CMSIS DSP library

Dependents:   performance_timer Surfboard_ gps2rtty Capstone ... more

Legacy Warning

This is an mbed 2 library. To learn more about mbed OS 5, visit the docs.

Committer:
emilmont
Date:
Thu May 30 17:10:11 2013 +0100
Revision:
2:da51fb522205
Parent:
1:fdd22bb7aa52
Child:
3:7a284390b0ce
Keep "cmsis-dsp" module in synch with its source

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emilmont 1:fdd22bb7aa52 1 /* ----------------------------------------------------------------------
emilmont 1:fdd22bb7aa52 2 * Copyright (C) 2010 ARM Limited. All rights reserved.
emilmont 1:fdd22bb7aa52 3 *
emilmont 1:fdd22bb7aa52 4 * $Date: 15. February 2012
emilmont 2:da51fb522205 5 * $Revision: V1.1.0
emilmont 1:fdd22bb7aa52 6 *
emilmont 2:da51fb522205 7 * Project: CMSIS DSP Library
emilmont 2:da51fb522205 8 * Title: arm_cmplx_dot_prod_f32.c
emilmont 1:fdd22bb7aa52 9 *
emilmont 2:da51fb522205 10 * Description: Floating-point complex dot product
emilmont 1:fdd22bb7aa52 11 *
emilmont 1:fdd22bb7aa52 12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
emilmont 1:fdd22bb7aa52 13 *
emilmont 1:fdd22bb7aa52 14 * Version 1.1.0 2012/02/15
emilmont 1:fdd22bb7aa52 15 * Updated with more optimizations, bug fixes and minor API changes.
emilmont 1:fdd22bb7aa52 16 *
emilmont 1:fdd22bb7aa52 17 * Version 1.0.10 2011/7/15
emilmont 1:fdd22bb7aa52 18 * Big Endian support added and Merged M0 and M3/M4 Source code.
emilmont 1:fdd22bb7aa52 19 *
emilmont 1:fdd22bb7aa52 20 * Version 1.0.3 2010/11/29
emilmont 1:fdd22bb7aa52 21 * Re-organized the CMSIS folders and updated documentation.
emilmont 1:fdd22bb7aa52 22 *
emilmont 1:fdd22bb7aa52 23 * Version 1.0.2 2010/11/11
emilmont 1:fdd22bb7aa52 24 * Documentation updated.
emilmont 1:fdd22bb7aa52 25 *
emilmont 1:fdd22bb7aa52 26 * Version 1.0.1 2010/10/05
emilmont 1:fdd22bb7aa52 27 * Production release and review comments incorporated.
emilmont 1:fdd22bb7aa52 28 *
emilmont 1:fdd22bb7aa52 29 * Version 1.0.0 2010/09/20
emilmont 1:fdd22bb7aa52 30 * Production release and review comments incorporated.
emilmont 1:fdd22bb7aa52 31 * ---------------------------------------------------------------------------- */
emilmont 1:fdd22bb7aa52 32
emilmont 1:fdd22bb7aa52 33 #include "arm_math.h"
emilmont 1:fdd22bb7aa52 34
emilmont 1:fdd22bb7aa52 35 /**
emilmont 1:fdd22bb7aa52 36 * @ingroup groupCmplxMath
emilmont 1:fdd22bb7aa52 37 */
emilmont 1:fdd22bb7aa52 38
emilmont 1:fdd22bb7aa52 39 /**
emilmont 1:fdd22bb7aa52 40 * @defgroup cmplx_dot_prod Complex Dot Product
emilmont 1:fdd22bb7aa52 41 *
emilmont 1:fdd22bb7aa52 42 * Computes the dot product of two complex vectors.
emilmont 1:fdd22bb7aa52 43 * The vectors are multiplied element-by-element and then summed.
emilmont 1:fdd22bb7aa52 44 *
emilmont 1:fdd22bb7aa52 45 * The <code>pSrcA</code> points to the first complex input vector and
emilmont 1:fdd22bb7aa52 46 * <code>pSrcB</code> points to the second complex input vector.
emilmont 1:fdd22bb7aa52 47 * <code>numSamples</code> specifies the number of complex samples
