);

    /* Loop unrolling.  Process 4 taps at a time. */
    tapCnt = numTaps >> 2;

    /* Update filter coefficients */
    while(tapCnt > 0u)
    {
      coef = *pb + (((q31_t) w * (*px++)) >> 15);
      *pb++ = (q15_t) __SSAT((coef), 16);
      coef = *pb + (((q31_t) w * (*px++)) >> 15);
      *pb++ = (q15_t) __SSAT((coef), 16);
      coef = *pb + (((q31_t) w * (*px++)) >> 15);
      *pb++ = (q15_t) __SSAT((coef), 16);
      coef = *pb + (((q31_t) w * (*px++)) >> 15);
      *pb++ = (q15_t) __SSAT((coef), 16);

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* If the filter length is not a multiple of 4, compute the remaining filter taps */
    tapCnt = numTaps % 0x4u;

    while(tapCnt > 0u)
    {
      /* Perform the multiply-accumulate */
      coef = *pb + (((q31_t) w * (*px++)) >> 15);
      *pb++ = (q15_t) __SSAT((coef), 16);

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* Read the sample from state buffer */
    x0 = *pState;

    /* Advance state pointer by 1 for the next sample */
    pState = pState + 1u;

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* Save energy and x0 values for the next frame */
  S->energy = (q15_t) energy;
  S->x0 = x0;

  /* Processing is complete. Now copy the last numTaps - 1 samples to the    
     satrt of the state buffer. This prepares the state buffer for the    
     next function call. */

  /* Points to the start of the pState buffer */
  pStateCurnt = S->pState;

  /* Calculation of count for copying integer writes */
  tapCnt = (numTaps - 1u) >> 2;

  while(tapCnt > 0u)
  {

#ifndef UNALIGNED_SUPPORT_DISABLE

    *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
    *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;

#else

    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;

#endif

    tapCnt--;

  }

  /* Calculation of count for remaining q15_t data */
  tapCnt = (numTaps - 1u) % 0x4u;

  /* copy data */
  while(tapCnt > 0u)
  {
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    tapCnt--;
  }

#else

  /* Run the below code for Cortex-M0 */

  while(blkCnt > 0u)
  {
    /* Copy the new input sample into the state buffer */
    *pStateCurnt++ = *pSrc;

    /* Initialize pState pointer */
    px = pState;

    /* Initialize pCoeffs pointer */
    pb = pCoeffs;

    /* Read the sample from input buffer */
    in = *pSrc++;

    /* Update the energy calculation */
    energy -= (((q31_t) x0 * (x0)) >> 15);
    energy += (((q31_t) in * (in)) >> 15);

    /* Set the accumulator to zero */
    acc = 0;

    /* Loop over numTaps number of values */
    tapCnt = numTaps;

    while(tapCnt > 0u)
    {
      /* Perform the multiply-accumulate */
      acc += (((q31_t) * px++ * (*pb++)));

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* Calc lower part of acc */
    acc_l = acc & 0xffffffff;

    /* Calc upper part of acc */
    acc_h = (acc >> 32) & 0xffffffff;

    /* Apply shift for lower part of acc and upper part of acc */
    acc = (uint32_t) acc_l >> lShift | acc_h << uShift;

    /* Converting the result to 1.15 format and saturate the output */
    acc = __SSAT(acc, 16u);

    /* Converting the result to 1.15 format */
    //acc = __SSAT((acc >> (16u - shift)), 16u); 

    /* Store the result from accumulator into the destination buffer. */
    *pOut++ = (q15_t) acc;

    /* Compute and store error */
    d = *pRef++;
    e = d - (q15_t) acc;
    *pErr++ = e;

    /* Calculation of 1/energy */
    postShift = arm_recip_q15((q15_t) energy + DELTA_Q15,
                              &oneByEnergy, S->recipTable);

    /* Calculation of e * mu value */
    errorXmu = (q15_t) (((q31_t) e * mu) >> 15);

    /* Calculation of (e * mu) * (1/energy) value */
    acc = (((q31_t) errorXmu * oneByEnergy) >> (15 - postShift));

    /* Weighting factor for the normalized version */
    w = (q15_t) __SSAT((q31_t) acc, 16);

    /* Initialize pState pointer */
    px = pState;

    /* Initialize coeff pointer */
    pb = (pCoeffs);

    /* Loop over numTaps number of values */
    tapCnt = numTaps;

    while(tapCnt > 0u)
    {
      /* Perform the multiply-accumulate */
      coef = *pb + (((q31_t) w * (*px++)) >> 15);
      *pb++ = (q15_t) __SSAT((coef), 16);

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* Read the sample from state buffer */
    x0 = *pState;

    /* Advance state pointer by 1 for the next sample */
    pState = pState + 1u;

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* Save energy and x0 values for the next frame */
  S->energy = (q15_t) energy;
  S->x0 = x0;

  /* Processing is complete. Now copy the last numTaps - 1 samples to the        
     satrt of the state buffer. This prepares the state buffer for the        
     next function call. */

  /* Points to the start of the pState buffer */
  pStateCurnt = S->pState;

  /* copy (numTaps - 1u) data */
  tapCnt = (numTaps - 1u);

  /* copy data */
  while(tapCnt > 0u)
  {
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    tapCnt--;
  }

#endif /*   #ifndef ARM_MATH_CM0 */

}


/**    
   * @} end of LMS_NORM group    
   */