Fixed STMPE1600 writeSYS_CTRL, enabled multi sensors support

Dependencies:   ST_INTERFACES X_NUCLEO_COMMON

Fork of X_NUCLEO_53L0A1 by ST

Revision:
0:c523920bcc09
Child:
2:58b5e9097aa3
Child:
4:4e1576541eed
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Components/VL53L0X/vl53l0x_class.cpp	Mon Nov 28 11:25:33 2016 +0000
@@ -0,0 +1,5349 @@
+/**
+ ******************************************************************************
+ * @file    vl53l0x_class.cpp
+ * @author  IMG
+ * @version V0.0.1
+ * @date    28-June-2016
+ * @brief   Implementation file for the VL53L0X driver class
+ ******************************************************************************
+ * @attention
+ *
+ * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
+ *
+ * Redistribution and use in source and binary forms, with or without modification,
+ * are permitted provided that the following conditions are met:
+ *   1. Redistributions of source code must retain the above copyright notice,
+ *      this list of conditions and the following disclaimer.
+ *   2. Redistributions in binary form must reproduce the above copyright notice,
+ *      this list of conditions and the following disclaimer in the documentation
+ *      and/or other materials provided with the distribution.
+ *   3. Neither the name of STMicroelectronics nor the names of its contributors
+ *      may be used to endorse or promote products derived from this software
+ *      without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+ * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+ * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+ * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ ******************************************************************************
+*/
+ 
+/* Includes */
+#include <stdlib.h>
+
+#include "vl53l0x_class.h"
+
+//#include "vl53l0x_api_core.h"
+//#include "vl53l0x_api_calibration.h"
+//#include "vl53l0x_api_strings.h"
+#include "vl53l0x_interrupt_threshold_settings.h"
+#include "vl53l0x_tuning.h"
+#include "vl53l0x_types.h"
+
+
+/****************** define for i2c configuration *******************************/
+ 
+#define TEMP_BUF_SIZE   64
+
+/** Maximum buffer size to be used in i2c */
+#define VL53L0X_MAX_I2C_XFER_SIZE   64 /* Maximum buffer size to be used in i2c */
+#define VL53L0X_I2C_USER_VAR         /* none but could be for a flag var to get/pass to mutex interruptible  return flags and try again */
+ 
+
+#define LOG_FUNCTION_START(fmt, ...) \
+	_LOG_FUNCTION_START(TRACE_MODULE_API, fmt, ##__VA_ARGS__)
+#define LOG_FUNCTION_END(status, ...) \
+	_LOG_FUNCTION_END(TRACE_MODULE_API, status, ##__VA_ARGS__)
+#define LOG_FUNCTION_END_FMT(status, fmt, ...) \
+	_LOG_FUNCTION_END_FMT(TRACE_MODULE_API, status, fmt, ##__VA_ARGS__)
+
+#ifdef VL53L0X_LOG_ENABLE
+#define trace_print(level, ...) trace_print_module_function(TRACE_MODULE_API, \
+	level, TRACE_FUNCTION_NONE, ##__VA_ARGS__)
+#endif
+
+#define REF_ARRAY_SPAD_0  0
+#define REF_ARRAY_SPAD_5  5
+#define REF_ARRAY_SPAD_10 10
+
+uint32_t refArrayQuadrants[4] = {REF_ARRAY_SPAD_10, REF_ARRAY_SPAD_5,
+		REF_ARRAY_SPAD_0, REF_ARRAY_SPAD_5 };
+
+
+
+
+VL53L0X_Error VL53L0X::VL53L0X_device_read_strobe(VL53L0X_DEV Dev)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint8_t strobe;
+	uint32_t LoopNb;
+	LOG_FUNCTION_START("");
+
+	Status |= VL53L0X_WrByte(Dev, 0x83, 0x00);
+
+	/* polling
+	 * use timeout to avoid deadlock*/
+	if (Status == VL53L0X_ERROR_NONE) {
+		LoopNb = 0;
+		do {
+			Status = VL53L0X_RdByte(Dev, 0x83, &strobe);
+			if ((strobe != 0x00) || Status != VL53L0X_ERROR_NONE)
+					break;
+
+			LoopNb = LoopNb + 1;
+		} while (LoopNb < VL53L0X_DEFAULT_MAX_LOOP);
+
+		if (LoopNb >= VL53L0X_DEFAULT_MAX_LOOP)
+			Status = VL53L0X_ERROR_TIME_OUT;
+
+	}
+
+	Status |= VL53L0X_WrByte(Dev, 0x83, 0x01);
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_info_from_device(VL53L0X_DEV Dev, uint8_t option)
+{
+
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint8_t byte;
+	uint32_t TmpDWord;
+	uint8_t ModuleId;
+	uint8_t Revision;
+	uint8_t ReferenceSpadCount = 0;
+	uint8_t ReferenceSpadType = 0;
+	uint32_t PartUIDUpper = 0;
+	uint32_t PartUIDLower = 0;
+	uint32_t OffsetFixed1104_mm = 0;
+	int16_t OffsetMicroMeters = 0;
+	uint32_t DistMeasTgtFixed1104_mm = 400 << 4;
+	uint32_t DistMeasFixed1104_400_mm = 0;
+	uint32_t SignalRateMeasFixed1104_400_mm = 0;
+	char ProductId[19];
+	char *ProductId_tmp;
+	uint8_t ReadDataFromDeviceDone;
+	FixPoint1616_t SignalRateMeasFixed400mmFix = 0;
+	uint8_t NvmRefGoodSpadMap[VL53L0X_REF_SPAD_BUFFER_SIZE];
+	int i;
+
+
+	LOG_FUNCTION_START("");
+
+	ReadDataFromDeviceDone = VL53L0X_GETDEVICESPECIFICPARAMETER(Dev,
+			ReadDataFromDeviceDone);
+
+	/* This access is done only once after that a GetDeviceInfo or
+	 * datainit is done*/
+	if (ReadDataFromDeviceDone != 7) {
+
+		Status |= VL53L0X_WrByte(Dev, 0x80, 0x01);
+		Status |= VL53L0X_WrByte(Dev, 0xFF, 0x01);
+		Status |= VL53L0X_WrByte(Dev, 0x00, 0x00);
+
+		Status |= VL53L0X_WrByte(Dev, 0xFF, 0x06);
+		Status |= VL53L0X_RdByte(Dev, 0x83, &byte);
+		Status |= VL53L0X_WrByte(Dev, 0x83, byte|4);
+		Status |= VL53L0X_WrByte(Dev, 0xFF, 0x07);
+		Status |= VL53L0X_WrByte(Dev, 0x81, 0x01);
+
+		Status |= VL53L0X_PollingDelay(Dev);
+
+		Status |= VL53L0X_WrByte(Dev, 0x80, 0x01);
+
+		if (((option & 1) == 1) &&
+			((ReadDataFromDeviceDone & 1) == 0)) {
+			Status |= VL53L0X_WrByte(Dev, 0x94, 0x6b);
+			Status |= VL53L0X_device_read_strobe(Dev);
+			Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
+
+			ReferenceSpadCount = (uint8_t)((TmpDWord >> 8) & 0x07f);
+			ReferenceSpadType  = (uint8_t)((TmpDWord >> 15) & 0x01);
+
+			Status |= VL53L0X_WrByte(Dev, 0x94, 0x24);
+			Status |= VL53L0X_device_read_strobe(Dev);
+			Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
+
+
+			NvmRefGoodSpadMap[0] = (uint8_t)((TmpDWord >> 24)
+				& 0xff);
+			NvmRefGoodSpadMap[1] = (uint8_t)((TmpDWord >> 16)
+				& 0xff);
+			NvmRefGoodSpadMap[2] = (uint8_t)((TmpDWord >> 8)
+				& 0xff);
+			NvmRefGoodSpadMap[3] = (uint8_t)(TmpDWord & 0xff);
+
+			Status |= VL53L0X_WrByte(Dev, 0x94, 0x25);
+			Status |= VL53L0X_device_read_strobe(Dev);
+			Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
+
+			NvmRefGoodSpadMap[4] = (uint8_t)((TmpDWord >> 24)
+				& 0xff);
+			NvmRefGoodSpadMap[5] = (uint8_t)((TmpDWord >> 16)
+				& 0xff);
+		}
+
+		if (((option & 2) == 2) &&
+			((ReadDataFromDeviceDone & 2) == 0)) {
+
+			Status |= VL53L0X_WrByte(Dev, 0x94, 0x02);
+			Status |= VL53L0X_device_read_strobe(Dev);
+			Status |= VL53L0X_RdByte(Dev, 0x90, &ModuleId);
+
+			Status |= VL53L0X_WrByte(Dev, 0x94, 0x7B);
+			Status |= VL53L0X_device_read_strobe(Dev);
+			Status |= VL53L0X_RdByte(Dev, 0x90, &Revision);
+
+			Status |= VL53L0X_WrByte(Dev, 0x94, 0x77);
+			Status |= VL53L0X_device_read_strobe(Dev);
+			Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
+
+			ProductId[0] = (char)((TmpDWord >> 25) & 0x07f);
+			ProductId[1] = (char)((TmpDWord >> 18) & 0x07f);
+			ProductId[2] = (char)((TmpDWord >> 11) & 0x07f);
+			ProductId[3] = (char)((TmpDWord >> 4) & 0x07f);
+
+			byte = (uint8_t)((TmpDWord & 0x00f) << 3);
+
+			Status |= VL53L0X_WrByte(Dev, 0x94, 0x78);
+			Status |= VL53L0X_device_read_strobe(Dev);
+			Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
+
+			ProductId[4] = (char)(byte +
+					((TmpDWord >> 29) & 0x07f));
+			ProductId[5] = (char)((TmpDWord >> 22) & 0x07f);
+			ProductId[6] = (char)((TmpDWord >> 15) & 0x07f);
+			ProductId[7] = (char)((TmpDWord >> 8) & 0x07f);
+			ProductId[8] = (char)((TmpDWord >> 1) & 0x07f);
+
+			byte = (uint8_t)((TmpDWord & 0x001) << 6);
+
+			Status |= VL53L0X_WrByte(Dev, 0x94, 0x79);
+
+			Status |= VL53L0X_device_read_strobe(Dev);
+
+			Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
+
+			ProductId[9] = (char)(byte +
+					((TmpDWord >> 26) & 0x07f));
+			ProductId[10] = (char)((TmpDWord >> 19) & 0x07f);
+			ProductId[11] = (char)((TmpDWord >> 12) & 0x07f);
+			ProductId[12] = (char)((TmpDWord >> 5) & 0x07f);
+
+			byte = (uint8_t)((TmpDWord & 0x01f) << 2);
+
+			Status |= VL53L0X_WrByte(Dev, 0x94, 0x7A);
+
+			Status |= VL53L0X_device_read_strobe(Dev);
+
+			Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
+
+			ProductId[13] = (char)(byte +
+					((TmpDWord >> 30) & 0x07f));
+			ProductId[14] = (char)((TmpDWord >> 23) & 0x07f);
+			ProductId[15] = (char)((TmpDWord >> 16) & 0x07f);
+			ProductId[16] = (char)((TmpDWord >> 9) & 0x07f);
+			ProductId[17] = (char)((TmpDWord >> 2) & 0x07f);
+			ProductId[18] = '\0';
+
+		}
+
+		if (((option & 4) == 4) &&
+			((ReadDataFromDeviceDone & 4) == 0)) {
+
+			Status |= VL53L0X_WrByte(Dev, 0x94, 0x7B);
+			Status |= VL53L0X_device_read_strobe(Dev);
+			Status |= VL53L0X_RdDWord(Dev, 0x90, &PartUIDUpper);
+
+			Status |= VL53L0X_WrByte(Dev, 0x94, 0x7C);
+			Status |= VL53L0X_device_read_strobe(Dev);
+			Status |= VL53L0X_RdDWord(Dev, 0x90, &PartUIDLower);
+
+			Status |= VL53L0X_WrByte(Dev, 0x94, 0x73);
+			Status |= VL53L0X_device_read_strobe(Dev);
+			Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
+
+			SignalRateMeasFixed1104_400_mm = (TmpDWord &
+				0x0000000ff) << 8;
+
+			Status |= VL53L0X_WrByte(Dev, 0x94, 0x74);
+			Status |= VL53L0X_device_read_strobe(Dev);
+			Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
+
+			SignalRateMeasFixed1104_400_mm |= ((TmpDWord &
+				0xff000000) >> 24);
+
+			Status |= VL53L0X_WrByte(Dev, 0x94, 0x75);
+			Status |= VL53L0X_device_read_strobe(Dev);
+			Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
+
+			DistMeasFixed1104_400_mm = (TmpDWord & 0x0000000ff)
+							<< 8;
+
+			Status |= VL53L0X_WrByte(Dev, 0x94, 0x76);
+			Status |= VL53L0X_device_read_strobe(Dev);
+			Status |= VL53L0X_RdDWord(Dev, 0x90, &TmpDWord);
+
+			DistMeasFixed1104_400_mm |= ((TmpDWord & 0xff000000)
+							>> 24);
+		}
+
+		Status |= VL53L0X_WrByte(Dev, 0x81, 0x00);
+		Status |= VL53L0X_WrByte(Dev, 0xFF, 0x06);
+		Status |= VL53L0X_RdByte(Dev, 0x83, &byte);
+		Status |= VL53L0X_WrByte(Dev, 0x83, byte&0xfb);
+		Status |= VL53L0X_WrByte(Dev, 0xFF, 0x01);
+		Status |= VL53L0X_WrByte(Dev, 0x00, 0x01);
+
+		Status |= VL53L0X_WrByte(Dev, 0xFF, 0x00);
+		Status |= VL53L0X_WrByte(Dev, 0x80, 0x00);
+	}
+
+	if ((Status == VL53L0X_ERROR_NONE) &&
+		(ReadDataFromDeviceDone != 7)) {
+		/* Assign to variable if status is ok */
+		if (((option & 1) == 1) &&
+			((ReadDataFromDeviceDone & 1) == 0)) {
+			VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
+				ReferenceSpadCount, ReferenceSpadCount);
+
+			VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
+				ReferenceSpadType, ReferenceSpadType);
+
+			for (i = 0; i < VL53L0X_REF_SPAD_BUFFER_SIZE; i++) {
+				Dev->Data.SpadData.RefGoodSpadMap[i] =
+					NvmRefGoodSpadMap[i];
+			}
+		}
+
+		if (((option & 2) == 2) &&
+			((ReadDataFromDeviceDone & 2) == 0)) {
+			VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
+					ModuleId, ModuleId);
+
+			VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
+					Revision, Revision);
+
+			ProductId_tmp = VL53L0X_GETDEVICESPECIFICPARAMETER(Dev,
+					ProductId);
+			VL53L0X_COPYSTRING(ProductId_tmp, ProductId);
+
+		}
+
+		if (((option & 4) == 4) &&
+			((ReadDataFromDeviceDone & 4) == 0)) {
+			VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
+						PartUIDUpper, PartUIDUpper);
+
+			VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
+						PartUIDLower, PartUIDLower);
+
+			SignalRateMeasFixed400mmFix =
+				VL53L0X_FIXPOINT97TOFIXPOINT1616(
+					SignalRateMeasFixed1104_400_mm);
+
+			VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
+				SignalRateMeasFixed400mm,
+				SignalRateMeasFixed400mmFix);
+
+			OffsetMicroMeters = 0;
+			if (DistMeasFixed1104_400_mm != 0) {
+					OffsetFixed1104_mm =
+						DistMeasFixed1104_400_mm -
+						DistMeasTgtFixed1104_mm;
+					OffsetMicroMeters = (OffsetFixed1104_mm
+						* 1000) >> 4;
+					OffsetMicroMeters *= -1;
+			}
+
+			PALDevDataSet(Dev,
+				Part2PartOffsetAdjustmentNVMMicroMeter,
+				OffsetMicroMeters);
+		}
+		byte = (uint8_t)(ReadDataFromDeviceDone|option);
+		VL53L0X_SETDEVICESPECIFICPARAMETER(Dev, ReadDataFromDeviceDone,
+				byte);
+	}
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_offset_calibration_data_micro_meter(VL53L0X_DEV Dev,
+		int32_t *pOffsetCalibrationDataMicroMeter)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint16_t RangeOffsetRegister;
+	int16_t cMaxOffset = 2047;
+	int16_t cOffsetRange = 4096;
+
+	/* Note that offset has 10.2 format */
+
+	Status = VL53L0X_RdWord(Dev,
+				VL53L0X_REG_ALGO_PART_TO_PART_RANGE_OFFSET_MM,
+				&RangeOffsetRegister);
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		RangeOffsetRegister = (RangeOffsetRegister & 0x0fff);
+
+		/* Apply 12 bit 2's compliment conversion */
+		if (RangeOffsetRegister > cMaxOffset)
+			*pOffsetCalibrationDataMicroMeter =
+				(int16_t)(RangeOffsetRegister - cOffsetRange)
+					* 250;
+		else
+			*pOffsetCalibrationDataMicroMeter =
+				(int16_t)RangeOffsetRegister * 250;
+
+	}
+
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetOffsetCalibrationDataMicroMeter(VL53L0X_DEV Dev,
+	int32_t *pOffsetCalibrationDataMicroMeter)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	LOG_FUNCTION_START("");
+
+	Status = VL53L0X_get_offset_calibration_data_micro_meter(Dev,
+		pOffsetCalibrationDataMicroMeter);
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_set_offset_calibration_data_micro_meter(VL53L0X_DEV Dev,
+		int32_t OffsetCalibrationDataMicroMeter)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	int32_t cMaxOffsetMicroMeter = 511000;
+	int32_t cMinOffsetMicroMeter = -512000;
+	int16_t cOffsetRange = 4096;
+	uint32_t encodedOffsetVal;
+
+	LOG_FUNCTION_START("");
+
+	if (OffsetCalibrationDataMicroMeter > cMaxOffsetMicroMeter)
+		OffsetCalibrationDataMicroMeter = cMaxOffsetMicroMeter;
+	else if (OffsetCalibrationDataMicroMeter < cMinOffsetMicroMeter)
+		OffsetCalibrationDataMicroMeter = cMinOffsetMicroMeter;
+
+	/* The offset register is 10.2 format and units are mm
+	 * therefore conversion is applied by a division of
+	 * 250.
+	 */
+	if (OffsetCalibrationDataMicroMeter >= 0) {
+		encodedOffsetVal =
+			OffsetCalibrationDataMicroMeter/250;
+	} else {
+		encodedOffsetVal =
+			cOffsetRange +
+			OffsetCalibrationDataMicroMeter/250;
+	}
+
+	Status = VL53L0X_WrWord(Dev,
+		VL53L0X_REG_ALGO_PART_TO_PART_RANGE_OFFSET_MM,
+		encodedOffsetVal);
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_SetOffsetCalibrationDataMicroMeter(VL53L0X_DEV Dev,
+	int32_t OffsetCalibrationDataMicroMeter)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	LOG_FUNCTION_START("");
+
+	Status = VL53L0X_set_offset_calibration_data_micro_meter(Dev,
+		OffsetCalibrationDataMicroMeter);
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_apply_offset_adjustment(VL53L0X_DEV Dev)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	int32_t CorrectedOffsetMicroMeters;
+	int32_t CurrentOffsetMicroMeters;
+
+	/* if we run on this function we can read all the NVM info
+	 * used by the API */
+	Status = VL53L0X_get_info_from_device(Dev, 7);
+
+	/* Read back current device offset */
+	if (Status == VL53L0X_ERROR_NONE) {
+		Status = VL53L0X_GetOffsetCalibrationDataMicroMeter(Dev,
+					&CurrentOffsetMicroMeters);
+	}
+
+	/* Apply Offset Adjustment derived from 400mm measurements */
+	if (Status == VL53L0X_ERROR_NONE) {
+
+		/* Store initial device offset */
+		PALDevDataSet(Dev, Part2PartOffsetNVMMicroMeter,
+			CurrentOffsetMicroMeters);
+
+		CorrectedOffsetMicroMeters = CurrentOffsetMicroMeters +
+			(int32_t)PALDevDataGet(Dev,
+				Part2PartOffsetAdjustmentNVMMicroMeter);
+
+		Status = VL53L0X_SetOffsetCalibrationDataMicroMeter(Dev,
+					CorrectedOffsetMicroMeters);
+
+		/* store current, adjusted offset */
+		if (Status == VL53L0X_ERROR_NONE) {
+			VL53L0X_SETPARAMETERFIELD(Dev, RangeOffsetMicroMeters,
+					CorrectedOffsetMicroMeters);
+		}
+	}
+
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetDeviceMode(VL53L0X_DEV Dev,
+	VL53L0X_DeviceModes *pDeviceMode)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	LOG_FUNCTION_START("");
+
+	VL53L0X_GETPARAMETERFIELD(Dev, DeviceMode, *pDeviceMode);
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetInterMeasurementPeriodMilliSeconds(VL53L0X_DEV Dev,
+	uint32_t *pInterMeasurementPeriodMilliSeconds)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint16_t osc_calibrate_val;
+	uint32_t IMPeriodMilliSeconds;
+
+	LOG_FUNCTION_START("");
+
+	Status = VL53L0X_RdWord(Dev, VL53L0X_REG_OSC_CALIBRATE_VAL,
+		&osc_calibrate_val);
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		Status = VL53L0X_RdDWord(Dev,
+		VL53L0X_REG_SYSTEM_INTERMEASUREMENT_PERIOD,
+			&IMPeriodMilliSeconds);
+	}
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		if (osc_calibrate_val != 0) {
+			*pInterMeasurementPeriodMilliSeconds =
+				IMPeriodMilliSeconds / osc_calibrate_val;
+		}
+		VL53L0X_SETPARAMETERFIELD(Dev,
+			InterMeasurementPeriodMilliSeconds,
+			*pInterMeasurementPeriodMilliSeconds);
+	}
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetXTalkCompensationRateMegaCps(VL53L0X_DEV Dev,
+	FixPoint1616_t *pXTalkCompensationRateMegaCps)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint16_t Value;
+	FixPoint1616_t TempFix1616;
+
+	LOG_FUNCTION_START("");
+
+	Status = VL53L0X_RdWord(Dev,
+	VL53L0X_REG_CROSSTALK_COMPENSATION_PEAK_RATE_MCPS, (uint16_t *)&Value);
+	if (Status == VL53L0X_ERROR_NONE) {
+		if (Value == 0) {
+			/* the Xtalk is disabled return value from memory */
+			VL53L0X_GETPARAMETERFIELD(Dev,
+				XTalkCompensationRateMegaCps, TempFix1616);
+			*pXTalkCompensationRateMegaCps = TempFix1616;
+			VL53L0X_SETPARAMETERFIELD(Dev, XTalkCompensationEnable,
+				0);
+		} else {
+			TempFix1616 = VL53L0X_FIXPOINT313TOFIXPOINT1616(Value);
+			*pXTalkCompensationRateMegaCps = TempFix1616;
+			VL53L0X_SETPARAMETERFIELD(Dev,
+				XTalkCompensationRateMegaCps, TempFix1616);
+			VL53L0X_SETPARAMETERFIELD(Dev, XTalkCompensationEnable,
+				1);
+		}
+	}
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetLimitCheckValue(VL53L0X_DEV Dev, uint16_t LimitCheckId,
+	FixPoint1616_t *pLimitCheckValue)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint8_t EnableZeroValue = 0;
+	uint16_t Temp16;
+	FixPoint1616_t TempFix1616;
+
+	LOG_FUNCTION_START("");
+
+	switch (LimitCheckId) {
+
+	case VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE:
+		/* internal computation: */
+		VL53L0X_GETARRAYPARAMETERFIELD(Dev, LimitChecksValue,
+			VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE, TempFix1616);
+		EnableZeroValue = 0;
+		break;
+
+	case VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE:
+		Status = VL53L0X_RdWord(Dev,
+		VL53L0X_REG_FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT,
+			&Temp16);
+		if (Status == VL53L0X_ERROR_NONE)
+			TempFix1616 = VL53L0X_FIXPOINT97TOFIXPOINT1616(Temp16);
+
+
+		EnableZeroValue = 1;
+		break;
+
+	case VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP:
+		/* internal computation: */
+		VL53L0X_GETARRAYPARAMETERFIELD(Dev, LimitChecksValue,
+			VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP, TempFix1616);
+		EnableZeroValue = 0;
+		break;
+
+	case VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD:
+		/* internal computation: */
+		VL53L0X_GETARRAYPARAMETERFIELD(Dev, LimitChecksValue,
+			VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD, TempFix1616);
+		EnableZeroValue = 0;
+		break;
+
+	case VL53L0X_CHECKENABLE_SIGNAL_RATE_MSRC:
+	case VL53L0X_CHECKENABLE_SIGNAL_RATE_PRE_RANGE:
+		Status = VL53L0X_RdWord(Dev,
+			VL53L0X_REG_PRE_RANGE_MIN_COUNT_RATE_RTN_LIMIT,
+			&Temp16);
+		if (Status == VL53L0X_ERROR_NONE)
+			TempFix1616 = VL53L0X_FIXPOINT97TOFIXPOINT1616(Temp16);
+
+
+		EnableZeroValue = 0;
+		break;
+
+	default:
+		Status = VL53L0X_ERROR_INVALID_PARAMS;
+
+	}
+
+	if (Status == VL53L0X_ERROR_NONE) {
+
+		if (EnableZeroValue == 1) {
+
+			if (TempFix1616 == 0) {
+				/* disabled: return value from memory */
+				VL53L0X_GETARRAYPARAMETERFIELD(Dev,
+					LimitChecksValue, LimitCheckId,
+					TempFix1616);
+				*pLimitCheckValue = TempFix1616;
+				VL53L0X_SETARRAYPARAMETERFIELD(Dev,
+					LimitChecksEnable, LimitCheckId, 0);
+			} else {
+				*pLimitCheckValue = TempFix1616;
+				VL53L0X_SETARRAYPARAMETERFIELD(Dev,
+					LimitChecksValue, LimitCheckId,
+					TempFix1616);
+				VL53L0X_SETARRAYPARAMETERFIELD(Dev,
+					LimitChecksEnable, LimitCheckId, 1);
+			}
+		} else {
+			*pLimitCheckValue = TempFix1616;
+		}
+	}
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetLimitCheckEnable(VL53L0X_DEV Dev, uint16_t LimitCheckId,
+	uint8_t *pLimitCheckEnable)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint8_t Temp8;
+
+	LOG_FUNCTION_START("");
+
+	if (LimitCheckId >= VL53L0X_CHECKENABLE_NUMBER_OF_CHECKS) {
+		Status = VL53L0X_ERROR_INVALID_PARAMS;
+		*pLimitCheckEnable = 0;
+	} else {
+		VL53L0X_GETARRAYPARAMETERFIELD(Dev, LimitChecksEnable,
+			LimitCheckId, Temp8);
+		*pLimitCheckEnable = Temp8;
+	}
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetWrapAroundCheckEnable(VL53L0X_DEV Dev,
+	uint8_t *pWrapAroundCheckEnable)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint8_t data;
+
+	LOG_FUNCTION_START("");
+
+	Status = VL53L0X_RdByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, &data);
+	if (Status == VL53L0X_ERROR_NONE) {
+		PALDevDataSet(Dev, SequenceConfig, data);
+		if (data & (0x01 << 7))
+			*pWrapAroundCheckEnable = 0x01;
+		else
+			*pWrapAroundCheckEnable = 0x00;
+	}
+	if (Status == VL53L0X_ERROR_NONE) {
+		VL53L0X_SETPARAMETERFIELD(Dev, WrapAroundCheckEnable,
+			*pWrapAroundCheckEnable);
+	}
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::sequence_step_enabled(VL53L0X_DEV Dev,
+	VL53L0X_SequenceStepId SequenceStepId, uint8_t SequenceConfig,
+	uint8_t *pSequenceStepEnabled)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	*pSequenceStepEnabled = 0;
+	LOG_FUNCTION_START("");
+
+	switch (SequenceStepId) {
+	case VL53L0X_SEQUENCESTEP_TCC:
+		*pSequenceStepEnabled = (SequenceConfig & 0x10) >> 4;
+		break;
+	case VL53L0X_SEQUENCESTEP_DSS:
+		*pSequenceStepEnabled = (SequenceConfig & 0x08) >> 3;
+		break;
+	case VL53L0X_SEQUENCESTEP_MSRC:
+		*pSequenceStepEnabled = (SequenceConfig & 0x04) >> 2;
+		break;
+	case VL53L0X_SEQUENCESTEP_PRE_RANGE:
+		*pSequenceStepEnabled = (SequenceConfig & 0x40) >> 6;
+		break;
+	case VL53L0X_SEQUENCESTEP_FINAL_RANGE:
+		*pSequenceStepEnabled = (SequenceConfig & 0x80) >> 7;
+		break;
+	default:
+		Status = VL53L0X_ERROR_INVALID_PARAMS;
+	}
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetSequenceStepEnables(VL53L0X_DEV Dev,
+	VL53L0X_SchedulerSequenceSteps_t *pSchedulerSequenceSteps)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint8_t SequenceConfig = 0;
+	LOG_FUNCTION_START("");
+
+	Status = VL53L0X_RdByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
+		&SequenceConfig);
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		Status = sequence_step_enabled(Dev,
+		VL53L0X_SEQUENCESTEP_TCC, SequenceConfig,
+			&pSchedulerSequenceSteps->TccOn);
+	}
+	if (Status == VL53L0X_ERROR_NONE) {
+		Status = sequence_step_enabled(Dev,
+		VL53L0X_SEQUENCESTEP_DSS, SequenceConfig,
+			&pSchedulerSequenceSteps->DssOn);
+	}
+	if (Status == VL53L0X_ERROR_NONE) {
+		Status = sequence_step_enabled(Dev,
+		VL53L0X_SEQUENCESTEP_MSRC, SequenceConfig,
+			&pSchedulerSequenceSteps->MsrcOn);
+	}
+	if (Status == VL53L0X_ERROR_NONE) {
+		Status = sequence_step_enabled(Dev,
+		VL53L0X_SEQUENCESTEP_PRE_RANGE, SequenceConfig,
+			&pSchedulerSequenceSteps->PreRangeOn);
+	}
+	if (Status == VL53L0X_ERROR_NONE) {
+		Status = sequence_step_enabled(Dev,
+		VL53L0X_SEQUENCESTEP_FINAL_RANGE, SequenceConfig,
+			&pSchedulerSequenceSteps->FinalRangeOn);
+	}
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+uint8_t VL53L0X::VL53L0X_decode_vcsel_period(uint8_t vcsel_period_reg)
+{
+	/*!
