CMSIS DSP library

Dependents:   performance_timer Surfboard_ gps2rtty Capstone ... more

Legacy Warning

This is an mbed 2 library. To learn more about mbed OS 5, visit the docs.

Revision:
1:fdd22bb7aa52
Child:
2:da51fb522205
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/cmsis_dsp/TransformFunctions/arm_rfft_q15.c	Wed Nov 28 12:30:09 2012 +0000
@@ -0,0 +1,460 @@
+/* ----------------------------------------------------------------------    
+* Copyright (C) 2010 ARM Limited. All rights reserved.    
+*    
+* $Date:        15. February 2012  
+* $Revision:     V1.1.0  
+*    
+* Project:         CMSIS DSP Library    
+* Title:        arm_rfft_q15.c    
+*    
+* Description:    RFFT & RIFFT Q15 process function    
+*    
+*    
+* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
+*  
+* Version 1.1.0 2012/02/15 
+*    Updated with more optimizations, bug fixes and minor API changes.  
+*   
+* Version 1.0.10 2011/7/15  
+*    Big Endian support added and Merged M0 and M3/M4 Source code.   
+*    
+* Version 1.0.3 2010/11/29   
+*    Re-organized the CMSIS folders and updated documentation.    
+*     
+* Version 1.0.2 2010/11/11    
+*    Documentation updated.     
+*    
+* Version 1.0.1 2010/10/05     
+*    Production release and review comments incorporated.    
+*    
+* Version 1.0.0 2010/09/20     
+*    Production release and review comments incorporated    
+*    
+* Version 0.0.7  2010/06/10     
+*    Misra-C changes done    
+* -------------------------------------------------------------------- */
+
+
+#include "arm_math.h"
+
+/*--------------------------------------------------------------------    
+*        Internal functions prototypes    
+--------------------------------------------------------------------*/
+
+void arm_split_rfft_q15(
+  q15_t * pSrc,
+  uint32_t fftLen,
+  q15_t * pATable,
+  q15_t * pBTable,
+  q15_t * pDst,
+  uint32_t modifier);
+
+void arm_split_rifft_q15(
+  q15_t * pSrc,
+  uint32_t fftLen,
+  q15_t * pATable,
+  q15_t * pBTable,
+  q15_t * pDst,
+  uint32_t modifier);
+
+/**    
+ * @addtogroup RFFT_RIFFT    
+ * @{    
+ */
+
+/**    
+ * @brief Processing function for the Q15 RFFT/RIFFT.   
+ * @param[in]  *S    points to an instance of the Q15 RFFT/RIFFT structure.   
+ * @param[in]  *pSrc points to the input buffer.   
+ * @param[out] *pDst points to the output buffer.   
+ * @return none.   
+ *    
+ * \par Input an output formats:   
+ * \par    
+ * Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process.    
+ * Hence the output format is different for different RFFT sizes.    
+ * The input and output formats for different RFFT sizes and number of bits to upscale are mentioned in the tables below for RFFT and RIFFT:   
+ * \par    
+ * \image html RFFTQ15.gif "Input and Output Formats for Q15 RFFT"    
+ * \par    
+ * \image html RIFFTQ15.gif "Input and Output Formats for Q15 RIFFT"    
+ */
+
+void arm_rfft_q15(
+  const arm_rfft_instance_q15 * S,
+  q15_t * pSrc,
+  q15_t * pDst)
+{
+  const arm_cfft_radix4_instance_q15 *S_CFFT = S->pCfft;
+
+  /* Calculation of RIFFT of input */
+  if(S->ifftFlagR == 1u)
+  {
+    /*  Real IFFT core process */
+    arm_split_rifft_q15(pSrc, S->fftLenBy2, S->pTwiddleAReal,
+                        S->pTwiddleBReal, pDst, S->twidCoefRModifier);
+
+    /* Complex readix-4 IFFT process */
+    arm_radix4_butterfly_inverse_q15(pDst, S_CFFT->fftLen,
+                                     S_CFFT->pTwiddle,
+                                     S_CFFT->twidCoefModifier);
+
+    /* Bit reversal process */
+    if(S->bitReverseFlagR == 1u)
+    {
+      arm_bitreversal_q15(pDst, S_CFFT->fftLen,
+                          S_CFFT->bitRevFactor, S_CFFT->pBitRevTable);
+    }
+  }
+  else
+  {
+    /* Calculation of RFFT of input */
+
+    /* Complex readix-4 FFT process */
+    arm_radix4_butterfly_q15(pSrc, S_CFFT->fftLen,
+                             S_CFFT->pTwiddle, S_CFFT->twidCoefModifier);
+
+    /* Bit reversal process */
+    if(S->bitReverseFlagR == 1u)
+    {
+      arm_bitreversal_q15(pSrc, S_CFFT->fftLen,
+                          S_CFFT->bitRevFactor, S_CFFT->pBitRevTable);
+    }
+
+    arm_split_rfft_q15(pSrc, S->fftLenBy2, S->pTwiddleAReal,
+                       S->pTwiddleBReal, pDst, S->twidCoefRModifier);
+  }
+
+}
+
+  /**    
+   * @} end of RFFT_RIFFT group    
+   */
+
+/**    
+ * @brief  Core Real FFT process    
+ * @param  *pSrc                 points to the input buffer.   
