CMSIS DSP library

Dependents:   performance_timer Surfboard_ gps2rtty Capstone ... more

Legacy Warning

This is an mbed 2 library. To learn more about mbed OS 5, visit the docs.

Revision:
3:7a284390b0ce
Child:
5:3762170b6d4d
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/cmsis_dsp/TransformFunctions/arm_rfft_fast_f32.c	Fri Nov 08 13:45:10 2013 +0000
@@ -0,0 +1,354 @@
+/* ----------------------------------------------------------------------
+* Copyright (C) 2010-2013 ARM Limited. All rights reserved.
+*
+* $Date:        17. January 2013
+* $Revision: 	V1.4.1
+*
+* Project: 	    CMSIS DSP Library
+* Title:	    arm_rfft_f32.c
+*
+* Description:	RFFT & RIFFT Floating point process function
+*
+* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
+*
+* Redistribution and use in source and binary forms, with or without
+* modification, are permitted provided that the following conditions
+* are met:
+*   - Redistributions of source code must retain the above copyright
+*     notice, this list of conditions and the following disclaimer.
+*   - Redistributions in binary form must reproduce the above copyright
+*     notice, this list of conditions and the following disclaimer in
+*     the documentation and/or other materials provided with the
+*     distribution.
+*   - Neither the name of ARM LIMITED nor the names of its contributors
+*     may be used to endorse or promote products derived from this
+*     software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+* POSSIBILITY OF SUCH DAMAGE.
+* -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+
+void stage_rfft_f32(
+  arm_rfft_fast_instance_f32 * S,
+  float32_t * p, float32_t * pOut)
+{
+   uint32_t  k;								   /* Loop Counter                     */
+   float32_t twR, twI;						   /* RFFT Twiddle coefficients        */
+   float32_t * pCoeff = S->pTwiddleRFFT;  /* Points to RFFT Twiddle factors   */
+   float32_t *pA = p;						   /* increasing pointer               */
+   float32_t *pB = p;						   /* decreasing pointer               */
+   float32_t xAR, xAI, xBR, xBI;				/* temporary variables              */
+   float32_t t1a, t1b;				         /* temporary variables              */
+   float32_t p0, p1, p2, p3;				   /* temporary variables              */
+
+
+   k = (S->Sint).fftLen - 1;					
+
+   /* Pack first and last sample of the frequency domain together */
+
+   xBR = pB[0];
+   xBI = pB[1];
+   xAR = pA[0];
+   xAI = pA[1];
+
+   twR = *pCoeff++ ;
+   twI = *pCoeff++ ;
+   
+   // U1 = XA(1) + XB(1); % It is real
+   t1a = xBR + xAR  ;
+   
+   // U2 = XB(1) - XA(1); % It is imaginary
+   t1b = xBI + xAI  ;
+
+   // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI);
+   // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI);
+   *pOut++ = 0.5f * ( t1a + t1b );
+   *pOut++ = 0.5f * ( t1a - t1b );
+
+   // XA(1) = 1/2*( U1 - imag(U2) +  i*( U1 +imag(U2) ));
+   pB  = p + 2*k;
+   pA += 2;
+
+   do
+   {
+      /*
+         function X = my_split_rfft(X, ifftFlag)
+         % X is a series of real numbers
+         L  = length(X);
+         XC = X(1:2:end) +i*X(2:2:end);
+         XA = fft(XC);
+         XB = conj(XA([1 end:-1:2]));
+         TW = i*exp(-2*pi*i*[0:L/2-1]/L).';
+         for l = 2:L/2
+            XA(l) = 1/2 * (XA(l) + XB(l) + TW(l) * (XB(l) - XA(l)));
+         end
+         XA(1) = 1/2* (XA(1) + XB(1) + TW(1) * (XB(1) - XA(1))) + i*( 1/2*( XA(1) + XB(1) + i*( XA(1) - XB(1))));
+         X = XA;
+      */
+
+      xBI = pB[1];
+      xBR = pB[0];
+      xAR = pA[0];
+      xAI = pA[1];
+
+      twR = *pCoeff++;
+      twI = *pCoeff++;
+
+      t1a = xBR - xAR ;
+      t1b = xBI + xAI ;
+
+      // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI);
+      // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI);
+      p0 = twR * t1a;
+      p1 = twI * t1a;
+      p2 = twR * t1b;
+      p3 = twI * t1b;
+
+      *pOut++ = 0.5f * (xAR + xBR + p0 + p3 ); //xAR
