CMSIS DSP library

Dependents:   performance_timer Surfboard_ gps2rtty Capstone ... more

Legacy Warning

This is an mbed 2 library. To learn more about mbed OS 5, visit the docs.

Revision:
1:fdd22bb7aa52
Child:
2:da51fb522205
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/cmsis_dsp/FilteringFunctions/arm_conv_partial_q15.c	Wed Nov 28 12:30:09 2012 +0000
@@ -0,0 +1,778 @@
+/* ----------------------------------------------------------------------   
+* Copyright (C) 2010 ARM Limited. All rights reserved.   
+*   
+* $Date:        15. February 2012  
+* $Revision:     V1.1.0  
+*   
+* Project:         CMSIS DSP Library   
+* Title:        arm_conv_partial_q15.c   
+*   
+* Description:    Partial convolution of Q15 sequences.  
+*   
+* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
+* 
+* Version 1.1.0 2012/02/15 
+*    Updated with more optimizations, bug fixes and minor API changes.  
+*  
+* Version 1.0.11 2011/10/18 
+*    Bug Fix in conv, correlation, partial convolution. 
+*
+* Version 1.0.10 2011/7/15 
+*    Big Endian support added and Merged M0 and M3/M4 Source code.  
+*   
+* Version 1.0.3 2010/11/29  
+*    Re-organized the CMSIS folders and updated documentation.   
+*    
+* Version 1.0.2 2010/11/11   
+*    Documentation updated.    
+*   
+* Version 1.0.1 2010/10/05    
+*    Production release and review comments incorporated.   
+*   
+* Version 1.0.0 2010/09/20    
+*    Production release and review comments incorporated   
+*   
+* Version 0.0.7  2010/06/10    
+*    Misra-C changes done   
+*   
+* -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+
+/**   
+ * @ingroup groupFilters   
+ */
+
+/**   
+ * @addtogroup PartialConv   
+ * @{   
+ */
+
+/**   
+ * @brief Partial convolution of Q15 sequences.   
+ * @param[in]       *pSrcA points to the first input sequence.   
+ * @param[in]       srcALen length of the first input sequence.   
+ * @param[in]       *pSrcB points to the second input sequence.   
+ * @param[in]       srcBLen length of the second input sequence.   
+ * @param[out]      *pDst points to the location where the output result is written.   
+ * @param[in]       firstIndex is the first output sample to start with.   
+ * @param[in]       numPoints is the number of output points to be computed.   
+ * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].   
+ *   
+ * Refer to <code>arm_conv_partial_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4.  
+ * 
+ * \par    
+ * Refer the function <code>arm_conv_partial_opt_q15()</code> for a faster implementation of this function using scratch buffers.
+ * 
+ */
+
+
+arm_status arm_conv_partial_q15(
+  q15_t * pSrcA,
+  uint32_t srcALen,
+  q15_t * pSrcB,
+  uint32_t srcBLen,
+  q15_t * pDst,
+  uint32_t firstIndex,
+  uint32_t numPoints)
+{
+
+#if (defined(ARM_MATH_CM4) || defined(ARM_MATH_CM3)) && !defined(UNALIGNED_SUPPORT_DISABLE)
+
+  /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+  q15_t *pIn1;                                   /* inputA pointer               */
+  q15_t *pIn2;                                   /* inputB pointer               */
+  q15_t *pOut = pDst;                            /* output pointer               */
+  q63_t sum, acc0, acc1, acc2, acc3;             /* Accumulator                  */
+  q15_t *px;                                     /* Intermediate inputA pointer  */
+  q15_t *py;                                     /* Intermediate inputB pointer  */
+  q15_t *pSrc1, *pSrc2;                          /* Intermediate pointers        */
+  q31_t x0, x1, x2, x3, c0;                      /* Temporary input variables */
+  uint32_t j, k, count, check, blkCnt;
+  int32_t blockSize1, blockSize2, blockSize3;    /* loop counter                 */
+  arm_status status;                             /* status of Partial convolution */
+
+  /* Check for range of output samples to be calculated */
+  if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u))))
+  {
+    /* Set status as ARM_MATH_ARGUMENT_ERROR */
+    status = ARM_MATH_ARGUMENT_ERROR;
+  }
+  else
+  {
+
+    /* The algorithm implementation is based on the lengths of the inputs. */
+    /* srcB is always made to slide across srcA. */
+    /* So srcBLen is always considered as shorter or equal to srcALen */
+    if(srcALen >= srcBLen)
+    {
