CMSIS DSP library

Dependents:   performance_timer Surfboard_ gps2rtty Capstone ... more

Legacy Warning

This is an mbed 2 library. To learn more about mbed OS 5, visit the docs.

Committer:
mbed_official
Date:
Fri Nov 08 13:45:10 2013 +0000
Revision:
3:7a284390b0ce
Parent:
2:da51fb522205
Child:
5:3762170b6d4d
Synchronized with git revision e69956aba2f68a2a26ac26b051f8d349deaa1ce8

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emilmont 1:fdd22bb7aa52 1 /* ----------------------------------------------------------------------
mbed_official 3:7a284390b0ce 2 * Copyright (C) 2010-2013 ARM Limited. All rights reserved.
emilmont 1:fdd22bb7aa52 3 *
mbed_official 3:7a284390b0ce 4 * $Date: 17. January 2013
mbed_official 3:7a284390b0ce 5 * $Revision: V1.4.1
emilmont 1:fdd22bb7aa52 6 *
emilmont 2:da51fb522205 7 * Project: CMSIS DSP Library
emilmont 2:da51fb522205 8 * Title: arm_biquad_cascade_df1_q15.c
emilmont 1:fdd22bb7aa52 9 *
emilmont 2:da51fb522205 10 * Description: Processing function for the
emilmont 2:da51fb522205 11 * Q15 Biquad cascade DirectFormI(DF1) filter.
emilmont 1:fdd22bb7aa52 12 *
emilmont 1:fdd22bb7aa52 13 * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
emilmont 1:fdd22bb7aa52 14 *
mbed_official 3:7a284390b0ce 15 * Redistribution and use in source and binary forms, with or without
mbed_official 3:7a284390b0ce 16 * modification, are permitted provided that the following conditions
mbed_official 3:7a284390b0ce 17 * are met:
mbed_official 3:7a284390b0ce 18 * - Redistributions of source code must retain the above copyright
mbed_official 3:7a284390b0ce 19 * notice, this list of conditions and the following disclaimer.
mbed_official 3:7a284390b0ce 20 * - Redistributions in binary form must reproduce the above copyright
mbed_official 3:7a284390b0ce 21 * notice, this list of conditions and the following disclaimer in
mbed_official 3:7a284390b0ce 22 * the documentation and/or other materials provided with the
mbed_official 3:7a284390b0ce 23 * distribution.
mbed_official 3:7a284390b0ce 24 * - Neither the name of ARM LIMITED nor the names of its contributors
mbed_official 3:7a284390b0ce 25 * may be used to endorse or promote products derived from this
mbed_official 3:7a284390b0ce 26 * software without specific prior written permission.
mbed_official 3:7a284390b0ce 27 *
mbed_official 3:7a284390b0ce 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
mbed_official 3:7a284390b0ce 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
mbed_official 3:7a284390b0ce 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
mbed_official 3:7a284390b0ce 31 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
mbed_official 3:7a284390b0ce 32 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
mbed_official 3:7a284390b0ce 33 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
mbed_official 3:7a284390b0ce 34 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
mbed_official 3:7a284390b0ce 35 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
mbed_official 3:7a284390b0ce 36 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
mbed_official 3:7a284390b0ce 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
mbed_official 3:7a284390b0ce 38 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
mbed_official 3:7a284390b0ce 39 * POSSIBILITY OF SUCH DAMAGE.
emilmont 1:fdd22bb7aa52 40 * -------------------------------------------------------------------- */
emilmont 1:fdd22bb7aa52 41
emilmont 1:fdd22bb7aa52 42 #include "arm_math.h"
emilmont 1:fdd22bb7aa52 43
emilmont 1:fdd22bb7aa52 44 /**
emilmont 1:fdd22bb7aa52 45 * @ingroup groupFilters
emilmont 1:fdd22bb7aa52 46 */
emilmont 1:fdd22bb7aa52 47
emilmont 1:fdd22bb7aa52 48 /**
emilmont 1:fdd22bb7aa52 49 * @addtogroup BiquadCascadeDF1
emilmont 1:fdd22bb7aa52 50 * @{
emilmont 1:fdd22bb7aa52 51 */
emilmont 1:fdd22bb7aa52 52
emilmont 1:fdd22bb7aa52 53 /**
emilmont 1:fdd22bb7aa52 54 * @brief Processing function for the Q15 Biquad cascade filter.
