CMSIS DSP library

Dependents:   performance_timer Surfboard_ gps2rtty Capstone ... more

Legacy Warning

This is an mbed 2 library. To learn more about mbed OS 5, visit the docs.

Revision:
1:fdd22bb7aa52
Child:
2:da51fb522205
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/cmsis_dsp/FilteringFunctions/arm_conv_partial_fast_opt_q15.c	Wed Nov 28 12:30:09 2012 +0000
@@ -0,0 +1,763 @@
+/* ----------------------------------------------------------------------    
+* Copyright (C) 2010 ARM Limited. All rights reserved.    
+*    
+* $Date:        15. February 2012  
+* $Revision:     V1.1.0  
+*    
+* Project:         CMSIS DSP Library    
+* Title:        arm_conv_partial_fast_opt_q15.c    
+*    
+* Description:    Fast Q15 Partial convolution.    
+*    
+* Target Processor: Cortex-M4/Cortex-M3
+*  
+* Version 1.1.0 2012/02/15 
+*    Updated with more optimizations, bug fixes and minor API changes.  
+* 
+* Version 1.0.11 2011/10/18  
+*    Bug Fix in conv, correlation, partial convolution.  
+* 
+* Version 1.0.10 2011/7/15  
+*    Big Endian support added and Merged M0 and M3/M4 Source code.   
+*    
+* Version 1.0.3 2010/11/29   
+*    Re-organized the CMSIS folders and updated documentation.    
+*     
+* Version 1.0.2 2010/11/11    
+*    Documentation updated.     
+*    
+* Version 1.0.1 2010/10/05     
+*    Production release and review comments incorporated.    
+*    
+* Version 1.0.0 2010/09/20     
+*    Production release and review comments incorporated.    
+* -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+
+/**    
+ * @ingroup groupFilters    
+ */
+
+/**    
+ * @addtogroup PartialConv    
+ * @{    
+ */
+
+/**    
+ * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.    
+ * @param[in]       *pSrcA points to the first input sequence.    
+ * @param[in]       srcALen length of the first input sequence.    
+ * @param[in]       *pSrcB points to the second input sequence.    
+ * @param[in]       srcBLen length of the second input sequence.    
+ * @param[out]      *pDst points to the location where the output result is written.    
+ * @param[in]       firstIndex is the first output sample to start with.    
+ * @param[in]       numPoints is the number of output points to be computed.    
+ * @param[in]       *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.   
+ * @param[in]       *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).   
+ * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].    
+ *    
+ * See <code>arm_conv_partial_q15()</code> for a slower implementation of this function which uses a 64-bit accumulator to avoid wrap around distortion.    
+ *    
+ * \par Restrictions    
+ *  If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE    
+ *    In this case input, output, scratch1 and scratch2 buffers should be aligned by 32-bit    
+ *     
+ */
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+arm_status arm_conv_partial_fast_opt_q15(
+  q15_t * pSrcA,
+  uint32_t srcALen,
+  q15_t * pSrcB,
+  uint32_t srcBLen,
+  q15_t * pDst,
+  uint32_t firstIndex,
+  uint32_t numPoints,
+  q15_t * pScratch1,
+  q15_t * pScratch2)
+{
+
+  q15_t *pOut = pDst;                            /* output pointer */
+  q15_t *pScr1 = pScratch1;                      /* Temporary pointer for scratch1 */
+  q15_t *pScr2 = pScratch2;                      /* Temporary pointer for scratch1 */
+  q31_t acc0, acc1, acc2, acc3;                  /* Accumulator */
+  q31_t x1, x2, x3;                              /* Temporary variables to hold state and coefficient values */