+	 * Converts the encoded VCSEL period register value into the real
+	 * period in PLL clocks
+	 */
+
+	uint8_t vcsel_period_pclks = 0;
+
+	vcsel_period_pclks = (vcsel_period_reg + 1) << 1;
+
+	return vcsel_period_pclks;
+}
+
+uint8_t VL53L0X::VL53L0X_encode_vcsel_period(uint8_t vcsel_period_pclks)
+{
+	/*!
+	 * Converts the encoded VCSEL period register value into the real period
+	 * in PLL clocks
+	 */
+
+	uint8_t vcsel_period_reg = 0;
+
+	vcsel_period_reg = (vcsel_period_pclks >> 1) - 1;
+
+	return vcsel_period_reg;
+}
+
+
+VL53L0X_Error VL53L0X::VL53L0X_set_vcsel_pulse_period(VL53L0X_DEV Dev,
+	VL53L0X_VcselPeriod VcselPeriodType, uint8_t VCSELPulsePeriodPCLK)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint8_t vcsel_period_reg;
+	uint8_t MinPreVcselPeriodPCLK = 12;
+	uint8_t MaxPreVcselPeriodPCLK = 18;
+	uint8_t MinFinalVcselPeriodPCLK = 8;
+	uint8_t MaxFinalVcselPeriodPCLK = 14;
+	uint32_t MeasurementTimingBudgetMicroSeconds;
+	uint32_t FinalRangeTimeoutMicroSeconds;
+	uint32_t PreRangeTimeoutMicroSeconds;
+	uint32_t MsrcTimeoutMicroSeconds;
+	uint8_t PhaseCalInt = 0;
+
+	/* Check if valid clock period requested */
+
+	if ((VCSELPulsePeriodPCLK % 2) != 0) {
+		/* Value must be an even number */
+		Status = VL53L0X_ERROR_INVALID_PARAMS;
+	} else if (VcselPeriodType == VL53L0X_VCSEL_PERIOD_PRE_RANGE &&
+		(VCSELPulsePeriodPCLK < MinPreVcselPeriodPCLK ||
+		VCSELPulsePeriodPCLK > MaxPreVcselPeriodPCLK)) {
+		Status = VL53L0X_ERROR_INVALID_PARAMS;
+	} else if (VcselPeriodType == VL53L0X_VCSEL_PERIOD_FINAL_RANGE &&
+		(VCSELPulsePeriodPCLK < MinFinalVcselPeriodPCLK ||
+		 VCSELPulsePeriodPCLK > MaxFinalVcselPeriodPCLK)) {
+
+		Status = VL53L0X_ERROR_INVALID_PARAMS;
+	}
+
+	/* Apply specific settings for the requested clock period */
+
+	if (Status != VL53L0X_ERROR_NONE)
+		return Status;
+
+
+	if (VcselPeriodType == VL53L0X_VCSEL_PERIOD_PRE_RANGE) {
+
+		/* Set phase check limits */
+		if (VCSELPulsePeriodPCLK == 12) {
+
+			Status = VL53L0X_WrByte(Dev,
+				VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
+				0x18);
+			Status = VL53L0X_WrByte(Dev,
+				VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
+				0x08);
+		} else if (VCSELPulsePeriodPCLK == 14) {
+
+			Status = VL53L0X_WrByte(Dev,
+				VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
+				0x30);
+			Status = VL53L0X_WrByte(Dev,
+				VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
+				0x08);
+		} else if (VCSELPulsePeriodPCLK == 16) {
+
+			Status = VL53L0X_WrByte(Dev,
+				VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
+				0x40);
+			Status = VL53L0X_WrByte(Dev,
+				VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
+				0x08);
+		} else if (VCSELPulsePeriodPCLK == 18) {
+
+			Status = VL53L0X_WrByte(Dev,
+				VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_HIGH,
+				0x50);
+			Status = VL53L0X_WrByte(Dev,
+				VL53L0X_REG_PRE_RANGE_CONFIG_VALID_PHASE_LOW,
+				0x08);
+		}
+	} else if (VcselPeriodType == VL53L0X_VCSEL_PERIOD_FINAL_RANGE) {
+
+		if (VCSELPulsePeriodPCLK == 8) {
+
+			Status = VL53L0X_WrByte(Dev,
+				VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,
+				0x10);
+			Status = VL53L0X_WrByte(Dev,
+				VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,
+				0x08);
+
+			Status |= VL53L0X_WrByte(Dev,
+				VL53L0X_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x02);
+			Status |= VL53L0X_WrByte(Dev,
+				VL53L0X_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x0C);
+
+			Status |= VL53L0X_WrByte(Dev, 0xff, 0x01);
+			Status |= VL53L0X_WrByte(Dev,
+				VL53L0X_REG_ALGO_PHASECAL_LIM,
+				0x30);
+			Status |= VL53L0X_WrByte(Dev, 0xff, 0x00);
+		} else if (VCSELPulsePeriodPCLK == 10) {
+
+			Status = VL53L0X_WrByte(Dev,
+				VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,
+				0x28);
+			Status = VL53L0X_WrByte(Dev,
+				VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,
+				0x08);
+
+			Status |= VL53L0X_WrByte(Dev,
+				VL53L0X_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
+			Status |= VL53L0X_WrByte(Dev,
+				VL53L0X_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x09);
+
+			Status |= VL53L0X_WrByte(Dev, 0xff, 0x01);
+			Status |= VL53L0X_WrByte(Dev,
+				VL53L0X_REG_ALGO_PHASECAL_LIM,
+				0x20);
+			Status |= VL53L0X_WrByte(Dev, 0xff, 0x00);
+		} else if (VCSELPulsePeriodPCLK == 12) {
+
+			Status = VL53L0X_WrByte(Dev,
+				VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,
+				0x38);
+			Status = VL53L0X_WrByte(Dev,
+				VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,
+				0x08);
+
+			Status |= VL53L0X_WrByte(Dev,
+				VL53L0X_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
+			Status |= VL53L0X_WrByte(Dev,
+				VL53L0X_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x08);
+
+			Status |= VL53L0X_WrByte(Dev, 0xff, 0x01);
+			Status |= VL53L0X_WrByte(Dev,
+				VL53L0X_REG_ALGO_PHASECAL_LIM,
+				0x20);
+			Status |= VL53L0X_WrByte(Dev, 0xff, 0x00);
+		} else if (VCSELPulsePeriodPCLK == 14) {
+
+			Status = VL53L0X_WrByte(Dev,
+				VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_HIGH,
+				0x048);
+			Status = VL53L0X_WrByte(Dev,
+				VL53L0X_REG_FINAL_RANGE_CONFIG_VALID_PHASE_LOW,
+				0x08);
+
+			Status |= VL53L0X_WrByte(Dev,
+				VL53L0X_REG_GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
+			Status |= VL53L0X_WrByte(Dev,
+				VL53L0X_REG_ALGO_PHASECAL_CONFIG_TIMEOUT, 0x07);
+
+			Status |= VL53L0X_WrByte(Dev, 0xff, 0x01);
+			Status |= VL53L0X_WrByte(Dev,
+				VL53L0X_REG_ALGO_PHASECAL_LIM,
+				0x20);
+			Status |= VL53L0X_WrByte(Dev, 0xff, 0x00);
+		}
+	}
+
+
+	/* Re-calculate and apply timeouts, in macro periods */
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		vcsel_period_reg = VL53L0X_encode_vcsel_period((uint8_t)
+			VCSELPulsePeriodPCLK);
+
+		/* When the VCSEL period for the pre or final range is changed,
+		* the corresponding timeout must be read from the device using
+		* the current VCSEL period, then the new VCSEL period can be
+		* applied. The timeout then must be written back to the device
+		* using the new VCSEL period.
+		*
+		* For the MSRC timeout, the same applies - this timeout being
+		* dependant on the pre-range vcsel period.
+		*/
+		switch (VcselPeriodType) {
+		case VL53L0X_VCSEL_PERIOD_PRE_RANGE:
+			Status = get_sequence_step_timeout(Dev,
+				VL53L0X_SEQUENCESTEP_PRE_RANGE,
+				&PreRangeTimeoutMicroSeconds);
+
+			if (Status == VL53L0X_ERROR_NONE)
+				Status = get_sequence_step_timeout(Dev,
+					VL53L0X_SEQUENCESTEP_MSRC,
+					&MsrcTimeoutMicroSeconds);
+
+			if (Status == VL53L0X_ERROR_NONE)
+				Status = VL53L0X_WrByte(Dev,
+				VL53L0X_REG_PRE_RANGE_CONFIG_VCSEL_PERIOD,
+					vcsel_period_reg);
+
+
+			if (Status == VL53L0X_ERROR_NONE)
+				Status = set_sequence_step_timeout(Dev,
+					VL53L0X_SEQUENCESTEP_PRE_RANGE,
+					PreRangeTimeoutMicroSeconds);
+
+
+			if (Status == VL53L0X_ERROR_NONE)
+				Status = set_sequence_step_timeout(Dev,
+					VL53L0X_SEQUENCESTEP_MSRC,
+					MsrcTimeoutMicroSeconds);
+
+			VL53L0X_SETDEVICESPECIFICPARAMETER(
+				Dev,
+				PreRangeVcselPulsePeriod,
+				VCSELPulsePeriodPCLK);
+			break;
+		case VL53L0X_VCSEL_PERIOD_FINAL_RANGE:
+			Status = get_sequence_step_timeout(Dev,
+				VL53L0X_SEQUENCESTEP_FINAL_RANGE,
+				&FinalRangeTimeoutMicroSeconds);
+
+			if (Status == VL53L0X_ERROR_NONE)
+				Status = VL53L0X_WrByte(Dev,
+				VL53L0X_REG_FINAL_RANGE_CONFIG_VCSEL_PERIOD,
+					vcsel_period_reg);
+
+
+			if (Status == VL53L0X_ERROR_NONE)
+				Status = set_sequence_step_timeout(Dev,
+					VL53L0X_SEQUENCESTEP_FINAL_RANGE,
+					FinalRangeTimeoutMicroSeconds);
+
+			VL53L0X_SETDEVICESPECIFICPARAMETER(
+				Dev,
+				FinalRangeVcselPulsePeriod,
+				VCSELPulsePeriodPCLK);
+			break;
+		default:
+			Status = VL53L0X_ERROR_INVALID_PARAMS;
+		}
+	}
+
+	/* Finally, the timing budget must be re-applied */
+	if (Status == VL53L0X_ERROR_NONE) {
+		VL53L0X_GETPARAMETERFIELD(Dev,
+			MeasurementTimingBudgetMicroSeconds,
+			MeasurementTimingBudgetMicroSeconds);
+
+		Status = VL53L0X_SetMeasurementTimingBudgetMicroSeconds(Dev,
+				MeasurementTimingBudgetMicroSeconds);
+	}
+
+	/* Perform the phase calibration. This is needed after changing on
+	 * vcsel period.
+	 * get_data_enable = 0, restore_config = 1 */
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_perform_phase_calibration(
+			Dev, &PhaseCalInt, 0, 1);
+
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_SetVcselPulsePeriod(VL53L0X_DEV Dev,
+	VL53L0X_VcselPeriod VcselPeriodType, uint8_t VCSELPulsePeriodPCLK)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	LOG_FUNCTION_START("");
+
+	Status = VL53L0X_set_vcsel_pulse_period(Dev, VcselPeriodType,
+		VCSELPulsePeriodPCLK);
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_vcsel_pulse_period(VL53L0X_DEV Dev,
+	VL53L0X_VcselPeriod VcselPeriodType, uint8_t *pVCSELPulsePeriodPCLK)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint8_t vcsel_period_reg;
+
+	switch (VcselPeriodType) {
+	case VL53L0X_VCSEL_PERIOD_PRE_RANGE:
+		Status = VL53L0X_RdByte(Dev,
+			VL53L0X_REG_PRE_RANGE_CONFIG_VCSEL_PERIOD,
+			&vcsel_period_reg);
+	break;
+	case VL53L0X_VCSEL_PERIOD_FINAL_RANGE:
+		Status = VL53L0X_RdByte(Dev,
+			VL53L0X_REG_FINAL_RANGE_CONFIG_VCSEL_PERIOD,
+			&vcsel_period_reg);
+	break;
+	default:
+		Status = VL53L0X_ERROR_INVALID_PARAMS;
+	}
+
+	if (Status == VL53L0X_ERROR_NONE)
+		*pVCSELPulsePeriodPCLK =
+			VL53L0X_decode_vcsel_period(vcsel_period_reg);
+
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetVcselPulsePeriod(VL53L0X_DEV Dev,
+	VL53L0X_VcselPeriod VcselPeriodType, uint8_t *pVCSELPulsePeriodPCLK)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	LOG_FUNCTION_START("");
+
+	Status = VL53L0X_get_vcsel_pulse_period(Dev, VcselPeriodType,
+		pVCSELPulsePeriodPCLK);
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+uint32_t VL53L0X::VL53L0X_decode_timeout(uint16_t encoded_timeout)
+{
+	/*!
+	 * Decode 16-bit timeout register value - format (LSByte * 2^MSByte) + 1
+	 */
+
+	uint32_t timeout_macro_clks = 0;
+
+	timeout_macro_clks = ((uint32_t) (encoded_timeout & 0x00FF)
+			<< (uint32_t) ((encoded_timeout & 0xFF00) >> 8)) + 1;
+
+	return timeout_macro_clks;
+}
+
+uint32_t VL53L0X::VL53L0X_calc_macro_period_ps(VL53L0X_DEV Dev, uint8_t vcsel_period_pclks)
+{
+	uint64_t PLL_period_ps;
+	uint32_t macro_period_vclks;
+	uint32_t macro_period_ps;
+
+	LOG_FUNCTION_START("");
+
+	/* The above calculation will produce rounding errors,
+	   therefore set fixed value
+	*/
+	PLL_period_ps = 1655;
+
+	macro_period_vclks = 2304;
+	macro_period_ps = (uint32_t)(macro_period_vclks
+			* vcsel_period_pclks * PLL_period_ps);
+
+	LOG_FUNCTION_END("");
+	return macro_period_ps;
+}
+
+/* To convert register value into us */
+uint32_t VL53L0X::VL53L0X_calc_timeout_us(VL53L0X_DEV Dev,
+		uint16_t timeout_period_mclks,
+		uint8_t vcsel_period_pclks)
+{
+	uint32_t macro_period_ps;
+	uint32_t macro_period_ns;
+	uint32_t actual_timeout_period_us = 0;
+
+	macro_period_ps = VL53L0X_calc_macro_period_ps(Dev, vcsel_period_pclks);
+	macro_period_ns = (macro_period_ps + 500) / 1000;
+
+	actual_timeout_period_us =
+		((timeout_period_mclks * macro_period_ns) + 500) / 1000;
+
+	return actual_timeout_period_us;
+}
+
+VL53L0X_Error VL53L0X::get_sequence_step_timeout(VL53L0X_DEV Dev,
+				VL53L0X_SequenceStepId SequenceStepId,
+				uint32_t *pTimeOutMicroSecs)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint8_t CurrentVCSELPulsePeriodPClk;
+	uint8_t EncodedTimeOutByte = 0;
+	uint32_t TimeoutMicroSeconds = 0;
+	uint16_t PreRangeEncodedTimeOut = 0;
+	uint16_t MsrcTimeOutMClks;
+	uint16_t PreRangeTimeOutMClks;
+	uint16_t FinalRangeTimeOutMClks = 0;
+	uint16_t FinalRangeEncodedTimeOut;
+	VL53L0X_SchedulerSequenceSteps_t SchedulerSequenceSteps;
+
+	if ((SequenceStepId == VL53L0X_SEQUENCESTEP_TCC)	 ||
+		(SequenceStepId == VL53L0X_SEQUENCESTEP_DSS)	 ||
+		(SequenceStepId == VL53L0X_SEQUENCESTEP_MSRC)) {
+
+		Status = VL53L0X_GetVcselPulsePeriod(Dev,
+					VL53L0X_VCSEL_PERIOD_PRE_RANGE,
+					&CurrentVCSELPulsePeriodPClk);
+		if (Status == VL53L0X_ERROR_NONE) {
+			Status = VL53L0X_RdByte(Dev,
+					VL53L0X_REG_MSRC_CONFIG_TIMEOUT_MACROP,
+					&EncodedTimeOutByte);
+		}
+		MsrcTimeOutMClks = VL53L0X_decode_timeout(EncodedTimeOutByte);
+
+		TimeoutMicroSeconds = VL53L0X_calc_timeout_us(Dev,
+						MsrcTimeOutMClks,
+						CurrentVCSELPulsePeriodPClk);
+	} else if (SequenceStepId == VL53L0X_SEQUENCESTEP_PRE_RANGE) {
+		/* Retrieve PRE-RANGE VCSEL Period */
+		Status = VL53L0X_GetVcselPulsePeriod(Dev,
+						VL53L0X_VCSEL_PERIOD_PRE_RANGE,
+						&CurrentVCSELPulsePeriodPClk);
+
+		/* Retrieve PRE-RANGE Timeout in Macro periods (MCLKS) */
+		if (Status == VL53L0X_ERROR_NONE) {
+
+			/* Retrieve PRE-RANGE VCSEL Period */
+			Status = VL53L0X_GetVcselPulsePeriod(Dev,
+					VL53L0X_VCSEL_PERIOD_PRE_RANGE,
+					&CurrentVCSELPulsePeriodPClk);
+
+			if (Status == VL53L0X_ERROR_NONE) {
+				Status = VL53L0X_RdWord(Dev,
+				VL53L0X_REG_PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
+				&PreRangeEncodedTimeOut);
+			}
+
+			PreRangeTimeOutMClks = VL53L0X_decode_timeout(
+					PreRangeEncodedTimeOut);
+
+			TimeoutMicroSeconds = VL53L0X_calc_timeout_us(Dev,
+					PreRangeTimeOutMClks,
+					CurrentVCSELPulsePeriodPClk);
+		}
+	} else if (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE) {
+
+		VL53L0X_GetSequenceStepEnables(Dev, &SchedulerSequenceSteps);
+		PreRangeTimeOutMClks = 0;
+
+		if (SchedulerSequenceSteps.PreRangeOn) {
+			/* Retrieve PRE-RANGE VCSEL Period */
+			Status = VL53L0X_GetVcselPulsePeriod(Dev,
+				VL53L0X_VCSEL_PERIOD_PRE_RANGE,
+				&CurrentVCSELPulsePeriodPClk);
+
+			/* Retrieve PRE-RANGE Timeout in Macro periods
+			 * (MCLKS) */
+			if (Status == VL53L0X_ERROR_NONE) {
+				Status = VL53L0X_RdWord(Dev,
+				VL53L0X_REG_PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
+				&PreRangeEncodedTimeOut);
+				PreRangeTimeOutMClks = VL53L0X_decode_timeout(
+						PreRangeEncodedTimeOut);
+			}
+		}
+
+		if (Status == VL53L0X_ERROR_NONE) {
+			/* Retrieve FINAL-RANGE VCSEL Period */
+			Status = VL53L0X_GetVcselPulsePeriod(Dev,
+					VL53L0X_VCSEL_PERIOD_FINAL_RANGE,
+					&CurrentVCSELPulsePeriodPClk);
+		}
+
+		/* Retrieve FINAL-RANGE Timeout in Macro periods (MCLKS) */
+		if (Status == VL53L0X_ERROR_NONE) {
+			Status = VL53L0X_RdWord(Dev,
+				VL53L0X_REG_FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI,
+				&FinalRangeEncodedTimeOut);
+			FinalRangeTimeOutMClks = VL53L0X_decode_timeout(
+					FinalRangeEncodedTimeOut);
+		}
+
+		FinalRangeTimeOutMClks -= PreRangeTimeOutMClks;
+		TimeoutMicroSeconds = VL53L0X_calc_timeout_us(Dev,
+						FinalRangeTimeOutMClks,
+						CurrentVCSELPulsePeriodPClk);
+	}
+
+	*pTimeOutMicroSecs = TimeoutMicroSeconds;
+
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_measurement_timing_budget_micro_seconds(VL53L0X_DEV Dev,
+		uint32_t *pMeasurementTimingBudgetMicroSeconds)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	VL53L0X_SchedulerSequenceSteps_t SchedulerSequenceSteps;
+	uint32_t FinalRangeTimeoutMicroSeconds;
+	uint32_t MsrcDccTccTimeoutMicroSeconds	= 2000;
+	uint32_t StartOverheadMicroSeconds		= 1910;
+	uint32_t EndOverheadMicroSeconds		= 960;
+	uint32_t MsrcOverheadMicroSeconds		= 660;
+	uint32_t TccOverheadMicroSeconds		= 590;
+	uint32_t DssOverheadMicroSeconds		= 690;
+	uint32_t PreRangeOverheadMicroSeconds	= 660;
+	uint32_t FinalRangeOverheadMicroSeconds = 550;
+	uint32_t PreRangeTimeoutMicroSeconds	= 0;
+
+	LOG_FUNCTION_START("");
+
+	/* Start and end overhead times always present */
+	*pMeasurementTimingBudgetMicroSeconds
+		= StartOverheadMicroSeconds + EndOverheadMicroSeconds;
+
+	Status = VL53L0X_GetSequenceStepEnables(Dev, &SchedulerSequenceSteps);
+
+	if (Status != VL53L0X_ERROR_NONE) {
+		LOG_FUNCTION_END(Status);
+		return Status;
+	}
+
+
+	if (SchedulerSequenceSteps.TccOn  ||
+		SchedulerSequenceSteps.MsrcOn ||
+		SchedulerSequenceSteps.DssOn) {
+
+		Status = get_sequence_step_timeout(Dev,
+				VL53L0X_SEQUENCESTEP_MSRC,
+				&MsrcDccTccTimeoutMicroSeconds);
+
+		if (Status == VL53L0X_ERROR_NONE) {
+			if (SchedulerSequenceSteps.TccOn) {
+				*pMeasurementTimingBudgetMicroSeconds +=
+					MsrcDccTccTimeoutMicroSeconds +
+					TccOverheadMicroSeconds;
+			}
+
+			if (SchedulerSequenceSteps.DssOn) {
+				*pMeasurementTimingBudgetMicroSeconds +=
+				2 * (MsrcDccTccTimeoutMicroSeconds +
+					DssOverheadMicroSeconds);
+			} else if (SchedulerSequenceSteps.MsrcOn) {
+				*pMeasurementTimingBudgetMicroSeconds +=
+					MsrcDccTccTimeoutMicroSeconds +
+					MsrcOverheadMicroSeconds;
+			}
+		}
+	}
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		if (SchedulerSequenceSteps.PreRangeOn) {
+			Status = get_sequence_step_timeout(Dev,
+				VL53L0X_SEQUENCESTEP_PRE_RANGE,
+				&PreRangeTimeoutMicroSeconds);
+			*pMeasurementTimingBudgetMicroSeconds +=
+				PreRangeTimeoutMicroSeconds +
+				PreRangeOverheadMicroSeconds;
+		}
+	}
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		if (SchedulerSequenceSteps.FinalRangeOn) {
+			Status = get_sequence_step_timeout(Dev,
+					VL53L0X_SEQUENCESTEP_FINAL_RANGE,
+					&FinalRangeTimeoutMicroSeconds);
+			*pMeasurementTimingBudgetMicroSeconds +=
+				(FinalRangeTimeoutMicroSeconds +
+				FinalRangeOverheadMicroSeconds);
+		}
+	}
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		VL53L0X_SETPARAMETERFIELD(Dev,
+			MeasurementTimingBudgetMicroSeconds,
+			*pMeasurementTimingBudgetMicroSeconds);
+	}
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetMeasurementTimingBudgetMicroSeconds(VL53L0X_DEV Dev,
+	uint32_t *pMeasurementTimingBudgetMicroSeconds)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	LOG_FUNCTION_START("");
+
+	Status = VL53L0X_get_measurement_timing_budget_micro_seconds(Dev,
+		pMeasurementTimingBudgetMicroSeconds);
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetDeviceParameters(VL53L0X_DEV Dev,
+	VL53L0X_DeviceParameters_t *pDeviceParameters)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	int i;
+
+	LOG_FUNCTION_START("");
+
+	Status = VL53L0X_GetDeviceMode(Dev, &(pDeviceParameters->DeviceMode));
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_GetInterMeasurementPeriodMilliSeconds(Dev,
+		&(pDeviceParameters->InterMeasurementPeriodMilliSeconds));
+
+
+	if (Status == VL53L0X_ERROR_NONE)
+		pDeviceParameters->XTalkCompensationEnable = 0;
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_GetXTalkCompensationRateMegaCps(Dev,
+			&(pDeviceParameters->XTalkCompensationRateMegaCps));
+
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_GetOffsetCalibrationDataMicroMeter(Dev,
+			&(pDeviceParameters->RangeOffsetMicroMeters));
+
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		for (i = 0; i < VL53L0X_CHECKENABLE_NUMBER_OF_CHECKS; i++) {
+			/* get first the values, then the enables.
