CMSIS DSP library

Dependents:   performance_timer Surfboard_ gps2rtty Capstone ... more

Legacy Warning

This is an mbed 2 library. To learn more about mbed OS 5, visit the docs.

Committer:
emilmont
Date:
Wed Nov 28 12:30:09 2012 +0000
Revision:
1:fdd22bb7aa52
Child:
2:da51fb522205
DSP library code

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emilmont 1:fdd22bb7aa52 1 /* ----------------------------------------------------------------------
emilmont 1:fdd22bb7aa52 2 * Copyright (C) 2010 ARM Limited. All rights reserved.
emilmont 1:fdd22bb7aa52 3 *
emilmont 1:fdd22bb7aa52 4 * $Date: 15. February 2012
emilmont 1:fdd22bb7aa52 5 * $Revision: V1.1.0
emilmont 1:fdd22bb7aa52 6 *
emilmont 1:fdd22bb7aa52 7 * Project: CMSIS DSP Library
emilmont 1:fdd22bb7aa52 8 * Title: arm_cmplx_mult_real_f32.c
emilmont 1:fdd22bb7aa52 9 *
emilmont 1:fdd22bb7aa52 10 * Description: Floating-point complex by real multiplication
emilmont 1:fdd22bb7aa52 11 *
emilmont 1:fdd22bb7aa52 12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
emilmont 1:fdd22bb7aa52 13 *
emilmont 1:fdd22bb7aa52 14 * Version 1.1.0 2012/02/15
emilmont 1:fdd22bb7aa52 15 * Updated with more optimizations, bug fixes and minor API changes.
emilmont 1:fdd22bb7aa52 16 *
emilmont 1:fdd22bb7aa52 17 * Version 1.0.10 2011/7/15
emilmont 1:fdd22bb7aa52 18 * Big Endian support added and Merged M0 and M3/M4 Source code.
emilmont 1:fdd22bb7aa52 19 *
emilmont 1:fdd22bb7aa52 20 * Version 1.0.3 2010/11/29
emilmont 1:fdd22bb7aa52 21 * Re-organized the CMSIS folders and updated documentation.
emilmont 1:fdd22bb7aa52 22 *
emilmont 1:fdd22bb7aa52 23 * Version 1.0.2 2010/11/11
emilmont 1:fdd22bb7aa52 24 * Documentation updated.
emilmont 1:fdd22bb7aa52 25 *
emilmont 1:fdd22bb7aa52 26 * Version 1.0.1 2010/10/05
emilmont 1:fdd22bb7aa52 27 * Production release and review comments incorporated.
emilmont 1:fdd22bb7aa52 28 *
emilmont 1:fdd22bb7aa52 29 * Version 1.0.0 2010/09/20
emilmont 1:fdd22bb7aa52 30 * Production release and review comments incorporated.
emilmont 1:fdd22bb7aa52 31 * -------------------------------------------------------------------- */
emilmont 1:fdd22bb7aa52 32
emilmont 1:fdd22bb7aa52 33 #include "arm_math.h"
emilmont 1:fdd22bb7aa52 34
emilmont 1:fdd22bb7aa52 35 /**
emilmont 1:fdd22bb7aa52 36 * @ingroup groupCmplxMath
emilmont 1:fdd22bb7aa52 37 */
emilmont 1:fdd22bb7aa52 38
emilmont 1:fdd22bb7aa52 39 /**
emilmont 1:fdd22bb7aa52 40 * @defgroup CmplxByRealMult Complex-by-Real Multiplication
emilmont 1:fdd22bb7aa52 41 *
emilmont 1:fdd22bb7aa52 42 * Multiplies a complex vector by a real vector and generates a complex result.
emilmont 1:fdd22bb7aa52 43 * The data in the complex arrays is stored in an interleaved fashion
emilmont 1:fdd22bb7aa52 44 * (real, imag, real, imag, ...).
emilmont 1:fdd22bb7aa52 45 * The parameter <code>numSamples</code> represents the number of complex
emilmont 1:fdd22bb7aa52 46 * samples processed. The complex arrays have a total of <code>2*numSamples</code>
emilmont 1:fdd22bb7aa52 47 * real values while the real array has a total of <code>numSamples</code>
emilmont 1:fdd22bb7aa52 48 * real values.
