CMSIS DSP library

Dependents:   performance_timer Surfboard_ gps2rtty Capstone ... more

Legacy Warning

This is an mbed 2 library. To learn more about mbed OS 5, visit the docs.

Committer:
mbed_official
Date:
Fri Nov 08 13:45:10 2013 +0000
Revision:
3:7a284390b0ce
Parent:
2:da51fb522205
Child:
5:3762170b6d4d
Synchronized with git revision e69956aba2f68a2a26ac26b051f8d349deaa1ce8

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emilmont 1:fdd22bb7aa52 1 /* ----------------------------------------------------------------------
mbed_official 3:7a284390b0ce 2 * Copyright (C) 2010-2013 ARM Limited. All rights reserved.
emilmont 1:fdd22bb7aa52 3 *
mbed_official 3:7a284390b0ce 4 * $Date: 17. January 2013
mbed_official 3:7a284390b0ce 5 * $Revision: V1.4.1
emilmont 1:fdd22bb7aa52 6 *
emilmont 2:da51fb522205 7 * Project: CMSIS DSP Library
emilmont 2:da51fb522205 8 * Title: arm_conv_q15.c
emilmont 1:fdd22bb7aa52 9 *
emilmont 2:da51fb522205 10 * Description: Convolution of Q15 sequences.
emilmont 1:fdd22bb7aa52 11 *
emilmont 1:fdd22bb7aa52 12 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
emilmont 1:fdd22bb7aa52 13 *
mbed_official 3:7a284390b0ce 14 * Redistribution and use in source and binary forms, with or without
mbed_official 3:7a284390b0ce 15 * modification, are permitted provided that the following conditions
mbed_official 3:7a284390b0ce 16 * are met:
mbed_official 3:7a284390b0ce 17 * - Redistributions of source code must retain the above copyright
mbed_official 3:7a284390b0ce 18 * notice, this list of conditions and the following disclaimer.
mbed_official 3:7a284390b0ce 19 * - Redistributions in binary form must reproduce the above copyright
mbed_official 3:7a284390b0ce 20 * notice, this list of conditions and the following disclaimer in
mbed_official 3:7a284390b0ce 21 * the documentation and/or other materials provided with the
mbed_official 3:7a284390b0ce 22 * distribution.
mbed_official 3:7a284390b0ce 23 * - Neither the name of ARM LIMITED nor the names of its contributors
mbed_official 3:7a284390b0ce 24 * may be used to endorse or promote products derived from this
mbed_official 3:7a284390b0ce 25 * software without specific prior written permission.
emilmont 1:fdd22bb7aa52 26 *
mbed_official 3:7a284390b0ce 27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
mbed_official 3:7a284390b0ce 28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
mbed_official 3:7a284390b0ce 29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
mbed_official 3:7a284390b0ce 30 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
mbed_official 3:7a284390b0ce 31 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
mbed_official 3:7a284390b0ce 32 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
mbed_official 3:7a284390b0ce 33 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
mbed_official 3:7a284390b0ce 34 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
mbed_official 3:7a284390b0ce 35 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
mbed_official 3:7a284390b0ce 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
mbed_official 3:7a284390b0ce 37 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
mbed_official 3:7a284390b0ce 38 * POSSIBILITY OF SUCH DAMAGE.
emilmont 1:fdd22bb7aa52 39 * -------------------------------------------------------------------- */
emilmont 1:fdd22bb7aa52 40
emilmont 1:fdd22bb7aa52 41 #include "arm_math.h"
emilmont 1:fdd22bb7aa52 42
emilmont 1:fdd22bb7aa52 43 /**
emilmont 1:fdd22bb7aa52 44 * @ingroup groupFilters
emilmont 1:fdd22bb7aa52 45 */
emilmont 1:fdd22bb7aa52 46
emilmont 1:fdd22bb7aa52 47 /**
emilmont 1:fdd22bb7aa52 48 * @addtogroup Conv
emilmont 1:fdd22bb7aa52 49 * @{
emilmont 1:fdd22bb7aa52 50 */
emilmont 1:fdd22bb7aa52 51
emilmont 1:fdd22bb7aa52 52 /**
emilmont 1:fdd22bb7aa52 53 * @brief Convolution of Q15 sequences.
emilmont 1:fdd22bb7aa52 54 * @param[in] *pSrcA points to the first input sequence.
emilmont 1:fdd22bb7aa52 55 * @param[in] srcALen length of the first input sequence.
emilmont 1:fdd22bb7aa52 56 * @param[in] *pSrcB points to the second input sequence.
emilmont 1:fdd22bb7aa52 57 * @param[in] srcBLen length of the second input sequence.
emilmont 1:fdd22bb7aa52 58 * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
emilmont 1:fdd22bb7aa52 59 * @return none.
emilmont 1:fdd22bb7aa52 60 *
emilmont 1:fdd22bb7aa52 61 * @details
emilmont 1:fdd22bb7aa52 62 * <b>Scaling and Overflow Behavior:</b>
emilmont 1:fdd22bb7aa52 63 *
emilmont 1:fdd22bb7aa52 64 * \par
emilmont 1:fdd22bb7aa52 65 * The function is implemented using a 64-bit internal accumulator.
emilmont 1:fdd22bb7aa52 66 * Both inputs are in 1.15 format and multiplications yield a 2.30 result.
emilmont 1:fdd22bb7aa52 67 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
emilmont 1:fdd22bb7aa52 68 * This approach provides 33 guard bits and there is no risk of overflow.
emilmont 1:fdd22bb7aa52 69 * The 34.30 result is then truncated to 34.15 format by discarding the low 15 bits and then saturated to 1.15 format.
emilmont 1:fdd22bb7aa52 70 *
emilmont 1:fdd22bb7aa52 71 * \par
emilmont 1:fdd22bb7aa52 72 * Refer to <code>arm_conv_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4.
emilmont 1:fdd22bb7aa52 73 *
emilmont 1:fdd22bb7aa52 74 * \par
emilmont 1:fdd22bb7aa52 75 * Refer the function <code>arm_conv_opt_q15()</code> for a faster implementation of this function using scratch buffers.