+			 * VL53L0X_GetLimitCheckValue will modify the enable
+			 * flags
+			 */
+			if (Status == VL53L0X_ERROR_NONE) {
+				Status |= VL53L0X_GetLimitCheckValue(Dev, i,
+				&(pDeviceParameters->LimitChecksValue[i]));
+			} else {
+				break;
+			}
+			if (Status == VL53L0X_ERROR_NONE) {
+				Status |= VL53L0X_GetLimitCheckEnable(Dev, i,
+				&(pDeviceParameters->LimitChecksEnable[i]));
+			} else {
+				break;
+			}
+		}
+	}
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		Status = VL53L0X_GetWrapAroundCheckEnable(Dev,
+			&(pDeviceParameters->WrapAroundCheckEnable));
+	}
+
+	/* Need to be done at the end as it uses VCSELPulsePeriod */
+	if (Status == VL53L0X_ERROR_NONE) {
+		Status = VL53L0X_GetMeasurementTimingBudgetMicroSeconds(Dev,
+		&(pDeviceParameters->MeasurementTimingBudgetMicroSeconds));
+	}
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_SetLimitCheckValue(VL53L0X_DEV Dev, uint16_t LimitCheckId,
+	FixPoint1616_t LimitCheckValue)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint8_t Temp8;
+
+	LOG_FUNCTION_START("");
+
+	VL53L0X_GETARRAYPARAMETERFIELD(Dev, LimitChecksEnable, LimitCheckId,
+		Temp8);
+
+	if (Temp8 == 0) { /* disabled write only internal value */
+		VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksValue,
+			LimitCheckId, LimitCheckValue);
+	} else {
+
+		switch (LimitCheckId) {
+
+		case VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE:
+			/* internal computation: */
+			VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksValue,
+				VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE,
+				LimitCheckValue);
+			break;
+
+		case VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE:
+
+			Status = VL53L0X_WrWord(Dev,
+			VL53L0X_REG_FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT,
+				VL53L0X_FIXPOINT1616TOFIXPOINT97(
+					LimitCheckValue));
+
+			break;
+
+		case VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP:
+
+			/* internal computation: */
+			VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksValue,
+				VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP,
+				LimitCheckValue);
+
+			break;
+
+		case VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD:
+
+			/* internal computation: */
+			VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksValue,
+				VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
+				LimitCheckValue);
+
+			break;
+
+		case VL53L0X_CHECKENABLE_SIGNAL_RATE_MSRC:
+		case VL53L0X_CHECKENABLE_SIGNAL_RATE_PRE_RANGE:
+
+			Status = VL53L0X_WrWord(Dev,
+				VL53L0X_REG_PRE_RANGE_MIN_COUNT_RATE_RTN_LIMIT,
+				VL53L0X_FIXPOINT1616TOFIXPOINT97(
+					LimitCheckValue));
+
+			break;
+
+		default:
+			Status = VL53L0X_ERROR_INVALID_PARAMS;
+
+		}
+
+		if (Status == VL53L0X_ERROR_NONE) {
+			VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksValue,
+				LimitCheckId, LimitCheckValue);
+		}
+	}
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_DataInit(VL53L0X_DEV Dev)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	VL53L0X_DeviceParameters_t CurrentParameters;
+	int i;
+	uint8_t StopVariable;
+
+	LOG_FUNCTION_START("");
+
+	/* by default the I2C is running at 1V8 if you want to change it you
+	 * need to include this define at compilation level. */
+#ifdef USE_I2C_2V8
+	Status = VL53L0X_UpdateByte(Dev,
+		VL53L0X_REG_VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV,
+		0xFE,
+		0x01);
+#endif
+
+	/* Set I2C standard mode */
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_WrByte(Dev, 0x88, 0x00);
+
+	VL53L0X_SETDEVICESPECIFICPARAMETER(Dev, ReadDataFromDeviceDone, 0);
+
+#ifdef USE_IQC_STATION
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_apply_offset_adjustment(Dev);
+#endif
+
+	/* Default value is 1000 for Linearity Corrective Gain */
+	PALDevDataSet(Dev, LinearityCorrectiveGain, 1000);
+
+	/* Dmax default Parameter */
+	PALDevDataSet(Dev, DmaxCalRangeMilliMeter, 400);
+	PALDevDataSet(Dev, DmaxCalSignalRateRtnMegaCps,
+		(FixPoint1616_t)((0x00016B85))); /* 1.42 No Cover Glass*/
+
+	/* Set Default static parameters
+	 *set first temporary values 9.44MHz * 65536 = 618660 */
+	VL53L0X_SETDEVICESPECIFICPARAMETER(Dev, OscFrequencyMHz, 618660);
+
+	/* Set Default XTalkCompensationRateMegaCps to 0  */
+	VL53L0X_SETPARAMETERFIELD(Dev, XTalkCompensationRateMegaCps, 0);
+
+	/* Get default parameters */
+	Status = VL53L0X_GetDeviceParameters(Dev, &CurrentParameters);
+	if (Status == VL53L0X_ERROR_NONE) {
+		/* initialize PAL values */
+		CurrentParameters.DeviceMode = VL53L0X_DEVICEMODE_SINGLE_RANGING;
+		CurrentParameters.HistogramMode = VL53L0X_HISTOGRAMMODE_DISABLED;
+		PALDevDataSet(Dev, CurrentParameters, CurrentParameters);
+	}
+
+	/* Sigma estimator variable */
+	PALDevDataSet(Dev, SigmaEstRefArray, 100);
+	PALDevDataSet(Dev, SigmaEstEffPulseWidth, 900);
+	PALDevDataSet(Dev, SigmaEstEffAmbWidth, 500);
+	PALDevDataSet(Dev, targetRefRate, 0x0A00); /* 20 MCPS in 9:7 format */
+
+	/* Use internal default settings */
+	PALDevDataSet(Dev, UseInternalTuningSettings, 1);
+
+	Status |= VL53L0X_WrByte(Dev, 0x80, 0x01);
+	Status |= VL53L0X_WrByte(Dev, 0xFF, 0x01);
+	Status |= VL53L0X_WrByte(Dev, 0x00, 0x00);
+	Status |= VL53L0X_RdByte(Dev, 0x91, &StopVariable);
+	PALDevDataSet(Dev, StopVariable, StopVariable);
+	Status |= VL53L0X_WrByte(Dev, 0x00, 0x01);
+	Status |= VL53L0X_WrByte(Dev, 0xFF, 0x00);
+	Status |= VL53L0X_WrByte(Dev, 0x80, 0x00);
+
+	/* Enable all check */
+	for (i = 0; i < VL53L0X_CHECKENABLE_NUMBER_OF_CHECKS; i++) {
+		if (Status == VL53L0X_ERROR_NONE)
+			Status |= VL53L0X_SetLimitCheckEnable(Dev, i, 1);
+		else
+			break;
+
+	}
+
+	/* Disable the following checks */
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_SetLimitCheckEnable(Dev,
+			VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP, 0);
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_SetLimitCheckEnable(Dev,
+			VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD, 0);
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_SetLimitCheckEnable(Dev,
+			VL53L0X_CHECKENABLE_SIGNAL_RATE_MSRC, 0);
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_SetLimitCheckEnable(Dev,
+			VL53L0X_CHECKENABLE_SIGNAL_RATE_PRE_RANGE, 0);
+
+	/* Limit default values */
+	if (Status == VL53L0X_ERROR_NONE) {
+		Status = VL53L0X_SetLimitCheckValue(Dev,
+			VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE,
+				(FixPoint1616_t)(18 * 65536));
+	}
+	if (Status == VL53L0X_ERROR_NONE) {
+		Status = VL53L0X_SetLimitCheckValue(Dev,
+			VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE,
+				(FixPoint1616_t)(25 * 65536 / 100));
+				/* 0.25 * 65536 */
+	}
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		Status = VL53L0X_SetLimitCheckValue(Dev,
+			VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP,
+				(FixPoint1616_t)(35 * 65536));
+	}
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		Status = VL53L0X_SetLimitCheckValue(Dev,
+			VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
+				(FixPoint1616_t)(0 * 65536));
+	}
+
+	if (Status == VL53L0X_ERROR_NONE) {
+
+		PALDevDataSet(Dev, SequenceConfig, 0xFF);
+		Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
+			0xFF);
+
+		/* Set PAL state to tell that we are waiting for call to
+		 * VL53L0X_StaticInit */
+		PALDevDataSet(Dev, PalState, VL53L0X_STATE_WAIT_STATICINIT);
+	}
+
+	if (Status == VL53L0X_ERROR_NONE)
+		VL53L0X_SETDEVICESPECIFICPARAMETER(Dev, RefSpadsInitialised, 0);
+
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_check_part_used(VL53L0X_DEV Dev,
+		uint8_t *Revision,
+		VL53L0X_DeviceInfo_t *pVL53L0X_DeviceInfo)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint8_t ModuleIdInt;
+	char *ProductId_tmp;
+
+	LOG_FUNCTION_START("");
+
+	Status = VL53L0X_get_info_from_device(Dev, 2);
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		ModuleIdInt = VL53L0X_GETDEVICESPECIFICPARAMETER(Dev, ModuleId);
+
+	if (ModuleIdInt == 0) {
+		*Revision = 0;
+		VL53L0X_COPYSTRING(pVL53L0X_DeviceInfo->ProductId, "");
+	} else {
+		*Revision = VL53L0X_GETDEVICESPECIFICPARAMETER(Dev, Revision);
+		ProductId_tmp = VL53L0X_GETDEVICESPECIFICPARAMETER(Dev,
+			ProductId);
+		VL53L0X_COPYSTRING(pVL53L0X_DeviceInfo->ProductId, ProductId_tmp);
+	}
+	}
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_device_info(VL53L0X_DEV Dev,
+				VL53L0X_DeviceInfo_t *pVL53L0X_DeviceInfo)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint8_t revision_id;
+	uint8_t Revision;
+
+	Status = VL53L0X_check_part_used(Dev, &Revision, pVL53L0X_DeviceInfo);
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		if (Revision == 0) {
+			VL53L0X_COPYSTRING(pVL53L0X_DeviceInfo->Name,
+					VL53L0X_STRING_DEVICE_INFO_NAME_TS0);
+		} else if ((Revision <= 34) && (Revision != 32)) {
+			VL53L0X_COPYSTRING(pVL53L0X_DeviceInfo->Name,
+					VL53L0X_STRING_DEVICE_INFO_NAME_TS1);
+		} else if (Revision < 39) {
+			VL53L0X_COPYSTRING(pVL53L0X_DeviceInfo->Name,
+					VL53L0X_STRING_DEVICE_INFO_NAME_TS2);
+		} else {
+			VL53L0X_COPYSTRING(pVL53L0X_DeviceInfo->Name,
+					VL53L0X_STRING_DEVICE_INFO_NAME_ES1);
+		}
+
+		VL53L0X_COPYSTRING(pVL53L0X_DeviceInfo->Type,
+				VL53L0X_STRING_DEVICE_INFO_TYPE);
+
+	}
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		Status = VL53L0X_RdByte(Dev, VL53L0X_REG_IDENTIFICATION_MODEL_ID,
+				&pVL53L0X_DeviceInfo->ProductType);
+	}
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		Status = VL53L0X_RdByte(Dev,
+			VL53L0X_REG_IDENTIFICATION_REVISION_ID,
+				&revision_id);
+		pVL53L0X_DeviceInfo->ProductRevisionMajor = 1;
+		pVL53L0X_DeviceInfo->ProductRevisionMinor =
+					(revision_id & 0xF0) >> 4;
+	}
+
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetDeviceInfo(VL53L0X_DEV Dev,
+	VL53L0X_DeviceInfo_t *pVL53L0X_DeviceInfo)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	LOG_FUNCTION_START("");
+
+	Status = VL53L0X_get_device_info(Dev, pVL53L0X_DeviceInfo);
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetInterruptMaskStatus(VL53L0X_DEV Dev,
+	uint32_t *pInterruptMaskStatus)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint8_t Byte;
+	LOG_FUNCTION_START("");
+
+	Status = VL53L0X_RdByte(Dev, VL53L0X_REG_RESULT_INTERRUPT_STATUS, &Byte);
+	*pInterruptMaskStatus = Byte & 0x07;
+
+	if (Byte & 0x18)
+		Status = VL53L0X_ERROR_RANGE_ERROR;
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetMeasurementDataReady(VL53L0X_DEV Dev,
+	uint8_t *pMeasurementDataReady)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint8_t SysRangeStatusRegister;
+	uint8_t InterruptConfig;
+	uint32_t InterruptMask;
+	LOG_FUNCTION_START("");
+
+	InterruptConfig = VL53L0X_GETDEVICESPECIFICPARAMETER(Dev,
+		Pin0GpioFunctionality);
+
+	if (InterruptConfig ==
+		VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY) {
+		Status = VL53L0X_GetInterruptMaskStatus(Dev, &InterruptMask);
+		if (InterruptMask ==
+		VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY)
+			*pMeasurementDataReady = 1;
+		else
+			*pMeasurementDataReady = 0;
+	} else {
+		Status = VL53L0X_RdByte(Dev, VL53L0X_REG_RESULT_RANGE_STATUS,
+			&SysRangeStatusRegister);
+		if (Status == VL53L0X_ERROR_NONE) {
+			if (SysRangeStatusRegister & 0x01)
+				*pMeasurementDataReady = 1;
+			else
+				*pMeasurementDataReady = 0;
+		}
+	}
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_PollingDelay(VL53L0X_DEV Dev) {
+    VL53L0X_Error status = VL53L0X_ERROR_NONE;
+
+    // do nothing
+    VL53L0X_OsDelay();
+    return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_measurement_poll_for_completion(VL53L0X_DEV Dev)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint8_t NewDataReady = 0;
+	uint32_t LoopNb;
+
+	LOG_FUNCTION_START("");
+
+	LoopNb = 0;
+
+	do {
+		Status = VL53L0X_GetMeasurementDataReady(Dev, &NewDataReady);
+		if (Status != 0)
+			break; /* the error is set */
+
+		if (NewDataReady == 1)
+			break; /* done note that status == 0 */
+
+		LoopNb++;
+		if (LoopNb >= VL53L0X_DEFAULT_MAX_LOOP) {
+			Status = VL53L0X_ERROR_TIME_OUT;
+			break;
+		}
+
+		VL53L0X_PollingDelay(Dev);
+	} while (1);
+
+	LOG_FUNCTION_END(Status);
+
+	return Status;
+}
+
+/* Group PAL Interrupt Functions */
+VL53L0X_Error VL53L0X::VL53L0X_ClearInterruptMask(VL53L0X_DEV Dev, uint32_t InterruptMask)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint8_t LoopCount;
+	uint8_t Byte;
+	LOG_FUNCTION_START("");
+
+	/* clear bit 0 range interrupt, bit 1 error interrupt */
+	LoopCount = 0;
+	do {
+		Status = VL53L0X_WrByte(Dev,
+			VL53L0X_REG_SYSTEM_INTERRUPT_CLEAR, 0x01);
+		Status |= VL53L0X_WrByte(Dev,
+			VL53L0X_REG_SYSTEM_INTERRUPT_CLEAR, 0x00);
+		Status |= VL53L0X_RdByte(Dev,
+			VL53L0X_REG_RESULT_INTERRUPT_STATUS, &Byte);
+		LoopCount++;
+	} while (((Byte & 0x07) != 0x00)
+			&& (LoopCount < 3)
+			&& (Status == VL53L0X_ERROR_NONE));
+
+
+	if (LoopCount >= 3)
+		Status = VL53L0X_ERROR_INTERRUPT_NOT_CLEARED;
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_perform_single_ref_calibration(VL53L0X_DEV Dev,
+		uint8_t vhv_init_byte)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSRANGE_START,
+				VL53L0X_REG_SYSRANGE_MODE_START_STOP |
+				vhv_init_byte);
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_measurement_poll_for_completion(Dev);
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_ClearInterruptMask(Dev, 0);
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSRANGE_START, 0x00);
+
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_ref_calibration_io(VL53L0X_DEV Dev, uint8_t read_not_write,
+	uint8_t VhvSettings, uint8_t PhaseCal,
+	uint8_t *pVhvSettings, uint8_t *pPhaseCal,
+	const uint8_t vhv_enable, const uint8_t phase_enable)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint8_t PhaseCalint = 0;
+
+	/* Read VHV from device */
+	Status |= VL53L0X_WrByte(Dev, 0xFF, 0x01);
+	Status |= VL53L0X_WrByte(Dev, 0x00, 0x00);
+	Status |= VL53L0X_WrByte(Dev, 0xFF, 0x00);
+
+	if (read_not_write) {
+		if (vhv_enable)
+			Status |= VL53L0X_RdByte(Dev, 0xCB, pVhvSettings);
+		if (phase_enable)
+			Status |= VL53L0X_RdByte(Dev, 0xEE, &PhaseCalint);
+	} else {
+		if (vhv_enable)
+			Status |= VL53L0X_WrByte(Dev, 0xCB, VhvSettings);
+		if (phase_enable)
+			Status |= VL53L0X_UpdateByte(Dev, 0xEE, 0x80, PhaseCal);
+	}
+
+	Status |= VL53L0X_WrByte(Dev, 0xFF, 0x01);
+	Status |= VL53L0X_WrByte(Dev, 0x00, 0x01);
+	Status |= VL53L0X_WrByte(Dev, 0xFF, 0x00);
+
+	*pPhaseCal = (uint8_t)(PhaseCalint&0xEF);
+
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_perform_vhv_calibration(VL53L0X_DEV Dev,
+	uint8_t *pVhvSettings, const uint8_t get_data_enable,
+	const uint8_t restore_config)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint8_t SequenceConfig = 0;
+	uint8_t VhvSettings = 0;
+	uint8_t PhaseCal = 0;
+	uint8_t PhaseCalInt = 0;
+
+	/* store the value of the sequence config,
+	 * this will be reset before the end of the function
+	 */
+
+	if (restore_config)
+		SequenceConfig = PALDevDataGet(Dev, SequenceConfig);
+
+	/* Run VHV */
+	Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, 0x01);
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_perform_single_ref_calibration(Dev, 0x40);
+
+	/* Read VHV from device */
+	if ((Status == VL53L0X_ERROR_NONE) && (get_data_enable == 1)) {
+		Status = VL53L0X_ref_calibration_io(Dev, 1,
+			VhvSettings, PhaseCal, /* Not used here */
+			pVhvSettings, &PhaseCalInt,
+			1, 0);
+	} else
+		*pVhvSettings = 0;
+
+
+	if ((Status == VL53L0X_ERROR_NONE) && restore_config) {
+		/* restore the previous Sequence Config */
+		Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
+				SequenceConfig);
+		if (Status == VL53L0X_ERROR_NONE)
+			PALDevDataSet(Dev, SequenceConfig, SequenceConfig);
+
+	}
+
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_perform_phase_calibration(VL53L0X_DEV Dev,
+	uint8_t *pPhaseCal, const uint8_t get_data_enable,
+	const uint8_t restore_config)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint8_t SequenceConfig = 0;
+	uint8_t VhvSettings = 0;
+	uint8_t PhaseCal = 0;
+	uint8_t VhvSettingsint;
+
+	/* store the value of the sequence config,
+	 * this will be reset before the end of the function
+	 */
+
+	if (restore_config)
+		SequenceConfig = PALDevDataGet(Dev, SequenceConfig);
+
+	/* Run PhaseCal */
+	Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, 0x02);
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_perform_single_ref_calibration(Dev, 0x0);
+
+	/* Read PhaseCal from device */
+	if ((Status == VL53L0X_ERROR_NONE) && (get_data_enable == 1)) {
+		Status = VL53L0X_ref_calibration_io(Dev, 1,
+			VhvSettings, PhaseCal, /* Not used here */
+			&VhvSettingsint, pPhaseCal,
+			0, 1);
+	} else
+		*pPhaseCal = 0;
+
+
+	if ((Status == VL53L0X_ERROR_NONE) && restore_config) {
+		/* restore the previous Sequence Config */
+		Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
+				SequenceConfig);
+		if (Status == VL53L0X_ERROR_NONE)
+			PALDevDataSet(Dev, SequenceConfig, SequenceConfig);
+
+	}
+
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_perform_ref_calibration(VL53L0X_DEV Dev,
+	uint8_t *pVhvSettings, uint8_t *pPhaseCal, uint8_t get_data_enable)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint8_t SequenceConfig = 0;
+
+	/* store the value of the sequence config,
+	 * this will be reset before the end of the function
+	 */
+
+	SequenceConfig = PALDevDataGet(Dev, SequenceConfig);
+
+	/* In the following function we don't save the config to optimize
+	 * writes on device. Config is saved and restored only once. */
+	Status = VL53L0X_perform_vhv_calibration(
+			Dev, pVhvSettings, get_data_enable, 0);
+
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_perform_phase_calibration(
+			Dev, pPhaseCal, get_data_enable, 0);
+
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		/* restore the previous Sequence Config */
+		Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
+				SequenceConfig);
+		if (Status == VL53L0X_ERROR_NONE)
+			PALDevDataSet(Dev, SequenceConfig, SequenceConfig);
+
+	}
+
+	return Status;
+}
+
+void VL53L0X::get_next_good_spad(uint8_t goodSpadArray[], uint32_t size,
+			uint32_t curr, int32_t *next)
+{
+	uint32_t startIndex;
+	uint32_t fineOffset;
+	uint32_t cSpadsPerByte = 8;
+	uint32_t coarseIndex;
+	uint32_t fineIndex;
+	uint8_t dataByte;
+	uint8_t success = 0;
+
+	/*
+	 * Starting with the current good spad, loop through the array to find
+	 * the next. i.e. the next bit set in the sequence.
