CMSIS DSP library

Dependents:   performance_timer Surfboard_ gps2rtty Capstone ... more

Legacy Warning

This is an mbed 2 library. To learn more about mbed OS 5, visit the docs.

cmsis_dsp/SupportFunctions/arm_float_to_q7.c

Committer:
emilmont
Date:
2013-05-30
Revision:
2:da51fb522205
Parent:
1:fdd22bb7aa52
Child:
3:7a284390b0ce

File content as of revision 2:da51fb522205:

/* ----------------------------------------------------------------------------    
* Copyright (C) 2010 ARM Limited. All rights reserved.    
*    
* $Date:        15. February 2012  
* $Revision: 	V1.1.0  
*    
* Project: 	    CMSIS DSP Library    
* Title:		arm_float_to_q7.c    
*    
* Description:	Converts the elements of the floating-point vector to Q7 vector.   
*    
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Version 1.1.0 2012/02/15 
*    Updated with more optimizations, bug fixes and minor API changes.  
*   
* Version 1.0.10 2011/7/15  
*    Big Endian support added and Merged M0 and M3/M4 Source code.   
*    
* Version 1.0.3 2010/11/29   
*    Re-organized the CMSIS folders and updated documentation.    
*     
* Version 1.0.2 2010/11/11    
*    Documentation updated.     
*    
* Version 1.0.1 2010/10/05     
*    Production release and review comments incorporated.    
*    
* Version 1.0.0 2010/09/20     
*    Production release and review comments incorporated.    
* ---------------------------------------------------------------------------- */

#include "arm_math.h"

/**    
 * @ingroup groupSupport    
 */

/**    
 * @addtogroup float_to_x    
 * @{    
 */

/**    
 * @brief Converts the elements of the floating-point vector to Q7 vector.    
 * @param[in]       *pSrc points to the floating-point input vector    
 * @param[out]      *pDst points to the Q7 output vector   
 * @param[in]       blockSize length of the input vector    
 * @return none.    
 *    
 *\par Description:    
 * \par   
 * The equation used for the conversion process is:    
 * <pre>    
 * 	pDst[n] = (q7_t)(pSrc[n] * 128);   0 <= n < blockSize.    
 * </pre>    
 * \par Scaling and Overflow Behavior:    
 * \par    
 * The function uses saturating arithmetic.    
 * Results outside of the allowable Q7 range [0x80 0x7F] will be saturated.    
 * \note   
 * In order to apply rounding, the library should be rebuilt with the ROUNDING macro     
 * defined in the preprocessor section of project options.     
 */


void arm_float_to_q7(
  float32_t * pSrc,
  q7_t * pDst,
  uint32_t blockSize)
{
  float32_t *pIn = pSrc;                         /* Src pointer */
  uint32_t blkCnt;                               /* loop counter */

#ifdef ARM_MATH_ROUNDING

  float32_t in;

#endif /*      #ifdef ARM_MATH_ROUNDING        */

#ifndef ARM_MATH_CM0

  /* Run the below code for Cortex-M4 and Cortex-M3 */

  /*loop Unrolling */
  blkCnt = blockSize >> 2u;

  /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.    
   ** a second loop below computes the remaining 1 to 3 samples. */
  while(blkCnt > 0u)
  {

#ifdef ARM_MATH_ROUNDING
    /* C = A * 128 */
    /* convert from float to q7 and then store the results in the destination buffer */
    in = *pIn++;
    in = (in * 128);
    in += in > 0 ? 0.5 : -0.5;
    *pDst++ = (q7_t) (__SSAT((q15_t) (in), 8));

    in = *pIn++;
    in = (in * 128);
    in += in > 0 ? 0.5 : -0.5;
    *pDst++ = (q7_t) (__SSAT((q15_t) (in), 8));

    in = *pIn++;
    in = (in * 128);
    in += in > 0 ? 0.5 : -0.5;
    *pDst++ = (q7_t) (__SSAT((q15_t) (in), 8));

    in = *pIn++;
    in = (in * 128);
    in += in > 0 ? 0.5 : -0.5;
    *pDst++ = (q7_t) (__SSAT((q15_t) (in), 8));

#else

    /* C = A * 128 */
    /* convert from float to q7 and then store the results in the destination buffer */
    *pDst++ = __SSAT((q31_t) (*pIn++ * 128.0f), 8);
    *pDst++ = __SSAT((q31_t) (*pIn++ * 128.0f), 8);
    *pDst++ = __SSAT((q31_t) (*pIn++ * 128.0f), 8);
    *pDst++ = __SSAT((q31_t) (*pIn++ * 128.0f), 8);

#endif /*      #ifdef ARM_MATH_ROUNDING        */

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* If the blockSize is not a multiple of 4, compute any remaining output samples here.    
   ** No loop unrolling is used. */
  blkCnt = blockSize % 0x4u;

  while(blkCnt > 0u)
  {

#ifdef ARM_MATH_ROUNDING
    /* C = A * 128 */
    /* convert from float to q7 and then store the results in the destination buffer */
    in = *pIn++;
    in = (in * 128);
    in += in > 0 ? 0.5 : -0.5;
    *pDst++ = (q7_t) (__SSAT((q15_t) (in), 8));

#else

    /* C = A * 128 */
    /* convert from float to q7 and then store the results in the destination buffer */
    *pDst++ = __SSAT((q31_t) (*pIn++ * 128.0f), 8);

#endif /*      #ifdef ARM_MATH_ROUNDING        */

    /* Decrement the loop counter */
    blkCnt--;
  }


#else

  /* Run the below code for Cortex-M0 */


  /* Loop over blockSize number of values */
  blkCnt = blockSize;

  while(blkCnt > 0u)
  {
#ifdef ARM_MATH_ROUNDING
    /* C = A * 128 */
    /* convert from float to q7 and then store the results in the destination buffer */
    in = *pIn++;
    in = (in * 128.0f);
    in += in > 0 ? 0.5f : -0.5f;
    *pDst++ = (q7_t) (__SSAT((q31_t) (in), 8));

#else

    /* C = A * 128 */
    /* convert from float to q7 and then store the results in the destination buffer */
    *pDst++ = (q7_t) __SSAT((q31_t) (*pIn++ * 128.0f), 8);

#endif /*      #ifdef ARM_MATH_ROUNDING        */

    /* Decrement the loop counter */
    blkCnt--;
  }

#endif /* #ifndef ARM_MATH_CM0 */

}

/**    
 * @} end of float_to_x group    
 */