emilmont 1:fdd22bb7aa52 55 * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
emilmont 1:fdd22bb7aa52 56 * @param[in] *pSrc points to the block of input data.
emilmont 1:fdd22bb7aa52 57 * @param[out] *pDst points to the location where the output result is written.
emilmont 1:fdd22bb7aa52 58 * @param[in] blockSize number of samples to process per call.
emilmont 1:fdd22bb7aa52 59 * @return none.
emilmont 1:fdd22bb7aa52 60 *
emilmont 1:fdd22bb7aa52 61 *
emilmont 1:fdd22bb7aa52 62 * <b>Scaling and Overflow Behavior:</b>
emilmont 1:fdd22bb7aa52 63 * \par
emilmont 1:fdd22bb7aa52 64 * The function is implemented using a 64-bit internal accumulator.
emilmont 1:fdd22bb7aa52 65 * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
emilmont 1:fdd22bb7aa52 66 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
emilmont 1:fdd22bb7aa52 67 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
emilmont 1:fdd22bb7aa52 68 * The accumulator is then shifted by <code>postShift</code> bits to truncate the result to 1.15 format by discarding the low 16 bits.
emilmont 1:fdd22bb7aa52 69 * Finally, the result is saturated to 1.15 format.
emilmont 1:fdd22bb7aa52 70 *
emilmont 1:fdd22bb7aa52 71 * \par
emilmont 1:fdd22bb7aa52 72 * Refer to the function <code>arm_biquad_cascade_df1_fast_q15()</code> for a faster but less precise implementation of this filter for Cortex-M3 and Cortex-M4.
emilmont 1:fdd22bb7aa52 73 */
emilmont 1:fdd22bb7aa52 74
emilmont 1:fdd22bb7aa52 75 void arm_biquad_cascade_df1_q15(
emilmont 1:fdd22bb7aa52 76 const arm_biquad_casd_df1_inst_q15 * S,
emilmont 1:fdd22bb7aa52 77 q15_t * pSrc,
emilmont 1:fdd22bb7aa52 78 q15_t * pDst,
emilmont 1:fdd22bb7aa52 79 uint32_t blockSize)
emilmont 1:fdd22bb7aa52 80 {
emilmont 1:fdd22bb7aa52 81
emilmont 1:fdd22bb7aa52 82
mbed_official 3:7a284390b0ce 83 #ifndef ARM_MATH_CM0_FAMILY
emilmont 1:fdd22bb7aa52 84
emilmont 1:fdd22bb7aa52 85 /* Run the below code for Cortex-M4 and Cortex-M3 */
emilmont 1:fdd22bb7aa52 86
emilmont 1:fdd22bb7aa52 87 q15_t *pIn = pSrc; /* Source pointer */
emilmont 1:fdd22bb7aa52 88 q15_t *pOut = pDst; /* Destination pointer */
emilmont 1:fdd22bb7aa52 89 q31_t in; /* Temporary variable to hold input value */
emilmont 1:fdd22bb7aa52 90 q31_t out; /* Temporary variable to hold output value */
emilmont 1:fdd22bb7aa52 91 q31_t b0; /* Temporary variable to hold bo value */
emilmont 1:fdd22bb7aa52 92 q31_t b1, a1; /* Filter coefficients */
emilmont 1:fdd22bb7aa52 93 q31_t state_in, state_out; /* Filter state variables */
emilmont 1:fdd22bb7aa52 94 q31_t acc_l, acc_h;
emilmont 1:fdd22bb7aa52 95 q63_t acc; /* Accumulator */
emilmont 1:fdd22bb7aa52 96 int32_t lShift = (15 - (int32_t) S->postShift); /* Post shift */