emilmont 1:fdd22bb7aa52 76 *
emilmont 1:fdd22bb7aa52 77 */
emilmont 1:fdd22bb7aa52 78
emilmont 1:fdd22bb7aa52 79 void arm_conv_q15(
emilmont 1:fdd22bb7aa52 80 q15_t * pSrcA,
emilmont 1:fdd22bb7aa52 81 uint32_t srcALen,
emilmont 1:fdd22bb7aa52 82 q15_t * pSrcB,
emilmont 1:fdd22bb7aa52 83 uint32_t srcBLen,
emilmont 1:fdd22bb7aa52 84 q15_t * pDst)
emilmont 1:fdd22bb7aa52 85 {
emilmont 1:fdd22bb7aa52 86
emilmont 1:fdd22bb7aa52 87 #if (defined(ARM_MATH_CM4) || defined(ARM_MATH_CM3)) && !defined(UNALIGNED_SUPPORT_DISABLE)
emilmont 1:fdd22bb7aa52 88
emilmont 1:fdd22bb7aa52 89 /* Run the below code for Cortex-M4 and Cortex-M3 */
emilmont 1:fdd22bb7aa52 90
emilmont 1:fdd22bb7aa52 91 q15_t *pIn1; /* inputA pointer */
emilmont 1:fdd22bb7aa52 92 q15_t *pIn2; /* inputB pointer */
emilmont 1:fdd22bb7aa52 93 q15_t *pOut = pDst; /* output pointer */
emilmont 1:fdd22bb7aa52 94 q63_t sum, acc0, acc1, acc2, acc3; /* Accumulator */
emilmont 1:fdd22bb7aa52 95 q15_t *px; /* Intermediate inputA pointer */
emilmont 1:fdd22bb7aa52 96 q15_t *py; /* Intermediate inputB pointer */
emilmont 1:fdd22bb7aa52 97 q15_t *pSrc1, *pSrc2; /* Intermediate pointers */
emilmont 1:fdd22bb7aa52 98 q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */
emilmont 1:fdd22bb7aa52 99 uint32_t blockSize1, blockSize2, blockSize3, j, k, count, blkCnt; /* loop counter */
emilmont 1:fdd22bb7aa52 100
emilmont 1:fdd22bb7aa52 101 /* The algorithm implementation is based on the lengths of the inputs. */
emilmont 1:fdd22bb7aa52 102 /* srcB is always made to slide across srcA. */
emilmont 1:fdd22bb7aa52 103 /* So srcBLen is always considered as shorter or equal to srcALen */
emilmont 1:fdd22bb7aa52 104 if(srcALen >= srcBLen)
emilmont 1:fdd22bb7aa52 105 {
emilmont 1:fdd22bb7aa52 106 /* Initialization of inputA pointer */
emilmont 1:fdd22bb7aa52 107 pIn1 = pSrcA;
emilmont 1:fdd22bb7aa52 108
emilmont 1:fdd22bb7aa52 109 /* Initialization of inputB pointer */
emilmont 1:fdd22bb7aa52 110 pIn2 = pSrcB;
emilmont 1:fdd22bb7aa52 111 }
emilmont 1:fdd22bb7aa52 112 else
emilmont 1:fdd22bb7aa52 113 {
emilmont 1:fdd22bb7aa52 114 /* Initialization of inputA pointer */
emilmont 1:fdd22bb7aa52 115 pIn1 = pSrcB;
emilmont 1:fdd22bb7aa52 116
emilmont 1:fdd22bb7aa52 117 /* Initialization of inputB pointer */
emilmont 1:fdd22bb7aa52 118 pIn2 = pSrcA;
emilmont 1:fdd22bb7aa52 119
emilmont 1:fdd22bb7aa52 120 /* srcBLen is always considered as shorter or equal to srcALen */
emilmont 1:fdd22bb7aa52 121 j = srcBLen;
emilmont 1:fdd22bb7aa52 122 srcBLen = srcALen;
emilmont 1:fdd22bb7aa52 123 srcALen = j;
emilmont 1:fdd22bb7aa52 124 }
emilmont 1:fdd22bb7aa52 125
emilmont 1:fdd22bb7aa52 126 /* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */
emilmont 1:fdd22bb7aa52 127 /* The function is internally
emilmont 1:fdd22bb7aa52 128 * divided into three stages according to the number of multiplications that has to be
emilmont 1:fdd22bb7aa52 129 * taken place between inputA samples and inputB samples. In the first stage of the
emilmont 1:fdd22bb7aa52 130 * algorithm, the multiplications increase by one for every iteration.
emilmont 1:fdd22bb7aa52 131 * In the second stage of the algorithm, srcBLen number of multiplications are done.
emilmont 1:fdd22bb7aa52 132 * In the third stage of the algorithm, the multiplications decrease by one
emilmont 1:fdd22bb7aa52 133 * for every iteration. */
emilmont 1:fdd22bb7aa52 134
emilmont 1:fdd22bb7aa52 135 /* The algorithm is implemented in three stages.
emilmont 1:fdd22bb7aa52 136 The loop counters of each stage is initiated here. */
emilmont 1:fdd22bb7aa52 137 blockSize1 = srcBLen - 1u;
emilmont 1:fdd22bb7aa52 138 blockSize2 = srcALen - (srcBLen - 1u);
emilmont 1:fdd22bb7aa52 139
emilmont 1:fdd22bb7aa52 140 /* --------------------------
emilmont 1:fdd22bb7aa52 141 * Initializations of stage1
emilmont 1:fdd22bb7aa52 142 * -------------------------*/
emilmont 1:fdd22bb7aa52 143
emilmont 1:fdd22bb7aa52 144 /* sum = x[0] * y[0]
emilmont 1:fdd22bb7aa52 145 * sum = x[0] * y[1] + x[1] * y[0]
emilmont 1:fdd22bb7aa52 146 * ....
emilmont 1:fdd22bb7aa52 147 * sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0]
emilmont 1:fdd22bb7aa52 148 */
emilmont 1:fdd22bb7aa52 149
emilmont 1:fdd22bb7aa52 150 /* In this stage the MAC operations are increased by 1 for every iteration.
