CMSIS DSP library

Dependents:   performance_timer Surfboard_ gps2rtty Capstone ... more

Legacy Warning

This is an mbed 2 library. To learn more about mbed OS 5, visit the docs.

Revision:
5:3762170b6d4d
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/cmsis_dsp/TransformFunctions/arm_cfft_q15.c	Fri Nov 20 08:45:18 2015 +0000
@@ -0,0 +1,357 @@
+/* ----------------------------------------------------------------------    
+* Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
+*    
+* $Date:        19. March 2015 
+* $Revision: 	V.1.4.5  
+*    
+* Project: 	    CMSIS DSP Library    
+* Title:	    arm_cfft_q15.c   
+*    
+* Description:	Combined Radix Decimation in Q15 Frequency CFFT processing function
+*    
+* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
+*  
+* Redistribution and use in source and binary forms, with or without 
+* modification, are permitted provided that the following conditions
+* are met:
+*   - Redistributions of source code must retain the above copyright
+*     notice, this list of conditions and the following disclaimer.
+*   - Redistributions in binary form must reproduce the above copyright
+*     notice, this list of conditions and the following disclaimer in
+*     the documentation and/or other materials provided with the 
+*     distribution.
+*   - Neither the name of ARM LIMITED nor the names of its contributors
+*     may be used to endorse or promote products derived from this
+*     software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
+* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+* POSSIBILITY OF SUCH DAMAGE.   
+* -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+
+extern void arm_radix4_butterfly_q15(
+    q15_t * pSrc,
+    uint32_t fftLen,
+    q15_t * pCoef,
+    uint32_t twidCoefModifier);
+
+extern void arm_radix4_butterfly_inverse_q15(
+    q15_t * pSrc,
+    uint32_t fftLen,
+    q15_t * pCoef,
+    uint32_t twidCoefModifier);
+
+extern void arm_bitreversal_16(
+    uint16_t * pSrc,
+    const uint16_t bitRevLen,
+    const uint16_t * pBitRevTable);
+    
+void arm_cfft_radix4by2_q15(
+    q15_t * pSrc,
+    uint32_t fftLen,
+    const q15_t * pCoef);
+    
+void arm_cfft_radix4by2_inverse_q15(
+    q15_t * pSrc,
+    uint32_t fftLen,
+    const q15_t * pCoef);
+
+/**   
+* @ingroup groupTransforms   
+*/
+
+/**
+* @addtogroup ComplexFFT   
+* @{   
+*/
+
+/**   
+* @details   
+* @brief       Processing function for the Q15 complex FFT.
+* @param[in]      *S    points to an instance of the Q15 CFFT structure.  
+* @param[in, out] *p1   points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place.  
+* @param[in]     ifftFlag       flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.  
+* @param[in]     bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.  
+* @return none.  
+*/
+
+void arm_cfft_q15( 
+    const arm_cfft_instance_q15 * S, 
+    q15_t * p1,
+    uint8_t ifftFlag,
+    uint8_t bitReverseFlag)
+{
+    uint32_t L = S->fftLen;
+
+    if(ifftFlag == 1u)
+    {
+        switch (L) 
+        {
+        case 16: 
+        case 64:
+        case 256:
+        case 1024:
+        case 4096:
+            arm_radix4_butterfly_inverse_q15  ( p1, L, (q15_t*)S->pTwiddle, 1 );
+            break;
+            
+        case 32:
+        case 128:
+        case 512:
+        case 2048:
+            arm_cfft_radix4by2_inverse_q15  ( p1, L, S->pTwiddle );
+            break;
+        }  
+    }
+    else
+    {
+        switch (L) 
+        {
+        case 16: 
+        case 64:
+        case 256:
+        case 1024:
+        case 4096:
+            arm_radix4_butterfly_q15  ( p1, L, (q15_t*)S->pTwiddle, 1 );
+            break;
+            
+        case 32:
+        case 128:
+        case 512:
+        case 2048:
+            arm_cfft_radix4by2_q15  ( p1, L, S->pTwiddle );
+            break;
+        }  
+    }
+    
+    if( bitReverseFlag )
+        arm_bitreversal_16((uint16_t*)p1,S->bitRevLength,S->pBitRevTable);    
+}
+
+/**    
+* @} end of ComplexFFT group    
+*/
+
+void arm_cfft_radix4by2_q15(
+    q15_t * pSrc,
+    uint32_t fftLen,
+    const q15_t * pCoef) 
+{    
+    uint32_t i;
+    uint32_t n2;
+    q15_t p0, p1, p2, p3;
+#ifndef ARM_MATH_CM0_FAMILY
+    q31_t T, S, R;
+    q31_t coeff, out1, out2;
+    const q15_t *pC = pCoef;
+    q15_t *pSi = pSrc;
+    q15_t *pSl = pSrc + fftLen;
+#else
+    uint32_t ia, l;
+    q15_t xt, yt, cosVal, sinVal;
+#endif
+    
+    n2 = fftLen >> 1; 
+
+#ifndef ARM_MATH_CM0_FAMILY
+
+    for (i = n2; i > 0; i--)
+    {
+        coeff = _SIMD32_OFFSET(pC);
+        pC += 2;
+
+        T = _SIMD32_OFFSET(pSi);
+        T = __SHADD16(T, 0); // this is just a SIMD arithmetic shift right by 1
+
+        S = _SIMD32_OFFSET(pSl);
+        S = __SHADD16(S, 0); // this is just a SIMD arithmetic shift right by 1
+
+        R = __QSUB16(T, S);
+
+        _SIMD32_OFFSET(pSi) = __SHADD16(T, S);
+        pSi += 2;
+
+    #ifndef ARM_MATH_BIG_ENDIAN
+
+        out1 = __SMUAD(coeff, R) >> 16;
+        out2 = __SMUSDX(coeff, R);
+
+    #else
+
+        out1 = __SMUSDX(R, coeff) >> 16u;
+        out2 = __SMUAD(coeff, R);
+
+    #endif //     #ifndef ARM_MATH_BIG_ENDIAN
+
+        _SIMD32_OFFSET(pSl) =
+        (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
+        pSl += 2;
+    } 
+    
+#else //    #ifndef ARM_MATH_CM0_FAMILY
+    
+    ia = 0;
+    for (i = 0; i < n2; i++)
+    {
+        cosVal = pCoef[ia * 2];
+        sinVal = pCoef[(ia * 2) + 1];
+        ia++;
+        
+        l = i + n2;        
+        
+        xt = (pSrc[2 * i] >> 1u) - (pSrc[2 * l] >> 1u);
+        pSrc[2 * i] = ((pSrc[2 * i] >> 1u) + (pSrc[2 * l] >> 1u)) >> 1u;
+        
+        yt = (pSrc[2 * i + 1] >> 1u) - (pSrc[2 * l + 1] >> 1u);
+        pSrc[2 * i + 1] =
+        ((pSrc[2 * l + 1] >> 1u) + (pSrc[2 * i + 1] >> 1u)) >> 1u;
+
+        pSrc[2u * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16)) +
+                  ((int16_t) (((q31_t) yt * sinVal) >> 16)));
+
+        pSrc[2u * l + 1u] = (((int16_t) (((q31_t) yt * cosVal) >> 16)) -
+                       ((int16_t) (((q31_t) xt * sinVal) >> 16)));
+    } 
+    
+#endif //    #ifndef ARM_MATH_CM0_FAMILY
+    
+    // first col
+    arm_radix4_butterfly_q15( pSrc, n2, (q15_t*)pCoef, 2u);
+    // second col