emilmont 1:fdd22bb7aa52 97 q15_t *pState = S->pState; /* State pointer */
emilmont 1:fdd22bb7aa52 98 q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
emilmont 1:fdd22bb7aa52 99 uint32_t sample, stage = (uint32_t) S->numStages; /* Stage loop counter */
emilmont 1:fdd22bb7aa52 100 int32_t uShift = (32 - lShift);
emilmont 1:fdd22bb7aa52 101
emilmont 1:fdd22bb7aa52 102 do
emilmont 1:fdd22bb7aa52 103 {
emilmont 1:fdd22bb7aa52 104 /* Read the b0 and 0 coefficients using SIMD */
emilmont 1:fdd22bb7aa52 105 b0 = *__SIMD32(pCoeffs)++;
emilmont 1:fdd22bb7aa52 106
emilmont 1:fdd22bb7aa52 107 /* Read the b1 and b2 coefficients using SIMD */
emilmont 1:fdd22bb7aa52 108 b1 = *__SIMD32(pCoeffs)++;
emilmont 1:fdd22bb7aa52 109
emilmont 1:fdd22bb7aa52 110 /* Read the a1 and a2 coefficients using SIMD */
emilmont 1:fdd22bb7aa52 111 a1 = *__SIMD32(pCoeffs)++;
emilmont 1:fdd22bb7aa52 112
emilmont 1:fdd22bb7aa52 113 /* Read the input state values from the state buffer: x[n-1], x[n-2] */
emilmont 1:fdd22bb7aa52 114 state_in = *__SIMD32(pState)++;
emilmont 1:fdd22bb7aa52 115
emilmont 1:fdd22bb7aa52 116 /* Read the output state values from the state buffer: y[n-1], y[n-2] */
emilmont 1:fdd22bb7aa52 117 state_out = *__SIMD32(pState)--;
emilmont 1:fdd22bb7aa52 118
emilmont 1:fdd22bb7aa52 119 /* Apply loop unrolling and compute 2 output values simultaneously. */
emilmont 1:fdd22bb7aa52 120 /* The variable acc hold output values that are being computed:
emilmont 1:fdd22bb7aa52 121 *
emilmont 1:fdd22bb7aa52 122 * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
emilmont 1:fdd22bb7aa52 123 * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
emilmont 1:fdd22bb7aa52 124 */
emilmont 1:fdd22bb7aa52 125 sample = blockSize >> 1u;
emilmont 1:fdd22bb7aa52 126
emilmont 1:fdd22bb7aa52 127 /* First part of the processing with loop unrolling. Compute 2 outputs at a time.
emilmont 1:fdd22bb7aa52 128 ** a second loop below computes the remaining 1 sample. */
emilmont 1:fdd22bb7aa52 129 while(sample > 0u)
emilmont 1:fdd22bb7aa52 130 {
emilmont 1:fdd22bb7aa52 131
emilmont 1:fdd22bb7aa52 132 /* Read the input */
emilmont 1:fdd22bb7aa52 133 in = *__SIMD32(pIn)++;
emilmont 1:fdd22bb7aa52 134
emilmont 1:fdd22bb7aa52 135 /* out = b0 * x[n] + 0 * 0 */
emilmont 1:fdd22bb7aa52 136 out = __SMUAD(b0, in);
emilmont 1:fdd22bb7aa52 137
emilmont 1:fdd22bb7aa52 138 /* acc += b1 * x[n-1] + b2 * x[n-2] + out */
emilmont 1:fdd22bb7aa52 139 acc = __SMLALD(b1, state_in, out);
emilmont 1:fdd22bb7aa52 140 /* acc += a1 * y[n-1] + a2 * y[n-2] */
emilmont 1:fdd22bb7aa52 141 acc = __SMLALD(a1, state_out, acc);
emilmont 1:fdd22bb7aa52 142
emilmont 1:fdd22bb7aa52 143 /* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */
emilmont 1:fdd22bb7aa52 144 /* Calc lower part of acc */
emilmont 1:fdd22bb7aa52 145 acc_l = acc & 0xffffffff;
emilmont 1:fdd22bb7aa52 146
emilmont 1:fdd22bb7aa52 147 /* Calc upper part of acc */
emilmont 1:fdd22bb7aa52 148 acc_h = (acc >> 32) & 0xffffffff;
emilmont 1:fdd22bb7aa52 149
emilmont 1:fdd22bb7aa52 150 /* Apply shift for lower part of acc and upper part of acc */
emilmont 1:fdd22bb7aa52 151 out = (uint32_t) acc_l >> lShift | acc_h << uShift;
emilmont 1:fdd22bb7aa52 152
emilmont 1:fdd22bb7aa52 153 out = __SSAT(out, 16);
emilmont 1:fdd22bb7aa52 154
emilmont 1:fdd22bb7aa52 155 /* Every time after the output is computed state should be updated. */
emilmont 1:fdd22bb7aa52 156 /* The states should be updated as: */
emilmont 1:fdd22bb7aa52 157 /* Xn2 = Xn1 */
emilmont 1:fdd22bb7aa52 158 /* Xn1 = Xn */
emilmont 1:fdd22bb7aa52 159 /* Yn2 = Yn1 */
emilmont 1:fdd22bb7aa52 160 /* Yn1 = acc */
emilmont 1:fdd22bb7aa52 161 /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
emilmont 1:fdd22bb7aa52 162 /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
emilmont 1:fdd22bb7aa52 163
emilmont 1:fdd22bb7aa52 164 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 165
emilmont 1:fdd22bb7aa52 166 state_in = __PKHBT(in, state_in, 16);
emilmont 1:fdd22bb7aa52 167 state_out = __PKHBT(out, state_out, 16);
emilmont 1:fdd22bb7aa52 168
emilmont 1:fdd22bb7aa52 169 #else
emilmont 1:fdd22bb7aa52 170
emilmont 1:fdd22bb7aa52 171 state_in = __PKHBT(state_in >> 16, (in >> 16), 16);
emilmont 1:fdd22bb7aa52 172 state_out = __PKHBT(state_out >> 16, (out), 16);
emilmont 1:fdd22bb7aa52 173
emilmont 1:fdd22bb7aa52 174 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
emilmont 1:fdd22bb7aa52 175
emilmont 1:fdd22bb7aa52 176 /* out = b0 * x[n] + 0 * 0 */
emilmont 1:fdd22bb7aa52 177 out = __SMUADX(b0, in);
emilmont 1:fdd22bb7aa52 178 /* acc += b1 * x[n-1] + b2 * x[n-2] + out */
emilmont 1:fdd22bb7aa52 179 acc = __SMLALD(b1, state_in, out);
emilmont 1:fdd22bb7aa52 180 /* acc += a1 * y[n-1] + a2 * y[n-2] */
emilmont 1:fdd22bb7aa52 181 acc = __SMLALD(a1, state_out, acc);
emilmont 1:fdd22bb7aa52 182
emilmont 1:fdd22bb7aa52 183 /* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */
emilmont 1:fdd22bb7aa52 184 /* Calc lower part of acc */
emilmont 1:fdd22bb7aa52 185 acc_l = acc & 0xffffffff;
emilmont 1:fdd22bb7aa52 186
emilmont 1:fdd22bb7aa52 187 /* Calc upper part of acc */
emilmont 1:fdd22bb7aa52 188 acc_h = (acc >> 32) & 0xffffffff;
emilmont 1:fdd22bb7aa52 189
emilmont 1:fdd22bb7aa52 190 /* Apply shift for lower part of acc and upper part of acc */
emilmont 1:fdd22bb7aa52 191 out = (uint32_t) acc_l >> lShift | acc_h << uShift;
emilmont 1:fdd22bb7aa52 192
emilmont 1:fdd22bb7aa52 193 out = __SSAT(out, 16);
emilmont 1:fdd22bb7aa52 194