emilmont 1:fdd22bb7aa52 151 The count variable holds the number of MAC operations performed */
emilmont 1:fdd22bb7aa52 152 count = 1u;
emilmont 1:fdd22bb7aa52 153
emilmont 1:fdd22bb7aa52 154 /* Working pointer of inputA */
emilmont 1:fdd22bb7aa52 155 px = pIn1;
emilmont 1:fdd22bb7aa52 156
emilmont 1:fdd22bb7aa52 157 /* Working pointer of inputB */
emilmont 1:fdd22bb7aa52 158 py = pIn2;
emilmont 1:fdd22bb7aa52 159
emilmont 1:fdd22bb7aa52 160
emilmont 1:fdd22bb7aa52 161 /* ------------------------
emilmont 1:fdd22bb7aa52 162 * Stage1 process
emilmont 1:fdd22bb7aa52 163 * ----------------------*/
emilmont 1:fdd22bb7aa52 164
emilmont 1:fdd22bb7aa52 165 /* For loop unrolling by 4, this stage is divided into two. */
emilmont 1:fdd22bb7aa52 166 /* First part of this stage computes the MAC operations less than 4 */
emilmont 1:fdd22bb7aa52 167 /* Second part of this stage computes the MAC operations greater than or equal to 4 */
emilmont 1:fdd22bb7aa52 168
emilmont 1:fdd22bb7aa52 169 /* The first part of the stage starts here */
emilmont 1:fdd22bb7aa52 170 while((count < 4u) && (blockSize1 > 0u))
emilmont 1:fdd22bb7aa52 171 {
emilmont 1:fdd22bb7aa52 172 /* Accumulator is made zero for every iteration */
emilmont 1:fdd22bb7aa52 173 sum = 0;
emilmont 1:fdd22bb7aa52 174
emilmont 1:fdd22bb7aa52 175 /* Loop over number of MAC operations between
emilmont 1:fdd22bb7aa52 176 * inputA samples and inputB samples */
emilmont 1:fdd22bb7aa52 177 k = count;
emilmont 1:fdd22bb7aa52 178
emilmont 1:fdd22bb7aa52 179 while(k > 0u)
emilmont 1:fdd22bb7aa52 180 {
emilmont 1:fdd22bb7aa52 181 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 182 sum = __SMLALD(*px++, *py--, sum);
emilmont 1:fdd22bb7aa52 183
emilmont 1:fdd22bb7aa52 184 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 185 k--;
emilmont 1:fdd22bb7aa52 186 }
emilmont 1:fdd22bb7aa52 187
emilmont 1:fdd22bb7aa52 188 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 189 *pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
emilmont 1:fdd22bb7aa52 190
emilmont 1:fdd22bb7aa52 191 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 192 py = pIn2 + count;
emilmont 1:fdd22bb7aa52 193 px = pIn1;
emilmont 1:fdd22bb7aa52 194
emilmont 1:fdd22bb7aa52 195 /* Increment the MAC count */
emilmont 1:fdd22bb7aa52 196 count++;
emilmont 1:fdd22bb7aa52 197
emilmont 1:fdd22bb7aa52 198 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 199 blockSize1--;
emilmont 1:fdd22bb7aa52 200 }
emilmont 1:fdd22bb7aa52 201
emilmont 1:fdd22bb7aa52 202 /* The second part of the stage starts here */
emilmont 1:fdd22bb7aa52 203 /* The internal loop, over count, is unrolled by 4 */
emilmont 1:fdd22bb7aa52 204 /* To, read the last two inputB samples using SIMD:
emilmont 1:fdd22bb7aa52 205 * y[srcBLen] and y[srcBLen-1] coefficients, py is decremented by 1 */
emilmont 1:fdd22bb7aa52 206 py = py - 1;
emilmont 1:fdd22bb7aa52 207
emilmont 1:fdd22bb7aa52 208 while(blockSize1 > 0u)
emilmont 1:fdd22bb7aa52 209 {
emilmont 1:fdd22bb7aa52 210 /* Accumulator is made zero for every iteration */
emilmont 1:fdd22bb7aa52 211 sum = 0;
emilmont 1:fdd22bb7aa52 212
emilmont 1:fdd22bb7aa52 213 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emilmont 1:fdd22bb7aa52 214 k = count >> 2u;
emilmont 1:fdd22bb7aa52 215
emilmont 1:fdd22bb7aa52 216 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emilmont 1:fdd22bb7aa52 217 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 218 while(k > 0u)
emilmont 1:fdd22bb7aa52 219 {
emilmont 1:fdd22bb7aa52 220 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 221 /* x[0], x[1] are multiplied with y[srcBLen - 1], y[srcBLen - 2] respectively */
emilmont 1:fdd22bb7aa52 222 sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
emilmont 1:fdd22bb7aa52 223 /* x[2], x[3] are multiplied with y[srcBLen - 3], y[srcBLen - 4] respectively */
emilmont 1:fdd22bb7aa52 224 sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
emilmont 1:fdd22bb7aa52 225
emilmont 1:fdd22bb7aa52 226 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 227 k--;
emilmont 1:fdd22bb7aa52 228 }
emilmont 1:fdd22bb7aa52 229
emilmont 1:fdd22bb7aa52 230 /* For the next MAC operations, the pointer py is used without SIMD
emilmont 1:fdd22bb7aa52 231 * So, py is incremented by 1 */
emilmont 1:fdd22bb7aa52 232 py = py + 1u;
emilmont 1:fdd22bb7aa52 233
emilmont 1:fdd22bb7aa52 234 /* If the count is not a multiple of 4, compute any remaining MACs here.
emilmont 1:fdd22bb7aa52 235 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 236 k = count % 0x4u;
emilmont 1:fdd22bb7aa52 237
emilmont 1:fdd22bb7aa52 238 while(k > 0u)
emilmont 1:fdd22bb7aa52 239 {
emilmont 1:fdd22bb7aa52 240 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 241 sum = __SMLALD(*px++, *py--, sum);
emilmont 1:fdd22bb7aa52 242
emilmont 1:fdd22bb7aa52 243 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 244 k--;
emilmont 1:fdd22bb7aa52 245 }
emilmont 1:fdd22bb7aa52 246
emilmont 1:fdd22bb7aa52 247 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 248 *pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
emilmont 1:fdd22bb7aa52 249
emilmont 1:fdd22bb7aa52 250 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 251 py = pIn2 + (count - 1u);
emilmont 1:fdd22bb7aa52 252 px = pIn1;
emilmont 1:fdd22bb7aa52 253
emilmont 1:fdd22bb7aa52 254 /* Increment the MAC count */
emilmont 1:fdd22bb7aa52 255 count++;
emilmont 1:fdd22bb7aa52 256
emilmont 1:fdd22bb7aa52 257 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 258 blockSize1--;
emilmont 1:fdd22bb7aa52 259 }
emilmont 1:fdd22bb7aa52 260
emilmont 1:fdd22bb7aa52 261 /* --------------------------
emilmont 1:fdd22bb7aa52 262 * Initializations of stage2
emilmont 1:fdd22bb7aa52 263 * ------------------------*/
emilmont 1:fdd22bb7aa52 264
emilmont 1:fdd22bb7aa52 265 /* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0]
emilmont 1:fdd22bb7aa52 266 * sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0]
emilmont 1:fdd22bb7aa52 267 * ....