emilmont 1:fdd22bb7aa52 49 *
emilmont 1:fdd22bb7aa52 50 * The underlying algorithm is used:
emilmont 1:fdd22bb7aa52 51 *
emilmont 1:fdd22bb7aa52 52 * <pre>
emilmont 1:fdd22bb7aa52 53 * for(n=0; n<numSamples; n++) {
emilmont 1:fdd22bb7aa52 54 * pCmplxDst[(2*n)+0] = pSrcCmplx[(2*n)+0] * pSrcReal[n];
emilmont 1:fdd22bb7aa52 55 * pCmplxDst[(2*n)+1] = pSrcCmplx[(2*n)+1] * pSrcReal[n];
emilmont 1:fdd22bb7aa52 56 * }
emilmont 1:fdd22bb7aa52 57 * </pre>
emilmont 1:fdd22bb7aa52 58 *
emilmont 1:fdd22bb7aa52 59 * There are separate functions for floating-point, Q15, and Q31 data types.
emilmont 1:fdd22bb7aa52 60 */
emilmont 1:fdd22bb7aa52 61
emilmont 1:fdd22bb7aa52 62 /**
emilmont 1:fdd22bb7aa52 63 * @addtogroup CmplxByRealMult
emilmont 1:fdd22bb7aa52 64 * @{
emilmont 1:fdd22bb7aa52 65 */
emilmont 1:fdd22bb7aa52 66
emilmont 1:fdd22bb7aa52 67
emilmont 1:fdd22bb7aa52 68 /**
emilmont 1:fdd22bb7aa52 69 * @brief Floating-point complex-by-real multiplication
emilmont 1:fdd22bb7aa52 70 * @param[in] *pSrcCmplx points to the complex input vector
emilmont 1:fdd22bb7aa52 71 * @param[in] *pSrcReal points to the real input vector
emilmont 1:fdd22bb7aa52 72 * @param[out] *pCmplxDst points to the complex output vector
emilmont 1:fdd22bb7aa52 73 * @param[in] numSamples number of samples in each vector
emilmont 1:fdd22bb7aa52 74 * @return none.
emilmont 1:fdd22bb7aa52 75 */
emilmont 1:fdd22bb7aa52 76
emilmont 1:fdd22bb7aa52 77 void arm_cmplx_mult_real_f32(
emilmont 1:fdd22bb7aa52 78 float32_t * pSrcCmplx,
emilmont 1:fdd22bb7aa52 79 float32_t * pSrcReal,
emilmont 1:fdd22bb7aa52 80 float32_t * pCmplxDst,
emilmont 1:fdd22bb7aa52 81 uint32_t numSamples)
emilmont 1:fdd22bb7aa52 82 {
emilmont 1:fdd22bb7aa52 83 float32_t in; /* Temporary variable to store input value */
emilmont 1:fdd22bb7aa52 84 uint32_t blkCnt; /* loop counters */
emilmont 1:fdd22bb7aa52 85
emilmont 1:fdd22bb7aa52 86 #ifndef ARM_MATH_CM0
emilmont 1:fdd22bb7aa52 87
emilmont 1:fdd22bb7aa52 88 /* Run the below code for Cortex-M4 and Cortex-M3 */
emilmont 1:fdd22bb7aa52 89 float32_t inA1, inA2, inA3, inA4; /* Temporary variables to hold input data */
emilmont 1:fdd22bb7aa52 90 float32_t inA5, inA6, inA7, inA8; /* Temporary variables to hold input data */
emilmont 1:fdd22bb7aa52 91 float32_t inB1, inB2, inB3, inB4; /* Temporary variables to hold input data */
emilmont 1:fdd22bb7aa52 92 float32_t out1, out2, out3, out4; /* Temporary variables to hold output data */
emilmont 1:fdd22bb7aa52 93 float32_t out5, out6, out7, out8; /* Temporary variables to hold output data */
emilmont 1:fdd22bb7aa52 94
emilmont 1:fdd22bb7aa52 95 /* loop Unrolling */
emilmont 1:fdd22bb7aa52 96 blkCnt = numSamples >> 2u;
emilmont 1:fdd22bb7aa52 97
emilmont 1:fdd22bb7aa52 98 /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
emilmont 1:fdd22bb7aa52 99 ** a second loop below computes the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 100 while(blkCnt > 0u)
emilmont 1:fdd22bb7aa52 101 {
emilmont 1:fdd22bb7aa52 102 /* C[2 * i] = A[2 * i] * B[i]. */