+  q31_t y1, y2;                                  /* State variables */
+  q15_t *pIn1;                                   /* inputA pointer */
+  q15_t *pIn2;                                   /* inputB pointer */
+  q15_t *px;                                     /* Intermediate inputA pointer  */
+  q15_t *py;                                     /* Intermediate inputB pointer  */
+  uint32_t j, k, blkCnt;                         /* loop counter */
+  arm_status status;
+
+  uint32_t tapCnt;                               /* loop count */
+
+  /* Check for range of output samples to be calculated */
+  if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u))))
+  {
+    /* Set status as ARM_MATH_ARGUMENT_ERROR */
+    status = ARM_MATH_ARGUMENT_ERROR;
+  }
+  else
+  {
+
+    /* The algorithm implementation is based on the lengths of the inputs. */
+    /* srcB is always made to slide across srcA. */
+    /* So srcBLen is always considered as shorter or equal to srcALen */
+    if(srcALen >= srcBLen)
+    {
+      /* Initialization of inputA pointer */
+      pIn1 = pSrcA;
+
+      /* Initialization of inputB pointer */
+      pIn2 = pSrcB;
+    }
+    else
+    {
+      /* Initialization of inputA pointer */
+      pIn1 = pSrcB;
+
+      /* Initialization of inputB pointer */
+      pIn2 = pSrcA;
+
+      /* srcBLen is always considered as shorter or equal to srcALen */
+      j = srcBLen;
+      srcBLen = srcALen;
+      srcALen = j;
+    }
+
+    /* Temporary pointer for scratch2 */
+    py = pScratch2;
+
+    /* pointer to take end of scratch2 buffer */
+    pScr2 = pScratch2 + srcBLen - 1;
+
+    /* points to smaller length sequence */
+    px = pIn2;
+
+    /* Apply loop unrolling and do 4 Copies simultaneously. */
+    k = srcBLen >> 2u;
+
+    /* First part of the processing with loop unrolling copies 4 data points at a time.       
+     ** a second loop below copies for the remaining 1 to 3 samples. */
+
+    /* Copy smaller length input sequence in reverse order into second scratch buffer */
+    while(k > 0u)
+    {
+      /* copy second buffer in reversal manner */
+      *pScr2-- = *px++;
+      *pScr2-- = *px++;
+      *pScr2-- = *px++;
+      *pScr2-- = *px++;
+
+      /* Decrement the loop counter */
+      k--;
+    }
+
+    /* If the count is not a multiple of 4, copy remaining samples here.       
+     ** No loop unrolling is used. */
+    k = srcBLen % 0x4u;
+
+    while(k > 0u)
+    {
+      /* copy second buffer in reversal manner for remaining samples */
+      *pScr2-- = *px++;
+
+      /* Decrement the loop counter */
+      k--;
+    }
+
+    /* Initialze temporary scratch pointer */
+    pScr1 = pScratch1;
+
+    /* Assuming scratch1 buffer is aligned by 32-bit */
+    /* Fill (srcBLen - 1u) zeros in scratch buffer */
+    arm_fill_q15(0, pScr1, (srcBLen - 1u));
+
+    /* Update temporary scratch pointer */
+    pScr1 += (srcBLen - 1u);
+
+    /* Copy bigger length sequence(srcALen) samples in scratch1 buffer */
+
+    /* Copy (srcALen) samples in scratch buffer */
+    arm_copy_q15(pIn1, pScr1, srcALen);
+
+    /* Update pointers */
+    pScr1 += srcALen;
+
+    /* Fill (srcBLen - 1u) zeros at end of scratch buffer */
+    arm_fill_q15(0, pScr1, (srcBLen - 1u));
+
+    /* Update pointer */
+    pScr1 += (srcBLen - 1u);
+
+    /* Initialization of pIn2 pointer */
+    pIn2 = py;
+
+    pScratch1 += firstIndex;
+
+    pOut = pDst + firstIndex;
+
+    /* First part of the processing with loop unrolling process 4 data points at a time.       