emilmont 1:fdd22bb7aa52 268 * sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0]
emilmont 1:fdd22bb7aa52 269 */
emilmont 1:fdd22bb7aa52 270
emilmont 1:fdd22bb7aa52 271 /* Working pointer of inputA */
emilmont 1:fdd22bb7aa52 272 px = pIn1;
emilmont 1:fdd22bb7aa52 273
emilmont 1:fdd22bb7aa52 274 /* Working pointer of inputB */
emilmont 1:fdd22bb7aa52 275 pSrc2 = pIn2 + (srcBLen - 1u);
emilmont 1:fdd22bb7aa52 276 py = pSrc2;
emilmont 1:fdd22bb7aa52 277
emilmont 1:fdd22bb7aa52 278 /* count is the index by which the pointer pIn1 to be incremented */
emilmont 1:fdd22bb7aa52 279 count = 0u;
emilmont 1:fdd22bb7aa52 280
emilmont 1:fdd22bb7aa52 281
emilmont 1:fdd22bb7aa52 282 /* --------------------
emilmont 1:fdd22bb7aa52 283 * Stage2 process
emilmont 1:fdd22bb7aa52 284 * -------------------*/
emilmont 1:fdd22bb7aa52 285
emilmont 1:fdd22bb7aa52 286 /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.
emilmont 1:fdd22bb7aa52 287 * So, to loop unroll over blockSize2,
emilmont 1:fdd22bb7aa52 288 * srcBLen should be greater than or equal to 4 */
emilmont 1:fdd22bb7aa52 289 if(srcBLen >= 4u)
emilmont 1:fdd22bb7aa52 290 {
emilmont 1:fdd22bb7aa52 291 /* Loop unroll over blockSize2, by 4 */
emilmont 1:fdd22bb7aa52 292 blkCnt = blockSize2 >> 2u;
emilmont 1:fdd22bb7aa52 293
emilmont 1:fdd22bb7aa52 294 while(blkCnt > 0u)
emilmont 1:fdd22bb7aa52 295 {
emilmont 1:fdd22bb7aa52 296 py = py - 1u;
emilmont 1:fdd22bb7aa52 297
emilmont 1:fdd22bb7aa52 298 /* Set all accumulators to zero */
emilmont 1:fdd22bb7aa52 299 acc0 = 0;
emilmont 1:fdd22bb7aa52 300 acc1 = 0;
emilmont 1:fdd22bb7aa52 301 acc2 = 0;
emilmont 1:fdd22bb7aa52 302 acc3 = 0;
emilmont 1:fdd22bb7aa52 303
emilmont 1:fdd22bb7aa52 304
emilmont 1:fdd22bb7aa52 305 /* read x[0], x[1] samples */
emilmont 1:fdd22bb7aa52 306 x0 = *__SIMD32(px);
emilmont 1:fdd22bb7aa52 307 /* read x[1], x[2] samples */
emilmont 1:fdd22bb7aa52 308 x1 = _SIMD32_OFFSET(px+1);
emilmont 2:da51fb522205 309 px+= 2u;
emilmont 1:fdd22bb7aa52 310
emilmont 1:fdd22bb7aa52 311
emilmont 1:fdd22bb7aa52 312 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emilmont 1:fdd22bb7aa52 313 k = srcBLen >> 2u;
emilmont 1:fdd22bb7aa52 314
emilmont 1:fdd22bb7aa52 315 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emilmont 1:fdd22bb7aa52 316 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 317 do
emilmont 1:fdd22bb7aa52 318 {
emilmont 1:fdd22bb7aa52 319 /* Read the last two inputB samples using SIMD:
emilmont 1:fdd22bb7aa52 320 * y[srcBLen - 1] and y[srcBLen - 2] */
emilmont 1:fdd22bb7aa52 321 c0 = *__SIMD32(py)--;
emilmont 1:fdd22bb7aa52 322
emilmont 1:fdd22bb7aa52 323 /* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */
emilmont 1:fdd22bb7aa52 324 acc0 = __SMLALDX(x0, c0, acc0);
emilmont 1:fdd22bb7aa52 325
emilmont 1:fdd22bb7aa52 326 /* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */
emilmont 1:fdd22bb7aa52 327 acc1 = __SMLALDX(x1, c0, acc1);
emilmont 1:fdd22bb7aa52 328
emilmont 1:fdd22bb7aa52 329 /* Read x[2], x[3] */
emilmont 1:fdd22bb7aa52 330 x2 = *__SIMD32(px);
emilmont 1:fdd22bb7aa52 331
emilmont 1:fdd22bb7aa52 332 /* Read x[3], x[4] */
emilmont 1:fdd22bb7aa52 333 x3 = _SIMD32_OFFSET(px+1);
emilmont 1:fdd22bb7aa52 334
emilmont 1:fdd22bb7aa52 335 /* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */
emilmont 1:fdd22bb7aa52 336 acc2 = __SMLALDX(x2, c0, acc2);
emilmont 1:fdd22bb7aa52 337
emilmont 1:fdd22bb7aa52 338 /* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */
emilmont 1:fdd22bb7aa52 339 acc3 = __SMLALDX(x3, c0, acc3);
emilmont 1:fdd22bb7aa52 340
emilmont 1:fdd22bb7aa52 341 /* Read y[srcBLen - 3] and y[srcBLen - 4] */
emilmont 1:fdd22bb7aa52 342 c0 = *__SIMD32(py)--;
emilmont 1:fdd22bb7aa52 343
emilmont 1:fdd22bb7aa52 344 /* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */
emilmont 1:fdd22bb7aa52 345 acc0 = __SMLALDX(x2, c0, acc0);
emilmont 1:fdd22bb7aa52 346
emilmont 1:fdd22bb7aa52 347 /* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */
emilmont 1:fdd22bb7aa52 348 acc1 = __SMLALDX(x3, c0, acc1);
emilmont 1:fdd22bb7aa52 349
emilmont 1:fdd22bb7aa52 350 /* Read x[4], x[5] */
emilmont 1:fdd22bb7aa52 351 x0 = _SIMD32_OFFSET(px+2);
emilmont 1:fdd22bb7aa52 352
emilmont 1:fdd22bb7aa52 353 /* Read x[5], x[6] */
emilmont 1:fdd22bb7aa52 354 x1 = _SIMD32_OFFSET(px+3);
emilmont 2:da51fb522205 355 px += 4u;
emilmont 1:fdd22bb7aa52 356
emilmont 1:fdd22bb7aa52 357 /* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */
emilmont 1:fdd22bb7aa52 358 acc2 = __SMLALDX(x0, c0, acc2);
emilmont 1:fdd22bb7aa52 359
emilmont 1:fdd22bb7aa52 360 /* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */
emilmont 1:fdd22bb7aa52 361 acc3 = __SMLALDX(x1, c0, acc3);
emilmont 1:fdd22bb7aa52 362
emilmont 1:fdd22bb7aa52 363 } while(--k);
emilmont 1:fdd22bb7aa52 364
emilmont 1:fdd22bb7aa52 365 /* For the next MAC operations, SIMD is not used
emilmont 1:fdd22bb7aa52 366 * So, the 16 bit pointer if inputB, py is updated */
emilmont 1:fdd22bb7aa52 367