emilmont 1:fdd22bb7aa52 195 /* Store the output in the destination buffer. */
emilmont 1:fdd22bb7aa52 196
emilmont 1:fdd22bb7aa52 197 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 198
emilmont 1:fdd22bb7aa52 199 *__SIMD32(pOut)++ = __PKHBT(state_out, out, 16);
emilmont 1:fdd22bb7aa52 200
emilmont 1:fdd22bb7aa52 201 #else
emilmont 1:fdd22bb7aa52 202
emilmont 1:fdd22bb7aa52 203 *__SIMD32(pOut)++ = __PKHBT(out, state_out >> 16, 16);
emilmont 1:fdd22bb7aa52 204
emilmont 1:fdd22bb7aa52 205 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
emilmont 1:fdd22bb7aa52 206
emilmont 1:fdd22bb7aa52 207 /* Every time after the output is computed state should be updated. */
emilmont 1:fdd22bb7aa52 208 /* The states should be updated as: */
emilmont 1:fdd22bb7aa52 209 /* Xn2 = Xn1 */
emilmont 1:fdd22bb7aa52 210 /* Xn1 = Xn */
emilmont 1:fdd22bb7aa52 211 /* Yn2 = Yn1 */
emilmont 1:fdd22bb7aa52 212 /* Yn1 = acc */
emilmont 1:fdd22bb7aa52 213 /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
emilmont 1:fdd22bb7aa52 214 /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
emilmont 1:fdd22bb7aa52 215 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 216
emilmont 1:fdd22bb7aa52 217 state_in = __PKHBT(in >> 16, state_in, 16);
emilmont 1:fdd22bb7aa52 218 state_out = __PKHBT(out, state_out, 16);
emilmont 1:fdd22bb7aa52 219
emilmont 1:fdd22bb7aa52 220 #else
emilmont 1:fdd22bb7aa52 221
emilmont 1:fdd22bb7aa52 222 state_in = __PKHBT(state_in >> 16, in, 16);
emilmont 1:fdd22bb7aa52 223 state_out = __PKHBT(state_out >> 16, out, 16);
emilmont 1:fdd22bb7aa52 224
emilmont 1:fdd22bb7aa52 225 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
emilmont 1:fdd22bb7aa52 226
emilmont 1:fdd22bb7aa52 227
emilmont 1:fdd22bb7aa52 228 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 229 sample--;
emilmont 1:fdd22bb7aa52 230
emilmont 1:fdd22bb7aa52 231 }
emilmont 1:fdd22bb7aa52 232
emilmont 1:fdd22bb7aa52 233 /* If the blockSize is not a multiple of 2, compute any remaining output samples here.
emilmont 1:fdd22bb7aa52 234 ** No loop unrolling is used. */
emilmont 1:fdd22bb7aa52 235
emilmont 1:fdd22bb7aa52 236 if((blockSize & 0x1u) != 0u)
emilmont 1:fdd22bb7aa52 237 {
emilmont 1:fdd22bb7aa52 238 /* Read the input */
emilmont 1:fdd22bb7aa52 239 in = *pIn++;
emilmont 1:fdd22bb7aa52 240
emilmont 1:fdd22bb7aa52 241 /* out = b0 * x[n] + 0 * 0 */
emilmont 1:fdd22bb7aa52 242
emilmont 1:fdd22bb7aa52 243 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 244
emilmont 1:fdd22bb7aa52 245 out = __SMUAD(b0, in);
emilmont 1:fdd22bb7aa52 246
emilmont 1:fdd22bb7aa52 247 #else
emilmont 1:fdd22bb7aa52 248
emilmont 1:fdd22bb7aa52 249 out = __SMUADX(b0, in);
emilmont 1:fdd22bb7aa52 250