+	 *
+	 * The coarse index is the byte index of the array and the fine index is
+	 * the index of the bit within each byte.
+	 */
+
+	*next = -1;
+
+	startIndex = curr / cSpadsPerByte;
+	fineOffset = curr % cSpadsPerByte;
+
+	for (coarseIndex = startIndex; ((coarseIndex < size) && !success);
+				coarseIndex++) {
+		fineIndex = 0;
+		dataByte = goodSpadArray[coarseIndex];
+
+		if (coarseIndex == startIndex) {
+			/* locate the bit position of the provided current
+			 * spad bit before iterating */
+			dataByte >>= fineOffset;
+			fineIndex = fineOffset;
+		}
+
+		while (fineIndex < cSpadsPerByte) {
+			if ((dataByte & 0x1) == 1) {
+				success = 1;
+				*next = coarseIndex * cSpadsPerByte + fineIndex;
+				break;
+			}
+			dataByte >>= 1;
+			fineIndex++;
+		}
+	}
+}
+
+uint8_t VL53L0X::is_aperture(uint32_t spadIndex)
+{
+	/*
+	 * This function reports if a given spad index is an aperture SPAD by
+	 * deriving the quadrant.
+	 */
+	uint32_t quadrant;
+	uint8_t isAperture = 1;
+	quadrant = spadIndex >> 6;
+	if (refArrayQuadrants[quadrant] == REF_ARRAY_SPAD_0)
+		isAperture = 0;
+
+	return isAperture;
+}
+
+VL53L0X_Error VL53L0X::enable_spad_bit(uint8_t spadArray[], uint32_t size,
+	uint32_t spadIndex)
+{
+	VL53L0X_Error status = VL53L0X_ERROR_NONE;
+	uint32_t cSpadsPerByte = 8;
+	uint32_t coarseIndex;
+	uint32_t fineIndex;
+
+	coarseIndex = spadIndex / cSpadsPerByte;
+	fineIndex = spadIndex % cSpadsPerByte;
+	if (coarseIndex >= size)
+		status = VL53L0X_ERROR_REF_SPAD_INIT;
+	else
+		spadArray[coarseIndex] |= (1 << fineIndex);
+
+	return status;
+}
+
+VL53L0X_Error VL53L0X::set_ref_spad_map(VL53L0X_DEV Dev, uint8_t *refSpadArray)
+{
+	VL53L0X_Error status = VL53L0X_WriteMulti(Dev,
+				VL53L0X_REG_GLOBAL_CONFIG_SPAD_ENABLES_REF_0,
+				refSpadArray, 6);
+
+	return status;
+}
+
+VL53L0X_Error VL53L0X::get_ref_spad_map(VL53L0X_DEV Dev, uint8_t *refSpadArray)
+{
+	VL53L0X_Error status = VL53L0X_ReadMulti(Dev,
+				VL53L0X_REG_GLOBAL_CONFIG_SPAD_ENABLES_REF_0,
+				refSpadArray,
+				6);
+//	VL53L0X_Error status = VL53L0X_ERROR_NONE;
+//	uint8_t count=0;
+
+//	for (count = 0; count < 6; count++)
+//        status = VL53L0X_RdByte(Dev, (VL53L0X_REG_GLOBAL_CONFIG_SPAD_ENABLES_REF_0 + count), &refSpadArray[count]);
+	return status;
+}
+
+VL53L0X_Error VL53L0X::enable_ref_spads(VL53L0X_DEV Dev,
+				uint8_t apertureSpads,
+				uint8_t goodSpadArray[],
+				uint8_t spadArray[],
+				uint32_t size,
+				uint32_t start,
+				uint32_t offset,
+				uint32_t spadCount,
+				uint32_t *lastSpad)
+{
+	VL53L0X_Error status = VL53L0X_ERROR_NONE;
+	uint32_t index;
+	uint32_t i;
+	int32_t nextGoodSpad = offset;
+	uint32_t currentSpad;
+	uint8_t checkSpadArray[6];
+
+	/*
+	 * This function takes in a spad array which may or may not have SPADS
+	 * already enabled and appends from a given offset a requested number
+	 * of new SPAD enables. The 'good spad map' is applied to
+	 * determine the next SPADs to enable.
+	 *
+	 * This function applies to only aperture or only non-aperture spads.
+	 * Checks are performed to ensure this.
+	 */
+
+	currentSpad = offset;
+	for (index = 0; index < spadCount; index++) {
+		get_next_good_spad(goodSpadArray, size, currentSpad,
+			&nextGoodSpad);
+
+		if (nextGoodSpad == -1) {
+			status = VL53L0X_ERROR_REF_SPAD_INIT;
+			break;
+		}
+
+		/* Confirm that the next good SPAD is non-aperture */
+		if (is_aperture(start + nextGoodSpad) != apertureSpads) {
+			/* if we can't get the required number of good aperture
+			 * spads from the current quadrant then this is an error
+			 */
+			status = VL53L0X_ERROR_REF_SPAD_INIT;
+			break;
+		}
+		currentSpad = (uint32_t)nextGoodSpad;
+		enable_spad_bit(spadArray, size, currentSpad);
+		currentSpad++;
+	}
+	*lastSpad = currentSpad;
+
+	if (status == VL53L0X_ERROR_NONE)
+		status = set_ref_spad_map(Dev, spadArray);
+
+
+	if (status == VL53L0X_ERROR_NONE) {
+		status = get_ref_spad_map(Dev, checkSpadArray);
+
+		i = 0;
+
+		/* Compare spad maps. If not equal report error. */
+		while (i < size) {
+			if (spadArray[i] != checkSpadArray[i]) {
+				status = VL53L0X_ERROR_REF_SPAD_INIT;
+				break;
+			}
+			i++;
+		}
+	}
+	return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_SetDeviceMode(VL53L0X_DEV Dev, VL53L0X_DeviceModes DeviceMode)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+
+	LOG_FUNCTION_START("%d", (int)DeviceMode);
+
+	switch (DeviceMode) {
+	case VL53L0X_DEVICEMODE_SINGLE_RANGING:
+	case VL53L0X_DEVICEMODE_CONTINUOUS_RANGING:
+	case VL53L0X_DEVICEMODE_CONTINUOUS_TIMED_RANGING:
+	case VL53L0X_DEVICEMODE_GPIO_DRIVE:
+	case VL53L0X_DEVICEMODE_GPIO_OSC:
+		/* Supported modes */
+		VL53L0X_SETPARAMETERFIELD(Dev, DeviceMode, DeviceMode);
+		break;
+	default:
+		/* Unsupported mode */
+		Status = VL53L0X_ERROR_MODE_NOT_SUPPORTED;
+	}
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetInterruptThresholds(VL53L0X_DEV Dev,
+	VL53L0X_DeviceModes DeviceMode, FixPoint1616_t *pThresholdLow,
+	FixPoint1616_t *pThresholdHigh)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint16_t Threshold16;
+	LOG_FUNCTION_START("");
+
+	/* no dependency on DeviceMode for Ewok */
+
+	Status = VL53L0X_RdWord(Dev, VL53L0X_REG_SYSTEM_THRESH_LOW, &Threshold16);
+	/* Need to multiply by 2 because the FW will apply a x2 */
+	*pThresholdLow = (FixPoint1616_t)((0x00fff & Threshold16) << 17);
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		Status = VL53L0X_RdWord(Dev, VL53L0X_REG_SYSTEM_THRESH_HIGH,
+			&Threshold16);
+		/* Need to multiply by 2 because the FW will apply a x2 */
+		*pThresholdHigh =
+			(FixPoint1616_t)((0x00fff & Threshold16) << 17);
+	}
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_load_tuning_settings(VL53L0X_DEV Dev,
+		uint8_t *pTuningSettingBuffer)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	int i;
+	int Index;
+	uint8_t msb;
+	uint8_t lsb;
+	uint8_t SelectParam;
+	uint8_t NumberOfWrites;
+	uint8_t Address;
+	uint8_t localBuffer[4]; /* max */
+	uint16_t Temp16;
+
+	LOG_FUNCTION_START("");
+
+	Index = 0;
+
+	while ((*(pTuningSettingBuffer + Index) != 0) &&
+			(Status == VL53L0X_ERROR_NONE)) {
+		NumberOfWrites = *(pTuningSettingBuffer + Index);
+		Index++;
+		if (NumberOfWrites == 0xFF) {
+			/* internal parameters */
+			SelectParam = *(pTuningSettingBuffer + Index);
+			Index++;
+			switch (SelectParam) {
+			case 0: /* uint16_t SigmaEstRefArray -> 2 bytes */
+				msb = *(pTuningSettingBuffer + Index);
+				Index++;
+				lsb = *(pTuningSettingBuffer + Index);
+				Index++;
+				Temp16 = VL53L0X_MAKEUINT16(lsb, msb);
+				PALDevDataSet(Dev, SigmaEstRefArray, Temp16);
+				break;
+			case 1: /* uint16_t SigmaEstEffPulseWidth -> 2 bytes */
+				msb = *(pTuningSettingBuffer + Index);
+				Index++;
+				lsb = *(pTuningSettingBuffer + Index);
+				Index++;
+				Temp16 = VL53L0X_MAKEUINT16(lsb, msb);
+				PALDevDataSet(Dev, SigmaEstEffPulseWidth,
+					Temp16);
+				break;
+			case 2: /* uint16_t SigmaEstEffAmbWidth -> 2 bytes */
+				msb = *(pTuningSettingBuffer + Index);
+				Index++;
+				lsb = *(pTuningSettingBuffer + Index);
+				Index++;
+				Temp16 = VL53L0X_MAKEUINT16(lsb, msb);
+				PALDevDataSet(Dev, SigmaEstEffAmbWidth, Temp16);
+				break;
+			case 3: /* uint16_t targetRefRate -> 2 bytes */
+				msb = *(pTuningSettingBuffer + Index);
+				Index++;
+				lsb = *(pTuningSettingBuffer + Index);
+				Index++;
+				Temp16 = VL53L0X_MAKEUINT16(lsb, msb);
+				PALDevDataSet(Dev, targetRefRate, Temp16);
+				break;
+			default: /* invalid parameter */
+				Status = VL53L0X_ERROR_INVALID_PARAMS;
+			}
+
+		} else if (NumberOfWrites <= 4) {
+			Address = *(pTuningSettingBuffer + Index);
+			Index++;
+
+			for (i = 0; i < NumberOfWrites; i++) {
+				localBuffer[i] = *(pTuningSettingBuffer +
+							Index);
+				Index++;
+			}
+
+			Status = VL53L0X_WriteMulti(Dev, Address, localBuffer,
+					NumberOfWrites);
+
+		} else {
+			Status = VL53L0X_ERROR_INVALID_PARAMS;
+		}
+	}
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_CheckAndLoadInterruptSettings(VL53L0X_DEV Dev,
+	uint8_t StartNotStopFlag)
+{
+	uint8_t InterruptConfig;
+	FixPoint1616_t ThresholdLow;
+	FixPoint1616_t ThresholdHigh;
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+
+	InterruptConfig = VL53L0X_GETDEVICESPECIFICPARAMETER(Dev,
+		Pin0GpioFunctionality);
+
+	if ((InterruptConfig ==
+		VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_LOW) ||
+		(InterruptConfig ==
+		VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_HIGH) ||
+		(InterruptConfig ==
+		VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_OUT)) {
+
+		Status = VL53L0X_GetInterruptThresholds(Dev,
+			VL53L0X_DEVICEMODE_CONTINUOUS_RANGING,
+			&ThresholdLow, &ThresholdHigh);
+
+		if (((ThresholdLow > 255*65536) ||
+			(ThresholdHigh > 255*65536)) &&
+			(Status == VL53L0X_ERROR_NONE)) {
+
+			if (StartNotStopFlag != 0) {
+				Status = VL53L0X_load_tuning_settings(Dev,
+					InterruptThresholdSettings);
+			} else {
+				Status |= VL53L0X_WrByte(Dev, 0xFF, 0x04);
+				Status |= VL53L0X_WrByte(Dev, 0x70, 0x00);
+				Status |= VL53L0X_WrByte(Dev, 0xFF, 0x00);
+				Status |= VL53L0X_WrByte(Dev, 0x80, 0x00);
+			}
+
+		}
+
+
+	}
+
+	return Status;
+
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_StartMeasurement(VL53L0X_DEV Dev)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	VL53L0X_DeviceModes DeviceMode;
+	uint8_t Byte;
+	uint8_t StartStopByte = VL53L0X_REG_SYSRANGE_MODE_START_STOP;
+	uint32_t LoopNb;
+	LOG_FUNCTION_START("");
+
+	/* Get Current DeviceMode */
+	VL53L0X_GetDeviceMode(Dev, &DeviceMode);
+
+	Status = VL53L0X_WrByte(Dev, 0x80, 0x01);
+	Status = VL53L0X_WrByte(Dev, 0xFF, 0x01);
+	Status = VL53L0X_WrByte(Dev, 0x00, 0x00);
+	Status = VL53L0X_WrByte(Dev, 0x91, PALDevDataGet(Dev, StopVariable));
+	Status = VL53L0X_WrByte(Dev, 0x00, 0x01);
+	Status = VL53L0X_WrByte(Dev, 0xFF, 0x00);
+	Status = VL53L0X_WrByte(Dev, 0x80, 0x00);
+
+	switch (DeviceMode) {
+	case VL53L0X_DEVICEMODE_SINGLE_RANGING:
+		Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSRANGE_START, 0x01);
+
+		Byte = StartStopByte;
+		if (Status == VL53L0X_ERROR_NONE) {
+			/* Wait until start bit has been cleared */
+			LoopNb = 0;
+			do {
+				if (LoopNb > 0)
+					Status = VL53L0X_RdByte(Dev,
+					VL53L0X_REG_SYSRANGE_START, &Byte);
+				LoopNb = LoopNb + 1;
+			} while (((Byte & StartStopByte) == StartStopByte)
+				&& (Status == VL53L0X_ERROR_NONE)
+				&& (LoopNb < VL53L0X_DEFAULT_MAX_LOOP));
+
+			if (LoopNb >= VL53L0X_DEFAULT_MAX_LOOP)
+				Status = VL53L0X_ERROR_TIME_OUT;
+
+		}
+
+		break;
+	case VL53L0X_DEVICEMODE_CONTINUOUS_RANGING:
+		/* Back-to-back mode */
+
+		/* Check if need to apply interrupt settings */
+		if (Status == VL53L0X_ERROR_NONE)
+			Status = VL53L0X_CheckAndLoadInterruptSettings(Dev, 1);
+
+		Status = VL53L0X_WrByte(Dev,
+		VL53L0X_REG_SYSRANGE_START,
+		VL53L0X_REG_SYSRANGE_MODE_BACKTOBACK);
+		if (Status == VL53L0X_ERROR_NONE) {
+			/* Set PAL State to Running */
+			PALDevDataSet(Dev, PalState, VL53L0X_STATE_RUNNING);
+		}
+		break;
+	case VL53L0X_DEVICEMODE_CONTINUOUS_TIMED_RANGING:
+		/* Continuous mode */
+		/* Check if need to apply interrupt settings */
+		if (Status == VL53L0X_ERROR_NONE)
+			Status = VL53L0X_CheckAndLoadInterruptSettings(Dev, 1);
+
+		Status = VL53L0X_WrByte(Dev,
+		VL53L0X_REG_SYSRANGE_START,
+		VL53L0X_REG_SYSRANGE_MODE_TIMED);
+
+		if (Status == VL53L0X_ERROR_NONE) {
+			/* Set PAL State to Running */
+			PALDevDataSet(Dev, PalState, VL53L0X_STATE_RUNNING);
+		}
+		break;
+	default:
+		/* Selected mode not supported */
+		Status = VL53L0X_ERROR_MODE_NOT_SUPPORTED;
+	}
+
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+/* Group PAL Measurement Functions */
+VL53L0X_Error VL53L0X::VL53L0X_PerformSingleMeasurement(VL53L0X_DEV Dev)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	VL53L0X_DeviceModes DeviceMode;
+
+	LOG_FUNCTION_START("");
+
+	/* Get Current DeviceMode */
+	Status = VL53L0X_GetDeviceMode(Dev, &DeviceMode);
+
+	/* Start immediately to run a single ranging measurement in case of
+	 * single ranging or single histogram */
+	if (Status == VL53L0X_ERROR_NONE
+		&& DeviceMode == VL53L0X_DEVICEMODE_SINGLE_RANGING)
+		Status = VL53L0X_StartMeasurement(Dev);
+
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_measurement_poll_for_completion(Dev);
+
+
+	/* Change PAL State in case of single ranging or single histogram */
+	if (Status == VL53L0X_ERROR_NONE
+		&& DeviceMode == VL53L0X_DEVICEMODE_SINGLE_RANGING)
+		PALDevDataSet(Dev, PalState, VL53L0X_STATE_IDLE);
+
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetXTalkCompensationEnable(VL53L0X_DEV Dev,
+	uint8_t *pXTalkCompensationEnable)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint8_t Temp8;
+	LOG_FUNCTION_START("");
+
+	VL53L0X_GETPARAMETERFIELD(Dev, XTalkCompensationEnable, Temp8);
+	*pXTalkCompensationEnable = Temp8;
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_total_xtalk_rate(VL53L0X_DEV Dev,
+	VL53L0X_RangingMeasurementData_t *pRangingMeasurementData,
+	FixPoint1616_t *ptotal_xtalk_rate_mcps)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+
+	uint8_t xtalkCompEnable;
+	FixPoint1616_t totalXtalkMegaCps;
+	FixPoint1616_t xtalkPerSpadMegaCps;
+
+	*ptotal_xtalk_rate_mcps = 0;
+
+	Status = VL53L0X_GetXTalkCompensationEnable(Dev, &xtalkCompEnable);
+	if (Status == VL53L0X_ERROR_NONE) {
+
+		if (xtalkCompEnable) {
+
+			VL53L0X_GETPARAMETERFIELD(
+				Dev,
+				XTalkCompensationRateMegaCps,
+				xtalkPerSpadMegaCps);
+
+			/* FixPoint1616 * FixPoint 8:8 = FixPoint0824 */
+			totalXtalkMegaCps =
+				pRangingMeasurementData->EffectiveSpadRtnCount *
+				xtalkPerSpadMegaCps;
+
+			/* FixPoint0824 >> 8 = FixPoint1616 */
+			*ptotal_xtalk_rate_mcps =
+				(totalXtalkMegaCps + 0x80) >> 8;
+		}
+	}
+
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_total_signal_rate(VL53L0X_DEV Dev,
+	VL53L0X_RangingMeasurementData_t *pRangingMeasurementData,
+	FixPoint1616_t *ptotal_signal_rate_mcps)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	FixPoint1616_t totalXtalkMegaCps;
+
+	LOG_FUNCTION_START("");
+
+	*ptotal_signal_rate_mcps =
+		pRangingMeasurementData->SignalRateRtnMegaCps;
+
+	Status = VL53L0X_get_total_xtalk_rate(
+		Dev, pRangingMeasurementData, &totalXtalkMegaCps);
+
+	if (Status == VL53L0X_ERROR_NONE)
+		*ptotal_signal_rate_mcps += totalXtalkMegaCps;
+
+	return Status;
+}
+
+/* To convert ms into register value */
+uint32_t VL53L0X::VL53L0X_calc_timeout_mclks(VL53L0X_DEV Dev,
+		uint32_t timeout_period_us,
+		uint8_t vcsel_period_pclks)
+{
+	uint32_t macro_period_ps;
+	uint32_t macro_period_ns;
+	uint32_t timeout_period_mclks = 0;
+
+	macro_period_ps = VL53L0X_calc_macro_period_ps(Dev, vcsel_period_pclks);
+	macro_period_ns = (macro_period_ps + 500) / 1000;
+
+	timeout_period_mclks =
+		(uint32_t) (((timeout_period_us * 1000)
+		+ (macro_period_ns / 2)) / macro_period_ns);
+
+    return timeout_period_mclks;
+}
+
+uint32_t VL53L0X::VL53L0X_isqrt(uint32_t num)
+{
+	/*
+	 * Implements an integer square root
+	 *
+	 * From: http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
+	 */
+
+	uint32_t  res = 0;
+	uint32_t  bit = 1 << 30;
+	/* The second-to-top bit is set:
+	 *	1 << 14 for 16-bits, 1 << 30 for 32 bits */
+
+	 /* "bit" starts at the highest power of four <= the argument. */
+	while (bit > num)
+		bit >>= 2;
+
+
+	while (bit != 0) {
+		if (num >= res + bit) {
+			num -= res + bit;
+			res = (res >> 1) + bit;
+		} else
+			res >>= 1;
+
+		bit >>= 2;
+	}
+
+	return res;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_calc_dmax(
+	VL53L0X_DEV Dev,
+	FixPoint1616_t totalSignalRate_mcps,
+	FixPoint1616_t totalCorrSignalRate_mcps,
+	FixPoint1616_t pwMult,
+	uint32_t sigmaEstimateP1,
+	FixPoint1616_t sigmaEstimateP2,
+	uint32_t peakVcselDuration_us,
+	uint32_t *pdmax_mm)
+{
+	const uint32_t cSigmaLimit		= 18;
+	const FixPoint1616_t cSignalLimit	= 0x4000; /* 0.25 */
+	const FixPoint1616_t cSigmaEstRef	= 0x00000042; /* 0.001 */
+	const uint32_t cAmbEffWidthSigmaEst_ns = 6;
+	const uint32_t cAmbEffWidthDMax_ns	   = 7;
+	uint32_t dmaxCalRange_mm;
+	FixPoint1616_t dmaxCalSignalRateRtn_mcps;
+	FixPoint1616_t minSignalNeeded;
+	FixPoint1616_t minSignalNeeded_p1;
+	FixPoint1616_t minSignalNeeded_p2;
+	FixPoint1616_t minSignalNeeded_p3;
+	FixPoint1616_t minSignalNeeded_p4;
+	FixPoint1616_t sigmaLimitTmp;
+	FixPoint1616_t sigmaEstSqTmp;
+	FixPoint1616_t signalLimitTmp;
+	FixPoint1616_t SignalAt0mm;
+	FixPoint1616_t dmaxDark;
+	FixPoint1616_t dmaxAmbient;
+	FixPoint1616_t dmaxDarkTmp;
+	FixPoint1616_t sigmaEstP2Tmp;
+	uint32_t signalRateTemp_mcps;
+
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+
+	LOG_FUNCTION_START("");
+
+	dmaxCalRange_mm =
+		PALDevDataGet(Dev, DmaxCalRangeMilliMeter);
+
+	dmaxCalSignalRateRtn_mcps =
+		PALDevDataGet(Dev, DmaxCalSignalRateRtnMegaCps);
+
+	/* uint32 * FixPoint1616 = FixPoint1616 */
+	SignalAt0mm = dmaxCalRange_mm * dmaxCalSignalRateRtn_mcps;
+
+	/* FixPoint1616 >> 8 = FixPoint2408 */
+	SignalAt0mm = (SignalAt0mm + 0x80) >> 8;
+	SignalAt0mm *= dmaxCalRange_mm;
+
+	minSignalNeeded_p1 = 0;
+	if (totalCorrSignalRate_mcps > 0) {
+
+		/* Shift by 10 bits to increase resolution prior to the
+		 * division */
+		signalRateTemp_mcps = totalSignalRate_mcps << 10;
+
+		/* Add rounding value prior to division */
+		minSignalNeeded_p1 = signalRateTemp_mcps +
+			(totalCorrSignalRate_mcps/2);
+
+		/* FixPoint0626/FixPoint1616 = FixPoint2210 */
+		minSignalNeeded_p1 /= totalCorrSignalRate_mcps;
+
+		/* Apply a factored version of the speed of light.