+     ** a second loop below process for the remaining 1 to 3 samples. */
+
+    /* Actual convolution process starts here */
+    blkCnt = (numPoints) >> 2;
+
+    while(blkCnt > 0)
+    {
+      /* Initialze temporary scratch pointer as scratch1 */
+      pScr1 = pScratch1;
+
+      /* Clear Accumlators */
+      acc0 = 0;
+      acc1 = 0;
+      acc2 = 0;
+      acc3 = 0;
+
+      /* Read two samples from scratch1 buffer */
+      x1 = *__SIMD32(pScr1)++;
+
+      /* Read next two samples from scratch1 buffer */
+      x2 = *__SIMD32(pScr1)++;
+
+      tapCnt = (srcBLen) >> 2u;
+
+      while(tapCnt > 0u)
+      {
+
+        /* Read four samples from smaller buffer */
+        y1 = _SIMD32_OFFSET(pIn2);
+        y2 = _SIMD32_OFFSET(pIn2 + 2u);
+
+        /* multiply and accumlate */
+        acc0 = __SMLAD(x1, y1, acc0);
+        acc2 = __SMLAD(x2, y1, acc2);
+
+        /* pack input data */
+#ifndef ARM_MATH_BIG_ENDIAN
+        x3 = __PKHBT(x2, x1, 0);
+#else
+        x3 = __PKHBT(x1, x2, 0);
+#endif
+
+        /* multiply and accumlate */
+        acc1 = __SMLADX(x3, y1, acc1);
+
+        /* Read next two samples from scratch1 buffer */
+        x1 = _SIMD32_OFFSET(pScr1);
+
+        /* multiply and accumlate */
+        acc0 = __SMLAD(x2, y2, acc0);
+
+        acc2 = __SMLAD(x1, y2, acc2);
+
+        /* pack input data */
+#ifndef ARM_MATH_BIG_ENDIAN
+        x3 = __PKHBT(x1, x2, 0);
+#else
+        x3 = __PKHBT(x2, x1, 0);
+#endif
+
+        acc3 = __SMLADX(x3, y1, acc3);
+        acc1 = __SMLADX(x3, y2, acc1);
+
+        x2 = _SIMD32_OFFSET(pScr1 + 2u);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+        x3 = __PKHBT(x2, x1, 0);
+#else
+        x3 = __PKHBT(x1, x2, 0);
+#endif
+
+        acc3 = __SMLADX(x3, y2, acc3);
+
+        /* update scratch pointers */
+        pIn2 += 4u;
+        pScr1 += 4u;
+
+
+        /* Decrement the loop counter */
+        tapCnt--;
+      }
+
+      /* Update scratch pointer for remaining samples of smaller length sequence */
+      pScr1 -= 4u;
+
+      /* apply same above for remaining samples of smaller length sequence */
+      tapCnt = (srcBLen) & 3u;
+
+      while(tapCnt > 0u)
+      {
+
+        /* accumlate the results */
+        acc0 += (*pScr1++ * *pIn2);
+        acc1 += (*pScr1++ * *pIn2);
+        acc2 += (*pScr1++ * *pIn2);
+        acc3 += (*pScr1++ * *pIn2++);
+
+        pScr1 -= 3u;
+
+        /* Decrement the loop counter */
+        tapCnt--;
+      }
+
+      blkCnt--;
+
+
+      /* Store the results in the accumulators in the destination buffer. */
+
+#ifndef  ARM_MATH_BIG_ENDIAN
+
+      *__SIMD32(pOut)++ =
+        __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
+      *__SIMD32(pOut)++ =
+        __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
+
+#else
+
+      *__SIMD32(pOut)++ =
+        __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
+      *__SIMD32(pOut)++ =
+        __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
+
+#endif /*      #ifndef  ARM_MATH_BIG_ENDIAN    */
+
+      /* Initialization of inputB pointer */
+      pIn2 = py;
+
+      pScratch1 += 4u;
+
+    }
+
+
+    blkCnt = numPoints & 0x3;
+
+    /* Calculate convolution for remaining samples of Bigger length sequence */
+    while(blkCnt > 0)
+    {
+      /* Initialze temporary scratch pointer as scratch1 */
+      pScr1 = pScratch1;
+
+      /* Clear Accumlators */
+      acc0 = 0;
+
+      tapCnt = (srcBLen) >> 1u;
+
+      while(tapCnt > 0u)
+      {
+
+        /* Read next two samples from scratch1 buffer */
+        x1 = *__SIMD32(pScr1)++;
+
+        /* Read two samples from smaller buffer */
+        y1 = *__SIMD32(pIn2)++;
+
+        acc0 = __SMLAD(x1, y1, acc0);
+
+        /* Decrement the loop counter */
+        tapCnt--;
+      }
+
+      tapCnt = (srcBLen) & 1u;
+
+      /* apply same above for remaining samples of smaller length sequence */
+      while(tapCnt > 0u)
+      {
+
+        /* accumlate the results */
+        acc0 += (*pScr1++ * *pIn2++);
+
+        /* Decrement the loop counter */
+        tapCnt--;
+      }
+
+      blkCnt--;
+
+      /* The result is in 2.30 format.  Convert to 1.15 with saturation.       