emilmont 1:fdd22bb7aa52 103 /* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
emilmont 1:fdd22bb7aa52 104 /* read input from complex input buffer */
emilmont 1:fdd22bb7aa52 105 inA1 = pSrcCmplx[0];
emilmont 1:fdd22bb7aa52 106 inA2 = pSrcCmplx[1];
emilmont 1:fdd22bb7aa52 107 /* read input from real input buffer */
emilmont 1:fdd22bb7aa52 108 inB1 = pSrcReal[0];
emilmont 1:fdd22bb7aa52 109
emilmont 1:fdd22bb7aa52 110 /* read input from complex input buffer */
emilmont 1:fdd22bb7aa52 111 inA3 = pSrcCmplx[2];
emilmont 1:fdd22bb7aa52 112
emilmont 1:fdd22bb7aa52 113 /* multiply complex buffer real input with real buffer input */
emilmont 1:fdd22bb7aa52 114 out1 = inA1 * inB1;
emilmont 1:fdd22bb7aa52 115
emilmont 1:fdd22bb7aa52 116 /* read input from complex input buffer */
emilmont 1:fdd22bb7aa52 117 inA4 = pSrcCmplx[3];
emilmont 1:fdd22bb7aa52 118
emilmont 1:fdd22bb7aa52 119 /* multiply complex buffer imaginary input with real buffer input */
emilmont 1:fdd22bb7aa52 120 out2 = inA2 * inB1;
emilmont 1:fdd22bb7aa52 121
emilmont 1:fdd22bb7aa52 122 /* read input from real input buffer */
emilmont 1:fdd22bb7aa52 123 inB2 = pSrcReal[1];
emilmont 1:fdd22bb7aa52 124 /* read input from complex input buffer */
emilmont 1:fdd22bb7aa52 125 inA5 = pSrcCmplx[4];
emilmont 1:fdd22bb7aa52 126
emilmont 1:fdd22bb7aa52 127 /* multiply complex buffer real input with real buffer input */
emilmont 1:fdd22bb7aa52 128 out3 = inA3 * inB2;
emilmont 1:fdd22bb7aa52 129
emilmont 1:fdd22bb7aa52 130 /* read input from complex input buffer */
emilmont 1:fdd22bb7aa52 131 inA6 = pSrcCmplx[5];
emilmont 1:fdd22bb7aa52 132 /* read input from real input buffer */
emilmont 1:fdd22bb7aa52 133 inB3 = pSrcReal[2];
emilmont 1:fdd22bb7aa52 134
emilmont 1:fdd22bb7aa52 135 /* multiply complex buffer imaginary input with real buffer input */
emilmont 1:fdd22bb7aa52 136 out4 = inA4 * inB2;
emilmont 1:fdd22bb7aa52 137
emilmont 1:fdd22bb7aa52 138 /* read input from complex input buffer */
emilmont 1:fdd22bb7aa52 139 inA7 = pSrcCmplx[6];
emilmont 1:fdd22bb7aa52 140
emilmont 1:fdd22bb7aa52 141 /* multiply complex buffer real input with real buffer input */
emilmont 1:fdd22bb7aa52 142 out5 = inA5 * inB3;
emilmont 1:fdd22bb7aa52 143
emilmont 1:fdd22bb7aa52 144 /* read input from complex input buffer */
emilmont 1:fdd22bb7aa52 145 inA8 = pSrcCmplx[7];
emilmont 1:fdd22bb7aa52 146
emilmont 1:fdd22bb7aa52 147 /* multiply complex buffer imaginary input with real buffer input */
emilmont 1:fdd22bb7aa52 148 out6 = inA6 * inB3;
emilmont 1:fdd22bb7aa52 149
emilmont 1:fdd22bb7aa52 150 /* read input from real input buffer */
emilmont 1:fdd22bb7aa52 151 inB4 = pSrcReal[3];
emilmont 1:fdd22bb7aa52 152
emilmont 1:fdd22bb7aa52 153 /* store result to destination bufer */
emilmont 1:fdd22bb7aa52 154 pCmplxDst[0] = out1;
emilmont 1:fdd22bb7aa52 155
emilmont 1:fdd22bb7aa52 156 /* multiply complex buffer real input with real buffer input */
emilmont 1:fdd22bb7aa52 157 out7 = inA7 * inB4;