+		 Correction to be applied at the end */
+		minSignalNeeded_p1 *= 3;
+
+		/* FixPoint2210 * FixPoint2210 = FixPoint1220 */
+		minSignalNeeded_p1 *= minSignalNeeded_p1;
+
+		/* FixPoint1220 >> 16 = FixPoint2804 */
+		minSignalNeeded_p1 = (minSignalNeeded_p1 + 0x8000) >> 16;
+	}
+
+	minSignalNeeded_p2 = pwMult * sigmaEstimateP1;
+
+	/* FixPoint1616 >> 16 =	 uint32 */
+	minSignalNeeded_p2 = (minSignalNeeded_p2 + 0x8000) >> 16;
+
+	/* uint32 * uint32	=  uint32 */
+	minSignalNeeded_p2 *= minSignalNeeded_p2;
+
+	/* Check sigmaEstimateP2
+	 * If this value is too high there is not enough signal rate
+	 * to calculate dmax value so set a suitable value to ensure
+	 * a very small dmax.
+	 */
+	sigmaEstP2Tmp = (sigmaEstimateP2 + 0x8000) >> 16;
+	sigmaEstP2Tmp = (sigmaEstP2Tmp + cAmbEffWidthSigmaEst_ns/2)/
+		cAmbEffWidthSigmaEst_ns;
+	sigmaEstP2Tmp *= cAmbEffWidthDMax_ns;
+
+	if (sigmaEstP2Tmp > 0xffff) {
+		minSignalNeeded_p3 = 0xfff00000;
+	} else {
+
+		/* DMAX uses a different ambient width from sigma, so apply
+		 * correction.
+		 * Perform division before multiplication to prevent overflow.
+		 */
+		sigmaEstimateP2 = (sigmaEstimateP2 + cAmbEffWidthSigmaEst_ns/2)/
+			cAmbEffWidthSigmaEst_ns;
+		sigmaEstimateP2 *= cAmbEffWidthDMax_ns;
+
+		/* FixPoint1616 >> 16 = uint32 */
+		minSignalNeeded_p3 = (sigmaEstimateP2 + 0x8000) >> 16;
+
+		minSignalNeeded_p3 *= minSignalNeeded_p3;
+
+	}
+
+	/* FixPoint1814 / uint32 = FixPoint1814 */
+	sigmaLimitTmp = ((cSigmaLimit << 14) + 500) / 1000;
+
+	/* FixPoint1814 * FixPoint1814 = FixPoint3628 := FixPoint0428 */
+	sigmaLimitTmp *= sigmaLimitTmp;
+
+	/* FixPoint1616 * FixPoint1616 = FixPoint3232 */
+	sigmaEstSqTmp = cSigmaEstRef * cSigmaEstRef;
+
+	/* FixPoint3232 >> 4 = FixPoint0428 */
+	sigmaEstSqTmp = (sigmaEstSqTmp + 0x08) >> 4;
+
+	/* FixPoint0428 - FixPoint0428	= FixPoint0428 */
+	sigmaLimitTmp -=  sigmaEstSqTmp;
+
+	/* uint32_t * FixPoint0428 = FixPoint0428 */
+	minSignalNeeded_p4 = 4 * 12 * sigmaLimitTmp;
+
+	/* FixPoint0428 >> 14 = FixPoint1814 */
+	minSignalNeeded_p4 = (minSignalNeeded_p4 + 0x2000) >> 14;
+
+	/* uint32 + uint32 = uint32 */
+	minSignalNeeded = (minSignalNeeded_p2 + minSignalNeeded_p3);
+
+	/* uint32 / uint32 = uint32 */
+	minSignalNeeded += (peakVcselDuration_us/2);
+	minSignalNeeded /= peakVcselDuration_us;
+
+	/* uint32 << 14 = FixPoint1814 */
+	minSignalNeeded <<= 14;
+
+	/* FixPoint1814 / FixPoint1814 = uint32 */
+	minSignalNeeded += (minSignalNeeded_p4/2);
+	minSignalNeeded /= minSignalNeeded_p4;
+
+	/* FixPoint3200 * FixPoint2804 := FixPoint2804*/
+	minSignalNeeded *= minSignalNeeded_p1;
+
+	/* Apply correction by dividing by 1000000.
+	 * This assumes 10E16 on the numerator of the equation
+	 * and 10E-22 on the denominator.
+	 * We do this because 32bit fix point calculation can't
+	 * handle the larger and smaller elements of this equation,
+	 * i.e. speed of light and pulse widths.
+	 */
+	minSignalNeeded = (minSignalNeeded + 500) / 1000;
+	minSignalNeeded <<= 4;
+
+	minSignalNeeded = (minSignalNeeded + 500) / 1000;
+
+	/* FixPoint1616 >> 8 = FixPoint2408 */
+	signalLimitTmp = (cSignalLimit + 0x80) >> 8;
+
+	/* FixPoint2408/FixPoint2408 = uint32 */
+	if (signalLimitTmp != 0)
+		dmaxDarkTmp = (SignalAt0mm + (signalLimitTmp / 2))
+			/ signalLimitTmp;
+	else
+		dmaxDarkTmp = 0;
+
+	dmaxDark = VL53L0X_isqrt(dmaxDarkTmp);
+
+	/* FixPoint2408/FixPoint2408 = uint32 */
+	if (minSignalNeeded != 0)
+		dmaxAmbient = (SignalAt0mm + minSignalNeeded/2)
+			/ minSignalNeeded;
+	else
+		dmaxAmbient = 0;
+
+	dmaxAmbient = VL53L0X_isqrt(dmaxAmbient);
+
+	*pdmax_mm = dmaxDark;
+	if (dmaxDark > dmaxAmbient)
+		*pdmax_mm = dmaxAmbient;
+
+	LOG_FUNCTION_END(Status);
+
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_calc_sigma_estimate(VL53L0X_DEV Dev,
+	VL53L0X_RangingMeasurementData_t *pRangingMeasurementData,
+	FixPoint1616_t *pSigmaEstimate,
+	uint32_t *pDmax_mm)
+{
+	/* Expressed in 100ths of a ns, i.e. centi-ns */
+	const uint32_t cPulseEffectiveWidth_centi_ns   = 800;
+	/* Expressed in 100ths of a ns, i.e. centi-ns */
+	const uint32_t cAmbientEffectiveWidth_centi_ns = 600;
+	const FixPoint1616_t cDfltFinalRangeIntegrationTimeMilliSecs	= 0x00190000; /* 25ms */
+	const uint32_t cVcselPulseWidth_ps	= 4700; /* pico secs */
+	const FixPoint1616_t cSigmaEstMax	= 0x028F87AE;
+	const FixPoint1616_t cSigmaEstRtnMax	= 0xF000;
+	const FixPoint1616_t cAmbToSignalRatioMax = 0xF0000000/
+		cAmbientEffectiveWidth_centi_ns;
+	/* Time Of Flight per mm (6.6 pico secs) */
+	const FixPoint1616_t cTOF_per_mm_ps		= 0x0006999A;
+	const uint32_t c16BitRoundingParam		= 0x00008000;
+	const FixPoint1616_t cMaxXTalk_kcps		= 0x00320000;
+	const uint32_t cPllPeriod_ps			= 1655;
+
+	uint32_t vcselTotalEventsRtn;
+	uint32_t finalRangeTimeoutMicroSecs;
+	uint32_t preRangeTimeoutMicroSecs;
+	uint32_t finalRangeIntegrationTimeMilliSecs;
+	FixPoint1616_t sigmaEstimateP1;
+	FixPoint1616_t sigmaEstimateP2;
+	FixPoint1616_t sigmaEstimateP3;
+	FixPoint1616_t deltaT_ps;
+	FixPoint1616_t pwMult;
+	FixPoint1616_t sigmaEstRtn;
+	FixPoint1616_t sigmaEstimate;
+	FixPoint1616_t xTalkCorrection;
+	FixPoint1616_t ambientRate_kcps;
+	FixPoint1616_t peakSignalRate_kcps;
+	FixPoint1616_t xTalkCompRate_mcps;
+	uint32_t xTalkCompRate_kcps;
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	FixPoint1616_t diff1_mcps;
+	FixPoint1616_t diff2_mcps;
+	FixPoint1616_t sqr1;
+	FixPoint1616_t sqr2;
+	FixPoint1616_t sqrSum;
+	FixPoint1616_t sqrtResult_centi_ns;
+	FixPoint1616_t sqrtResult;
+	FixPoint1616_t totalSignalRate_mcps;
+	FixPoint1616_t correctedSignalRate_mcps;
+	FixPoint1616_t sigmaEstRef;
+	uint32_t vcselWidth;
+	uint32_t finalRangeMacroPCLKS;
+	uint32_t preRangeMacroPCLKS;
+	uint32_t peakVcselDuration_us;
+	uint8_t finalRangeVcselPCLKS;
+	uint8_t preRangeVcselPCLKS;
+	/*! \addtogroup calc_sigma_estimate
+	 * @{
+	 *
+	 * Estimates the range sigma
+	 */
+
+	LOG_FUNCTION_START("");
+
+	VL53L0X_GETPARAMETERFIELD(Dev, XTalkCompensationRateMegaCps,
+			xTalkCompRate_mcps);
+
+	/*
+	 * We work in kcps rather than mcps as this helps keep within the
+	 * confines of the 32 Fix1616 type.
+	 */
+
+	ambientRate_kcps =
+		(pRangingMeasurementData->AmbientRateRtnMegaCps * 1000) >> 16;
+
+	correctedSignalRate_mcps =
+		pRangingMeasurementData->SignalRateRtnMegaCps;
+
+
+	Status = VL53L0X_get_total_signal_rate(
+		Dev, pRangingMeasurementData, &totalSignalRate_mcps);
+	Status = VL53L0X_get_total_xtalk_rate(
+		Dev, pRangingMeasurementData, &xTalkCompRate_mcps);
+
+
+	/* Signal rate measurement provided by device is the
+	 * peak signal rate, not average.
+	 */
+	peakSignalRate_kcps = (totalSignalRate_mcps * 1000);
+	peakSignalRate_kcps = (peakSignalRate_kcps + 0x8000) >> 16;
+
+	xTalkCompRate_kcps = xTalkCompRate_mcps * 1000;
+
+	if (xTalkCompRate_kcps > cMaxXTalk_kcps)
+		xTalkCompRate_kcps = cMaxXTalk_kcps;
+
+	if (Status == VL53L0X_ERROR_NONE) {
+
+		/* Calculate final range macro periods */
+		finalRangeTimeoutMicroSecs = VL53L0X_GETDEVICESPECIFICPARAMETER(
+			Dev, FinalRangeTimeoutMicroSecs);
+
+		finalRangeVcselPCLKS = VL53L0X_GETDEVICESPECIFICPARAMETER(
+			Dev, FinalRangeVcselPulsePeriod);
+
+		finalRangeMacroPCLKS = VL53L0X_calc_timeout_mclks(
+			Dev, finalRangeTimeoutMicroSecs, finalRangeVcselPCLKS);
+
+		/* Calculate pre-range macro periods */
+		preRangeTimeoutMicroSecs = VL53L0X_GETDEVICESPECIFICPARAMETER(
+			Dev, PreRangeTimeoutMicroSecs);
+
+		preRangeVcselPCLKS = VL53L0X_GETDEVICESPECIFICPARAMETER(
+			Dev, PreRangeVcselPulsePeriod);
+
+		preRangeMacroPCLKS = VL53L0X_calc_timeout_mclks(
+			Dev, preRangeTimeoutMicroSecs, preRangeVcselPCLKS);
+
+		vcselWidth = 3;
+		if (finalRangeVcselPCLKS == 8)
+			vcselWidth = 2;
+
+
+		peakVcselDuration_us = vcselWidth * 2048 *
+			(preRangeMacroPCLKS + finalRangeMacroPCLKS);
+		peakVcselDuration_us = (peakVcselDuration_us + 500)/1000;
+		peakVcselDuration_us *= cPllPeriod_ps;
+		peakVcselDuration_us = (peakVcselDuration_us + 500)/1000;
+
+		/* Fix1616 >> 8 = Fix2408 */
+		totalSignalRate_mcps = (totalSignalRate_mcps + 0x80) >> 8;
+
+		/* Fix2408 * uint32 = Fix2408 */
+		vcselTotalEventsRtn = totalSignalRate_mcps *
+			peakVcselDuration_us;
+
+		/* Fix2408 >> 8 = uint32 */
+		vcselTotalEventsRtn = (vcselTotalEventsRtn + 0x80) >> 8;
+
+		/* Fix2408 << 8 = Fix1616 = */
+		totalSignalRate_mcps <<= 8;
+	}
+
+	if (Status != VL53L0X_ERROR_NONE) {
+		LOG_FUNCTION_END(Status);
+		return Status;
+	}
+
+	if (peakSignalRate_kcps == 0) {
+		*pSigmaEstimate = cSigmaEstMax;
+		PALDevDataSet(Dev, SigmaEstimate, cSigmaEstMax);
+		*pDmax_mm = 0;
+	} else {
+		if (vcselTotalEventsRtn < 1)
+			vcselTotalEventsRtn = 1;
+
+		sigmaEstimateP1 = cPulseEffectiveWidth_centi_ns;
+
+		/* ((FixPoint1616 << 16)* uint32)/uint32 = FixPoint1616 */
+		sigmaEstimateP2 = (ambientRate_kcps << 16)/peakSignalRate_kcps;
+		if (sigmaEstimateP2 > cAmbToSignalRatioMax) {
+			/* Clip to prevent overflow. Will ensure safe
+			 * max result. */
+			sigmaEstimateP2 = cAmbToSignalRatioMax;
+		}
+		sigmaEstimateP2 *= cAmbientEffectiveWidth_centi_ns;
+
+		sigmaEstimateP3 = 2 * VL53L0X_isqrt(vcselTotalEventsRtn * 12);
+
+		/* uint32 * FixPoint1616 = FixPoint1616 */
+		deltaT_ps = pRangingMeasurementData->RangeMilliMeter *
+					cTOF_per_mm_ps;
+
+		/*
+		 * vcselRate - xtalkCompRate
+		 * (uint32 << 16) - FixPoint1616 = FixPoint1616.
+		 * Divide result by 1000 to convert to mcps.
+		 * 500 is added to ensure rounding when integer division
+		 * truncates.
+		 */
+		diff1_mcps = (((peakSignalRate_kcps << 16) -
+			2 * xTalkCompRate_kcps) + 500)/1000;
+
+		/* vcselRate + xtalkCompRate */
+		diff2_mcps = ((peakSignalRate_kcps << 16) + 500)/1000;
+
+		/* Shift by 8 bits to increase resolution prior to the
+		 * division */
+		diff1_mcps <<= 8;
+
+		/* FixPoint0824/FixPoint1616 = FixPoint2408 */
+//		xTalkCorrection	 = abs(diff1_mcps/diff2_mcps);
+// abs is causing compiler overloading isue in C++, but unsigned types. So, redundant call anyway!
+		xTalkCorrection	 = diff1_mcps/diff2_mcps;
+
+		/* FixPoint2408 << 8 = FixPoint1616 */
+		xTalkCorrection <<= 8;
+
+		if(pRangingMeasurementData->RangeStatus != 0){
+			pwMult = 1 << 16;
+		} else {
+			/* FixPoint1616/uint32 = FixPoint1616 */
+			pwMult = deltaT_ps/cVcselPulseWidth_ps; /* smaller than 1.0f */
+
+			/*
+			 * FixPoint1616 * FixPoint1616 = FixPoint3232, however both
+			 * values are small enough such that32 bits will not be
+			 * exceeded.
+			 */
+			pwMult *= ((1 << 16) - xTalkCorrection);
+
+			/* (FixPoint3232 >> 16) = FixPoint1616 */
+			pwMult =  (pwMult + c16BitRoundingParam) >> 16;
+
+			/* FixPoint1616 + FixPoint1616 = FixPoint1616 */
+			pwMult += (1 << 16);
+
+			/*
+			 * At this point the value will be 1.xx, therefore if we square
+			 * the value this will exceed 32 bits. To address this perform
+			 * a single shift to the right before the multiplication.
+			 */
+			pwMult >>= 1;
+			/* FixPoint1715 * FixPoint1715 = FixPoint3430 */
+			pwMult = pwMult * pwMult;
+
+			/* (FixPoint3430 >> 14) = Fix1616 */
+			pwMult >>= 14;
+		}
+
+		/* FixPoint1616 * uint32 = FixPoint1616 */
+		sqr1 = pwMult * sigmaEstimateP1;
+
+		/* (FixPoint1616 >> 16) = FixPoint3200 */
+		sqr1 = (sqr1 + 0x8000) >> 16;
+
+		/* FixPoint3200 * FixPoint3200 = FixPoint6400 */
+		sqr1 *= sqr1;
+
+		sqr2 = sigmaEstimateP2;
+
+		/* (FixPoint1616 >> 16) = FixPoint3200 */
+		sqr2 = (sqr2 + 0x8000) >> 16;
+
+		/* FixPoint3200 * FixPoint3200 = FixPoint6400 */
+		sqr2 *= sqr2;
+
+		/* FixPoint64000 + FixPoint6400 = FixPoint6400 */
+		sqrSum = sqr1 + sqr2;
+
+		/* SQRT(FixPoin6400) = FixPoint3200 */
+		sqrtResult_centi_ns = VL53L0X_isqrt(sqrSum);
+
+		/* (FixPoint3200 << 16) = FixPoint1616 */
+		sqrtResult_centi_ns <<= 16;
+
+		/*
+		 * Note that the Speed Of Light is expressed in um per 1E-10
+		 * seconds (2997) Therefore to get mm/ns we have to divide by
+		 * 10000
+		 */
+		sigmaEstRtn = (((sqrtResult_centi_ns+50)/100) /
+				sigmaEstimateP3);
+		sigmaEstRtn		 *= VL53L0X_SPEED_OF_LIGHT_IN_AIR;
+
+		/* Add 5000 before dividing by 10000 to ensure rounding. */
+		sigmaEstRtn		 += 5000;
+		sigmaEstRtn		 /= 10000;
+
+		if (sigmaEstRtn > cSigmaEstRtnMax) {
+			/* Clip to prevent overflow. Will ensure safe
+			 * max result. */
+			sigmaEstRtn = cSigmaEstRtnMax;
+		}
+		finalRangeIntegrationTimeMilliSecs =
+			(finalRangeTimeoutMicroSecs + preRangeTimeoutMicroSecs + 500)/1000;
+
+		/* sigmaEstRef = 1mm * 25ms/final range integration time (inc pre-range)
+		 * sqrt(FixPoint1616/int) = FixPoint2408)
+		 */
+		sigmaEstRef =
+			VL53L0X_isqrt((cDfltFinalRangeIntegrationTimeMilliSecs +
+				finalRangeIntegrationTimeMilliSecs/2)/
+				finalRangeIntegrationTimeMilliSecs);
+
+		/* FixPoint2408 << 8 = FixPoint1616 */
+		sigmaEstRef <<= 8;
+		sigmaEstRef = (sigmaEstRef + 500)/1000;
+
+		/* FixPoint1616 * FixPoint1616 = FixPoint3232 */
+		sqr1 = sigmaEstRtn * sigmaEstRtn;
+		/* FixPoint1616 * FixPoint1616 = FixPoint3232 */
+		sqr2 = sigmaEstRef * sigmaEstRef;
+
+		/* sqrt(FixPoint3232) = FixPoint1616 */
+		sqrtResult = VL53L0X_isqrt((sqr1 + sqr2));
+		/*
+		 * Note that the Shift by 4 bits increases resolution prior to
+		 * the sqrt, therefore the result must be shifted by 2 bits to
+		 * the right to revert back to the FixPoint1616 format.
+		 */
+
+		sigmaEstimate	 = 1000 * sqrtResult;
+
+		if ((peakSignalRate_kcps < 1) || (vcselTotalEventsRtn < 1) ||
+				(sigmaEstimate > cSigmaEstMax)) {
+				sigmaEstimate = cSigmaEstMax;
+		}
+
+		*pSigmaEstimate = (uint32_t)(sigmaEstimate);
+		PALDevDataSet(Dev, SigmaEstimate, *pSigmaEstimate);
+		Status = VL53L0X_calc_dmax(
+			Dev,
+			totalSignalRate_mcps,
+			correctedSignalRate_mcps,
+			pwMult,
+			sigmaEstimateP1,
+			sigmaEstimateP2,
+			peakVcselDuration_us,
+			pDmax_mm);
+	}
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_get_pal_range_status(VL53L0X_DEV Dev,
+		uint8_t DeviceRangeStatus,
+		FixPoint1616_t SignalRate,
+		uint16_t EffectiveSpadRtnCount,
+		VL53L0X_RangingMeasurementData_t *pRangingMeasurementData,
+		uint8_t *pPalRangeStatus)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint8_t NoneFlag;
+	uint8_t SigmaLimitflag = 0;
+	uint8_t SignalRefClipflag = 0;
+	uint8_t RangeIgnoreThresholdflag = 0;
+	uint8_t SigmaLimitCheckEnable = 0;
+	uint8_t SignalRateFinalRangeLimitCheckEnable = 0;
+	uint8_t SignalRefClipLimitCheckEnable = 0;
+	uint8_t RangeIgnoreThresholdLimitCheckEnable = 0;
+	FixPoint1616_t SigmaEstimate;
+	FixPoint1616_t SigmaLimitValue;
+	FixPoint1616_t SignalRefClipValue;
+	FixPoint1616_t RangeIgnoreThresholdValue;
+	FixPoint1616_t SignalRatePerSpad;
+	uint8_t DeviceRangeStatusInternal = 0;
+	uint16_t tmpWord = 0;
+	uint8_t Temp8;
+	uint32_t Dmax_mm = 0;
+	FixPoint1616_t LastSignalRefMcps;
+
+	LOG_FUNCTION_START("");
+
+
+	/*
+	 * VL53L0X has a good ranging when the value of the
+	 * DeviceRangeStatus = 11. This function will replace the value 0 with
+	 * the value 11 in the DeviceRangeStatus.
+	 * In addition, the SigmaEstimator is not included in the VL53L0X
+	 * DeviceRangeStatus, this will be added in the PalRangeStatus.
+	 */
+
+	DeviceRangeStatusInternal = ((DeviceRangeStatus & 0x78) >> 3);
+
+	if (DeviceRangeStatusInternal == 0 ||
+		DeviceRangeStatusInternal == 5 ||
+		DeviceRangeStatusInternal == 7 ||
+		DeviceRangeStatusInternal == 12 ||
+		DeviceRangeStatusInternal == 13 ||
+		DeviceRangeStatusInternal == 14 ||
+		DeviceRangeStatusInternal == 15
+			) {
+		NoneFlag = 1;
+	} else {
+		NoneFlag = 0;
+	}
+
+	/*
+	 * Check if Sigma limit is enabled, if yes then do comparison with limit
+	 * value and put the result back into pPalRangeStatus.
+	 */
+	if (Status == VL53L0X_ERROR_NONE)
+		Status =  VL53L0X_GetLimitCheckEnable(Dev,
+			VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE,
+			&SigmaLimitCheckEnable);
+
+	if ((SigmaLimitCheckEnable != 0) && (Status == VL53L0X_ERROR_NONE)) {
+		/*
+		* compute the Sigma and check with limit
+		*/
+		Status = VL53L0X_calc_sigma_estimate(
+			Dev,
+			pRangingMeasurementData,
+			&SigmaEstimate,
+			&Dmax_mm);
+		if (Status == VL53L0X_ERROR_NONE)
+			pRangingMeasurementData->RangeDMaxMilliMeter = Dmax_mm;
+
+		if (Status == VL53L0X_ERROR_NONE) {
+			Status = VL53L0X_GetLimitCheckValue(Dev,
+				VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE,
+				&SigmaLimitValue);
+
+			if ((SigmaLimitValue > 0) &&
+				(SigmaEstimate > SigmaLimitValue))
+					/* Limit Fail */
+					SigmaLimitflag = 1;
+		}
+	}
+
+	/*
+	 * Check if Signal ref clip limit is enabled, if yes then do comparison
+	 * with limit value and put the result back into pPalRangeStatus.