+      /* Initialization of inputA pointer */
+      pIn1 = pSrcA;
+
+      /* Initialization of inputB pointer */
+      pIn2 = pSrcB;
+    }
+    else
+    {
+      /* Initialization of inputA pointer */
+      pIn1 = pSrcB;
+
+      /* Initialization of inputB pointer */
+      pIn2 = pSrcA;
+
+      /* srcBLen is always considered as shorter or equal to srcALen */
+      j = srcBLen;
+      srcBLen = srcALen;
+      srcALen = j;
+    }
+
+    /* Conditions to check which loopCounter holds   
+     * the first and last indices of the output samples to be calculated. */
+    check = firstIndex + numPoints;
+    blockSize3 = ((int32_t) check - (int32_t) srcALen);
+    blockSize3 = (blockSize3 > 0) ? blockSize3 : 0;
+    blockSize1 = (((int32_t) srcBLen - 1) - (int32_t) firstIndex);
+    blockSize1 = (blockSize1 > 0) ? ((check > (srcBLen - 1u)) ? blockSize1 :
+                                     (int32_t) numPoints) : 0;
+    blockSize2 = (int32_t) check - ((blockSize3 + blockSize1) +
+                                    (int32_t) firstIndex);
+    blockSize2 = (blockSize2 > 0) ? blockSize2 : 0;
+
+    /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
+    /* The function is internally   
+     * divided into three stages according to the number of multiplications that has to be   
+     * taken place between inputA samples and inputB samples. In the first stage of the   
+     * algorithm, the multiplications increase by one for every iteration.   
+     * In the second stage of the algorithm, srcBLen number of multiplications are done.   
+     * In the third stage of the algorithm, the multiplications decrease by one   
+     * for every iteration. */
+
+    /* Set the output pointer to point to the firstIndex   
+     * of the output sample to be calculated. */
+    pOut = pDst + firstIndex;
+
+    /* --------------------------   
+     * Initializations of stage1   
+     * -------------------------*/
+
+    /* sum = x[0] * y[0]   
+     * sum = x[0] * y[1] + x[1] * y[0]   
+     * ....   
+     * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]   
+     */
+
+    /* In this stage the MAC operations are increased by 1 for every iteration.   
+       The count variable holds the number of MAC operations performed.   
+       Since the partial convolution starts from firstIndex   
+       Number of Macs to be performed is firstIndex + 1 */
+    count = 1u + firstIndex;
+
+    /* Working pointer of inputA */
+    px = pIn1;
+
+    /* Working pointer of inputB */
+    pSrc2 = pIn2 + firstIndex;
+    py = pSrc2;
+
+    /* ------------------------   
+     * Stage1 process   
+     * ----------------------*/
+
+    /* For loop unrolling by 4, this stage is divided into two. */
+    /* First part of this stage computes the MAC operations less than 4 */
+    /* Second part of this stage computes the MAC operations greater than or equal to 4 */
+
+    /* The first part of the stage starts here */
+    while((count < 4u) && (blockSize1 > 0))
+    {
+      /* Accumulator is made zero for every iteration */
+      sum = 0;
+
+      /* Loop over number of MAC operations between   
+       * inputA samples and inputB samples */
+      k = count;
+
+      while(k > 0u)
+      {
+        /* Perform the multiply-accumulates */
+        sum = __SMLALD(*px++, *py--, sum);
+
+        /* Decrement the loop counter */
+        k--;
+      }
+
+      /* Store the result in the accumulator in the destination buffer. */
+      *pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
+
+      /* Update the inputA and inputB pointers for next MAC calculation */
+      py = ++pSrc2;
+      px = pIn1;
+
+      /* Increment the MAC count */
+      count++;
+
+      /* Decrement the loop counter */
+      blockSize1--;
+    }
+
+    /* The second part of the stage starts here */
+    /* The internal loop, over count, is unrolled by 4 */
+    /* To, read the last two inputB samples using SIMD:   
+     * y[srcBLen] and y[srcBLen-1] coefficients, py is decremented by 1 */
+    py = py - 1;
+
+    while(blockSize1 > 0)
+    {
+      /* Accumulator is made zero for every iteration */
+      sum = 0;
+
+      /* Apply loop unrolling and compute 4 MACs simultaneously. */
+      k = count >> 2u;
+
+      /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.   