emilmont 1:fdd22bb7aa52 158
emilmont 1:fdd22bb7aa52 159 /* store result to destination bufer */
emilmont 1:fdd22bb7aa52 160 pCmplxDst[1] = out2;
emilmont 1:fdd22bb7aa52 161
emilmont 1:fdd22bb7aa52 162 /* multiply complex buffer imaginary input with real buffer input */
emilmont 1:fdd22bb7aa52 163 out8 = inA8 * inB4;
emilmont 1:fdd22bb7aa52 164
emilmont 1:fdd22bb7aa52 165 /* store result to destination bufer */
emilmont 1:fdd22bb7aa52 166 pCmplxDst[2] = out3;
emilmont 1:fdd22bb7aa52 167 pCmplxDst[3] = out4;
emilmont 1:fdd22bb7aa52 168 pCmplxDst[4] = out5;
emilmont 1:fdd22bb7aa52 169
emilmont 1:fdd22bb7aa52 170 /* incremnet complex input buffer by 8 to process next samples */
emilmont 1:fdd22bb7aa52 171 pSrcCmplx += 8u;
emilmont 1:fdd22bb7aa52 172
emilmont 1:fdd22bb7aa52 173 /* store result to destination bufer */
emilmont 1:fdd22bb7aa52 174 pCmplxDst[5] = out6;
emilmont 1:fdd22bb7aa52 175
emilmont 1:fdd22bb7aa52 176 /* increment real input buffer by 4 to process next samples */
emilmont 1:fdd22bb7aa52 177 pSrcReal += 4u;
emilmont 1:fdd22bb7aa52 178
emilmont 1:fdd22bb7aa52 179 /* store result to destination bufer */
emilmont 1:fdd22bb7aa52 180 pCmplxDst[6] = out7;
emilmont 1:fdd22bb7aa52 181 pCmplxDst[7] = out8;
emilmont 1:fdd22bb7aa52 182
emilmont 1:fdd22bb7aa52 183 /* increment destination buffer by 8 to process next sampels */
emilmont 1:fdd22bb7aa52 184 pCmplxDst += 8u;
emilmont 1:fdd22bb7aa52 185
emilmont 1:fdd22bb7aa52 186 /* Decrement the numSamples loop counter */
emilmont 1:fdd22bb7aa52 187 blkCnt--;
emilmont 1:fdd22bb7aa52 188 }
emilmont 1:fdd22bb7aa52 189
emilmont 1:fdd22bb7aa52 190 /* If the numSamples is not a multiple of 4, compute any remaining output samples here.
emilmont 1:fdd22bb7aa52 191 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 192 blkCnt = numSamples % 0x4u;
emilmont 1:fdd22bb7aa52 193
emilmont 1:fdd22bb7aa52 194 #else
emilmont 1:fdd22bb7aa52 195
emilmont 1:fdd22bb7aa52 196 /* Run the below code for Cortex-M0 */
emilmont 1:fdd22bb7aa52 197 blkCnt = numSamples;
emilmont 1:fdd22bb7aa52 198
emilmont 1:fdd22bb7aa52 199 #endif /* #ifndef ARM_MATH_CM0 */
emilmont 1:fdd22bb7aa52 200
emilmont 1:fdd22bb7aa52 201 while(blkCnt > 0u)
emilmont 1:fdd22bb7aa52 202 {
emilmont 1:fdd22bb7aa52 203 /* C[2 * i] = A[2 * i] * B[i]. */
emilmont 1:fdd22bb7aa52 204 /* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
emilmont 1:fdd22bb7aa52 205 in = *pSrcReal++;
emilmont 1:fdd22bb7aa52 206 /* store the result in the destination buffer. */
emilmont 1:fdd22bb7aa52 207 *pCmplxDst++ = (*pSrcCmplx++) * (in);
emilmont 1:fdd22bb7aa52 208 *pCmplxDst++ = (*pSrcCmplx++) * (in);
emilmont 1:fdd22bb7aa52 209
emilmont 1:fdd22bb7aa52 210 /* Decrement the numSamples loop counter */
emilmont 1:fdd22bb7aa52 211 blkCnt--;
emilmont 1:fdd22bb7aa52 212 }
emilmont 1:fdd22bb7aa52 213 }
emilmont 1:fdd22bb7aa52 214
emilmont 1:fdd22bb7aa52 215 /**
emilmont 1:fdd22bb7aa52 216 * @} end of CmplxByRealMult group
emilmont 1:fdd22bb7aa52 217 */