+	 */
+	if (Status == VL53L0X_ERROR_NONE)
+		Status =  VL53L0X_GetLimitCheckEnable(Dev,
+				VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP,
+				&SignalRefClipLimitCheckEnable);
+
+	if ((SignalRefClipLimitCheckEnable != 0) &&
+			(Status == VL53L0X_ERROR_NONE)) {
+
+		Status = VL53L0X_GetLimitCheckValue(Dev,
+				VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP,
+				&SignalRefClipValue);
+
+		/* Read LastSignalRefMcps from device */
+		if (Status == VL53L0X_ERROR_NONE)
+			Status = VL53L0X_WrByte(Dev, 0xFF, 0x01);
+
+		if (Status == VL53L0X_ERROR_NONE)
+			Status = VL53L0X_RdWord(Dev,
+				VL53L0X_REG_RESULT_PEAK_SIGNAL_RATE_REF,
+				&tmpWord);
+
+		if (Status == VL53L0X_ERROR_NONE)
+			Status = VL53L0X_WrByte(Dev, 0xFF, 0x00);
+
+		LastSignalRefMcps = VL53L0X_FIXPOINT97TOFIXPOINT1616(tmpWord);
+		PALDevDataSet(Dev, LastSignalRefMcps, LastSignalRefMcps);
+
+		if ((SignalRefClipValue > 0) &&
+				(LastSignalRefMcps > SignalRefClipValue)) {
+			/* Limit Fail */
+			SignalRefClipflag = 1;
+		}
+	}
+
+	/*
+	 * Check if Signal ref clip limit is enabled, if yes then do comparison
+	 * with limit value and put the result back into pPalRangeStatus.
+	 * EffectiveSpadRtnCount has a format 8.8
+	 * If (Return signal rate < (1.5 x Xtalk x number of Spads)) : FAIL
+	 */
+	if (Status == VL53L0X_ERROR_NONE)
+		Status =  VL53L0X_GetLimitCheckEnable(Dev,
+				VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
+				&RangeIgnoreThresholdLimitCheckEnable);
+
+	if ((RangeIgnoreThresholdLimitCheckEnable != 0) &&
+			(Status == VL53L0X_ERROR_NONE)) {
+
+		/* Compute the signal rate per spad */
+		if (EffectiveSpadRtnCount == 0) {
+			SignalRatePerSpad = 0;
+		} else {
+			SignalRatePerSpad = (FixPoint1616_t)((256 * SignalRate)
+				/ EffectiveSpadRtnCount);
+		}
+
+		Status = VL53L0X_GetLimitCheckValue(Dev,
+				VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
+				&RangeIgnoreThresholdValue);
+
+		if ((RangeIgnoreThresholdValue > 0) &&
+			(SignalRatePerSpad < RangeIgnoreThresholdValue)) {
+			/* Limit Fail add 2^6 to range status */
+			RangeIgnoreThresholdflag = 1;
+		}
+	}
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		if (NoneFlag == 1) {
+			*pPalRangeStatus = 255;	 /* NONE */
+		} else if (DeviceRangeStatusInternal == 1 ||
+					DeviceRangeStatusInternal == 2 ||
+					DeviceRangeStatusInternal == 3) {
+			*pPalRangeStatus = 5; /* HW fail */
+		} else if (DeviceRangeStatusInternal == 6 ||
+					DeviceRangeStatusInternal == 9) {
+			*pPalRangeStatus = 4;  /* Phase fail */
+		} else if (DeviceRangeStatusInternal == 8 ||
+					DeviceRangeStatusInternal == 10 ||
+					SignalRefClipflag == 1) {
+			*pPalRangeStatus = 3;  /* Min range */
+		} else if (DeviceRangeStatusInternal == 4 ||
+					RangeIgnoreThresholdflag == 1) {
+			*pPalRangeStatus = 2;  /* Signal Fail */
+		} else if (SigmaLimitflag == 1) {
+			*pPalRangeStatus = 1;  /* Sigma	 Fail */
+		} else {
+			*pPalRangeStatus = 0; /* Range Valid */
+		}
+	}
+
+	/* DMAX only relevant during range error */
+	if (*pPalRangeStatus == 0)
+		pRangingMeasurementData->RangeDMaxMilliMeter = 0;
+
+	/* fill the Limit Check Status */
+
+	Status =  VL53L0X_GetLimitCheckEnable(Dev,
+			VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE,
+			&SignalRateFinalRangeLimitCheckEnable);
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		if ((SigmaLimitCheckEnable == 0) || (SigmaLimitflag == 1))
+			Temp8 = 1;
+		else
+			Temp8 = 0;
+		VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksStatus,
+				VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE, Temp8);
+
+		if ((DeviceRangeStatusInternal == 4) ||
+				(SignalRateFinalRangeLimitCheckEnable == 0))
+			Temp8 = 1;
+		else
+			Temp8 = 0;
+		VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksStatus,
+				VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE,
+				Temp8);
+
+		if ((SignalRefClipLimitCheckEnable == 0) ||
+					(SignalRefClipflag == 1))
+			Temp8 = 1;
+		else
+			Temp8 = 0;
+
+		VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksStatus,
+				VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP, Temp8);
+
+		if ((RangeIgnoreThresholdLimitCheckEnable == 0) ||
+				(RangeIgnoreThresholdflag == 1))
+			Temp8 = 1;
+		else
+			Temp8 = 0;
+
+		VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksStatus,
+				VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
+				Temp8);
+	}
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetRangingMeasurementData(VL53L0X_DEV Dev,
+	VL53L0X_RangingMeasurementData_t *pRangingMeasurementData)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint8_t DeviceRangeStatus;
+	uint8_t RangeFractionalEnable;
+	uint8_t PalRangeStatus;
+	uint8_t XTalkCompensationEnable;
+	uint16_t AmbientRate;
+	FixPoint1616_t SignalRate;
+	uint16_t XTalkCompensationRateMegaCps;
+	uint16_t EffectiveSpadRtnCount;
+	uint16_t tmpuint16;
+	uint16_t XtalkRangeMilliMeter;
+	uint16_t LinearityCorrectiveGain;
+	uint8_t localBuffer[12];
+	VL53L0X_RangingMeasurementData_t LastRangeDataBuffer;
+
+	LOG_FUNCTION_START("");
+
+	/*
+	 * use multi read even if some registers are not useful, result will
+	 * be more efficient
+	 * start reading at 0x14 dec20
+	 * end reading at 0x21 dec33 total 14 bytes to read
+	 */
+	Status = VL53L0X_ReadMulti(Dev, 0x14, localBuffer, 12);
+
+	if (Status == VL53L0X_ERROR_NONE) {
+
+		pRangingMeasurementData->ZoneId = 0; /* Only one zone */
+		pRangingMeasurementData->TimeStamp = 0; /* Not Implemented */
+
+		tmpuint16 = VL53L0X_MAKEUINT16(localBuffer[11], localBuffer[10]);
+		/* cut1.1 if SYSTEM__RANGE_CONFIG if 1 range is 2bits fractional
+		 *(format 11.2) else no fractional
+		 */
+
+		pRangingMeasurementData->MeasurementTimeUsec = 0;
+
+		SignalRate = VL53L0X_FIXPOINT97TOFIXPOINT1616(
+			VL53L0X_MAKEUINT16(localBuffer[7], localBuffer[6]));
+		/* peak_signal_count_rate_rtn_mcps */
+		pRangingMeasurementData->SignalRateRtnMegaCps = SignalRate;
+
+		AmbientRate = VL53L0X_MAKEUINT16(localBuffer[9], localBuffer[8]);
+		pRangingMeasurementData->AmbientRateRtnMegaCps =
+			VL53L0X_FIXPOINT97TOFIXPOINT1616(AmbientRate);
+
+		EffectiveSpadRtnCount = VL53L0X_MAKEUINT16(localBuffer[3],
+			localBuffer[2]);
+		/* EffectiveSpadRtnCount is 8.8 format */
+		pRangingMeasurementData->EffectiveSpadRtnCount =
+			EffectiveSpadRtnCount;
+
+		DeviceRangeStatus = localBuffer[0];
+
+		/* Get Linearity Corrective Gain */
+		LinearityCorrectiveGain = PALDevDataGet(Dev,
+			LinearityCorrectiveGain);
+
+		/* Get ranging configuration */
+		RangeFractionalEnable = PALDevDataGet(Dev,
+			RangeFractionalEnable);
+
+		if (LinearityCorrectiveGain != 1000) {
+
+			tmpuint16 = (uint16_t)((LinearityCorrectiveGain
+				* tmpuint16 + 500) / 1000);
+
+			/* Implement Xtalk */
+			VL53L0X_GETPARAMETERFIELD(Dev,
+				XTalkCompensationRateMegaCps,
+				XTalkCompensationRateMegaCps);
+			VL53L0X_GETPARAMETERFIELD(Dev, XTalkCompensationEnable,
+				XTalkCompensationEnable);
+
+			if (XTalkCompensationEnable) {
+
+				if ((SignalRate
+					- ((XTalkCompensationRateMegaCps
+					* EffectiveSpadRtnCount) >> 8))
+					<= 0) {
+					if (RangeFractionalEnable)
+						XtalkRangeMilliMeter = 8888;
+					else
+						XtalkRangeMilliMeter = 8888
+							<< 2;
+				} else {
+					XtalkRangeMilliMeter =
+					(tmpuint16 * SignalRate)
+						/ (SignalRate
+						- ((XTalkCompensationRateMegaCps
+						* EffectiveSpadRtnCount)
+						>> 8));
+				}
+
+				tmpuint16 = XtalkRangeMilliMeter;
+			}
+
+		}
+
+		if (RangeFractionalEnable) {
+			pRangingMeasurementData->RangeMilliMeter =
+				(uint16_t)((tmpuint16) >> 2);
+			pRangingMeasurementData->RangeFractionalPart =
+				(uint8_t)((tmpuint16 & 0x03) << 6);
+		} else {
+			pRangingMeasurementData->RangeMilliMeter = tmpuint16;
+			pRangingMeasurementData->RangeFractionalPart = 0;
+		}
+
+		/*
+		 * For a standard definition of RangeStatus, this should
+		 * return 0 in case of good result after a ranging
+		 * The range status depends on the device so call a device
+		 * specific function to obtain the right Status.
+		 */
+		Status |= VL53L0X_get_pal_range_status(Dev, DeviceRangeStatus,
+			SignalRate, EffectiveSpadRtnCount,
+			pRangingMeasurementData, &PalRangeStatus);
+
+		if (Status == VL53L0X_ERROR_NONE)
+			pRangingMeasurementData->RangeStatus = PalRangeStatus;
+
+	}
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		/* Copy last read data into Dev buffer */
+		LastRangeDataBuffer = PALDevDataGet(Dev, LastRangeMeasure);
+
+		LastRangeDataBuffer.RangeMilliMeter =
+			pRangingMeasurementData->RangeMilliMeter;
+		LastRangeDataBuffer.RangeFractionalPart =
+			pRangingMeasurementData->RangeFractionalPart;
+		LastRangeDataBuffer.RangeDMaxMilliMeter =
+			pRangingMeasurementData->RangeDMaxMilliMeter;
+		LastRangeDataBuffer.MeasurementTimeUsec =
+			pRangingMeasurementData->MeasurementTimeUsec;
+		LastRangeDataBuffer.SignalRateRtnMegaCps =
+			pRangingMeasurementData->SignalRateRtnMegaCps;
+		LastRangeDataBuffer.AmbientRateRtnMegaCps =
+			pRangingMeasurementData->AmbientRateRtnMegaCps;
+		LastRangeDataBuffer.EffectiveSpadRtnCount =
+			pRangingMeasurementData->EffectiveSpadRtnCount;
+		LastRangeDataBuffer.RangeStatus =
+			pRangingMeasurementData->RangeStatus;
+
+		PALDevDataSet(Dev, LastRangeMeasure, LastRangeDataBuffer);
+	}
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_PerformSingleRangingMeasurement(VL53L0X_DEV Dev,
+	VL53L0X_RangingMeasurementData_t *pRangingMeasurementData)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+
+	LOG_FUNCTION_START("");
+
+	/* This function will do a complete single ranging
+	 * Here we fix the mode! */
+	Status = VL53L0X_SetDeviceMode(Dev, VL53L0X_DEVICEMODE_SINGLE_RANGING);
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_PerformSingleMeasurement(Dev);
+
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_GetRangingMeasurementData(Dev,
+			pRangingMeasurementData);
+
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_ClearInterruptMask(Dev, 0);
+
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::perform_ref_signal_measurement(VL53L0X_DEV Dev,
+		uint16_t *refSignalRate)
+{
+	VL53L0X_Error status = VL53L0X_ERROR_NONE;
+	VL53L0X_RangingMeasurementData_t rangingMeasurementData;
+
+	uint8_t SequenceConfig = 0;
+
+	/* store the value of the sequence config,
+	 * this will be reset before the end of the function
+	 */
+
+	SequenceConfig = PALDevDataGet(Dev, SequenceConfig);
+
+	/*
+	 * This function performs a reference signal rate measurement.
+	 */
+	if (status == VL53L0X_ERROR_NONE)
+		status = VL53L0X_WrByte(Dev,
+			VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, 0xC0);
+
+	if (status == VL53L0X_ERROR_NONE)
+		status = VL53L0X_PerformSingleRangingMeasurement(Dev,
+				&rangingMeasurementData);
+
+	if (status == VL53L0X_ERROR_NONE)
+		status = VL53L0X_WrByte(Dev, 0xFF, 0x01);
+
+	if (status == VL53L0X_ERROR_NONE)
+		status = VL53L0X_RdWord(Dev,
+			VL53L0X_REG_RESULT_PEAK_SIGNAL_RATE_REF,
+			refSignalRate);
+
+	if (status == VL53L0X_ERROR_NONE)
+		status = VL53L0X_WrByte(Dev, 0xFF, 0x00);
+
+	if (status == VL53L0X_ERROR_NONE) {
+		/* restore the previous Sequence Config */
+		status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
+				SequenceConfig);
+		if (status == VL53L0X_ERROR_NONE)
+			PALDevDataSet(Dev, SequenceConfig, SequenceConfig);
+	}
+
+	return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_perform_ref_spad_management(VL53L0X_DEV Dev,
+				uint32_t *refSpadCount,
+				uint8_t *isApertureSpads)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint8_t lastSpadArray[6];
+	uint8_t startSelect = 0xB4;
+	uint32_t minimumSpadCount = 3;
+	uint32_t maxSpadCount = 44;
+	uint32_t currentSpadIndex = 0;
+	uint32_t lastSpadIndex = 0;
+	int32_t nextGoodSpad = 0;
+	uint16_t targetRefRate = 0x0A00; /* 20 MCPS in 9:7 format */
+	uint16_t peakSignalRateRef;
+	uint32_t needAptSpads = 0;
+	uint32_t index = 0;
+	uint32_t spadArraySize = 6;
+	uint32_t signalRateDiff = 0;
+	uint32_t lastSignalRateDiff = 0;
+	uint8_t complete = 0;
+	uint8_t VhvSettings = 0;
+	uint8_t PhaseCal = 0;
+	uint32_t refSpadCount_int = 0;
+	uint8_t	 isApertureSpads_int = 0;
+
+	/*
+	 * The reference SPAD initialization procedure determines the minimum
+	 * amount of reference spads to be enables to achieve a target reference
+	 * signal rate and should be performed once during initialization.
+	 *
+	 * Either aperture or non-aperture spads are applied but never both.
+	 * Firstly non-aperture spads are set, begining with 5 spads, and
+	 * increased one spad at a time until the closest measurement to the
+	 * target rate is achieved.
+	 *
+	 * If the target rate is exceeded when 5 non-aperture spads are enabled,
+	 * initialization is performed instead with aperture spads.
+	 *
+	 * When setting spads, a 'Good Spad Map' is applied.
+	 *
+	 * This procedure operates within a SPAD window of interest of a maximum
+	 * 44 spads.
+	 * The start point is currently fixed to 180, which lies towards the end
+	 * of the non-aperture quadrant and runs in to the adjacent aperture
+	 * quadrant.
+	 */
+
+
+	targetRefRate = PALDevDataGet(Dev, targetRefRate);
+
+	/*
+	 * Initialize Spad arrays.
+	 * Currently the good spad map is initialised to 'All good'.
+	 * This is a short term implementation. The good spad map will be
+	 * provided as an input.
+	 * Note that there are 6 bytes. Only the first 44 bits will be used to
+	 * represent spads.
+	 */
+	for (index = 0; index < spadArraySize; index++)
+		Dev->Data.SpadData.RefSpadEnables[index] = 0;
+
+
+	Status = VL53L0X_WrByte(Dev, 0xFF, 0x01);
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_WrByte(Dev,
+			VL53L0X_REG_DYNAMIC_SPAD_REF_EN_START_OFFSET, 0x00);
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_WrByte(Dev,
+			VL53L0X_REG_DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD, 0x2C);
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_WrByte(Dev, 0xFF, 0x00);
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_WrByte(Dev,
+			VL53L0X_REG_GLOBAL_CONFIG_REF_EN_START_SELECT,
+			startSelect);
+
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_WrByte(Dev,
+				VL53L0X_REG_POWER_MANAGEMENT_GO1_POWER_FORCE, 0);
+
+	/* Perform ref calibration */
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_perform_ref_calibration(Dev, &VhvSettings,
+			&PhaseCal, 0);
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		/* Enable Minimum NON-APERTURE Spads */
+		currentSpadIndex = 0;
+		lastSpadIndex = currentSpadIndex;
+		needAptSpads = 0;
+		Status = enable_ref_spads(Dev,
+					needAptSpads,
+					Dev->Data.SpadData.RefGoodSpadMap,
+					Dev->Data.SpadData.RefSpadEnables,
+					spadArraySize,
+					startSelect,
+					currentSpadIndex,
+					minimumSpadCount,
+					&lastSpadIndex);
+	}
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		currentSpadIndex = lastSpadIndex;
+
+		Status = perform_ref_signal_measurement(Dev,
+			&peakSignalRateRef);
+		if ((Status == VL53L0X_ERROR_NONE) &&
+			(peakSignalRateRef > targetRefRate)) {
+			/* Signal rate measurement too high,
+			 * switch to APERTURE SPADs */
+
+			for (index = 0; index < spadArraySize; index++)
+				Dev->Data.SpadData.RefSpadEnables[index] = 0;
+
+
+			/* Increment to the first APERTURE spad */
+			while ((is_aperture(startSelect + currentSpadIndex)
+				== 0) && (currentSpadIndex < maxSpadCount)) {
+				currentSpadIndex++;
+			}
+
+			needAptSpads = 1;
+
+			Status = enable_ref_spads(Dev,
+					needAptSpads,
+					Dev->Data.SpadData.RefGoodSpadMap,
+					Dev->Data.SpadData.RefSpadEnables,
+					spadArraySize,
+					startSelect,
+					currentSpadIndex,
+					minimumSpadCount,
+					&lastSpadIndex);
+
+			if (Status == VL53L0X_ERROR_NONE) {
+				currentSpadIndex = lastSpadIndex;
+				Status = perform_ref_signal_measurement(Dev,
+						&peakSignalRateRef);
+
+				if ((Status == VL53L0X_ERROR_NONE) &&
+					(peakSignalRateRef > targetRefRate)) {
+					/* Signal rate still too high after
+					 * setting the minimum number of
+					 * APERTURE spads. Can do no more
+					 * therefore set the min number of
+					 * aperture spads as the result.
+					 */
+					isApertureSpads_int = 1;
+					refSpadCount_int = minimumSpadCount;
+				}
+			}
+		} else {
+			needAptSpads = 0;
+		}
+	}
+
+	if ((Status == VL53L0X_ERROR_NONE) &&
+		(peakSignalRateRef < targetRefRate)) {
+		/* At this point, the minimum number of either aperture
+		 * or non-aperture spads have been set. Proceed to add
+		 * spads and perform measurements until the target
+		 * reference is reached.
+		 */
+		isApertureSpads_int = needAptSpads;
+		refSpadCount_int	= minimumSpadCount;
+
+		memcpy(lastSpadArray, Dev->Data.SpadData.RefSpadEnables,
+				spadArraySize);
+		lastSignalRateDiff = abs(peakSignalRateRef -
+			targetRefRate);
+		complete = 0;
+
+		while (!complete) {
+			get_next_good_spad(
+				Dev->Data.SpadData.RefGoodSpadMap,
+				spadArraySize, currentSpadIndex,
+				&nextGoodSpad);
+
+			if (nextGoodSpad == -1) {
+				Status = VL53L0X_ERROR_REF_SPAD_INIT;
+				break;
+			}
+
+			/* Cannot combine Aperture and Non-Aperture spads, so
+			 * ensure the current spad is of the correct type.
+			 */
+			if (is_aperture((uint32_t)startSelect + nextGoodSpad) !=
+					needAptSpads) {
+				/* At this point we have enabled the maximum
+				 * number of Aperture spads.
+				 */
+				complete = 1;
+				break;
+			}
+
+			(refSpadCount_int)++;
+
+			currentSpadIndex = nextGoodSpad;
+			Status = enable_spad_bit(
+					Dev->Data.SpadData.RefSpadEnables,
+					spadArraySize, currentSpadIndex);
+
+			if (Status == VL53L0X_ERROR_NONE) {
+				currentSpadIndex++;
+				/* Proceed to apply the additional spad and
+				 * perform measurement. */
+				Status = set_ref_spad_map(Dev,
+					Dev->Data.SpadData.RefSpadEnables);
+			}
+
+			if (Status != VL53L0X_ERROR_NONE)
+				break;
+
+			Status = perform_ref_signal_measurement(Dev,
+					&peakSignalRateRef);
+
+			if (Status != VL53L0X_ERROR_NONE)
+				break;
+
+			signalRateDiff = abs(peakSignalRateRef - targetRefRate);
+
+			if (peakSignalRateRef > targetRefRate) {
+				/* Select the spad map that provides the
+				 * measurement closest to the target rate,
+				 * either above or below it.
+				 */
+				if (signalRateDiff > lastSignalRateDiff) {
+					/* Previous spad map produced a closer
+					 * measurement, so choose this. */
+					Status = set_ref_spad_map(Dev,
+							lastSpadArray);
+					memcpy(
+					Dev->Data.SpadData.RefSpadEnables,
+					lastSpadArray, spadArraySize);
+
+					(refSpadCount_int)--;
+				}
+				complete = 1;
+			} else {
+				/* Continue to add spads */
+				lastSignalRateDiff = signalRateDiff;
+				memcpy(lastSpadArray,
+					Dev->Data.SpadData.RefSpadEnables,
+					spadArraySize);
+			}
+
+		} /* while */
+	}
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		*refSpadCount = refSpadCount_int;
+		*isApertureSpads = isApertureSpads_int;
+
+		VL53L0X_SETDEVICESPECIFICPARAMETER(Dev, RefSpadsInitialised, 1);
+		VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
+			ReferenceSpadCount, (uint8_t)(*refSpadCount));
+		VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
+			ReferenceSpadType, *isApertureSpads);
+	}
+
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_set_reference_spads(VL53L0X_DEV Dev,
+				 uint32_t count, uint8_t isApertureSpads)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint32_t currentSpadIndex = 0;
+	uint8_t startSelect = 0xB4;
+	uint32_t spadArraySize = 6;
+	uint32_t maxSpadCount = 44;
+	uint32_t lastSpadIndex;
+	uint32_t index;
+
+	/*
+	 * This function applies a requested number of reference spads, either
+	 * aperture or
+	 * non-aperture, as requested.
+	 * The good spad map will be applied.