+       ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+      while(k > 0u)
+      {
+        /* Perform the multiply-accumulates */
+        /* x[0], x[1] are multiplied with y[srcBLen - 1], y[srcBLen - 2] respectively */
+        sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
+        /* x[2], x[3] are multiplied with y[srcBLen - 3], y[srcBLen - 4] respectively */
+        sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
+
+        /* Decrement the loop counter */
+        k--;
+      }
+
+      /* For the next MAC operations, the pointer py is used without SIMD   
+       * So, py is incremented by 1 */
+      py = py + 1u;
+
+      /* If the count is not a multiple of 4, compute any remaining MACs here.   
+       ** No loop unrolling is used. */
+      k = count % 0x4u;
+
+      while(k > 0u)
+      {
+        /* Perform the multiply-accumulates */
+        sum = __SMLALD(*px++, *py--, sum);
+
+        /* Decrement the loop counter */
+        k--;
+      }
+
+      /* Store the result in the accumulator in the destination buffer. */
+      *pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
+
+      /* Update the inputA and inputB pointers for next MAC calculation */
+      py = ++pSrc2 - 1u;
+      px = pIn1;
+
+      /* Increment the MAC count */
+      count++;
+
+      /* Decrement the loop counter */
+      blockSize1--;
+    }
+
+    /* --------------------------   
+     * Initializations of stage2   
+     * ------------------------*/
+
+    /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]   
+     * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]   
+     * ....   
+     * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]   
+     */
+
+    /* Working pointer of inputA */
+    px = pIn1;
+
+    /* Working pointer of inputB */
+    pSrc2 = pIn2 + (srcBLen - 1u);
+    py = pSrc2;
+
+  /* count is the index by which the pointer pIn1 to be incremented */
+  count = 0u;
+
+
+  /* --------------------   
+   * Stage2 process   
+   * -------------------*/
+
+  /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.   
+   * So, to loop unroll over blockSize2,   
+   * srcBLen should be greater than or equal to 4 */
+  if(srcBLen >= 4u)
+  {
+    /* Loop unroll over blockSize2, by 4 */
+    blkCnt = blockSize2 >> 2u;
+
+    while(blkCnt > 0u)
+    {
+      py = py - 1u;
+
+      /* Set all accumulators to zero */
+      acc0 = 0;
+      acc1 = 0;
+      acc2 = 0;
+      acc3 = 0;
+
+
+      /* read x[0], x[1] samples */
+      x0 = *__SIMD32(px);
+      /* read x[1], x[2] samples */
+      x1 = _SIMD32_OFFSET(px+1);
+      px+= 2u;
+
+
+      /* Apply loop unrolling and compute 4 MACs simultaneously. */
+      k = srcBLen >> 2u;
+
+      /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.   
+       ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+      do
+      {
+        /* Read the last two inputB samples using SIMD:   
+         * y[srcBLen - 1] and y[srcBLen - 2] */
+        c0 = *__SIMD32(py)--;
+
+        /* acc0 +=  x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */
+        acc0 = __SMLALDX(x0, c0, acc0);
+
+        /* acc1 +=  x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */
+        acc1 = __SMLALDX(x1, c0, acc1);
+
+        /* Read x[2], x[3] */
+        x2 = *__SIMD32(px);
+
+        /* Read x[3], x[4] */
+        x3 = _SIMD32_OFFSET(px+1);
+
+        /* acc2 +=  x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */
+        acc2 = __SMLALDX(x2, c0, acc2);
+
+        /* acc3 +=  x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */
+        acc3 = __SMLALDX(x3, c0, acc3);
+
+        /* Read y[srcBLen - 3] and y[srcBLen - 4] */
+        c0 = *__SIMD32(py)--;
+
+        /* acc0 +=  x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */
+        acc0 = __SMLALDX(x2, c0, acc0);
+
+        /* acc1 +=  x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */
+        acc1 = __SMLALDX(x3, c0, acc1);
+
+        /* Read x[4], x[5] */
+        x0 = _SIMD32_OFFSET(px+2);
+
+        /* Read x[5], x[6] */
+        x1 = _SIMD32_OFFSET(px+3);
+        px += 4u;
+
+        /* acc2 +=  x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */
+        acc2 = __SMLALDX(x0, c0, acc2);
+
+        /* acc3 +=  x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */
+        acc3 = __SMLALDX(x1, c0, acc3);
+
+      } while(--k);
+
+      /* For the next MAC operations, SIMD is not used   
+       * So, the 16 bit pointer if inputB, py is updated */
+
+      /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.   