emilmont 1:fdd22bb7aa52 368 /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
emilmont 1:fdd22bb7aa52 369 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 370 k = srcBLen % 0x4u;
emilmont 1:fdd22bb7aa52 371
emilmont 1:fdd22bb7aa52 372 if(k == 1u)
emilmont 1:fdd22bb7aa52 373 {
emilmont 1:fdd22bb7aa52 374 /* Read y[srcBLen - 5] */
emilmont 1:fdd22bb7aa52 375 c0 = *(py+1);
emilmont 1:fdd22bb7aa52 376
emilmont 1:fdd22bb7aa52 377 #ifdef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 378
emilmont 1:fdd22bb7aa52 379 c0 = c0 << 16u;
emilmont 1:fdd22bb7aa52 380
emilmont 1:fdd22bb7aa52 381 #else
emilmont 1:fdd22bb7aa52 382
emilmont 1:fdd22bb7aa52 383 c0 = c0 & 0x0000FFFF;
emilmont 1:fdd22bb7aa52 384
emilmont 1:fdd22bb7aa52 385 #endif /* #ifdef ARM_MATH_BIG_ENDIAN */
emilmont 1:fdd22bb7aa52 386 /* Read x[7] */
emilmont 1:fdd22bb7aa52 387 x3 = *__SIMD32(px);
emilmont 2:da51fb522205 388 px++;
emilmont 1:fdd22bb7aa52 389
emilmont 1:fdd22bb7aa52 390 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 391 acc0 = __SMLALD(x0, c0, acc0);
emilmont 1:fdd22bb7aa52 392 acc1 = __SMLALD(x1, c0, acc1);
emilmont 1:fdd22bb7aa52 393 acc2 = __SMLALDX(x1, c0, acc2);
emilmont 1:fdd22bb7aa52 394 acc3 = __SMLALDX(x3, c0, acc3);
emilmont 1:fdd22bb7aa52 395 }
emilmont 1:fdd22bb7aa52 396
emilmont 1:fdd22bb7aa52 397 if(k == 2u)
emilmont 1:fdd22bb7aa52 398 {
emilmont 1:fdd22bb7aa52 399 /* Read y[srcBLen - 5], y[srcBLen - 6] */
emilmont 1:fdd22bb7aa52 400 c0 = _SIMD32_OFFSET(py);
emilmont 1:fdd22bb7aa52 401
emilmont 1:fdd22bb7aa52 402 /* Read x[7], x[8] */
emilmont 1:fdd22bb7aa52 403 x3 = *__SIMD32(px);
emilmont 1:fdd22bb7aa52 404
emilmont 1:fdd22bb7aa52 405 /* Read x[9] */
emilmont 1:fdd22bb7aa52 406 x2 = _SIMD32_OFFSET(px+1);
emilmont 2:da51fb522205 407 px += 2u;
emilmont 1:fdd22bb7aa52 408
emilmont 1:fdd22bb7aa52 409 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 410 acc0 = __SMLALDX(x0, c0, acc0);
emilmont 1:fdd22bb7aa52 411 acc1 = __SMLALDX(x1, c0, acc1);
emilmont 1:fdd22bb7aa52 412 acc2 = __SMLALDX(x3, c0, acc2);
emilmont 1:fdd22bb7aa52 413 acc3 = __SMLALDX(x2, c0, acc3);
emilmont 1:fdd22bb7aa52 414 }
emilmont 1:fdd22bb7aa52 415
emilmont 1:fdd22bb7aa52 416 if(k == 3u)
emilmont 1:fdd22bb7aa52 417 {
emilmont 1:fdd22bb7aa52 418 /* Read y[srcBLen - 5], y[srcBLen - 6] */
emilmont 1:fdd22bb7aa52 419 c0 = _SIMD32_OFFSET(py);
emilmont 1:fdd22bb7aa52 420
emilmont 1:fdd22bb7aa52 421 /* Read x[7], x[8] */
emilmont 1:fdd22bb7aa52 422 x3 = *__SIMD32(px);
emilmont 1:fdd22bb7aa52 423
emilmont 1:fdd22bb7aa52 424 /* Read x[9] */
emilmont 1:fdd22bb7aa52 425 x2 = _SIMD32_OFFSET(px+1);
emilmont 1:fdd22bb7aa52 426
emilmont 1:fdd22bb7aa52 427 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 428 acc0 = __SMLALDX(x0, c0, acc0);
emilmont 1:fdd22bb7aa52 429 acc1 = __SMLALDX(x1, c0, acc1);
emilmont 1:fdd22bb7aa52 430 acc2 = __SMLALDX(x3, c0, acc2);
emilmont 1:fdd22bb7aa52 431 acc3 = __SMLALDX(x2, c0, acc3);
emilmont 1:fdd22bb7aa52 432
emilmont 2:da51fb522205 433 c0 = *(py-1);
emilmont 1:fdd22bb7aa52 434
emilmont 1:fdd22bb7aa52 435 #ifdef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 436
emilmont 1:fdd22bb7aa52 437 c0 = c0 << 16u;
emilmont 1:fdd22bb7aa52 438 #else
emilmont 1:fdd22bb7aa52 439
emilmont 1:fdd22bb7aa52 440 c0 = c0 & 0x0000FFFF;
emilmont 1:fdd22bb7aa52 441 #endif /* #ifdef ARM_MATH_BIG_ENDIAN */
emilmont 1:fdd22bb7aa52 442 /* Read x[10] */
emilmont 1:fdd22bb7aa52 443 x3 = _SIMD32_OFFSET(px+2);
emilmont 2:da51fb522205 444 px += 3u;
emilmont 1:fdd22bb7aa52 445
emilmont 1:fdd22bb7aa52 446 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 447 acc0 = __SMLALDX(x1, c0, acc0);
emilmont 1:fdd22bb7aa52 448 acc1 = __SMLALD(x2, c0, acc1);
emilmont 1:fdd22bb7aa52 449 acc2 = __SMLALDX(x2, c0, acc2);
emilmont 1:fdd22bb7aa52 450 acc3 = __SMLALDX(x3, c0, acc3);
emilmont 1:fdd22bb7aa52 451 }
emilmont 1:fdd22bb7aa52 452
emilmont 1:fdd22bb7aa52 453
emilmont 1:fdd22bb7aa52 454 /* Store the results in the accumulators in the destination buffer. */
emilmont 1:fdd22bb7aa52 455
emilmont 1:fdd22bb7aa52 456 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 457
emilmont 1:fdd22bb7aa52 458 *__SIMD32(pOut)++ =
emilmont 1:fdd22bb7aa52 459 __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
emilmont 1:fdd22bb7aa52 460 *__SIMD32(pOut)++ =
emilmont 1:fdd22bb7aa52 461 __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
emilmont 1:fdd22bb7aa52 462
emilmont 1:fdd22bb7aa52 463 #else
emilmont 1:fdd22bb7aa52 464
emilmont 1:fdd22bb7aa52 465 *__SIMD32(pOut)++ =
emilmont 1:fdd22bb7aa52 466 __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
emilmont 1:fdd22bb7aa52 467 *__SIMD32(pOut)++ =
emilmont 1:fdd22bb7aa52 468 __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
emilmont 1:fdd22bb7aa52 469
emilmont 1:fdd22bb7aa52 470 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
emilmont 1:fdd22bb7aa52 471
emilmont 1:fdd22bb7aa52 472 /* Increment the pointer pIn1 index, count by 4 */
emilmont 1:fdd22bb7aa52 473 count += 4u;
emilmont 1:fdd22bb7aa52 474
