CMSIS DSP library

Dependents:   performance_timer Surfboard_ gps2rtty Capstone ... more

Legacy Warning

This is an mbed 2 library. To learn more about mbed OS 5, visit the docs.

cmsis_dsp/FilteringFunctions/arm_fir_q31.c

Committer:
mbed_official
Date:
2015-11-20
Revision:
5:3762170b6d4d
Parent:
3:7a284390b0ce

File content as of revision 5:3762170b6d4d:

/* ----------------------------------------------------------------------    
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
*    
* $Date:        19. March 2015
* $Revision: 	V.1.4.5
*    
* Project: 	    CMSIS DSP Library    
* Title:	    arm_fir_q31.c    
*    
* Description:	Q31 FIR filter processing function.    
*    
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Redistribution and use in source and binary forms, with or without 
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the 
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.   
* -------------------------------------------------------------------- */

#include "arm_math.h"

/**    
 * @ingroup groupFilters    
 */

/**    
 * @addtogroup FIR    
 * @{    
 */

/**    
 * @param[in] *S points to an instance of the Q31 FIR filter structure.    
 * @param[in] *pSrc points to the block of input data.    
 * @param[out] *pDst points to the block of output data.    
 * @param[in] blockSize number of samples to process per call.    
 * @return none.    
 *    
 * @details    
 * <b>Scaling and Overflow Behavior:</b>    
 * \par    
 * The function is implemented using an internal 64-bit accumulator.    
 * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.    
 * Thus, if the accumulator result overflows it wraps around rather than clip.    
 * In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits.    
 * After all multiply-accumulates are performed, the 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.  
 *    
 * \par    
 * Refer to the function <code>arm_fir_fast_q31()</code> for a faster but less precise implementation of this filter for Cortex-M3 and Cortex-M4.    
 */

void arm_fir_q31(
  const arm_fir_instance_q31 * S,
  q31_t * pSrc,
  q31_t * pDst,
  uint32_t blockSize)
{
  q31_t *pState = S->pState;                     /* State pointer */
  q31_t *pCoeffs = S->pCoeffs;                   /* Coefficient pointer */
  q31_t *pStateCurnt;                            /* Points to the current sample of the state */


#ifndef ARM_MATH_CM0_FAMILY

  /* Run the below code for Cortex-M4 and Cortex-M3 */

  q31_t x0, x1, x2;                              /* Temporary variables to hold state */
  q31_t c0;                                      /* Temporary variable to hold coefficient value */
  q31_t *px;                                     /* Temporary pointer for state */
  q31_t *pb;                                     /* Temporary pointer for coefficient buffer */
  q63_t acc0, acc1, acc2;                        /* Accumulators */
  uint32_t numTaps = S->numTaps;                 /* Number of filter coefficients in the filter */
  uint32_t i, tapCnt, blkCnt, tapCntN3;          /* Loop counters */

  /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
  /* pStateCurnt points to the location where the new input data should be written */
  pStateCurnt = &(S->pState[(numTaps - 1u)]);

  /* Apply loop unrolling and compute 4 output values simultaneously.    
   * The variables acc0 ... acc3 hold output values that are being computed:    
   *    
   *    acc0 =  b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]    
   *    acc1 =  b[numTaps-1] * x[n-numTaps] +   b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]    
   *    acc2 =  b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] +   b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]    
   *    acc3 =  b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps]   +...+ b[0] * x[3]    
   */
  blkCnt = blockSize / 3;
  blockSize = blockSize - (3 * blkCnt);

  tapCnt = numTaps / 3;
  tapCntN3 = numTaps - (3 * tapCnt);

  /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.    
   ** a second loop below computes the remaining 1 to 3 samples. */
  while(blkCnt > 0u)
  {
    /* Copy three new input samples into the state buffer */
    *pStateCurnt++ = *pSrc++;
    *pStateCurnt++ = *pSrc++;
    *pStateCurnt++ = *pSrc++;

    /* Set all accumulators to zero */
    acc0 = 0;
    acc1 = 0;
    acc2 = 0;

    /* Initialize state pointer */
    px = pState;

    /* Initialize coefficient pointer */
    pb = pCoeffs;

    /* Read the first two samples from the state buffer:    
     *  x[n-numTaps], x[n-numTaps-1] */
    x0 = *(px++);
    x1 = *(px++);

    /* Loop unrolling.  Process 3 taps at a time. */
    i = tapCnt;

    while(i > 0u)
    {
      /* Read the b[numTaps] coefficient */
      c0 = *pb;

      /* Read x[n-numTaps-2] sample */
      x2 = *(px++);

      /* Perform the multiply-accumulates */
      acc0 += ((q63_t) x0 * c0);
      acc1 += ((q63_t) x1 * c0);
      acc2 += ((q63_t) x2 * c0);

      /* Read the coefficient and state */
      c0 = *(pb + 1u);
      x0 = *(px++);

      /* Perform the multiply-accumulates */
      acc0 += ((q63_t) x1 * c0);
      acc1 += ((q63_t) x2 * c0);
      acc2 += ((q63_t) x0 * c0);