+       ** Then store the output in the destination buffer. */
+      *pOut++ = (q15_t) (__SSAT((acc0 >> 15), 16));
+
+      /* Initialization of inputB pointer */
+      pIn2 = py;
+
+      pScratch1 += 1u;
+
+    }
+    /* set status as ARM_MATH_SUCCESS */
+    status = ARM_MATH_SUCCESS;
+  }
+  /* Return to application */
+  return (status);
+}
+
+#else
+
+arm_status arm_conv_partial_fast_opt_q15(
+  q15_t * pSrcA,
+  uint32_t srcALen,
+  q15_t * pSrcB,
+  uint32_t srcBLen,
+  q15_t * pDst,
+  uint32_t firstIndex,
+  uint32_t numPoints,
+  q15_t * pScratch1,
+  q15_t * pScratch2)
+{
+
+  q15_t *pOut = pDst;                            /* output pointer */
+  q15_t *pScr1 = pScratch1;                      /* Temporary pointer for scratch1 */
+  q15_t *pScr2 = pScratch2;                      /* Temporary pointer for scratch1 */
+  q31_t acc0, acc1, acc2, acc3;                  /* Accumulator */
+  q15_t *pIn1;                                   /* inputA pointer */
+  q15_t *pIn2;                                   /* inputB pointer */
+  q15_t *px;                                     /* Intermediate inputA pointer  */
+  q15_t *py;                                     /* Intermediate inputB pointer  */
+  uint32_t j, k, blkCnt;                         /* loop counter */
+  arm_status status;                             /* Status variable */
+  uint32_t tapCnt;                               /* loop count */
+  q15_t x10, x11, x20, x21;                      /* Temporary variables to hold srcA buffer */
+  q15_t y10, y11;                                /* Temporary variables to hold srcB buffer */
+
+
+  /* Check for range of output samples to be calculated */
+  if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u))))
+  {
+    /* Set status as ARM_MATH_ARGUMENT_ERROR */
+    status = ARM_MATH_ARGUMENT_ERROR;
+  }
+  else
+  {
+
+    /* The algorithm implementation is based on the lengths of the inputs. */
+    /* srcB is always made to slide across srcA. */
+    /* So srcBLen is always considered as shorter or equal to srcALen */
+    if(srcALen >= srcBLen)
+    {
+      /* Initialization of inputA pointer */
+      pIn1 = pSrcA;
+
+      /* Initialization of inputB pointer */
+      pIn2 = pSrcB;
+    }
+    else
+    {
+      /* Initialization of inputA pointer */
+      pIn1 = pSrcB;
+
+      /* Initialization of inputB pointer */
+      pIn2 = pSrcA;
+
+      /* srcBLen is always considered as shorter or equal to srcALen */
+      j = srcBLen;
+      srcBLen = srcALen;
+      srcALen = j;
+    }
+
+    /* Temporary pointer for scratch2 */
+    py = pScratch2;
+
+    /* pointer to take end of scratch2 buffer */
+    pScr2 = pScratch2 + srcBLen - 1;
+
+    /* points to smaller length sequence */
+    px = pIn2;
+
+    /* Apply loop unrolling and do 4 Copies simultaneously. */
+    k = srcBLen >> 2u;
+
+    /* First part of the processing with loop unrolling copies 4 data points at a time.       
+     ** a second loop below copies for the remaining 1 to 3 samples. */
+    while(k > 0u)
+    {
+      /* copy second buffer in reversal manner */
+      *pScr2-- = *px++;
+      *pScr2-- = *px++;
+      *pScr2-- = *px++;
+      *pScr2-- = *px++;
+
+      /* Decrement the loop counter */
+      k--;
+    }
+
+    /* If the count is not a multiple of 4, copy remaining samples here.       