emilmont 1:fdd22bb7aa52 475 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 476 px = pIn1 + count;
emilmont 1:fdd22bb7aa52 477 py = pSrc2;
emilmont 1:fdd22bb7aa52 478
emilmont 1:fdd22bb7aa52 479 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 480 blkCnt--;
emilmont 1:fdd22bb7aa52 481 }
emilmont 1:fdd22bb7aa52 482
emilmont 1:fdd22bb7aa52 483 /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.
emilmont 1:fdd22bb7aa52 484 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 485 blkCnt = blockSize2 % 0x4u;
emilmont 1:fdd22bb7aa52 486
emilmont 1:fdd22bb7aa52 487 while(blkCnt > 0u)
emilmont 1:fdd22bb7aa52 488 {
emilmont 1:fdd22bb7aa52 489 /* Accumulator is made zero for every iteration */
emilmont 1:fdd22bb7aa52 490 sum = 0;
emilmont 1:fdd22bb7aa52 491
emilmont 1:fdd22bb7aa52 492 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emilmont 1:fdd22bb7aa52 493 k = srcBLen >> 2u;
emilmont 1:fdd22bb7aa52 494
emilmont 1:fdd22bb7aa52 495 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emilmont 1:fdd22bb7aa52 496 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 497 while(k > 0u)
emilmont 1:fdd22bb7aa52 498 {
emilmont 1:fdd22bb7aa52 499 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 500 sum += (q63_t) ((q31_t) * px++ * *py--);
emilmont 1:fdd22bb7aa52 501 sum += (q63_t) ((q31_t) * px++ * *py--);
emilmont 1:fdd22bb7aa52 502 sum += (q63_t) ((q31_t) * px++ * *py--);
emilmont 1:fdd22bb7aa52 503 sum += (q63_t) ((q31_t) * px++ * *py--);
emilmont 1:fdd22bb7aa52 504
emilmont 1:fdd22bb7aa52 505 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 506 k--;
emilmont 1:fdd22bb7aa52 507 }
emilmont 1:fdd22bb7aa52 508
emilmont 1:fdd22bb7aa52 509 /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.
emilmont 1:fdd22bb7aa52 510 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 511 k = srcBLen % 0x4u;
emilmont 1:fdd22bb7aa52 512
emilmont 1:fdd22bb7aa52 513 while(k > 0u)
emilmont 1:fdd22bb7aa52 514 {
emilmont 1:fdd22bb7aa52 515 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 516 sum += (q63_t) ((q31_t) * px++ * *py--);
emilmont 1:fdd22bb7aa52 517
emilmont 1:fdd22bb7aa52 518 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 519 k--;
emilmont 1:fdd22bb7aa52 520 }
emilmont 1:fdd22bb7aa52 521
emilmont 1:fdd22bb7aa52 522 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 523 *pOut++ = (q15_t) (__SSAT(sum >> 15, 16));
emilmont 1:fdd22bb7aa52 524
emilmont 1:fdd22bb7aa52 525 /* Increment the pointer pIn1 index, count by 1 */
emilmont 1:fdd22bb7aa52 526 count++;
emilmont 1:fdd22bb7aa52 527
emilmont 1:fdd22bb7aa52 528 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 529 px = pIn1 + count;
emilmont 1:fdd22bb7aa52 530 py = pSrc2;
emilmont 1:fdd22bb7aa52 531
emilmont 1:fdd22bb7aa52 532 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 533 blkCnt--;
emilmont 1:fdd22bb7aa52 534 }
emilmont 1:fdd22bb7aa52 535 }
emilmont 1:fdd22bb7aa52 536 else
emilmont 1:fdd22bb7aa52 537 {
emilmont 1:fdd22bb7aa52 538 /* If the srcBLen is not a multiple of 4,
emilmont 1:fdd22bb7aa52 539 * the blockSize2 loop cannot be unrolled by 4 */
emilmont 1:fdd22bb7aa52 540 blkCnt = blockSize2;
emilmont 1:fdd22bb7aa52 541
emilmont 1:fdd22bb7aa52 542 while(blkCnt > 0u)
emilmont 1:fdd22bb7aa52 543 {
emilmont 1:fdd22bb7aa52 544 /* Accumulator is made zero for every iteration */
emilmont 1:fdd22bb7aa52 545 sum = 0;
emilmont 1:fdd22bb7aa52 546
emilmont 1:fdd22bb7aa52 547 /* srcBLen number of MACS should be performed */
emilmont 1:fdd22bb7aa52 548 k = srcBLen;
emilmont 1:fdd22bb7aa52 549
emilmont 1:fdd22bb7aa52 550 while(k > 0u)
emilmont 1:fdd22bb7aa52 551 {
emilmont 1:fdd22bb7aa52 552 /* Perform the multiply-accumulate */
emilmont 1:fdd22bb7aa52 553 sum += (q63_t) ((q31_t) * px++ * *py--);
emilmont 1:fdd22bb7aa52 554
emilmont 1:fdd22bb7aa52 555 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 556 k--;
emilmont 1:fdd22bb7aa52 557 }
emilmont 1:fdd22bb7aa52 558
emilmont 1:fdd22bb7aa52 559 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 560 *pOut++ = (q15_t) (__SSAT(sum >> 15, 16));
emilmont 1:fdd22bb7aa52 561
emilmont 1:fdd22bb7aa52 562 /* Increment the MAC count */
emilmont 1:fdd22bb7aa52 563 count++;
emilmont 1:fdd22bb7aa52 564
emilmont 1:fdd22bb7aa52 565 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 566 px = pIn1 + count;
emilmont 1:fdd22bb7aa52 567 py = pSrc2;
emilmont 1:fdd22bb7aa52 568
emilmont 1:fdd22bb7aa52 569 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 570 blkCnt--;
emilmont 1:fdd22bb7aa52 571 }
emilmont 1:fdd22bb7aa52 572 }
emilmont 1:fdd22bb7aa52 573
emilmont 1:fdd22bb7aa52 574
emilmont 1:fdd22bb7aa52 575 /* --------------------------
emilmont 1:fdd22bb7aa52 576 * Initializations of stage3
emilmont 1:fdd22bb7aa52 577 * -------------------------*/
emilmont 1:fdd22bb7aa52 578
emilmont 1:fdd22bb7aa52 579 /* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1]
emilmont 1:fdd22bb7aa52 580 * sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2]
emilmont 1:fdd22bb7aa52 581 * ....