+ * @param  fftLen                  length of FFT.   
+ * @param  *pATable             points to the A twiddle Coef buffer.    
+ * @param  *pBTable             points to the B twiddle Coef buffer.   
+ * @param  *pDst                 points to the output buffer.   
+ * @param  modifier             twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.   
+ * @return none.    
+ * The function implements a Real FFT    
+ */
+
+void arm_split_rfft_q15(
+  q15_t * pSrc,
+  uint32_t fftLen,
+  q15_t * pATable,
+  q15_t * pBTable,
+  q15_t * pDst,
+  uint32_t modifier)
+{
+  uint32_t i;                                    /* Loop Counter */
+  q31_t outR, outI;                              /* Temporary variables for output */
+  q15_t *pCoefA, *pCoefB;                        /* Temporary pointers for twiddle factors */
+  q15_t *pSrc1, *pSrc2;
+
+
+//  pSrc[2u * fftLen] = pSrc[0]; 
+//  pSrc[(2u * fftLen) + 1u] = pSrc[1]; 
+
+  pCoefA = &pATable[modifier * 2u];
+  pCoefB = &pBTable[modifier * 2u];
+
+  pSrc1 = &pSrc[2];
+  pSrc2 = &pSrc[(2u * fftLen) - 2u];
+
+#ifndef ARM_MATH_CM0
+
+  /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+  i = 1u;
+
+  while(i < fftLen)
+  {
+    /*    
+       outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]    
+       + pSrc[2 * n - 2 * i] * pBTable[2 * i] +    
+       pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);    
+     */
+
+    /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +    
+       pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -    
+       pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */
+
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+    /* pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] */
+    outR = __SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA));
+
+#else
+
+    /* -(pSrc[2 * i + 1] * pATable[2 * i + 1] - pSrc[2 * i] * pATable[2 * i]) */
+    outR = -(__SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA)));
+
+#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
+
+    /* pSrc[2 * n - 2 * i] * pBTable[2 * i] +    
+       pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */
+    outR = __SMLAD(*__SIMD32(pSrc2), *__SIMD32(pCoefB), outR) >> 15u;
+
+    /* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -    
+       pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+    outI = __SMUSDX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB));
+
+#else
+
+    outI = __SMUSDX(*__SIMD32(pCoefB), *__SIMD32(pSrc2)--);
+
+#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
+
+    /* (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] */
+    outI = __SMLADX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), outI);
+
+    /* write output */
+    pDst[2u * i] = (q15_t) outR;
+    pDst[(2u * i) + 1u] = outI >> 15u;
+
+    /* write complex conjugate output */
+    pDst[(4u * fftLen) - (2u * i)] = (q15_t) outR;
+    pDst[((4u * fftLen) - (2u * i)) + 1u] = -(outI >> 15u);
+
+    /* update coefficient pointer */
+    pCoefB = pCoefB + (2u * modifier);
+    pCoefA = pCoefA + (2u * modifier);
+
+    i++;
+
+  }
+
+  pDst[2u * fftLen] = pSrc[0] - pSrc[1];
+  pDst[(2u * fftLen) + 1u] = 0;
+
+  pDst[0] = pSrc[0] + pSrc[1];
+  pDst[1] = 0;
+
+
+#else
+
+  /* Run the below code for Cortex-M0 */
+
+  i = 1u;
+
+  while(i < fftLen)
+  {
+    /*    
+       outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]    
+       + pSrc[2 * n - 2 * i] * pBTable[2 * i] +    
+       pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);    
+     */
+
+    outR = *pSrc1 * *pCoefA;
+    outR = outR - (*(pSrc1 + 1) * *(pCoefA + 1));
+    outR = outR + (*pSrc2 * *pCoefB);
+    outR = (outR + (*(pSrc2 + 1) * *(pCoefB + 1))) >> 15;
+
+
+    /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +    
+       pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -    
+       pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);   
+     */
+
+    outI = *pSrc2 * *(pCoefB + 1);
+    outI = outI - (*(pSrc2 + 1) * *pCoefB);
+    outI = outI + (*(pSrc1 + 1) * *pCoefA);
+    outI = outI + (*pSrc1 * *(pCoefA + 1));
+
+    /* update input pointers */
+    pSrc1 += 2u;
+    pSrc2 -= 2u;
+
+    /* write output */
+    pDst[2u * i] = (q15_t) outR;
+    pDst[(2u * i) + 1u] = outI >> 15u;
+
+    /* write complex conjugate output */
+    pDst[(4u * fftLen) - (2u * i)] = (q15_t) outR;
+    pDst[((4u * fftLen) - (2u * i)) + 1u] = -(outI >> 15u);
+
+    /* update coefficient pointer */
+    pCoefB = pCoefB + (2u * modifier);
+    pCoefA = pCoefA + (2u * modifier);
+
+    i++;
+
+  }
+
+  pDst[2u * fftLen] = pSrc[0] - pSrc[1];
+  pDst[(2u * fftLen) + 1u] = 0;
+
+  pDst[0] = pSrc[0] + pSrc[1];
+  pDst[1] = 0;
+
+#endif /* #ifndef ARM_MATH_CM0 */
+
+}
+
+
+/**    
+ * @brief  Core Real IFFT process    
+ * @param[in]   *pSrc                 points to the input buffer.    