      /* Read the coefficient and state */
      c0 = *(pb + 2u);
      x1 = *(px++);

      /* update coefficient pointer */
      pb += 3u;

      /* Perform the multiply-accumulates */
      acc0 += ((q63_t) x2 * c0);
      acc1 += ((q63_t) x0 * c0);
      acc2 += ((q63_t) x1 * c0);

      /* Decrement the loop counter */
      i--;
    }

    /* If the filter length is not a multiple of 3, compute the remaining filter taps */

    i = tapCntN3;

    while(i > 0u)
    {
      /* Read coefficients */
      c0 = *(pb++);

      /* Fetch 1 state variable */
      x2 = *(px++);

      /* Perform the multiply-accumulates */
      acc0 += ((q63_t) x0 * c0);
      acc1 += ((q63_t) x1 * c0);
      acc2 += ((q63_t) x2 * c0);

      /* Reuse the present sample states for next sample */
      x0 = x1;
      x1 = x2;

      /* Decrement the loop counter */
      i--;
    }

    /* Advance the state pointer by 3 to process the next group of 3 samples */
    pState = pState + 3;

    /* The results in the 3 accumulators are in 2.30 format.  Convert to 1.31    
     ** Then store the 3 outputs in the destination buffer. */
    *pDst++ = (q31_t) (acc0 >> 31u);
    *pDst++ = (q31_t) (acc1 >> 31u);
    *pDst++ = (q31_t) (acc2 >> 31u);

    /* Decrement the samples loop counter */
    blkCnt--;
  }

  /* If the blockSize is not a multiple of 3, compute any remaining output samples here.    
   ** No loop unrolling is used. */

  while(blockSize > 0u)
  {
    /* Copy one sample at a time into state buffer */
    *pStateCurnt++ = *pSrc++;

    /* Set the accumulator to zero */
    acc0 = 0;

    /* Initialize state pointer */
    px = pState;

    /* Initialize Coefficient pointer */
    pb = (pCoeffs);

    i = numTaps;

    /* Perform the multiply-accumulates */
    do
    {
      acc0 += (q63_t) * (px++) * (*(pb++));
      i--;
    } while(i > 0u);

    /* The result is in 2.62 format.  Convert to 1.31    
     ** Then store the output in the destination buffer. */
    *pDst++ = (q31_t) (acc0 >> 31u);

    /* Advance state pointer by 1 for the next sample */
    pState = pState + 1;

    /* Decrement the samples loop counter */
    blockSize--;
  }

  /* Processing is complete.    
   ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.    
   ** This prepares the state buffer for the next function call. */

  /* Points to the start of the state buffer */
  pStateCurnt = S->pState;

  tapCnt = (numTaps - 1u) >> 2u;

  /* copy data */
  while(tapCnt > 0u)
  {
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    tapCnt--;
  }

  /* Calculate remaining number of copies */
  tapCnt = (numTaps - 1u) % 0x4u;

  /* Copy the remaining q31_t data */
  while(tapCnt > 0u)
  {
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    tapCnt--;
  }

#else

/* Run the below code for Cortex-M0 */

  q31_t *px;                                     /* Temporary pointer for state */
  q31_t *pb;                                     /* Temporary pointer for coefficient buffer */
  q63_t acc;                                     /* Accumulator */
  uint32_t numTaps = S->numTaps;                 /* Length of the filter */
  uint32_t i, tapCnt, blkCnt;                    /* Loop counters */

  /* S->pState buffer contains previous frame (numTaps - 1) samples */
  /* pStateCurnt points to the location where the new input data should be written */
  pStateCurnt = &(S->pState[(numTaps - 1u)]);

  /* Initialize blkCnt with blockSize */
  blkCnt = blockSize;

  while(blkCnt > 0u)
  {
    /* Copy one sample at a time into state buffer */
    *pStateCurnt++ = *pSrc++;

    /* Set the accumulator to zero */
    acc = 0;

    /* Initialize state pointer */
    px = pState;

    /* Initialize Coefficient pointer */
    pb = pCoeffs;

    i = numTaps;

    /* Perform the multiply-accumulates */
    do
    {
      /* acc =  b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
      acc += (q63_t) * px++ * *pb++;
      i--;
    } while(i > 0u);

    /* The result is in 2.62 format.  Convert to 1.31         
     ** Then store the output in the destination buffer. */
    *pDst++ = (q31_t) (acc >> 31u);

    /* Advance state pointer by 1 for the next sample */
    pState = pState + 1;

    /* Decrement the samples loop counter */
    blkCnt--;
  }

  /* Processing is complete.         
   ** Now copy the last numTaps - 1 samples to the starting of the state buffer.       
   ** This prepares the state buffer for the next function call. */

  /* Points to the start of the state buffer */
  pStateCurnt = S->pState;

  /* Copy numTaps number of values */
  tapCnt = numTaps - 1u;

  /* Copy the data */
  while(tapCnt > 0u)
  {
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    tapCnt--;
  }


#endif /*  #ifndef ARM_MATH_CM0_FAMILY */

}

/**    
 * @} end of FIR group    
 */