emilmont 1:fdd22bb7aa52 582 * sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2]
emilmont 1:fdd22bb7aa52 583 * sum += x[srcALen-1] * y[srcBLen-1]
emilmont 1:fdd22bb7aa52 584 */
emilmont 1:fdd22bb7aa52 585
emilmont 1:fdd22bb7aa52 586 /* In this stage the MAC operations are decreased by 1 for every iteration.
emilmont 1:fdd22bb7aa52 587 The blockSize3 variable holds the number of MAC operations performed */
emilmont 1:fdd22bb7aa52 588
emilmont 1:fdd22bb7aa52 589 blockSize3 = srcBLen - 1u;
emilmont 1:fdd22bb7aa52 590
emilmont 1:fdd22bb7aa52 591 /* Working pointer of inputA */
emilmont 1:fdd22bb7aa52 592 pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u);
emilmont 1:fdd22bb7aa52 593 px = pSrc1;
emilmont 1:fdd22bb7aa52 594
emilmont 1:fdd22bb7aa52 595 /* Working pointer of inputB */
emilmont 1:fdd22bb7aa52 596 pSrc2 = pIn2 + (srcBLen - 1u);
emilmont 1:fdd22bb7aa52 597 pIn2 = pSrc2 - 1u;
emilmont 1:fdd22bb7aa52 598 py = pIn2;
emilmont 1:fdd22bb7aa52 599
emilmont 1:fdd22bb7aa52 600 /* -------------------
emilmont 1:fdd22bb7aa52 601 * Stage3 process
emilmont 1:fdd22bb7aa52 602 * ------------------*/
emilmont 1:fdd22bb7aa52 603
emilmont 1:fdd22bb7aa52 604 /* For loop unrolling by 4, this stage is divided into two. */
emilmont 1:fdd22bb7aa52 605 /* First part of this stage computes the MAC operations greater than 4 */
emilmont 1:fdd22bb7aa52 606 /* Second part of this stage computes the MAC operations less than or equal to 4 */
emilmont 1:fdd22bb7aa52 607
emilmont 1:fdd22bb7aa52 608 /* The first part of the stage starts here */
emilmont 1:fdd22bb7aa52 609 j = blockSize3 >> 2u;
emilmont 1:fdd22bb7aa52 610
emilmont 1:fdd22bb7aa52 611 while((j > 0u) && (blockSize3 > 0u))
emilmont 1:fdd22bb7aa52 612 {
emilmont 1:fdd22bb7aa52 613 /* Accumulator is made zero for every iteration */
emilmont 1:fdd22bb7aa52 614 sum = 0;
emilmont 1:fdd22bb7aa52 615
emilmont 1:fdd22bb7aa52 616 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emilmont 1:fdd22bb7aa52 617 k = blockSize3 >> 2u;
emilmont 1:fdd22bb7aa52 618
emilmont 1:fdd22bb7aa52 619 /* First part of the processing with loop unrolling. Compute 4 MACs at a time.
emilmont 1:fdd22bb7aa52 620 ** a second loop below computes MACs for the remaining 1 to 3 samples. */
emilmont 1:fdd22bb7aa52 621 while(k > 0u)
emilmont 1:fdd22bb7aa52 622 {
emilmont 1:fdd22bb7aa52 623 /* x[srcALen - srcBLen + 1], x[srcALen - srcBLen + 2] are multiplied
emilmont 1:fdd22bb7aa52 624 * with y[srcBLen - 1], y[srcBLen - 2] respectively */
emilmont 1:fdd22bb7aa52 625 sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
emilmont 1:fdd22bb7aa52 626 /* x[srcALen - srcBLen + 3], x[srcALen - srcBLen + 4] are multiplied
emilmont 1:fdd22bb7aa52 627 * with y[srcBLen - 3], y[srcBLen - 4] respectively */
emilmont 1:fdd22bb7aa52 628 sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum);
emilmont 1:fdd22bb7aa52 629
emilmont 1:fdd22bb7aa52 630 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 631 k--;
emilmont 1:fdd22bb7aa52 632 }
emilmont 1:fdd22bb7aa52 633
emilmont 1:fdd22bb7aa52 634 /* For the next MAC operations, the pointer py is used without SIMD
emilmont 1:fdd22bb7aa52 635 * So, py is incremented by 1 */
emilmont 1:fdd22bb7aa52 636 py = py + 1u;
emilmont 1:fdd22bb7aa52 637
emilmont 1:fdd22bb7aa52 638 /* If the blockSize3 is not a multiple of 4, compute any remaining MACs here.