emilmont 1:fdd22bb7aa52 251 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
emilmont 1:fdd22bb7aa52 252
emilmont 1:fdd22bb7aa52 253 /* acc = b1 * x[n-1] + b2 * x[n-2] + out */
emilmont 1:fdd22bb7aa52 254 acc = __SMLALD(b1, state_in, out);
emilmont 1:fdd22bb7aa52 255 /* acc += a1 * y[n-1] + a2 * y[n-2] */
emilmont 1:fdd22bb7aa52 256 acc = __SMLALD(a1, state_out, acc);
emilmont 1:fdd22bb7aa52 257
emilmont 1:fdd22bb7aa52 258 /* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */
emilmont 1:fdd22bb7aa52 259 /* Calc lower part of acc */
emilmont 1:fdd22bb7aa52 260 acc_l = acc & 0xffffffff;
emilmont 1:fdd22bb7aa52 261
emilmont 1:fdd22bb7aa52 262 /* Calc upper part of acc */
emilmont 1:fdd22bb7aa52 263 acc_h = (acc >> 32) & 0xffffffff;
emilmont 1:fdd22bb7aa52 264
emilmont 1:fdd22bb7aa52 265 /* Apply shift for lower part of acc and upper part of acc */
emilmont 1:fdd22bb7aa52 266 out = (uint32_t) acc_l >> lShift | acc_h << uShift;
emilmont 1:fdd22bb7aa52 267
emilmont 1:fdd22bb7aa52 268 out = __SSAT(out, 16);
emilmont 1:fdd22bb7aa52 269
emilmont 1:fdd22bb7aa52 270 /* Store the output in the destination buffer. */
emilmont 1:fdd22bb7aa52 271 *pOut++ = (q15_t) out;
emilmont 1:fdd22bb7aa52 272
emilmont 1:fdd22bb7aa52 273 /* Every time after the output is computed state should be updated. */
emilmont 1:fdd22bb7aa52 274 /* The states should be updated as: */
emilmont 1:fdd22bb7aa52 275 /* Xn2 = Xn1 */
emilmont 1:fdd22bb7aa52 276 /* Xn1 = Xn */
emilmont 1:fdd22bb7aa52 277 /* Yn2 = Yn1 */
emilmont 1:fdd22bb7aa52 278 /* Yn1 = acc */
emilmont 1:fdd22bb7aa52 279 /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
emilmont 1:fdd22bb7aa52 280 /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
emilmont 1:fdd22bb7aa52 281
emilmont 1:fdd22bb7aa52 282 #ifndef ARM_MATH_BIG_ENDIAN
emilmont 1:fdd22bb7aa52 283
emilmont 1:fdd22bb7aa52 284 state_in = __PKHBT(in, state_in, 16);
emilmont 1:fdd22bb7aa52 285 state_out = __PKHBT(out, state_out, 16);
emilmont 1:fdd22bb7aa52 286
emilmont 1:fdd22bb7aa52 287 #else
emilmont 1:fdd22bb7aa52 288
emilmont 1:fdd22bb7aa52 289 state_in = __PKHBT(state_in >> 16, in, 16);
emilmont 1:fdd22bb7aa52 290 state_out = __PKHBT(state_out >> 16, out, 16);
emilmont 1:fdd22bb7aa52 291
emilmont 1:fdd22bb7aa52 292 #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
emilmont 1:fdd22bb7aa52 293
emilmont 1:fdd22bb7aa52 294 }
emilmont 1:fdd22bb7aa52 295
emilmont 1:fdd22bb7aa52 296 /* The first stage goes from the input wire to the output wire. */
emilmont 1:fdd22bb7aa52 297 /* Subsequent numStages occur in-place in the output wire */
emilmont 1:fdd22bb7aa52 298 pIn = pDst;
emilmont 1:fdd22bb7aa52 299
emilmont 1:fdd22bb7aa52 300 /* Reset the output pointer */