+     ** No loop unrolling is used. */
+    k = srcBLen % 0x4u;
+
+    while(k > 0u)
+    {
+      /* copy second buffer in reversal manner for remaining samples */
+      *pScr2-- = *px++;
+
+      /* Decrement the loop counter */
+      k--;
+    }
+
+    /* Initialze temporary scratch pointer */
+    pScr1 = pScratch1;
+
+    /* Fill (srcBLen - 1u) zeros in scratch buffer */
+    arm_fill_q15(0, pScr1, (srcBLen - 1u));
+
+    /* Update temporary scratch pointer */
+    pScr1 += (srcBLen - 1u);
+
+    /* Copy bigger length sequence(srcALen) samples in scratch1 buffer */
+
+
+    /* Apply loop unrolling and do 4 Copies simultaneously. */
+    k = srcALen >> 2u;
+
+    /* First part of the processing with loop unrolling copies 4 data points at a time.       
+     ** a second loop below copies for the remaining 1 to 3 samples. */
+    while(k > 0u)
+    {
+      /* copy second buffer in reversal manner */
+      *pScr1++ = *pIn1++;
+      *pScr1++ = *pIn1++;
+      *pScr1++ = *pIn1++;
+      *pScr1++ = *pIn1++;
+
+      /* Decrement the loop counter */
+      k--;
+    }
+
+    /* If the count is not a multiple of 4, copy remaining samples here.       
+     ** No loop unrolling is used. */
+    k = srcALen % 0x4u;
+
+    while(k > 0u)
+    {
+      /* copy second buffer in reversal manner for remaining samples */
+      *pScr1++ = *pIn1++;
+
+      /* Decrement the loop counter */
+      k--;
+    }
+
+
+    /* Apply loop unrolling and do 4 Copies simultaneously. */
+    k = (srcBLen - 1u) >> 2u;
+
+    /* First part of the processing with loop unrolling copies 4 data points at a time.       
+     ** a second loop below copies for the remaining 1 to 3 samples. */
+    while(k > 0u)
+    {
+      /* copy second buffer in reversal manner */
+      *pScr1++ = 0;
+      *pScr1++ = 0;
+      *pScr1++ = 0;
+      *pScr1++ = 0;
+
+      /* Decrement the loop counter */
+      k--;
+    }
+
+    /* If the count is not a multiple of 4, copy remaining samples here.       
+     ** No loop unrolling is used. */
+    k = (srcBLen - 1u) % 0x4u;
+
+    while(k > 0u)
+    {
+      /* copy second buffer in reversal manner for remaining samples */
+      *pScr1++ = 0;
+
+      /* Decrement the loop counter */
+      k--;
+    }
+
+
+    /* Initialization of pIn2 pointer */
+    pIn2 = py;
+
+    pScratch1 += firstIndex;
+
+    pOut = pDst + firstIndex;
+
+    /* Actual convolution process starts here */
+    blkCnt = (numPoints) >> 2;
+
+    while(blkCnt > 0)
+    {
+      /* Initialze temporary scratch pointer as scratch1 */
+      pScr1 = pScratch1;
+
+      /* Clear Accumlators */
+      acc0 = 0;
+      acc1 = 0;
+      acc2 = 0;
+      acc3 = 0;
+
+      /* Read two samples from scratch1 buffer */
+      x10 = *pScr1++;
+      x11 = *pScr1++;
+
+      /* Read next two samples from scratch1 buffer */
+      x20 = *pScr1++;
+      x21 = *pScr1++;
+
+      tapCnt = (srcBLen) >> 2u;
+
+      while(tapCnt > 0u)
+      {
+
+        /* Read two samples from smaller buffer */
+        y10 = *pIn2;
+        y11 = *(pIn2 + 1u);
+
+        /* multiply and accumlate */
+        acc0 += (q31_t) x10 *y10;
+        acc0 += (q31_t) x11 *y11;
+        acc2 += (q31_t) x20 *y10;
+        acc2 += (q31_t) x21 *y11;
+
+        /* multiply and accumlate */
+        acc1 += (q31_t) x11 *y10;
+        acc1 += (q31_t) x20 *y11;
+
+        /* Read next two samples from scratch1 buffer */