+      *pOut++ = 0.5f * (xAI - xBI + p1 - p2 ); //xAI
+
+      pA += 2;
+      pB -= 2;
+      k--;
+   } while(k > 0u);
+}
+
+/* Prepares data for inverse cfft */
+void merge_rfft_f32(
+arm_rfft_fast_instance_f32 * S,
+float32_t * p, float32_t * pOut)
+{
+   uint32_t  k;								/* Loop Counter                     */
+   float32_t twR, twI;						/* RFFT Twiddle coefficients        */
+   float32_t *pCoeff = S->pTwiddleRFFT;		/* Points to RFFT Twiddle factors   */
+   float32_t *pA = p;						/* increasing pointer               */
+   float32_t *pB = p;						/* decreasing pointer               */
+   float32_t xAR, xAI, xBR, xBI;			/* temporary variables              */
+   float32_t t1a, t1b, r, s, t, u;			/* temporary variables              */
+
+   k = (S->Sint).fftLen - 1;					
+
+   xAR = pA[0];
+   xAI = pA[1];
+
+   pCoeff += 2 ;
+
+   *pOut++ = 0.5f * ( xAR + xAI );
+   *pOut++ = 0.5f * ( xAR - xAI );
+
+   pB  =  p + 2*k ;
+   pA +=  2	   ;
+
+   while(k > 0u)
+   {
+      /* G is half of the frequency complex spectrum */
+      //for k = 2:N
+      //    Xk(k) = 1/2 * (G(k) + conj(G(N-k+2)) + Tw(k)*( G(k) - conj(G(N-k+2))));
+      xBI =   pB[1]    ;
+      xBR =   pB[0]    ;
+      xAR =  pA[0];
+      xAI =  pA[1];
+
+      twR = *pCoeff++;
+      twI = *pCoeff++;
+
+      t1a = xAR - xBR ;
+      t1b = xAI + xBI ;
+
+      r = twR * t1a;
+      s = twI * t1b;
+      t = twI * t1a;
+      u = twR * t1b;
+
+      // real(tw * (xA - xB)) = twR * (xAR - xBR) - twI * (xAI - xBI);
+      // imag(tw * (xA - xB)) = twI * (xAR - xBR) + twR * (xAI - xBI);
+      *pOut++ = 0.5f * (xAR + xBR - r - s ); //xAR
+      *pOut++ = 0.5f * (xAI - xBI + t - u ); //xAI
+
+      pA += 2;
+      pB -= 2;
+      k--;
+   }
+
+}
+
+/**
+* @ingroup groupTransforms
+*/
+
+/**
+ * @defgroup Fast Real FFT Functions
+ *
+ * \par
+ * The CMSIS DSP library includes specialized algorithms for computing the
+ * FFT of real data sequences.  The FFT is defined over complex data but
+ * in many applications the input is real.  Real FFT algorithms take advantage
+ * of the symmetry properties of the FFT and have a speed advantage over complex
+ * algorithms of the same length.
+ * \par
+ * The Fast RFFT algorith relays on the mixed radix CFFT that save processor usage.
+ * \par
+ * The real length N forward FFT of a sequence is computed using the steps shown below.
+ * \par
+ * \image html RFFT.gif "Real Fast Fourier Transform"
+ * \par
+ * The real sequence is initially treated as if it were complex to perform a CFFT.
+ * Later, a processing stage reshapes the data to obtain half of the frequency spectrum
+ * in complex format. Except the first complex number that contains the two real numbers
+ * X[0] and X[N/2] all the data is complex. In other words, the first complex sample
+ * contains two real values packed.
+ * \par
+ * The input for the inverse RFFT should keep the same format as the output of the 
+ * forward RFFT. A first processing stage pre-process the data to later perform an
+ * inverse CFFT.
+ * \par    
+ * \image html RIFFT.gif "Real Inverse Fast Fourier Transform"    
+ * \par    
+ * The algorithms for floating-point, Q15, and Q31 data are slightly different
+ * and we describe each algorithm in turn.
+ * \par Floating-point
+ * The main functions are <code>arm_rfft_fast_f32()</code>
+ * and <code>arm_rfft_fast_init_f32()</code>.  The older functions
+ * <code>arm_rfft_f32()</code> and <code>arm_rfft_init_f32()</code> have been
+ * deprecated but are still documented.
+ * \par
+ * The FFT of a real N-point sequence has even symmetry in the frequency
+ * domain.  The second half of the data equals the conjugate of the first half
+ * flipped in frequency:
+ * <pre>
+ *X[0] - real data
+ *X[1] - complex data
+ *X[2] - complex data
+ *... 
+ *X[fftLen/2-1] - complex data
+ *X[fftLen/2] - real data
+ *X[fftLen/2+1] - conjugate of X[fftLen/2-1]
+ *X[fftLen/2+2] - conjugate of X[fftLen/2-2]
+ *... 