emilmont 1:fdd22bb7aa52 301 pOut = pDst;
emilmont 1:fdd22bb7aa52 302
emilmont 1:fdd22bb7aa52 303 /* Store the updated state variables back into the state array */
emilmont 1:fdd22bb7aa52 304 *__SIMD32(pState)++ = state_in;
emilmont 1:fdd22bb7aa52 305 *__SIMD32(pState)++ = state_out;
emilmont 1:fdd22bb7aa52 306
emilmont 1:fdd22bb7aa52 307
emilmont 1:fdd22bb7aa52 308 /* Decrement the loop counter */
emilmont 1:fdd22bb7aa52 309 stage--;
emilmont 1:fdd22bb7aa52 310
emilmont 1:fdd22bb7aa52 311 } while(stage > 0u);
emilmont 1:fdd22bb7aa52 312
emilmont 1:fdd22bb7aa52 313 #else
emilmont 1:fdd22bb7aa52 314
emilmont 1:fdd22bb7aa52 315 /* Run the below code for Cortex-M0 */
emilmont 1:fdd22bb7aa52 316
emilmont 1:fdd22bb7aa52 317 q15_t *pIn = pSrc; /* Source pointer */
emilmont 1:fdd22bb7aa52 318 q15_t *pOut = pDst; /* Destination pointer */
emilmont 1:fdd22bb7aa52 319 q15_t b0, b1, b2, a1, a2; /* Filter coefficients */
emilmont 1:fdd22bb7aa52 320 q15_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */
emilmont 1:fdd22bb7aa52 321 q15_t Xn; /* temporary input */
emilmont 1:fdd22bb7aa52 322 q63_t acc; /* Accumulator */
emilmont 1:fdd22bb7aa52 323 int32_t shift = (15 - (int32_t) S->postShift); /* Post shift */
emilmont 1:fdd22bb7aa52 324 q15_t *pState = S->pState; /* State pointer */
emilmont 1:fdd22bb7aa52 325 q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
emilmont 1:fdd22bb7aa52 326 uint32_t sample, stage = (uint32_t) S->numStages; /* Stage loop counter */
emilmont 1:fdd22bb7aa52 327
emilmont 1:fdd22bb7aa52 328 do
emilmont 1:fdd22bb7aa52 329 {
emilmont 1:fdd22bb7aa52 330 /* Reading the coefficients */
emilmont 1:fdd22bb7aa52 331 b0 = *pCoeffs++;
mbed_official 3:7a284390b0ce 332 pCoeffs++; // skip the 0 coefficient
emilmont 1:fdd22bb7aa52 333 b1 = *pCoeffs++;
emilmont 1:fdd22bb7aa52 334 b2 = *pCoeffs++;
emilmont 1:fdd22bb7aa52 335 a1 = *pCoeffs++;
emilmont 1:fdd22bb7aa52 336 a2 = *pCoeffs++;
emilmont 1:fdd22bb7aa52 337
emilmont 1:fdd22bb7aa52 338 /* Reading the state values */
emilmont 1:fdd22bb7aa52 339 Xn1 = pState[0];
emilmont 1:fdd22bb7aa52 340 Xn2 = pState[1];
emilmont 1:fdd22bb7aa52 341 Yn1 = pState[2];
emilmont 1:fdd22bb7aa52 342 Yn2 = pState[3];
emilmont 1:fdd22bb7aa52 343
emilmont 1:fdd22bb7aa52 344 /* The variables acc holds the output value that is computed:
emilmont 1:fdd22bb7aa52 345 * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
emilmont 1:fdd22bb7aa52 346 */
emilmont 1:fdd22bb7aa52 347
emilmont 1:fdd22bb7aa52 348 sample = blockSize;
emilmont 1:fdd22bb7aa52 349
emilmont 1:fdd22bb7aa52 350 while(sample > 0u)
emilmont 1:fdd22bb7aa52 351 {
emilmont 1:fdd22bb7aa52 352 /* Read the input */
emilmont 1:fdd22bb7aa52 353 Xn = *pIn++;
emilmont 1:fdd22bb7aa52 354