+	 */
+
+	Status = VL53L0X_WrByte(Dev, 0xFF, 0x01);
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_WrByte(Dev,
+			VL53L0X_REG_DYNAMIC_SPAD_REF_EN_START_OFFSET, 0x00);
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_WrByte(Dev,
+			VL53L0X_REG_DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD, 0x2C);
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_WrByte(Dev, 0xFF, 0x00);
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_WrByte(Dev,
+			VL53L0X_REG_GLOBAL_CONFIG_REF_EN_START_SELECT,
+			startSelect);
+
+	for (index = 0; index < spadArraySize; index++)
+		Dev->Data.SpadData.RefSpadEnables[index] = 0;
+
+	if (isApertureSpads) {
+		/* Increment to the first APERTURE spad */
+		while ((is_aperture(startSelect + currentSpadIndex) == 0) &&
+			  (currentSpadIndex < maxSpadCount)) {
+			currentSpadIndex++;
+		}
+	}
+	Status = enable_ref_spads(Dev,
+				isApertureSpads,
+				Dev->Data.SpadData.RefGoodSpadMap,
+				Dev->Data.SpadData.RefSpadEnables,
+				spadArraySize,
+				startSelect,
+				currentSpadIndex,
+				count,
+				&lastSpadIndex);
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		VL53L0X_SETDEVICESPECIFICPARAMETER(Dev, RefSpadsInitialised, 1);
+		VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
+			ReferenceSpadCount, (uint8_t)(count));
+		VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
+			ReferenceSpadType, isApertureSpads);
+	}
+
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_WaitDeviceBooted(VL53L0X_DEV Dev)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NOT_IMPLEMENTED;
+	LOG_FUNCTION_START("");
+
+	/* not implemented on VL53L0X */
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_PerformRefCalibration(VL53L0X_DEV Dev, uint8_t *pVhvSettings,
+	uint8_t *pPhaseCal)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	LOG_FUNCTION_START("");
+
+	Status = VL53L0X_perform_ref_calibration(Dev, pVhvSettings,
+		pPhaseCal, 1);
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_PerformRefSpadManagement(VL53L0X_DEV Dev,
+	uint32_t *refSpadCount, uint8_t *isApertureSpads)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	LOG_FUNCTION_START("");
+
+	Status = VL53L0X_perform_ref_spad_management(Dev, refSpadCount,
+		isApertureSpads);
+
+	LOG_FUNCTION_END(Status);
+
+	return Status;
+}
+
+/* Group PAL Init Functions */
+VL53L0X_Error VL53L0X::VL53L0X_SetDeviceAddress(VL53L0X_DEV Dev, uint8_t DeviceAddress)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	LOG_FUNCTION_START("");
+
+	Status = VL53L0X_WrByte(Dev, VL53L0X_REG_I2C_SLAVE_DEVICE_ADDRESS,
+		DeviceAddress / 2);
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_SetGpioConfig(VL53L0X_DEV Dev, uint8_t Pin,
+	VL53L0X_DeviceModes DeviceMode, VL53L0X_GpioFunctionality Functionality,
+	VL53L0X_InterruptPolarity Polarity)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint8_t data;
+
+	LOG_FUNCTION_START("");
+
+	if (Pin != 0) {
+		Status = VL53L0X_ERROR_GPIO_NOT_EXISTING;
+	} else if (DeviceMode == VL53L0X_DEVICEMODE_GPIO_DRIVE) {
+		if (Polarity == VL53L0X_INTERRUPTPOLARITY_LOW)
+			data = 0x10;
+		else
+			data = 1;
+
+		Status = VL53L0X_WrByte(Dev,
+		VL53L0X_REG_GPIO_HV_MUX_ACTIVE_HIGH, data);
+
+	} else if (DeviceMode == VL53L0X_DEVICEMODE_GPIO_OSC) {
+
+		Status |= VL53L0X_WrByte(Dev, 0xff, 0x01);
+		Status |= VL53L0X_WrByte(Dev, 0x00, 0x00);
+
+		Status |= VL53L0X_WrByte(Dev, 0xff, 0x00);
+		Status |= VL53L0X_WrByte(Dev, 0x80, 0x01);
+		Status |= VL53L0X_WrByte(Dev, 0x85, 0x02);
+
+		Status |= VL53L0X_WrByte(Dev, 0xff, 0x04);
+		Status |= VL53L0X_WrByte(Dev, 0xcd, 0x00);
+		Status |= VL53L0X_WrByte(Dev, 0xcc, 0x11);
+
+		Status |= VL53L0X_WrByte(Dev, 0xff, 0x07);
+		Status |= VL53L0X_WrByte(Dev, 0xbe, 0x00);
+
+		Status |= VL53L0X_WrByte(Dev, 0xff, 0x06);
+		Status |= VL53L0X_WrByte(Dev, 0xcc, 0x09);
+
+		Status |= VL53L0X_WrByte(Dev, 0xff, 0x00);
+		Status |= VL53L0X_WrByte(Dev, 0xff, 0x01);
+		Status |= VL53L0X_WrByte(Dev, 0x00, 0x00);
+
+	} else {
+
+		if (Status == VL53L0X_ERROR_NONE) {
+			switch (Functionality) {
+			case VL53L0X_GPIOFUNCTIONALITY_OFF:
+				data = 0x00;
+				break;
+			case VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_LOW:
+				data = 0x01;
+				break;
+			case VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_HIGH:
+				data = 0x02;
+				break;
+			case VL53L0X_GPIOFUNCTIONALITY_THRESHOLD_CROSSED_OUT:
+				data = 0x03;
+				break;
+			case VL53L0X_GPIOFUNCTIONALITY_NEW_MEASURE_READY:
+				data = 0x04;
+				break;
+			default:
+				Status =
+				VL53L0X_ERROR_GPIO_FUNCTIONALITY_NOT_SUPPORTED;
+			}
+		}
+
+		if (Status == VL53L0X_ERROR_NONE)
+			Status = VL53L0X_WrByte(Dev,
+			VL53L0X_REG_SYSTEM_INTERRUPT_CONFIG_GPIO, data);
+
+		if (Status == VL53L0X_ERROR_NONE) {
+			if (Polarity == VL53L0X_INTERRUPTPOLARITY_LOW)
+				data = 0;
+			else
+				data = (uint8_t)(1 << 4);
+
+			Status = VL53L0X_UpdateByte(Dev,
+			VL53L0X_REG_GPIO_HV_MUX_ACTIVE_HIGH, 0xEF, data);
+		}
+
+		if (Status == VL53L0X_ERROR_NONE)
+			VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
+				Pin0GpioFunctionality, Functionality);
+
+		if (Status == VL53L0X_ERROR_NONE)
+			Status = VL53L0X_ClearInterruptMask(Dev, 0);
+
+	}
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetFractionEnable(VL53L0X_DEV Dev, uint8_t *pEnabled)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	LOG_FUNCTION_START("");
+
+	Status = VL53L0X_RdByte(Dev, VL53L0X_REG_SYSTEM_RANGE_CONFIG, pEnabled);
+
+	if (Status == VL53L0X_ERROR_NONE)
+		*pEnabled = (*pEnabled & 1);
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+uint16_t VL53L0X::VL53L0X_encode_timeout(uint32_t timeout_macro_clks)
+{
+	/*!
+	 * Encode timeout in macro periods in (LSByte * 2^MSByte) + 1 format
+	 */
+
+	uint16_t encoded_timeout = 0;
+	uint32_t ls_byte = 0;
+	uint16_t ms_byte = 0;
+
+	if (timeout_macro_clks > 0) {
+		ls_byte = timeout_macro_clks - 1;
+
+		while ((ls_byte & 0xFFFFFF00) > 0) {
+			ls_byte = ls_byte >> 1;
+			ms_byte++;
+		}
+
+		encoded_timeout = (ms_byte << 8)
+				+ (uint16_t) (ls_byte & 0x000000FF);
+	}
+
+	return encoded_timeout;
+
+}
+
+VL53L0X_Error VL53L0X::set_sequence_step_timeout(VL53L0X_DEV Dev,
+					VL53L0X_SequenceStepId SequenceStepId,
+					uint32_t TimeOutMicroSecs)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint8_t CurrentVCSELPulsePeriodPClk;
+	uint8_t MsrcEncodedTimeOut;
+	uint16_t PreRangeEncodedTimeOut;
+	uint16_t PreRangeTimeOutMClks;
+	uint16_t MsrcRangeTimeOutMClks;
+	uint32_t FinalRangeTimeOutMClks;
+	uint16_t FinalRangeEncodedTimeOut;
+	VL53L0X_SchedulerSequenceSteps_t SchedulerSequenceSteps;
+
+	if ((SequenceStepId == VL53L0X_SEQUENCESTEP_TCC)	 ||
+		(SequenceStepId == VL53L0X_SEQUENCESTEP_DSS)	 ||
+		(SequenceStepId == VL53L0X_SEQUENCESTEP_MSRC)) {
+
+		Status = VL53L0X_GetVcselPulsePeriod(Dev,
+					VL53L0X_VCSEL_PERIOD_PRE_RANGE,
+					&CurrentVCSELPulsePeriodPClk);
+
+		if (Status == VL53L0X_ERROR_NONE) {
+			MsrcRangeTimeOutMClks = VL53L0X_calc_timeout_mclks(Dev,
+					TimeOutMicroSecs,
+					(uint8_t)CurrentVCSELPulsePeriodPClk);
+
+			if (MsrcRangeTimeOutMClks > 256)
+				MsrcEncodedTimeOut = 255;
+			else
+				MsrcEncodedTimeOut =
+					(uint8_t)MsrcRangeTimeOutMClks - 1;
+
+			VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
+				LastEncodedTimeout,
+				MsrcEncodedTimeOut);
+		}
+
+		if (Status == VL53L0X_ERROR_NONE) {
+			Status = VL53L0X_WrByte(Dev,
+				VL53L0X_REG_MSRC_CONFIG_TIMEOUT_MACROP,
+				MsrcEncodedTimeOut);
+		}
+	} else {
+
+		if (SequenceStepId == VL53L0X_SEQUENCESTEP_PRE_RANGE) {
+
+			if (Status == VL53L0X_ERROR_NONE) {
+				Status = VL53L0X_GetVcselPulsePeriod(Dev,
+						VL53L0X_VCSEL_PERIOD_PRE_RANGE,
+						&CurrentVCSELPulsePeriodPClk);
+				PreRangeTimeOutMClks =
+					VL53L0X_calc_timeout_mclks(Dev,
+					TimeOutMicroSecs,
+					(uint8_t)CurrentVCSELPulsePeriodPClk);
+				PreRangeEncodedTimeOut = VL53L0X_encode_timeout(
+					PreRangeTimeOutMClks);
+
+				VL53L0X_SETDEVICESPECIFICPARAMETER(Dev,
+					LastEncodedTimeout,
+					PreRangeEncodedTimeOut);
+			}
+
+			if (Status == VL53L0X_ERROR_NONE) {
+				Status = VL53L0X_WrWord(Dev,
+				VL53L0X_REG_PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
+				PreRangeEncodedTimeOut);
+			}
+
+			if (Status == VL53L0X_ERROR_NONE) {
+				VL53L0X_SETDEVICESPECIFICPARAMETER(
+					Dev,
+					PreRangeTimeoutMicroSecs,
+					TimeOutMicroSecs);
+			}
+		} else if (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE) {
+
+			/* For the final range timeout, the pre-range timeout
+			 * must be added. To do this both final and pre-range
+			 * timeouts must be expressed in macro periods MClks
+			 * because they have different vcsel periods.
+			 */
+
+			VL53L0X_GetSequenceStepEnables(Dev,
+					&SchedulerSequenceSteps);
+			PreRangeTimeOutMClks = 0;
+			if (SchedulerSequenceSteps.PreRangeOn) {
+
+				/* Retrieve PRE-RANGE VCSEL Period */
+				Status = VL53L0X_GetVcselPulsePeriod(Dev,
+					VL53L0X_VCSEL_PERIOD_PRE_RANGE,
+					&CurrentVCSELPulsePeriodPClk);
+
+				/* Retrieve PRE-RANGE Timeout in Macro periods
+				 * (MCLKS) */
+				if (Status == VL53L0X_ERROR_NONE) {
+					Status = VL53L0X_RdWord(Dev, 0x51,
+						&PreRangeEncodedTimeOut);
+					PreRangeTimeOutMClks =
+						VL53L0X_decode_timeout(
+							PreRangeEncodedTimeOut);
+				}
+			}
+
+			/* Calculate FINAL RANGE Timeout in Macro Periods
+			 * (MCLKS) and add PRE-RANGE value
+			 */
+			if (Status == VL53L0X_ERROR_NONE) {
+
+				Status = VL53L0X_GetVcselPulsePeriod(Dev,
+						VL53L0X_VCSEL_PERIOD_FINAL_RANGE,
+						&CurrentVCSELPulsePeriodPClk);
+			}
+			if (Status == VL53L0X_ERROR_NONE) {
+
+				FinalRangeTimeOutMClks =
+					VL53L0X_calc_timeout_mclks(Dev,
+					TimeOutMicroSecs,
+					(uint8_t) CurrentVCSELPulsePeriodPClk);
+
+				FinalRangeTimeOutMClks += PreRangeTimeOutMClks;
+
+				FinalRangeEncodedTimeOut =
+				VL53L0X_encode_timeout(FinalRangeTimeOutMClks);
+
+				if (Status == VL53L0X_ERROR_NONE) {
+					Status = VL53L0X_WrWord(Dev, 0x71,
+					FinalRangeEncodedTimeOut);
+				}
+
+				if (Status == VL53L0X_ERROR_NONE) {
+					VL53L0X_SETDEVICESPECIFICPARAMETER(
+						Dev,
+						FinalRangeTimeoutMicroSecs,
+						TimeOutMicroSecs);
+				}
+			}
+		} else
+			Status = VL53L0X_ERROR_INVALID_PARAMS;
+
+	}
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_set_measurement_timing_budget_micro_seconds(VL53L0X_DEV Dev,
+		uint32_t MeasurementTimingBudgetMicroSeconds)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint32_t FinalRangeTimingBudgetMicroSeconds;
+	VL53L0X_SchedulerSequenceSteps_t SchedulerSequenceSteps;
+	uint32_t MsrcDccTccTimeoutMicroSeconds	= 2000;
+	uint32_t StartOverheadMicroSeconds		= 1910;
+	uint32_t EndOverheadMicroSeconds		= 960;
+	uint32_t MsrcOverheadMicroSeconds		= 660;
+	uint32_t TccOverheadMicroSeconds		= 590;
+	uint32_t DssOverheadMicroSeconds		= 690;
+	uint32_t PreRangeOverheadMicroSeconds	= 660;
+	uint32_t FinalRangeOverheadMicroSeconds = 550;
+	uint32_t PreRangeTimeoutMicroSeconds	= 0;
+	uint32_t cMinTimingBudgetMicroSeconds	= 20000;
+	uint32_t SubTimeout = 0;
+
+	LOG_FUNCTION_START("");
+
+	if (MeasurementTimingBudgetMicroSeconds
+			< cMinTimingBudgetMicroSeconds) {
+		Status = VL53L0X_ERROR_INVALID_PARAMS;
+		return Status;
+	}
+
+	FinalRangeTimingBudgetMicroSeconds =
+		MeasurementTimingBudgetMicroSeconds -
+		(StartOverheadMicroSeconds + EndOverheadMicroSeconds);
+
+	Status = VL53L0X_GetSequenceStepEnables(Dev, &SchedulerSequenceSteps);
+
+	if (Status == VL53L0X_ERROR_NONE &&
+		(SchedulerSequenceSteps.TccOn  ||
+		SchedulerSequenceSteps.MsrcOn ||
+		SchedulerSequenceSteps.DssOn)) {
+
+		/* TCC, MSRC and DSS all share the same timeout */
+		Status = get_sequence_step_timeout(Dev,
+					VL53L0X_SEQUENCESTEP_MSRC,
+					&MsrcDccTccTimeoutMicroSeconds);
+
+		/* Subtract the TCC, MSRC and DSS timeouts if they are
+		 * enabled. */
+
+		if (Status != VL53L0X_ERROR_NONE)
+			return Status;
+
+		/* TCC */
+		if (SchedulerSequenceSteps.TccOn) {
+
+			SubTimeout = MsrcDccTccTimeoutMicroSeconds
+				+ TccOverheadMicroSeconds;
+
+			if (SubTimeout <
+				FinalRangeTimingBudgetMicroSeconds) {
+				FinalRangeTimingBudgetMicroSeconds -=
+							SubTimeout;
+			} else {
+				/* Requested timeout too big. */
+				Status = VL53L0X_ERROR_INVALID_PARAMS;
+			}
+		}
+
+		if (Status != VL53L0X_ERROR_NONE) {
+			LOG_FUNCTION_END(Status);
+			return Status;
+		}
+
+		/* DSS */
+		if (SchedulerSequenceSteps.DssOn) {
+
+			SubTimeout = 2 * (MsrcDccTccTimeoutMicroSeconds +
+				DssOverheadMicroSeconds);
+
+			if (SubTimeout < FinalRangeTimingBudgetMicroSeconds) {
+				FinalRangeTimingBudgetMicroSeconds
+							-= SubTimeout;
+			} else {
+				/* Requested timeout too big. */
+				Status = VL53L0X_ERROR_INVALID_PARAMS;
+			}
+		} else if (SchedulerSequenceSteps.MsrcOn) {
+			/* MSRC */
+			SubTimeout = MsrcDccTccTimeoutMicroSeconds +
+						MsrcOverheadMicroSeconds;
+
+			if (SubTimeout < FinalRangeTimingBudgetMicroSeconds) {
+				FinalRangeTimingBudgetMicroSeconds
+							-= SubTimeout;
+			} else {
+				/* Requested timeout too big. */
+				Status = VL53L0X_ERROR_INVALID_PARAMS;
+			}
+		}
+
+	}
+
+	if (Status != VL53L0X_ERROR_NONE) {
+		LOG_FUNCTION_END(Status);
+		return Status;
+	}
+
+	if (SchedulerSequenceSteps.PreRangeOn) {
+
+		/* Subtract the Pre-range timeout if enabled. */
+
+		Status = get_sequence_step_timeout(Dev,
+				VL53L0X_SEQUENCESTEP_PRE_RANGE,
+				&PreRangeTimeoutMicroSeconds);
+
+		SubTimeout = PreRangeTimeoutMicroSeconds +
+				PreRangeOverheadMicroSeconds;
+
+		if (SubTimeout < FinalRangeTimingBudgetMicroSeconds) {
+			FinalRangeTimingBudgetMicroSeconds -= SubTimeout;
+		} else {
+			/* Requested timeout too big. */
+			Status = VL53L0X_ERROR_INVALID_PARAMS;
+		}
+	}
+
+
+	if (Status == VL53L0X_ERROR_NONE &&
+		SchedulerSequenceSteps.FinalRangeOn) {
+
+		FinalRangeTimingBudgetMicroSeconds -=
+				FinalRangeOverheadMicroSeconds;
+
+		/* Final Range Timeout
+		 * Note that the final range timeout is determined by the timing
+		 * budget and the sum of all other timeouts within the sequence.
+		 * If there is no room for the final range timeout, then an error
+		 * will be set. Otherwise the remaining time will be applied to
+		 * the final range.