+ * @param[in]   fftLen              length of FFT.   
+ * @param[in]   *pATable             points to the twiddle Coef A buffer.   
+ * @param[in]   *pBTable             points to the twiddle Coef B buffer.    
+ * @param[out]  *pDst                 points to the output buffer.   
+ * @param[in]   modifier             twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.   
+ * @return none.    
+ * The function implements a Real IFFT    
+ */
+void arm_split_rifft_q15(
+  q15_t * pSrc,
+  uint32_t fftLen,
+  q15_t * pATable,
+  q15_t * pBTable,
+  q15_t * pDst,
+  uint32_t modifier)
+{
+  uint32_t i;                                    /* Loop Counter */
+  q31_t outR, outI;                              /* Temporary variables for output */
+  q15_t *pCoefA, *pCoefB;                        /* Temporary pointers for twiddle factors */
+  q15_t *pSrc1, *pSrc2;
+  q15_t *pDst1 = &pDst[0];
+
+  pCoefA = &pATable[0];
+  pCoefB = &pBTable[0];
+
+  pSrc1 = &pSrc[0];
+  pSrc2 = &pSrc[2u * fftLen];
+
+#ifndef ARM_MATH_CM0
+
+  /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+  i = fftLen;
+
+  while(i > 0u)
+  {
+
+    /*    
+       outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +    
+       pIn[2 * n - 2 * i] * pBTable[2 * i] -    
+       pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);    
+
+       outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -    
+       pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -    
+       pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);    
+
+     */
+
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+    /* pIn[2 * n - 2 * i] * pBTable[2 * i] -    
+       pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */
+    outR = __SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB));
+
+#else
+
+    /* -(-pIn[2 * n - 2 * i] * pBTable[2 * i] +  
+       pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1])) */
+    outR = -(__SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB)));
+
+#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
+
+    /* pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +    
+       pIn[2 * n - 2 * i] * pBTable[2 * i] */
+    outR = __SMLAD(*__SIMD32(pSrc1), *__SIMD32(pCoefA), outR) >> 15u;
+
+    /*    
+       -pIn[2 * n - 2 * i] * pBTable[2 * i + 1] +    
+       pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
+    outI = __SMUADX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB));
+
+    /* pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+    outI = __SMLSDX(*__SIMD32(pCoefA), *__SIMD32(pSrc1)++, -outI);
+
+#else
+
+    outI = __SMLSDX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), -outI);
+
+#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
+    /* write output */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+    *__SIMD32(pDst1)++ = __PKHBT(outR, (outI >> 15u), 16);
+
+#else
+
+    *__SIMD32(pDst1)++ = __PKHBT((outI >> 15u), outR, 16);
+
+#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
+
+    /* update coefficient pointer */
+    pCoefB = pCoefB + (2u * modifier);
+    pCoefA = pCoefA + (2u * modifier);
+
+    i--;
+
+  }
+
+
+#else
+
+  /* Run the below code for Cortex-M0 */
+
+  i = fftLen;
+
+  while(i > 0u)
+  {
+
+    /*    
+       outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +    
+       pIn[2 * n - 2 * i] * pBTable[2 * i] -    
+       pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);    
+     */
+
+    outR = *pSrc2 * *pCoefB;
+    outR = outR - (*(pSrc2 + 1) * *(pCoefB + 1));
+    outR = outR + (*pSrc1 * *pCoefA);
+    outR = (outR + (*(pSrc1 + 1) * *(pCoefA + 1))) >> 15;
+
+    /*   
+       outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -   
+       pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -   
+       pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);   
+     */
+
+    outI = *(pSrc1 + 1) * *pCoefA;
+    outI = outI - (*pSrc1 * *(pCoefA + 1));
+    outI = outI - (*pSrc2 * *(pCoefB + 1));
+    outI = outI - (*(pSrc2 + 1) * *(pCoefB));
+
+    /* update input pointers */
+    pSrc1 += 2u;
+    pSrc2 -= 2u;
+
+    /* write output */
+    *pDst1++ = (q15_t) outR;
+    *pDst1++ = (q15_t) (outI >> 15);
+
+    /* update coefficient pointer */
+    pCoefB = pCoefB + (2u * modifier);
+    pCoefA = pCoefA + (2u * modifier);
+
+    i--;
+
+  }
+
+#endif /* #ifndef ARM_MATH_CM0 */
+
+}