+       ** No loop unrolling is used. */
+      k = srcBLen % 0x4u;
+
+      if(k == 1u)
+      {
+        /* Read y[srcBLen - 5] */
+        c0 = *(py+1);
+
+#ifdef  ARM_MATH_BIG_ENDIAN
+
+        c0 = c0 << 16u;
+
+#else
+
+        c0 = c0 & 0x0000FFFF;
+
+#endif /*      #ifdef  ARM_MATH_BIG_ENDIAN     */
+
+        /* Read x[7] */
+        x3 = *__SIMD32(px);
+        px++;
+
+        /* Perform the multiply-accumulates */
+        acc0 = __SMLALD(x0, c0, acc0);
+        acc1 = __SMLALD(x1, c0, acc1);
+        acc2 = __SMLALDX(x1, c0, acc2);
+        acc3 = __SMLALDX(x3, c0, acc3);
+      }
+
+      if(k == 2u)
+      {
+        /* Read y[srcBLen - 5], y[srcBLen - 6] */
+        c0 = _SIMD32_OFFSET(py);
+
+        /* Read x[7], x[8] */
+        x3 = *__SIMD32(px);
+
+        /* Read x[9] */
+        x2 = _SIMD32_OFFSET(px+1);
+        px += 2u;
+
+        /* Perform the multiply-accumulates */
+        acc0 = __SMLALDX(x0, c0, acc0);
+        acc1 = __SMLALDX(x1, c0, acc1);
+        acc2 = __SMLALDX(x3, c0, acc2);
+        acc3 = __SMLALDX(x2, c0, acc3);
+      }
+
+      if(k == 3u)
+      {
+        /* Read y[srcBLen - 5], y[srcBLen - 6] */
+        c0 = _SIMD32_OFFSET(py);
+
+        /* Read x[7], x[8] */
+        x3 = *__SIMD32(px);
+
+        /* Read x[9] */
+        x2 = _SIMD32_OFFSET(px+1);
+
+        /* Perform the multiply-accumulates */
+        acc0 = __SMLALDX(x0, c0, acc0);
+        acc1 = __SMLALDX(x1, c0, acc1);
+        acc2 = __SMLALDX(x3, c0, acc2);
+        acc3 = __SMLALDX(x2, c0, acc3);
+
+        c0 = *(py-1);
+
+#ifdef  ARM_MATH_BIG_ENDIAN
+
+        c0 = c0 << 16u;
+#else
+
+        c0 = c0 & 0x0000FFFF;
+#endif /*      #ifdef  ARM_MATH_BIG_ENDIAN     */
+
+        /* Read x[10] */
+        x3 =  _SIMD32_OFFSET(px+2);
+        px += 3u;
+
+        /* Perform the multiply-accumulates */
+        acc0 = __SMLALDX(x1, c0, acc0);
+        acc1 = __SMLALD(x2, c0, acc1);
+        acc2 = __SMLALDX(x2, c0, acc2);
+        acc3 = __SMLALDX(x3, c0, acc3);
+      }
+
+
+      /* Store the results in the accumulators in the destination buffer. */
+
+#ifndef  ARM_MATH_BIG_ENDIAN
+
+      *__SIMD32(pOut)++ =
+        __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
+      *__SIMD32(pOut)++ =
+        __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
+
+#else
+
+      *__SIMD32(pOut)++ =
+        __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
+      *__SIMD32(pOut)++ =
+        __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
+
+#endif /*      #ifndef  ARM_MATH_BIG_ENDIAN    */
+
+      /* Increment the pointer pIn1 index, count by 4 */
+      count += 4u;
+
+      /* Update the inputA and inputB pointers for next MAC calculation */
+      px = pIn1 + count;
+      py = pSrc2;
+
+        /* Decrement the loop counter */
+        blkCnt--;
+      }
+
+      /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.   