+		 */
+		Status = set_sequence_step_timeout(Dev,
+			VL53L0X_SEQUENCESTEP_FINAL_RANGE,
+			FinalRangeTimingBudgetMicroSeconds);
+
+		VL53L0X_SETPARAMETERFIELD(Dev,
+			MeasurementTimingBudgetMicroSeconds,
+			MeasurementTimingBudgetMicroSeconds);
+	}
+
+	LOG_FUNCTION_END(Status);
+
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_SetMeasurementTimingBudgetMicroSeconds(VL53L0X_DEV Dev,
+	uint32_t MeasurementTimingBudgetMicroSeconds)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	LOG_FUNCTION_START("");
+
+	Status = VL53L0X_set_measurement_timing_budget_micro_seconds(Dev,
+		MeasurementTimingBudgetMicroSeconds);
+
+	LOG_FUNCTION_END(Status);
+
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_SetSequenceStepEnable(VL53L0X_DEV Dev,
+	VL53L0X_SequenceStepId SequenceStepId, uint8_t SequenceStepEnabled)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint8_t SequenceConfig = 0;
+	uint8_t SequenceConfigNew = 0;
+	uint32_t MeasurementTimingBudgetMicroSeconds;
+	LOG_FUNCTION_START("");
+
+	Status = VL53L0X_RdByte(Dev, VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG,
+		&SequenceConfig);
+
+	SequenceConfigNew = SequenceConfig;
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		if (SequenceStepEnabled == 1) {
+
+			/* Enable requested sequence step
+			 */
+			switch (SequenceStepId) {
+			case VL53L0X_SEQUENCESTEP_TCC:
+				SequenceConfigNew |= 0x10;
+				break;
+			case VL53L0X_SEQUENCESTEP_DSS:
+				SequenceConfigNew |= 0x28;
+				break;
+			case VL53L0X_SEQUENCESTEP_MSRC:
+				SequenceConfigNew |= 0x04;
+				break;
+			case VL53L0X_SEQUENCESTEP_PRE_RANGE:
+				SequenceConfigNew |= 0x40;
+				break;
+			case VL53L0X_SEQUENCESTEP_FINAL_RANGE:
+				SequenceConfigNew |= 0x80;
+				break;
+			default:
+				Status = VL53L0X_ERROR_INVALID_PARAMS;
+			}
+		} else {
+			/* Disable requested sequence step
+			 */
+			switch (SequenceStepId) {
+			case VL53L0X_SEQUENCESTEP_TCC:
+				SequenceConfigNew &= 0xef;
+				break;
+			case VL53L0X_SEQUENCESTEP_DSS:
+				SequenceConfigNew &= 0xd7;
+				break;
+			case VL53L0X_SEQUENCESTEP_MSRC:
+				SequenceConfigNew &= 0xfb;
+				break;
+			case VL53L0X_SEQUENCESTEP_PRE_RANGE:
+				SequenceConfigNew &= 0xbf;
+				break;
+			case VL53L0X_SEQUENCESTEP_FINAL_RANGE:
+				SequenceConfigNew &= 0x7f;
+				break;
+			default:
+				Status = VL53L0X_ERROR_INVALID_PARAMS;
+			}
+		}
+	}
+
+	if (SequenceConfigNew != SequenceConfig) {
+		/* Apply New Setting */
+		if (Status == VL53L0X_ERROR_NONE) {
+			Status = VL53L0X_WrByte(Dev,
+			VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, SequenceConfigNew);
+		}
+		if (Status == VL53L0X_ERROR_NONE)
+			PALDevDataSet(Dev, SequenceConfig, SequenceConfigNew);
+
+
+		/* Recalculate timing budget */
+		if (Status == VL53L0X_ERROR_NONE) {
+			VL53L0X_GETPARAMETERFIELD(Dev,
+				MeasurementTimingBudgetMicroSeconds,
+				MeasurementTimingBudgetMicroSeconds);
+
+			VL53L0X_SetMeasurementTimingBudgetMicroSeconds(Dev,
+				MeasurementTimingBudgetMicroSeconds);
+		}
+	}
+
+	LOG_FUNCTION_END(Status);
+
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_SetLimitCheckEnable(VL53L0X_DEV Dev, uint16_t LimitCheckId,
+	uint8_t LimitCheckEnable)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	FixPoint1616_t TempFix1616 = 0;
+	uint8_t LimitCheckEnableInt = 0;
+	uint8_t LimitCheckDisable = 0;
+	uint8_t Temp8;
+
+	LOG_FUNCTION_START("");
+
+	if (LimitCheckId >= VL53L0X_CHECKENABLE_NUMBER_OF_CHECKS) {
+		Status = VL53L0X_ERROR_INVALID_PARAMS;
+	} else {
+		if (LimitCheckEnable == 0) {
+			TempFix1616 = 0;
+			LimitCheckEnableInt = 0;
+			LimitCheckDisable = 1;
+
+		} else {
+			VL53L0X_GETARRAYPARAMETERFIELD(Dev, LimitChecksValue,
+				LimitCheckId, TempFix1616);
+			LimitCheckDisable = 0;
+			/* this to be sure to have either 0 or 1 */
+			LimitCheckEnableInt = 1;
+		}
+
+		switch (LimitCheckId) {
+
+		case VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE:
+			/* internal computation: */
+			VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksEnable,
+				VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE,
+				LimitCheckEnableInt);
+
+			break;
+
+		case VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE:
+
+			Status = VL53L0X_WrWord(Dev,
+			VL53L0X_REG_FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT,
+				VL53L0X_FIXPOINT1616TOFIXPOINT97(TempFix1616));
+
+			break;
+
+		case VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP:
+
+			/* internal computation: */
+			VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksEnable,
+				VL53L0X_CHECKENABLE_SIGNAL_REF_CLIP,
+				LimitCheckEnableInt);
+
+			break;
+
+		case VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD:
+
+			/* internal computation: */
+			VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksEnable,
+				VL53L0X_CHECKENABLE_RANGE_IGNORE_THRESHOLD,
+				LimitCheckEnableInt);
+
+			break;
+
+		case VL53L0X_CHECKENABLE_SIGNAL_RATE_MSRC:
+
+			Temp8 = (uint8_t)(LimitCheckDisable << 1);
+			Status = VL53L0X_UpdateByte(Dev,
+				VL53L0X_REG_MSRC_CONFIG_CONTROL,
+				0xFE, Temp8);
+
+			break;
+
+		case VL53L0X_CHECKENABLE_SIGNAL_RATE_PRE_RANGE:
+
+			Temp8 = (uint8_t)(LimitCheckDisable << 4);
+			Status = VL53L0X_UpdateByte(Dev,
+				VL53L0X_REG_MSRC_CONFIG_CONTROL,
+				0xEF, Temp8);
+
+			break;
+
+
+		default:
+			Status = VL53L0X_ERROR_INVALID_PARAMS;
+
+		}
+
+	}
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		if (LimitCheckEnable == 0) {
+			VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksEnable,
+				LimitCheckId, 0);
+		} else {
+			VL53L0X_SETARRAYPARAMETERFIELD(Dev, LimitChecksEnable,
+				LimitCheckId, 1);
+		}
+	}
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_StaticInit(VL53L0X_DEV Dev)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	VL53L0X_DeviceParameters_t CurrentParameters = {0};
+	uint8_t *pTuningSettingBuffer;
+	uint16_t tempword = 0;
+	uint8_t tempbyte = 0;
+	uint8_t UseInternalTuningSettings = 0;
+	uint32_t count = 0;
+	uint8_t isApertureSpads = 0;
+	uint32_t refSpadCount = 0;
+	uint8_t ApertureSpads = 0;
+	uint8_t vcselPulsePeriodPCLK;
+	uint32_t seqTimeoutMicroSecs;
+
+	LOG_FUNCTION_START("");
+
+	Status = VL53L0X_get_info_from_device(Dev, 1);
+
+	/* set the ref spad from NVM */
+	count	= (uint32_t)VL53L0X_GETDEVICESPECIFICPARAMETER(Dev,
+		ReferenceSpadCount);
+	ApertureSpads = VL53L0X_GETDEVICESPECIFICPARAMETER(Dev,
+		ReferenceSpadType);
+
+	/* NVM value invalid */
+	if ((ApertureSpads > 1) ||
+		((ApertureSpads == 1) && (count > 32)) ||
+		((ApertureSpads == 0) && (count > 12)))
+		Status = VL53L0X_perform_ref_spad_management(Dev, &refSpadCount,
+			&isApertureSpads);
+	else
+		Status = VL53L0X_set_reference_spads(Dev, count, ApertureSpads);
+
+
+	/* Initialize tuning settings buffer to prevent compiler warning. */
+	pTuningSettingBuffer = DefaultTuningSettings;
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		UseInternalTuningSettings = PALDevDataGet(Dev,
+			UseInternalTuningSettings);
+
+		if (UseInternalTuningSettings == 0)
+			pTuningSettingBuffer = PALDevDataGet(Dev,
+				pTuningSettingsPointer);
+		else
+			pTuningSettingBuffer = DefaultTuningSettings;
+
+	}
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_load_tuning_settings(Dev, pTuningSettingBuffer);
+
+
+	/* Set interrupt config to new sample ready */
+	if (Status == VL53L0X_ERROR_NONE) {
+		Status = VL53L0X_SetGpioConfig(Dev, 0, 0,
+		VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY,
+		VL53L0X_INTERRUPTPOLARITY_LOW);
+	}
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		Status = VL53L0X_WrByte(Dev, 0xFF, 0x01);
+		Status |= VL53L0X_RdWord(Dev, 0x84, &tempword);
+		Status |= VL53L0X_WrByte(Dev, 0xFF, 0x00);
+	}
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		VL53L0X_SETDEVICESPECIFICPARAMETER(Dev, OscFrequencyMHz,
+			VL53L0X_FIXPOINT412TOFIXPOINT1616(tempword));
+	}
+
+	/* After static init, some device parameters may be changed,
+	 * so update them */
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_GetDeviceParameters(Dev, &CurrentParameters);
+
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		Status = VL53L0X_GetFractionEnable(Dev, &tempbyte);
+		if (Status == VL53L0X_ERROR_NONE)
+			PALDevDataSet(Dev, RangeFractionalEnable, tempbyte);
+
+	}
+
+	if (Status == VL53L0X_ERROR_NONE)
+		PALDevDataSet(Dev, CurrentParameters, CurrentParameters);
+
+
+	/* read the sequence config and save it */
+	if (Status == VL53L0X_ERROR_NONE) {
+		Status = VL53L0X_RdByte(Dev,
+		VL53L0X_REG_SYSTEM_SEQUENCE_CONFIG, &tempbyte);
+		if (Status == VL53L0X_ERROR_NONE)
+			PALDevDataSet(Dev, SequenceConfig, tempbyte);
+
+	}
+
+	/* Disable MSRC and TCC by default */
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_SetSequenceStepEnable(Dev,
+					VL53L0X_SEQUENCESTEP_TCC, 0);
+
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_SetSequenceStepEnable(Dev,
+		VL53L0X_SEQUENCESTEP_MSRC, 0);
+
+
+	/* Set PAL State to standby */
+	if (Status == VL53L0X_ERROR_NONE)
+		PALDevDataSet(Dev, PalState, VL53L0X_STATE_IDLE);
+
+
+
+	/* Store pre-range vcsel period */
+	if (Status == VL53L0X_ERROR_NONE) {
+		Status = VL53L0X_GetVcselPulsePeriod(
+			Dev,
+			VL53L0X_VCSEL_PERIOD_PRE_RANGE,
+			&vcselPulsePeriodPCLK);
+	}
+
+	if (Status == VL53L0X_ERROR_NONE) {
+			VL53L0X_SETDEVICESPECIFICPARAMETER(
+				Dev,
+				PreRangeVcselPulsePeriod,
+				vcselPulsePeriodPCLK);
+	}
+
+	/* Store final-range vcsel period */
+	if (Status == VL53L0X_ERROR_NONE) {
+		Status = VL53L0X_GetVcselPulsePeriod(
+			Dev,
+			VL53L0X_VCSEL_PERIOD_FINAL_RANGE,
+			&vcselPulsePeriodPCLK);
+	}
+
+	if (Status == VL53L0X_ERROR_NONE) {
+			VL53L0X_SETDEVICESPECIFICPARAMETER(
+				Dev,
+				FinalRangeVcselPulsePeriod,
+				vcselPulsePeriodPCLK);
+	}
+
+	/* Store pre-range timeout */
+	if (Status == VL53L0X_ERROR_NONE) {
+		Status = get_sequence_step_timeout(
+			Dev,
+			VL53L0X_SEQUENCESTEP_PRE_RANGE,
+			&seqTimeoutMicroSecs);
+	}
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		VL53L0X_SETDEVICESPECIFICPARAMETER(
+			Dev,
+			PreRangeTimeoutMicroSecs,
+			seqTimeoutMicroSecs);
+	}
+
+	/* Store final-range timeout */
+	if (Status == VL53L0X_ERROR_NONE) {
+		Status = get_sequence_step_timeout(
+			Dev,
+			VL53L0X_SEQUENCESTEP_FINAL_RANGE,
+			&seqTimeoutMicroSecs);
+	}
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		VL53L0X_SETDEVICESPECIFICPARAMETER(
+			Dev,
+			FinalRangeTimeoutMicroSecs,
+			seqTimeoutMicroSecs);
+	}
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+
+VL53L0X_Error VL53L0X::VL53L0X_StopMeasurement(VL53L0X_DEV Dev)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	LOG_FUNCTION_START("");
+
+	Status = VL53L0X_WrByte(Dev, VL53L0X_REG_SYSRANGE_START,
+	VL53L0X_REG_SYSRANGE_MODE_SINGLESHOT);
+
+	Status = VL53L0X_WrByte(Dev, 0xFF, 0x01);
+	Status = VL53L0X_WrByte(Dev, 0x00, 0x00);
+	Status = VL53L0X_WrByte(Dev, 0x91, 0x00);
+	Status = VL53L0X_WrByte(Dev, 0x00, 0x01);
+	Status = VL53L0X_WrByte(Dev, 0xFF, 0x00);
+
+	if (Status == VL53L0X_ERROR_NONE) {
+		/* Set PAL State to Idle */
+		PALDevDataSet(Dev, PalState, VL53L0X_STATE_IDLE);
+	}
+
+	/* Check if need to apply interrupt settings */
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_CheckAndLoadInterruptSettings(Dev, 0);
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_GetStopCompletedStatus(VL53L0X_DEV Dev,
+	uint32_t *pStopStatus)
+{
+	VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+	uint8_t Byte = 0;
+	LOG_FUNCTION_START("");
+
+	Status = VL53L0X_WrByte(Dev, 0xFF, 0x01);
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_RdByte(Dev, 0x04, &Byte);
+
+	if (Status == VL53L0X_ERROR_NONE)
+		Status = VL53L0X_WrByte(Dev, 0xFF, 0x0);
+
+	*pStopStatus = Byte;
+
+	if (Byte == 0) {
+		Status = VL53L0X_WrByte(Dev, 0x80, 0x01);
+		Status = VL53L0X_WrByte(Dev, 0xFF, 0x01);
+		Status = VL53L0X_WrByte(Dev, 0x00, 0x00);
+		Status = VL53L0X_WrByte(Dev, 0x91,
+			PALDevDataGet(Dev, StopVariable));
+		Status = VL53L0X_WrByte(Dev, 0x00, 0x01);
+		Status = VL53L0X_WrByte(Dev, 0xFF, 0x00);
+		Status = VL53L0X_WrByte(Dev, 0x80, 0x00);
+	}
+
+	LOG_FUNCTION_END(Status);
+	return Status;
+}
+
+/****************** Write and read functions from I2C *************************/
+
+VL53L0X_Error VL53L0X::VL53L0X_WriteMulti(VL53L0X_DEV Dev, uint8_t index, uint8_t *pdata, uint32_t count)
+{
+   int  status;
+ 
+   status = VL53L0X_I2CWrite(Dev->I2cDevAddr, index, pdata, (uint16_t)count);
+   return status;
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_ReadMulti(VL53L0X_DEV Dev, uint8_t index, uint8_t *pdata, uint32_t count)
+{
+    int status;
+
+    if (count>=VL53L0X_MAX_I2C_XFER_SIZE){
+        status = VL53L0X_ERROR_INVALID_PARAMS;
+    }
+
+    status = VL53L0X_I2CRead(Dev->I2cDevAddr, index, pdata, (uint16_t)count);
+
+    return status;
+}
+
+
+VL53L0X_Error VL53L0X::VL53L0X_WrByte(VL53L0X_DEV Dev, uint8_t index, uint8_t data)
+{
+   int  status;
+ 
+   status=VL53L0X_I2CWrite(Dev->I2cDevAddr, index, &data, 1);
+   return status;
+}
+ 
+VL53L0X_Error VL53L0X::VL53L0X_WrWord(VL53L0X_DEV Dev, uint8_t index, uint16_t data)
+{
+   int  status;
+   uint8_t buffer[2];
+	
+	 buffer[0] = data >> 8;
+	 buffer[1] = data & 0x00FF;
+   status=VL53L0X_I2CWrite(Dev->I2cDevAddr, index, (uint8_t *)buffer, 2);
+   return status;
+}
+ 
+VL53L0X_Error VL53L0X::VL53L0X_WrDWord(VL53L0X_DEV Dev, uint8_t index, uint32_t data)
+{
+   int  status;
+   uint8_t buffer[4];
+	
+	 buffer[0] = (data >> 24) & 0xFF;
+	 buffer[1] = (data >> 16) & 0xFF;
+	 buffer[2] = (data >>  8) & 0xFF;
+	 buffer[3] = (data >>  0) & 0xFF;
+   status=VL53L0X_I2CWrite(Dev->I2cDevAddr, index, (uint8_t *)buffer, 4);
+   return status;
+}
+
+
+VL53L0X_Error VL53L0X::VL53L0X_RdByte(VL53L0X_DEV Dev, uint8_t index, uint8_t *data)
+{
+   int  status;
+
+   status = VL53L0X_I2CRead(Dev->I2cDevAddr, index, data, 1);
+
+   if(status)
+     return -1;
+
+   return 0;
+}
+ 
+VL53L0X_Error VL53L0X::VL53L0X_RdWord(VL53L0X_DEV Dev, uint8_t index, uint16_t *data)
+{
+   int  status;
+   uint8_t buffer[2] = {0,0};
+
+   status = VL53L0X_I2CRead(Dev->I2cDevAddr, index, buffer, 2);
+   if (!status)
+   {
+	   *data = (buffer[0] << 8) + buffer[1];
+   }
+   return status;
+
+}
+ 
+VL53L0X_Error VL53L0X::VL53L0X_RdDWord(VL53L0X_DEV Dev, uint8_t index, uint32_t *data)
+{
+   int status;
+   uint8_t buffer[4] = {0,0,0,0};
+
+   status = VL53L0X_I2CRead(Dev->I2cDevAddr, index, buffer, 4);
+   if(!status)
+   {
+	   *data = (buffer[0] << 24) + (buffer[1] << 16) + (buffer[2] << 8) + buffer[3];
+   }
+   return status;
+
+}
+
+VL53L0X_Error VL53L0X::VL53L0X_UpdateByte(VL53L0X_DEV Dev, uint8_t index, uint8_t AndData, uint8_t OrData)
+{
+   int  status;
+   uint8_t buffer = 0;
+
+   /* read data direct onto buffer */
+   status = VL53L0X_I2CRead(Dev->I2cDevAddr, index, &buffer,1);
+   if (!status)
+   {
+      buffer = (buffer & AndData) | OrData;
+      status = VL53L0X_I2CWrite(Dev->I2cDevAddr, index, &buffer, (uint8_t)1);
+   }
+   return status;
+}
+ 
+VL53L0X_Error VL53L0X::VL53L0X_I2CWrite(uint8_t DeviceAddr, uint8_t RegisterAddr, uint8_t* pBuffer, uint16_t NumByteToWrite)
+{
+   int ret;
+
+   ret = dev_i2c.i2c_write(pBuffer, DeviceAddr, RegisterAddr, NumByteToWrite);
+
+   if(ret) 
+      return -1;
+   return 0;
+}
+ 
+VL53L0X_Error VL53L0X::VL53L0X_I2CRead(uint8_t DeviceAddr, uint8_t RegisterAddr, uint8_t* pBuffer, uint16_t NumByteToRead)
+{
+   int ret;
+
+   ret = dev_i2c.i2c_read(pBuffer, DeviceAddr, RegisterAddr, NumByteToRead);
+	
+   if(ret) 
+      return -1;
+   return 0;
+} 
+
+
+int VL53L0X::ReadID()
+{
+    int status = 0;
+    uint16_t rl_id=0;
+    
+    status = VL53L0X_RdWord(Device, VL53L0X_REG_IDENTIFICATION_MODEL_ID, &rl_id);
+    if (rl_id == 0xEEAA)
+        return status;
+		
+    return -1;
+}
+ 
+ 
+VL53L0X_Error VL53L0X::WaitMeasurementDataReady(VL53L0X_DEV Dev)
+{
+    VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+    uint8_t NewDatReady=0;
+    uint32_t LoopNb;
+
+    // Wait until it finished
+    // use timeout to avoid deadlock
+    if (Status == VL53L0X_ERROR_NONE) {
+        LoopNb = 0;
+        do {
+            Status = VL53L0X_GetMeasurementDataReady(Dev, &NewDatReady);
+            if ((NewDatReady == 0x01) || Status != VL53L0X_ERROR_NONE) {
+                break;
+            }
+            LoopNb = LoopNb + 1;
+            VL53L0X_PollingDelay(Dev);
+        } while (LoopNb < VL53L0X_DEFAULT_MAX_LOOP);
+
+        if (LoopNb >= VL53L0X_DEFAULT_MAX_LOOP) {
+            Status = VL53L0X_ERROR_TIME_OUT;
+        }
+    }
+
+    return Status;
+}
+
+VL53L0X_Error VL53L0X::WaitStopCompleted(VL53L0X_DEV Dev)
+{
+    VL53L0X_Error Status = VL53L0X_ERROR_NONE;
+    uint32_t StopCompleted=0;
+    uint32_t LoopNb;
+
+    // Wait until it finished
+    // use timeout to avoid deadlock
+    if (Status == VL53L0X_ERROR_NONE) {
+        LoopNb = 0;
+        do {
+            Status = VL53L0X_GetStopCompletedStatus(Dev, &StopCompleted);
+            if ((StopCompleted == 0x00) || Status != VL53L0X_ERROR_NONE) {
+                break;
+            }
+            LoopNb = LoopNb + 1;
+            VL53L0X_PollingDelay(Dev);
+        } while (LoopNb < VL53L0X_DEFAULT_MAX_LOOP);
+
+        if (LoopNb >= VL53L0X_DEFAULT_MAX_LOOP) {
+            Status = VL53L0X_ERROR_TIME_OUT;
+        }
+
+    }
+
+    return Status;
+}
+
+
+int VL53L0X::InitSensor(uint8_t NewAddr)
+{
+   int status;
+
+   VL53L0X_Off();
+   VL53L0X_On();
+
+//   status=VL53L0X_WaitDeviceBooted(Device);
+//   if(status)
+//      printf("WaitDeviceBooted fail\n\r");
+   status=IsPresent();
+   if(!status)
+   {
+      status=Init();
+      if(status != VL53L0X_ERROR_NONE)
+      {
+           printf("Failed to init VL53L0X sensor!\n\r");
+           return status;
+      }
+
+      // deduce silicon version
+      status = VL53L0X_GetDeviceInfo(&MyDevice, &DeviceInfo);
+
+			
+      status=Prepare();
+      if(status != VL53L0X_ERROR_NONE)
+      {
+         printf("Failed to prepare VL53L0X!\n\r");
+         return status;
+      }
+
+/*
+      if(NewAddr!=DEFAULT_DEVICE_ADDRESS)
+      {
+         status=SetDeviceAddress(NewAddr);
+         if(status)
+         {
+            printf("Failed to change I2C address!\n\r");
+            return status;
+         }
+      }
+      else
+      {
+         printf("Invalid new address!\n\r");
+         return VL53L0X_ERROR_INVALID_PARAMS;
+      }
+*/
+//      Device->Ready=1;
+   }
+   return status; 
+}
+ 
+ 
+
+
+
+int VL53L0X::StartMeasurement(OperatingMode operating_mode, void (*fptr)(void))
+{
+    int Status = VL53L0X_ERROR_NONE;
+
+    uint8_t VhvSettings;
+    uint8_t PhaseCal;
+    // *** from mass market cube expansion v1.1, ranging with satellites.
+    // default settings, for normal range.
+	FixPoint1616_t signalLimit = (FixPoint1616_t)(0.25*65536);
+	FixPoint1616_t sigmaLimit = (FixPoint1616_t)(18*65536);
+	uint32_t timingBudget = 33000;
+	uint8_t preRangeVcselPeriod = 14;
+	uint8_t finalRangeVcselPeriod = 10;
+
+
+    if (operating_mode == range_single_shot_polling)
+    {
+        // singelshot, polled ranging
+        if(Status == VL53L0X_ERROR_NONE)
+        {
+            // no need to do this when we use VL53L0X_PerformSingleRangingMeasurement
+            Status = VL53L0X_SetDeviceMode(Device, VL53L0X_DEVICEMODE_SINGLE_RANGING); // Setup in single ranging mode
+        }
+
+        // Enable/Disable Sigma and Signal check
+        if (Status == VL53L0X_ERROR_NONE) {
+            Status = VL53L0X_SetLimitCheckEnable(Device,
+        	    	VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE, 1);
+        }
+        if (Status == VL53L0X_ERROR_NONE) {
+            Status = VL53L0X_SetLimitCheckEnable(Device,
+        	    	VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE, 1);
+        }
+
+// *** from mass market cube expansion v1.1, ranging with satellites.
+		/* Ranging configuration */
+//*
+//        switch(rangingConfig) {
+//        case LONG_RANGE:
+        	signalLimit = (FixPoint1616_t)(0.1*65536);
+        	sigmaLimit = (FixPoint1616_t)(60*65536);
+        	timingBudget = 33000;
+        	preRangeVcselPeriod = 18;
+        	finalRangeVcselPeriod = 14;
+/*        	break;
+        case HIGH_ACCURACY:
+			signalLimit = (FixPoint1616_t)(0.25*65536);
+			sigmaLimit = (FixPoint1616_t)(18*65536);
+			timingBudget = 200000;
+			preRangeVcselPeriod = 14;
+			finalRangeVcselPeriod = 10;
+			break;
+        case HIGH_SPEED:
+			signalLimit = (FixPoint1616_t)(0.25*65536);
+			sigmaLimit = (FixPoint1616_t)(32*65536);
+			timingBudget = 20000;
+			preRangeVcselPeriod = 14;
+			finalRangeVcselPeriod = 10;
+ 			break;
+        default:
+        	debug_printf("Not Supported");
+        }
+*/
+
+        if (Status == VL53L0X_ERROR_NONE) {
+            Status = VL53L0X_SetLimitCheckValue(Device,
+            		        VL53L0X_CHECKENABLE_SIGNAL_RATE_FINAL_RANGE, signalLimit);
+		}
+
+        if (Status == VL53L0X_ERROR_NONE) {
+	    	Status = VL53L0X_SetLimitCheckValue(Device,
+	    			        VL53L0X_CHECKENABLE_SIGMA_FINAL_RANGE, sigmaLimit);
+		}
+
+        if (Status == VL53L0X_ERROR_NONE) {
+            Status = VL53L0X_SetMeasurementTimingBudgetMicroSeconds(Device, timingBudget);
+        }
+
+        if (Status == VL53L0X_ERROR_NONE) {
+            Status = VL53L0X_SetVcselPulsePeriod(Device,
+            		        VL53L0X_VCSEL_PERIOD_PRE_RANGE, preRangeVcselPeriod);
+		}
+
+        if (Status == VL53L0X_ERROR_NONE) {
+            Status = VL53L0X_SetVcselPulsePeriod(Device,
+            		        VL53L0X_VCSEL_PERIOD_FINAL_RANGE, finalRangeVcselPeriod);
+		}
+
+        if (Status == VL53L0X_ERROR_NONE) {
+		    Status = VL53L0X_PerformRefCalibration(Device, &VhvSettings, &PhaseCal);
+		}
+
+    }
+
+    if (operating_mode == range_continuous_polling)
+    {
+        if(Status == VL53L0X_ERROR_NONE)
+        {
+            printf ("Call of VL53L0X_SetDeviceMode\n");
+            Status = VL53L0X_SetDeviceMode(Device, VL53L0X_DEVICEMODE_CONTINUOUS_RANGING); // Setup in continuous ranging mode
+        }
+
+        if(Status == VL53L0X_ERROR_NONE)
+        {
+	    	printf ("Call of VL53L0X_StartMeasurement\n");
+		    Status = VL53L0X_StartMeasurement(Device);
+        }
+    }
+
+    return Status;
+}
+ 
+ 
+int VL53L0X::GetMeasurement(OperatingMode operating_mode, VL53L0X_RangingMeasurementData_t *Data)
+{
+    int Status = VL53L0X_ERROR_NONE;
+
+    if (operating_mode == range_single_shot_polling)
+    {
+        Status = VL53L0X_PerformSingleRangingMeasurement(Device, Data);
+    }
+
+    if (operating_mode == range_continuous_polling)
+    {
+    	if (Status == VL53L0X_ERROR_NONE)
+   	    	Status = VL53L0X_measurement_poll_for_completion(Device);
+
+        if(Status == VL53L0X_ERROR_NONE)
+        {
+            Status = VL53L0X_GetRangingMeasurementData(Device, Data);
+
+        // Clear the interrupt
+            VL53L0X_ClearInterruptMask(Device, VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY);
+            VL53L0X_PollingDelay(Device);
+        }
+    }
+
+
+    return Status;
+}
+     
+
+int VL53L0X::StopMeasurement(OperatingMode operating_mode)
+{
+    int status = VL53L0X_ERROR_NONE;
+
+
+	// don't need to stop for a singleshot range!
+    if (operating_mode==range_single_shot_polling)
+    {
+    }
+
+    if (operating_mode==range_continuous_interrupt || operating_mode==range_continuous_polling)
+    {
+    // continuous mode
+        if(status == VL53L0X_ERROR_NONE)
+        {
+            printf ("Call of VL53L0X_StopMeasurement\n");
+            status = VL53L0X_StopMeasurement(Device);
+        }
+
+        if(status == VL53L0X_ERROR_NONE)
+        {
+            printf ("Wait Stop to be competed\n");
+            status = WaitStopCompleted(Device);
+        }
+
+        if(status == VL53L0X_ERROR_NONE)
+            status = VL53L0X_ClearInterruptMask(Device,
+                             VL53L0X_REG_SYSTEM_INTERRUPT_GPIO_NEW_SAMPLE_READY);
+    }
+
+    return status;
+}
+
+
+int VL53L0X::HandleIRQ(OperatingMode operating_mode, VL53L0X_RangingMeasurementData_t *Data)
+{
+   int status;
+    
+   EnableInterruptMeasureDetectionIRQ();
+   status=GetMeasurement(operating_mode, Data);
+   return status;
+}
+     
+ 
+ 
+/******************************************************************************/
+
+
+