emilmont 1:fdd22bb7aa52 355 /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
emilmont 1:fdd22bb7aa52 356 /* acc = b0 * x[n] */
emilmont 1:fdd22bb7aa52 357 acc = (q31_t) b0 *Xn;
emilmont 1:fdd22bb7aa52 358
emilmont 1:fdd22bb7aa52 359 /* acc += b1 * x[n-1] */
emilmont 1:fdd22bb7aa52 360 acc += (q31_t) b1 *Xn1;
emilmont 1:fdd22bb7aa52 361 /* acc += b[2] * x[n-2] */
emilmont 1:fdd22bb7aa52 362 acc += (q31_t) b2 *Xn2;
emilmont 1:fdd22bb7aa52 363 /* acc += a1 * y[n-1] */
emilmont 1:fdd22bb7aa52 364 acc += (q31_t) a1 *Yn1;
emilmont 1:fdd22bb7aa52 365 /* acc += a2 * y[n-2] */
emilmont 1:fdd22bb7aa52 366 acc += (q31_t) a2 *Yn2;
emilmont 1:fdd22bb7aa52 367
emilmont 1:fdd22bb7aa52 368 /* The result is converted to 1.31 */
emilmont 1:fdd22bb7aa52 369 acc = __SSAT((acc >> shift), 16);
emilmont 1:fdd22bb7aa52 370
emilmont 1:fdd22bb7aa52 371 /* Every time after the output is computed state should be updated. */
emilmont 1:fdd22bb7aa52 372 /* The states should be updated as: */
emilmont 1:fdd22bb7aa52 373 /* Xn2 = Xn1 */
emilmont 1:fdd22bb7aa52 374 /* Xn1 = Xn */
emilmont 1:fdd22bb7aa52 375 /* Yn2 = Yn1 */
emilmont 1:fdd22bb7aa52 376 /* Yn1 = acc */
emilmont 1:fdd22bb7aa52 377 Xn2 = Xn1;
emilmont 1:fdd22bb7aa52 378 Xn1 = Xn;
emilmont 1:fdd22bb7aa52 379 Yn2 = Yn1;
emilmont 1:fdd22bb7aa52 380 Yn1 = (q15_t) acc;
emilmont 1:fdd22bb7aa52 381
emilmont 1:fdd22bb7aa52 382 /* Store the output in the destination buffer. */
emilmont 1:fdd22bb7aa52 383 *pOut++ = (q15_t) acc;
emilmont 1:fdd22bb7aa52 384
emilmont 1:fdd22bb7aa52 385 /* decrement the loop counter */
emilmont 1:fdd22bb7aa52 386 sample--;
emilmont 1:fdd22bb7aa52 387 }
emilmont 1:fdd22bb7aa52 388
emilmont 1:fdd22bb7aa52 389 /* The first stage goes from the input buffer to the output buffer. */
emilmont 1:fdd22bb7aa52 390 /* Subsequent stages occur in-place in the output buffer */
emilmont 1:fdd22bb7aa52 391 pIn = pDst;
emilmont 1:fdd22bb7aa52 392
emilmont 1:fdd22bb7aa52 393 /* Reset to destination pointer */
emilmont 1:fdd22bb7aa52 394 pOut = pDst;
emilmont 1:fdd22bb7aa52 395
emilmont 1:fdd22bb7aa52 396 /* Store the updated state variables back into the pState array */
emilmont 1:fdd22bb7aa52 397 *pState++ = Xn1;
emilmont 1:fdd22bb7aa52 398 *pState++ = Xn2;
emilmont 1:fdd22bb7aa52 399 *pState++ = Yn1;
emilmont 1:fdd22bb7aa52 400 *pState++ = Yn2;
emilmont 1:fdd22bb7aa52 401
emilmont 1:fdd22bb7aa52 402 } while(--stage);
emilmont 1:fdd22bb7aa52 403
mbed_official 3:7a284390b0ce 404 #endif /* #ifndef ARM_MATH_CM0_FAMILY */
emilmont 1:fdd22bb7aa52 405
emilmont 1:fdd22bb7aa52 406 }
emilmont 1:fdd22bb7aa52 407
emilmont 1:fdd22bb7aa52 408
emilmont 1:fdd22bb7aa52 409 /**
emilmont 1:fdd22bb7aa52 410 * @} end of BiquadCascadeDF1 group
emilmont 1:fdd22bb7aa52 411 */