+       ** No loop unrolling is used. */
+      blkCnt = (uint32_t) blockSize2 % 0x4u;
+        
+      while(blkCnt > 0u)
+      {
+        /* Accumulator is made zero for every iteration */
+        sum = 0;
+
+        /* Apply loop unrolling and compute 4 MACs simultaneously. */
+        k = srcBLen >> 2u;
+
+        /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.   
+         ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+        while(k > 0u)
+        {
+          /* Perform the multiply-accumulates */
+          sum += (q63_t) ((q31_t) * px++ * *py--);
+          sum += (q63_t) ((q31_t) * px++ * *py--);
+          sum += (q63_t) ((q31_t) * px++ * *py--);
+          sum += (q63_t) ((q31_t) * px++ * *py--);
+
+          /* Decrement the loop counter */
+          k--;
+        }
+
+        /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.   
+         ** No loop unrolling is used. */
+        k = srcBLen % 0x4u;
+
+        while(k > 0u)
+        {
+          /* Perform the multiply-accumulates */
+          sum += (q63_t) ((q31_t) * px++ * *py--);
+
+          /* Decrement the loop counter */
+          k--;
+        }
+
+        /* Store the result in the accumulator in the destination buffer. */
+        *pOut++ = (q15_t) (__SSAT(sum >> 15, 16));
+
+        /* Increment the pointer pIn1 index, count by 1 */
+        count++;
+
+        /* Update the inputA and inputB pointers for next MAC calculation */
+        px = pIn1 + count;
+        py = pSrc2;
+
+        /* Decrement the loop counter */
+        blkCnt--;
+      }
+    }
+    else
+    {
+      /* If the srcBLen is not a multiple of 4,   
+       * the blockSize2 loop cannot be unrolled by 4 */
+      blkCnt = (uint32_t) blockSize2;
+
+      while(blkCnt > 0u)
+      {
+        /* Accumulator is made zero for every iteration */
+        sum = 0;
+
+        /* srcBLen number of MACS should be performed */
+        k = srcBLen;
+
+        while(k > 0u)
+        {
+          /* Perform the multiply-accumulate */
+          sum += (q63_t) ((q31_t) * px++ * *py--);
+
+          /* Decrement the loop counter */
+          k--;
+        }
+
+        /* Store the result in the accumulator in the destination buffer. */
+        *pOut++ = (q15_t) (__SSAT(sum >> 15, 16));
+
+        /* Increment the MAC count */
+        count++;
+
+        /* Update the inputA and inputB pointers for next MAC calculation */
+        px = pIn1 + count;
+        py = pSrc2;
+  
+        /* Decrement the loop counter */
+        blkCnt--;
+      }
+    }
+
+
+    /* --------------------------   
+     * Initializations of stage3   
+     * -------------------------*/
+
+    /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]   
+     * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]   
+     * ....   
+     * sum +=  x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]   
+     * sum +=  x[srcALen-1] * y[srcBLen-1]   
+     */
+
+    /* In this stage the MAC operations are decreased by 1 for every iteration.   
+       The count variable holds the number of MAC operations performed */
+    count = srcBLen - 1u;
+
+    /* Working pointer of inputA */
+    pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u);
+    px = pSrc1;
+
+    /* Working pointer of inputB */
+    pSrc2 = pIn2 + (srcBLen - 1u);
+    pIn2 = pSrc2 - 1u;
+    py = pIn2;
+
+    /* -------------------   
+     * Stage3 process   
+     * ------------------*/
+
+    /* For loop unrolling by 4, this stage is divided into two. */
+    /* First part of this stage computes the MAC operations greater than 4 */
+    /* Second part of this stage computes the MAC operations less than or equal to 4 */
+
+    /* The first part of the stage starts here */
+    j = count >> 2u;
+
+    while((j > 0u) && (blockSize3 > 0))
+    {
+      /* Accumulator is made zero for every iteration */
+      sum = 0;
+
+      /* Apply loop unrolling and compute 4 MACs simultaneously. */
+      k = count >> 2u;
+
+      /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.   