+        x10 = *pScr1;
+        x11 = *(pScr1 + 1u);
+
+        /* multiply and accumlate */
+        acc3 += (q31_t) x21 *y10;
+        acc3 += (q31_t) x10 *y11;
+
+        /* Read next two samples from scratch2 buffer */
+        y10 = *(pIn2 + 2u);
+        y11 = *(pIn2 + 3u);
+
+        /* multiply and accumlate */
+        acc0 += (q31_t) x20 *y10;
+        acc0 += (q31_t) x21 *y11;
+        acc2 += (q31_t) x10 *y10;
+        acc2 += (q31_t) x11 *y11;
+        acc1 += (q31_t) x21 *y10;
+        acc1 += (q31_t) x10 *y11;
+
+        /* Read next two samples from scratch1 buffer */
+        x20 = *(pScr1 + 2);
+        x21 = *(pScr1 + 3);
+
+        /* multiply and accumlate */
+        acc3 += (q31_t) x11 *y10;
+        acc3 += (q31_t) x20 *y11;
+
+        /* update scratch pointers */
+        pIn2 += 4u;
+        pScr1 += 4u;
+
+        /* Decrement the loop counter */
+        tapCnt--;
+      }
+
+      /* Update scratch pointer for remaining samples of smaller length sequence */
+      pScr1 -= 4u;
+
+      /* apply same above for remaining samples of smaller length sequence */
+      tapCnt = (srcBLen) & 3u;
+
+      while(tapCnt > 0u)
+      {
+        /* accumlate the results */
+        acc0 += (*pScr1++ * *pIn2);
+        acc1 += (*pScr1++ * *pIn2);
+        acc2 += (*pScr1++ * *pIn2);
+        acc3 += (*pScr1++ * *pIn2++);
+
+        pScr1 -= 3u;
+
+        /* Decrement the loop counter */
+        tapCnt--;
+      }
+
+      blkCnt--;
+
+
+      /* Store the results in the accumulators in the destination buffer. */
+      *pOut++ = __SSAT((acc0 >> 15), 16);
+      *pOut++ = __SSAT((acc1 >> 15), 16);
+      *pOut++ = __SSAT((acc2 >> 15), 16);
+      *pOut++ = __SSAT((acc3 >> 15), 16);
+
+      /* Initialization of inputB pointer */
+      pIn2 = py;
+
+      pScratch1 += 4u;
+
+    }
+
+
+    blkCnt = numPoints & 0x3;
+
+    /* Calculate convolution for remaining samples of Bigger length sequence */
+    while(blkCnt > 0)
+    {
+      /* Initialze temporary scratch pointer as scratch1 */
+      pScr1 = pScratch1;
+
+      /* Clear Accumlators */
+      acc0 = 0;
+
+      tapCnt = (srcBLen) >> 1u;
+
+      while(tapCnt > 0u)
+      {
+
+        /* Read next two samples from scratch1 buffer */
+        x10 = *pScr1++;
+        x11 = *pScr1++;
+
+        /* Read two samples from smaller buffer */
+        y10 = *pIn2++;
+        y11 = *pIn2++;
+
+        /* multiply and accumlate */
+        acc0 += (q31_t) x10 *y10;
+        acc0 += (q31_t) x11 *y11;
+
+        /* Decrement the loop counter */
+        tapCnt--;
+      }
+
+      tapCnt = (srcBLen) & 1u;
+
+      /* apply same above for remaining samples of smaller length sequence */
+      while(tapCnt > 0u)
+      {
+
+        /* accumlate the results */
+        acc0 += (*pScr1++ * *pIn2++);
+
+        /* Decrement the loop counter */
+        tapCnt--;
+      }
+
+      blkCnt--;
+
+      /* Store the result in the accumulator in the destination buffer. */
+      *pOut++ = (q15_t) (__SSAT((acc0 >> 15), 16));
+
+      /* Initialization of inputB pointer */
+      pIn2 = py;
+
+      pScratch1 += 1u;
+
+    }
+
+    /* set status as ARM_MATH_SUCCESS */
+    status = ARM_MATH_SUCCESS;
+
+  }
+
+  /* Return to application */
+  return (status);
+}
+
+#endif    /*    #ifndef UNALIGNED_SUPPORT_DISABLE    */
+
+/**    
+ * @} end of PartialConv group    
+ */