emilmont 1:fdd22bb7aa52 48 * and the data in each array is stored in an interleaved fashion
emilmont 1:fdd22bb7aa52 49 * (real, imag, real, imag, ...).
emilmont 1:fdd22bb7aa52 50 * Each array has a total of <code>2*numSamples</code> values.
emilmont 1:fdd22bb7aa52 51 *
emilmont 1:fdd22bb7aa52 52 * The underlying algorithm is used:
emilmont 1:fdd22bb7aa52 53 * <pre>
emilmont 1:fdd22bb7aa52 54 * realResult=0;
emilmont 1:fdd22bb7aa52 55 * imagResult=0;
emilmont 1:fdd22bb7aa52 56 * for(n=0; n<numSamples; n++) {
emilmont 1:fdd22bb7aa52 57 * realResult += pSrcA[(2*n)+0]*pSrcB[(2*n)+0] - pSrcA[(2*n)+1]*pSrcB[(2*n)+1];
emilmont 1:fdd22bb7aa52 58 * imagResult += pSrcA[(2*n)+0]*pSrcB[(2*n)+1] + pSrcA[(2*n)+1]*pSrcB[(2*n)+0];
emilmont 1:fdd22bb7aa52 59 * }
emilmont 1:fdd22bb7aa52 60 * </pre>
emilmont 1:fdd22bb7aa52 61 *
emilmont 1:fdd22bb7aa52 62 * There are separate functions for floating-point, Q15, and Q31 data types.
emilmont 1:fdd22bb7aa52 63 */
emilmont 1:fdd22bb7aa52 64
emilmont 1:fdd22bb7aa52 65 /**
emilmont 1:fdd22bb7aa52 66 * @addtogroup cmplx_dot_prod
emilmont 1:fdd22bb7aa52 67 * @{
emilmont 1:fdd22bb7aa52 68 */
emilmont 1:fdd22bb7aa52 69
emilmont 1:fdd22bb7aa52 70 /**
emilmont 1:fdd22bb7aa52 71 * @brief Floating-point complex dot product
emilmont 1:fdd22bb7aa52 72 * @param *pSrcA points to the first input vector
emilmont 1:fdd22bb7aa52 73 * @param *pSrcB points to the second input vector
emilmont 1:fdd22bb7aa52 74 * @param numSamples number of complex samples in each vector
emilmont 1:fdd22bb7aa52 75 * @param *realResult real part of the result returned here
emilmont 1:fdd22bb7aa52 76 * @param *imagResult imaginary part of the result returned here
emilmont 1:fdd22bb7aa52 77 * @return none.
emilmont 1:fdd22bb7aa52 78 */
emilmont 1:fdd22bb7aa52 79
emilmont 1:fdd22bb7aa52 80 void arm_cmplx_dot_prod_f32(
emilmont 1:fdd22bb7aa52 81 float32_t * pSrcA,
emilmont 1:fdd22bb7aa52 82 float32_t * pSrcB,
emilmont 1:fdd22bb7aa52 83 uint32_t numSamples,
emilmont 1:fdd22bb7aa52 84 float32_t * realResult,
emilmont 1:fdd22bb7aa52 85 float32_t * imagResult)
emilmont 1:fdd22bb7aa52 86 {
emilmont 1:fdd22bb7aa52 87 float32_t real_sum = 0.0f, imag_sum = 0.0f; /* Temporary result storage */
emilmont 1:fdd22bb7aa52 88
emilmont 1:fdd22bb7aa52 89 #ifndef ARM_MATH_CM0
emilmont 1:fdd22bb7aa52 90
emilmont 1:fdd22bb7aa52 91 /* Run the below code for Cortex-M4 and Cortex-M3 */
emilmont 1:fdd22bb7aa52 92 uint32_t blkCnt; /* loop counter */
emilmont 1:fdd22bb7aa52 93
emilmont 1:fdd22bb7aa52 94 /*loop Unrolling */
emilmont 1:fdd22bb7aa52 95 blkCnt = numSamples >> 2u;
emilmont 1:fdd22bb7aa52 96
emilmont 1:fdd22bb7aa52 97 /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
emilmont 1:fdd22bb7aa52 98 ** a second loop below computes the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 99 while(blkCnt > 0u)
emilmont 1:fdd22bb7aa52 100 {
emilmont 1:fdd22bb7aa52 101 /* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