+    arm_radix4_butterfly_q15( pSrc + fftLen, n2, (q15_t*)pCoef, 2u);
+			
+    for (i = 0; i < fftLen >> 1; i++)
+    {
+        p0 = pSrc[4*i+0];
+        p1 = pSrc[4*i+1];
+        p2 = pSrc[4*i+2];
+        p3 = pSrc[4*i+3];
+        
+        p0 <<= 1;
+        p1 <<= 1;
+        p2 <<= 1;
+        p3 <<= 1;
+        
+        pSrc[4*i+0] = p0;
+        pSrc[4*i+1] = p1;
+        pSrc[4*i+2] = p2;
+        pSrc[4*i+3] = p3;
+    }
+}
+
+void arm_cfft_radix4by2_inverse_q15(
+    q15_t * pSrc,
+    uint32_t fftLen,
+    const q15_t * pCoef) 
+{    
+    uint32_t i;
+    uint32_t n2;
+    q15_t p0, p1, p2, p3;
+#ifndef ARM_MATH_CM0_FAMILY
+    q31_t T, S, R;
+    q31_t coeff, out1, out2;
+    const q15_t *pC = pCoef;
+    q15_t *pSi = pSrc;
+    q15_t *pSl = pSrc + fftLen;
+#else
+    uint32_t ia, l;
+    q15_t xt, yt, cosVal, sinVal;
+#endif
+    
+    n2 = fftLen >> 1; 
+
+#ifndef ARM_MATH_CM0_FAMILY
+
+    for (i = n2; i > 0; i--)
+    {
+        coeff = _SIMD32_OFFSET(pC);
+        pC += 2;
+
+        T = _SIMD32_OFFSET(pSi);
+        T = __SHADD16(T, 0); // this is just a SIMD arithmetic shift right by 1
+
+        S = _SIMD32_OFFSET(pSl);
+        S = __SHADD16(S, 0); // this is just a SIMD arithmetic shift right by 1
+
+        R = __QSUB16(T, S);
+
+        _SIMD32_OFFSET(pSi) = __SHADD16(T, S);
+        pSi += 2;
+
+    #ifndef ARM_MATH_BIG_ENDIAN
+
+        out1 = __SMUSD(coeff, R) >> 16;
+        out2 = __SMUADX(coeff, R);
+    #else
+
+        out1 = __SMUADX(R, coeff) >> 16u;
+        out2 = __SMUSD(__QSUB(0, coeff), R);
+
+    #endif //     #ifndef ARM_MATH_BIG_ENDIAN
+
+        _SIMD32_OFFSET(pSl) =
+        (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);        
+        pSl += 2;
+    } 
+    
+#else //    #ifndef ARM_MATH_CM0_FAMILY
+
+    ia = 0;
+    for (i = 0; i < n2; i++)
+    {
+        cosVal = pCoef[ia * 2];
+        sinVal = pCoef[(ia * 2) + 1];
+        ia++;
+        
+        l = i + n2;
+        xt = (pSrc[2 * i] >> 1u) - (pSrc[2 * l] >> 1u);
+        pSrc[2 * i] = ((pSrc[2 * i] >> 1u) + (pSrc[2 * l] >> 1u)) >> 1u;
+        
+        yt = (pSrc[2 * i + 1] >> 1u) - (pSrc[2 * l + 1] >> 1u);
+        pSrc[2 * i + 1] =
+          ((pSrc[2 * l + 1] >> 1u) + (pSrc[2 * i + 1] >> 1u)) >> 1u;
+        
+        pSrc[2u * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16)) -
+                        ((int16_t) (((q31_t) yt * sinVal) >> 16)));
+        
+        pSrc[2u * l + 1u] = (((int16_t) (((q31_t) yt * cosVal) >> 16)) +
+                           ((int16_t) (((q31_t) xt * sinVal) >> 16)));
+    } 
+    
+#endif //    #ifndef ARM_MATH_CM0_FAMILY
+
+    // first col
+    arm_radix4_butterfly_inverse_q15( pSrc, n2, (q15_t*)pCoef, 2u);
+    // second col
+    arm_radix4_butterfly_inverse_q15( pSrc + fftLen, n2, (q15_t*)pCoef, 2u);
+			
+    for (i = 0; i < fftLen >> 1; i++)
+    {
+        p0 = pSrc[4*i+0];
+        p1 = pSrc[4*i+1];
+        p2 = pSrc[4*i+2];
+        p3 = pSrc[4*i+3];
+        
+        p0 <<= 1;
+        p1 <<= 1;
+        p2 <<= 1;
+        p3 <<= 1;
+        
+        pSrc[4*i+0] = p0;
+        pSrc[4*i+1] = p1;
+        pSrc[4*i+2] = p2;
+        pSrc[4*i+3] = p3;
+    }
+}
+