emilmont 1:fdd22bb7aa52 639 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 640 k = blockSize3 % 0x4u;
emilmont 1:fdd22bb7aa52 641
emilmont 1:fdd22bb7aa52 642 while(k > 0u)
emilmont 1:fdd22bb7aa52 643 {
emilmont 1:fdd22bb7aa52 644 /* sum += x[srcALen - srcBLen + 5] * y[srcBLen - 5] */
emilmont 1:fdd22bb7aa52 645 sum = __SMLALD(*px++, *py--, sum);
emilmont 1:fdd22bb7aa52 646
emilmont 1:fdd22bb7aa52 647 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 648 k--;
emilmont 1:fdd22bb7aa52 649 }
emilmont 1:fdd22bb7aa52 650
emilmont 1:fdd22bb7aa52 651 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 652 *pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
emilmont 1:fdd22bb7aa52 653
emilmont 1:fdd22bb7aa52 654 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 655 px = ++pSrc1;
emilmont 1:fdd22bb7aa52 656 py = pIn2;
emilmont 1:fdd22bb7aa52 657
emilmont 1:fdd22bb7aa52 658 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 659 blockSize3--;
emilmont 1:fdd22bb7aa52 660
emilmont 1:fdd22bb7aa52 661 j--;
emilmont 1:fdd22bb7aa52 662 }
emilmont 1:fdd22bb7aa52 663
emilmont 1:fdd22bb7aa52 664 /* The second part of the stage starts here */
emilmont 1:fdd22bb7aa52 665 /* SIMD is not used for the next MAC operations,
emilmont 1:fdd22bb7aa52 666 * so pointer py is updated to read only one sample at a time */
emilmont 1:fdd22bb7aa52 667 py = py + 1u;
emilmont 1:fdd22bb7aa52 668
emilmont 1:fdd22bb7aa52 669 while(blockSize3 > 0u)
emilmont 1:fdd22bb7aa52 670 {
emilmont 1:fdd22bb7aa52 671 /* Accumulator is made zero for every iteration */
emilmont 1:fdd22bb7aa52 672 sum = 0;
emilmont 1:fdd22bb7aa52 673
emilmont 1:fdd22bb7aa52 674 /* Apply loop unrolling and compute 4 MACs simultaneously. */
emilmont 1:fdd22bb7aa52 675 k = blockSize3;
emilmont 1:fdd22bb7aa52 676
emilmont 1:fdd22bb7aa52 677 while(k > 0u)
emilmont 1:fdd22bb7aa52 678 {
emilmont 1:fdd22bb7aa52 679 /* Perform the multiply-accumulates */
emilmont 1:fdd22bb7aa52 680 /* sum += x[srcALen-1] * y[srcBLen-1] */
emilmont 1:fdd22bb7aa52 681 sum = __SMLALD(*px++, *py--, sum);
emilmont 1:fdd22bb7aa52 682
emilmont 1:fdd22bb7aa52 683 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 684 k--;
emilmont 1:fdd22bb7aa52 685 }
emilmont 1:fdd22bb7aa52 686
emilmont 1:fdd22bb7aa52 687 /* Store the result in the accumulator in the destination buffer. */
emilmont 1:fdd22bb7aa52 688 *pOut++ = (q15_t) (__SSAT((sum >> 15), 16));
emilmont 1:fdd22bb7aa52 689
emilmont 1:fdd22bb7aa52 690 /* Update the inputA and inputB pointers for next MAC calculation */
emilmont 1:fdd22bb7aa52 691 px = ++pSrc1;
emilmont 1:fdd22bb7aa52 692 py = pSrc2;
emilmont 1:fdd22bb7aa52 693
emilmont 1:fdd22bb7aa52 694 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 695 blockSize3--;
emilmont 1:fdd22bb7aa52 696 }
emilmont 1:fdd22bb7aa52 697
emilmont 1:fdd22bb7aa52 698 #else
emilmont 1:fdd22bb7aa52 699
emilmont 1:fdd22bb7aa52 700 /* Run the below code for Cortex-M0 */
emilmont 1:fdd22bb7aa52 701
emilmont 1:fdd22bb7aa52 702 q15_t *pIn1 = pSrcA; /* input pointer */
emilmont 1:fdd22bb7aa52 703 q15_t *pIn2 = pSrcB; /* coefficient pointer */
emilmont 1:fdd22bb7aa52 704 q63_t sum; /* Accumulator */
emilmont 1:fdd22bb7aa52 705 uint32_t i, j; /* loop counter */
emilmont 1:fdd22bb7aa52 706
emilmont 1:fdd22bb7aa52 707 /* Loop to calculate output of convolution for output length number of times */
emilmont 1:fdd22bb7aa52 708 for (i = 0; i < (srcALen + srcBLen - 1); i++)
emilmont 1:fdd22bb7aa52 709 {
emilmont 1:fdd22bb7aa52 710 /* Initialize sum with zero to carry on MAC operations */
emilmont 1:fdd22bb7aa52 711 sum = 0;
emilmont 1:fdd22bb7aa52 712
emilmont 1:fdd22bb7aa52 713 /* Loop to perform MAC operations according to convolution equation */
emilmont 1:fdd22bb7aa52 714 for (j = 0; j <= i; j++)
emilmont 1:fdd22bb7aa52 715 {
emilmont 1:fdd22bb7aa52 716 /* Check the array limitations */
emilmont 1:fdd22bb7aa52 717 if(((i - j) < srcBLen) && (j < srcALen))
emilmont 1:fdd22bb7aa52 718 {
emilmont 1:fdd22bb7aa52 719 /* z[i] += x[i-j] * y[j] */
emilmont 1:fdd22bb7aa52 720 sum += (q31_t) pIn1[j] * (pIn2[i - j]);
emilmont 1:fdd22bb7aa52 721 }
emilmont 1:fdd22bb7aa52 722 }
emilmont 1:fdd22bb7aa52 723
emilmont 1:fdd22bb7aa52 724 /* Store the output in the destination buffer */
emilmont 1:fdd22bb7aa52 725 pDst[i] = (q15_t) __SSAT((sum >> 15u), 16u);
emilmont 1:fdd22bb7aa52 726 }
emilmont 1:fdd22bb7aa52 727
emilmont 1:fdd22bb7aa52 728 #endif /* #if (defined(ARM_MATH_CM4) || defined(ARM_MATH_CM3)) && !defined(UNALIGNED_SUPPORT_DISABLE)*/
emilmont 1:fdd22bb7aa52 729
emilmont 1:fdd22bb7aa52 730 }
emilmont 1:fdd22bb7aa52 731
emilmont 1:fdd22bb7aa52 732 /**
emilmont 1:fdd22bb7aa52 733 * @} end of Conv group
emilmont 1:fdd22bb7aa52 734 */