+       ** a second loop below computes MACs for the remaining 1 to 3 samples. */
+      while(k > 0u)
+      {
+        /* x[srcALen - srcBLen + 1], x[srcALen - srcBLen + 2] are multiplied   
+         * with y[srcBLen - 1], y[srcBLen - 2] respectively */
+        sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
+        /* x[srcALen - srcBLen + 3], x[srcALen - srcBLen + 4] are multiplied   
+         * with y[srcBLen - 3], y[srcBLen - 4] respectively */
+        sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
+
+        /* Decrement the loop counter */
+        k--;
+      }
+
+      /* For the next MAC operations, the pointer py is used without SIMD   
+       * So, py is incremented by 1 */
+      py = py + 1u;
+
+      /* If the count is not a multiple of 4, compute any remaining MACs here.   
+       ** No loop unrolling is used. */
+      k = count % 0x4u;
+
+      while(k > 0u)
+      {
+        /* sum += x[srcALen - srcBLen + 5] * y[srcBLen - 5] */
+        sum = __SMLALD(*px++, *py--, sum);
+
+        /* Decrement the loop counter */
+        k--;
+      }
+
+      /* Store the result in the accumulator in the destination buffer. */
+      *pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
+
+      /* Update the inputA and inputB pointers for next MAC calculation */
+      px = ++pSrc1;
+      py = pIn2;
+
+      /* Decrement the MAC count */
+      count--;
+
+      /* Decrement the loop counter */
+      blockSize3--;
+
+      j--;
+    }
+
+    /* The second part of the stage starts here */
+    /* SIMD is not used for the next MAC operations,   
+     * so pointer py is updated to read only one sample at a time */
+    py = py + 1u;
+
+    while(blockSize3 > 0)
+    {
+      /* Accumulator is made zero for every iteration */
+      sum = 0;
+
+      /* Apply loop unrolling and compute 4 MACs simultaneously. */
+      k = count;
+
+      while(k > 0u)
+      {
+        /* Perform the multiply-accumulates */
+        /* sum +=  x[srcALen-1] * y[srcBLen-1] */
+        sum = __SMLALD(*px++, *py--, sum);
+
+        /* Decrement the loop counter */
+        k--;
+      }
+
+      /* Store the result in the accumulator in the destination buffer. */
+      *pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
+
+      /* Update the inputA and inputB pointers for next MAC calculation */
+      px = ++pSrc1;
+      py = pSrc2;
+
+      /* Decrement the MAC count */
+      count--;
+
+      /* Decrement the loop counter */
+      blockSize3--;
+    }
+
+    /* set status as ARM_MATH_SUCCESS */
+    status = ARM_MATH_SUCCESS;
+  }
+
+  /* Return to application */
+  return (status);
+
+#else
+
+  /* Run the below code for Cortex-M0 */
+
+  q15_t *pIn1 = pSrcA;                           /* inputA pointer */
+  q15_t *pIn2 = pSrcB;                           /* inputB pointer */
+  q63_t sum;                                     /* Accumulator */
+  uint32_t i, j;                                 /* loop counters */
+  arm_status status;                             /* status of Partial convolution */
+
+  /* Check for range of output samples to be calculated */
+  if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u))))
+  {
+    /* Set status as ARM_ARGUMENT_ERROR */
+    status = ARM_MATH_ARGUMENT_ERROR;
+  }
+  else
+  {
+    /* Loop to calculate convolution for output length number of values */
+    for (i = firstIndex; i <= (firstIndex + numPoints - 1); i++)
+    {
+      /* Initialize sum with zero to carry on MAC operations */
+      sum = 0;
+
+      /* Loop to perform MAC operations according to convolution equation */
+      for (j = 0; j <= i; j++)
+      {
+        /* Check the array limitations */
+        if(((i - j) < srcBLen) && (j < srcALen))
+        {
+          /* z[i] += x[i-j] * y[j] */
+          sum += ((q31_t) pIn1[j] * (pIn2[i - j]));
+        }
+      }
+
+      /* Store the output in the destination buffer */
+      pDst[i] = (q15_t) __SSAT((sum >> 15u), 16u);
+    }
+    /* set status as ARM_SUCCESS as there are no argument errors */
+    status = ARM_MATH_SUCCESS;
+  }
+  return (status);
+
+#endif /* #if (defined(ARM_MATH_CM4) || defined(ARM_MATH_CM3)) && !defined(UNALIGNED_SUPPORT_DISABLE)  */
+
+}
+
+/**   
+ * @} end of PartialConv group   
+ */