+ *X[fftLen-1] - conjugate of X[1]
+ * </pre>
+ * Looking at the data, we see that we can uniquely represent the FFT using only
+ * <pre>
+ *N/2+1 samples:
+ *X[0] - real data
+ *X[1] - complex data
+ *X[2] - complex data
+ *... 
+ *X[fftLen/2-1] - complex data
+ *X[fftLen/2] - real data
+ * </pre>
+ * Looking more closely we see that the first and last samples are real valued.
+ * They can be packed together and we can thus represent the FFT of an N-point
+ * real sequence by N/2 complex values:
+ * <pre>
+ *X[0],X[N/2] - packed real data: X[0] + jX[N/2]
+ *X[1] - complex data
+ *X[2] - complex data
+ *... 
+ *X[fftLen/2-1] - complex data
+ * </pre>
+ * The real FFT functions pack the frequency domain data in this fashion.  The
+ * forward transform outputs the data in this form and the inverse transform
+ * expects input data in this form.  The function always performs the needed
+ * bitreversal so that the input and output data is always in normal order.  The 
+ * functions support lengths of [32, 64, 128, ..., 4096] samples.
+ * \par
+ * The forward and inverse real FFT functions apply the standard FFT scaling; no
+ * scaling on the forward transform and 1/fftLen scaling on the inverse
+ * transform.
+ * \par Q15 and Q31
+ * The real algorithms are defined in a similar manner and utilize N/2 complex
+ * transforms behind the scenes.  In the case of fixed-point data, a radix-4
+ * complex transform is performed and this limits the allows sequence lengths to
+ * 128, 512, and 2048 samples.
+ * \par
+ * TBD.  We need to document input and output order of data.
+ * \par
+ * The complex transforms used internally include scaling to prevent fixed-point
+ * overflows.  The overall scaling equals 1/(fftLen/2).
+ * \par
+ * A separate instance structure must be defined for each transform used but 
+ * twiddle factor and bit reversal tables can be reused.
+ * \par
+ * There is also an associated initialization function for each data type. 
+ * The initialization function performs the following operations:
+ * - Sets the values of the internal structure fields.   
+ * - Initializes twiddle factor table and bit reversal table pointers.
+ * - Initializes the internal complex FFT data structure.
+ * \par   
+ * Use of the initialization function is optional.   
+ * However, if the initialization function is used, then the instance structure 
+ * cannot be placed into a const data section. To place an instance structure 
+ * into a const data section, the instance structure should be manually 
+ * initialized as follows:
+ * <pre>
+ *arm_rfft_instance_q31 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};    
+ *arm_rfft_instance_q15 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};    
+ * </pre>
+ * where <code>fftLenReal</code> is the length of the real transform;
+ * <code>fftLenBy2</code> length of  the internal complex transform.
+ * <code>ifftFlagR</code> Selects forward (=0) or inverse (=1) transform.
+ * <code>bitReverseFlagR</code> Selects bit reversed output (=0) or normal order
+ * output (=1).
+ * <code>twidCoefRModifier</code> stride modifier for the twiddle factor table.
+ * The value is based on the FFT length;
+ * <code>pTwiddleAReal</code>points to the A array of twiddle coefficients; 
+ * <code>pTwiddleBReal</code>points to the B array of twiddle coefficients;    
+ * <code>pCfft</code> points to the CFFT Instance structure. The CFFT structure
+ * must also be initialized.  Refer to arm_cfft_radix4_f32() for details regarding    
+ * static initialization of the complex FFT instance structure.    
+ */
+
+/**
+* @addtogroup RealFFT
+* @{
+*/
+
+/**
+* @brief Processing function for the floating-point real FFT.
+* @param[in]  *S              points to an arm_rfft_fast_instance_f32 structure.
+* @param[in]  *p              points to the input buffer.
+* @param[in]  *pOut           points to an arm_rfft_fast_instance_f32 structure.
+* @param[in]  ifftFlag        RFFT if flag is 0, RIFFT if flag is 1
+* @return none.
+*/
+
+void arm_rfft_fast_f32(
+arm_rfft_fast_instance_f32 * S,
+float32_t * p, float32_t * pOut,
+uint8_t ifftFlag)
+{
+   arm_cfft_instance_f32 * Sint = &(S->Sint);
+   Sint->fftLen = S->fftLenRFFT / 2;
+
+   /* Calculation of Real FFT */
+   if(ifftFlag)
+   {
+      /*  Real FFT comression */
+      merge_rfft_f32(S, p, pOut);
+
+      /* Complex radix-4 IFFT process */
+      arm_cfft_f32( Sint, pOut, ifftFlag, 1);
+   }
+   else
+   {
+      /* Calculation of RFFT of input */
+      arm_cfft_f32( Sint, p, ifftFlag, 1);
+   
+      /*  Real FFT extraction */
+      stage_rfft_f32(S, p, pOut);
+   }
+}
+