emilmont 1:fdd22bb7aa52 102 real_sum += (*pSrcA++) * (*pSrcB++);
emilmont 1:fdd22bb7aa52 103 /* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
emilmont 1:fdd22bb7aa52 104 imag_sum += (*pSrcA++) * (*pSrcB++);
emilmont 1:fdd22bb7aa52 105
emilmont 1:fdd22bb7aa52 106 real_sum += (*pSrcA++) * (*pSrcB++);
emilmont 1:fdd22bb7aa52 107 imag_sum += (*pSrcA++) * (*pSrcB++);
emilmont 1:fdd22bb7aa52 108
emilmont 1:fdd22bb7aa52 109 real_sum += (*pSrcA++) * (*pSrcB++);
emilmont 1:fdd22bb7aa52 110 imag_sum += (*pSrcA++) * (*pSrcB++);
emilmont 1:fdd22bb7aa52 111
emilmont 1:fdd22bb7aa52 112 real_sum += (*pSrcA++) * (*pSrcB++);
emilmont 1:fdd22bb7aa52 113 imag_sum += (*pSrcA++) * (*pSrcB++);
emilmont 1:fdd22bb7aa52 114
emilmont 1:fdd22bb7aa52 115 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 116 blkCnt--;
emilmont 1:fdd22bb7aa52 117 }
emilmont 1:fdd22bb7aa52 118
emilmont 1:fdd22bb7aa52 119 /* If the numSamples is not a multiple of 4, compute any remaining output samples here.
emilmont 1:fdd22bb7aa52 120 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 121 blkCnt = numSamples % 0x4u;
emilmont 1:fdd22bb7aa52 122
emilmont 1:fdd22bb7aa52 123 while(blkCnt > 0u)
emilmont 1:fdd22bb7aa52 124 {
emilmont 1:fdd22bb7aa52 125 /* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
emilmont 1:fdd22bb7aa52 126 real_sum += (*pSrcA++) * (*pSrcB++);
emilmont 1:fdd22bb7aa52 127 /* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
emilmont 1:fdd22bb7aa52 128 imag_sum += (*pSrcA++) * (*pSrcB++);
emilmont 1:fdd22bb7aa52 129
emilmont 1:fdd22bb7aa52 130
emilmont 1:fdd22bb7aa52 131 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 132 blkCnt--;
emilmont 1:fdd22bb7aa52 133 }
emilmont 1:fdd22bb7aa52 134
emilmont 1:fdd22bb7aa52 135 #else
emilmont 1:fdd22bb7aa52 136
emilmont 1:fdd22bb7aa52 137 /* Run the below code for Cortex-M0 */
emilmont 1:fdd22bb7aa52 138
emilmont 1:fdd22bb7aa52 139 while(numSamples > 0u)
emilmont 1:fdd22bb7aa52 140 {
emilmont 1:fdd22bb7aa52 141 /* CReal = A[0]* B[0] + A[2]* B[2] + A[4]* B[4] + .....+ A[numSamples-2]* B[numSamples-2] */
emilmont 1:fdd22bb7aa52 142 real_sum += (*pSrcA++) * (*pSrcB++);
emilmont 1:fdd22bb7aa52 143 /* CImag = A[1]* B[1] + A[3]* B[3] + A[5]* B[5] + .....+ A[numSamples-1]* B[numSamples-1] */
emilmont 1:fdd22bb7aa52 144 imag_sum += (*pSrcA++) * (*pSrcB++);
emilmont 1:fdd22bb7aa52 145
emilmont 1:fdd22bb7aa52 146
emilmont 1:fdd22bb7aa52 147 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 148 numSamples--;
emilmont 1:fdd22bb7aa52 149 }
emilmont 1:fdd22bb7aa52 150
emilmont 1:fdd22bb7aa52 151 #endif /* #ifndef ARM_MATH_CM0 */
emilmont 1:fdd22bb7aa52 152
emilmont 1:fdd22bb7aa52 153 /* Store the real and imaginary results in the destination buffers */
emilmont 1:fdd22bb7aa52 154 *realResult = real_sum;
emilmont 1:fdd22bb7aa52 155 *imagResult = imag_sum;
emilmont 1:fdd22bb7aa52 156 }
emilmont 1:fdd22bb7aa52 157
emilmont 1:fdd22bb7aa52 158 /**
emilmont 1:fdd22bb7aa52 159 * @} end of cmplx_dot_prod group
emilmont 1:fdd22bb7aa52 160 */