Luccas Eagles
/
CONTROL_MOTOR_MELODY
added melody to old motorcontol
main.cpp
- Committer:
- kubitz
- Date:
- 2020-03-13
- Revision:
- 24:6d85dda245e1
- Parent:
- 23:e5a2e8cef243
- Child:
- 25:4b893287d750
File content as of revision 24:6d85dda245e1:
#include "mbed.h" #include "rtos.h" //Photointerrupter input pins #define I1pin D3 #define I2pin D6 #define I3pin D5 //Incremental encoder input pins #define CHApin D12 #define CHBpin D11 //Motor Drive output pins //Mask in output byte #define L1Lpin D1 //0x01 #define L1Hpin A3 //0x02 #define L2Lpin D0 //0x04 #define L2Hpin A6 //0x08 #define L3Lpin D10 //0x10 #define L3Hpin D2 //0x20 #define PWMpin D9 //Motor current sense #define MCSPpin A1 #define MCSNpin A0 //Test outputs #define TP0pin D4 #define TP1pin D13 #define TP2pin A2 Serial pc(SERIAL_TX, SERIAL_RX); // Controller variables Timer timer_velocity; uint32_t last_time_MtrCtlr; int i = 0; // Velocity Controller Variables float target_velocity = 30; float integral_vel = 0; float derivative_vel = 0; float last_vel_error = 0; int previous_position = 0; int current_position = 0; float kp_vel = 20; float ki_vel = 0; float kd_vel = 0; // Position Controller Variables float target_position = 500; float integral_pos = 0; float derivative_pos = 0; float last_pos_error = 0; float kp_pos = 20; float ki_pos = 0; float kd_pos = 10; //Mapping from sequential drive states to motor phase outputs /* State L1 L2 L3 0 H - L 1 - H L 2 L H - 3 L - H 4 - L H 5 H L - 6 - - - 7 - - - */ //Drive state to output table const int8_t driveTable[] = {0x12, 0x18, 0x09, 0x21, 0x24, 0x06, 0x00, 0x00}; //Mapping from interrupter inputs to sequential rotor states. 0x00 and 0x07 are not valid const int8_t stateMap[] = {0x07, 0x05, 0x03, 0x04, 0x01, 0x00, 0x02, 0x07}; //const int8_t stateMap[] = {0x07,0x01,0x03,0x02,0x05,0x00,0x04,0x07}; //Alternative if phase order of input or drive is reversed const float pwm_period = 0.25f; // SHARED GLOBAL VARIABLES // Semaphore pos_semaphore(0); float position = 0; bool direction = 1; int lead = 2; // NON-SHARED GLOBAL VARIABLES // int lead_old; //Status LED DigitalOut led1(LED1); //Photointerrupter inputs InterruptIn I1(I1pin); InterruptIn I2(I2pin); InterruptIn I3(I3pin); //Motor Drive outputs DigitalOut L1L(L1Lpin); DigitalOut L1H(L1Hpin); DigitalOut L2L(L2Lpin); DigitalOut L2H(L2Hpin); DigitalOut L3L(L3Lpin); DigitalOut L3H(L3Hpin); DigitalOut TP1(TP1pin); PwmOut MotorPWM(PWMpin); Ticker motorCtrlTicker; Thread thread_motorCtrl(osPriorityNormal, 1024); volatile int8_t orState = 0; //Rotot offset at motor state 0 volatile int8_t intState = 0; volatile int8_t intStateOld = 0; //Set a given drive state void motorOut(int8_t driveState) { //Lookup the output byte from the drive state. int8_t driveOut = driveTable[driveState & 0x07]; //Turn off first if (~driveOut & 0x01) L1L = 0; if (~driveOut & 0x02) L1H = 1; if (~driveOut & 0x04) L2L = 0; if (~driveOut & 0x08) L2H = 1; if (~driveOut & 0x10) L3L = 0; if (~driveOut & 0x20) L3H = 1; //Then turn on if (driveOut & 0x01) L1L = 1; if (driveOut & 0x02) L1H = 0; if (driveOut & 0x04) L2L = 1; if (driveOut & 0x08) L2H = 0; if (driveOut & 0x10) L3L = 1; if (driveOut & 0x20) L3H = 0; } //Convert photointerrupter inputs to a rotor state inline int8_t readRotorState() { return stateMap[I1 + 2 * I2 + 4 * I3]; } void move() { intState = readRotorState(); // Updates direction only if statechanges by 1 // If state chance is missed then interrupt is unchanged if (intState == 0 && intStateOld == 5) { direction = 1; position++; } else if (intState == 5 && intStateOld == 0) { direction = 0; position--; } else if (intState == intStateOld + 1) { direction = 1; position++; } else if (intState == intStateOld - 1) { direction = 0; position--; } pos_semaphore.release(); intStateOld = intState; motorOut((intState - orState + lead + 6) % 6); //+6 to make sure the remainder is positive } void motorCtrlTick() { thread_motorCtrl.signal_set(0x1); //osSignalSet(thread_motorCtrl, 0x1); } float get_vel_control_out(float velocity_error) { integral_vel += velocity_error; derivative_vel = velocity_error - last_vel_error; float velocity_out = (kp_vel * velocity_error) + (ki_vel * integral_vel) + (kd_vel * derivative_vel); last_vel_error = velocity_error; return velocity_out; } float get_pos_control_out(float position_error) { integral_pos += position_error; derivative_pos = position_error - last_pos_error; float velocity_out = (kp_pos * position_error) + (ki_pos * integral_pos) + (kd_pos * derivative_pos); last_pos_error = position_error; return velocity_out; } float get_motor_out(float velocity_out) { float motor_out; if (velocity_out < 0) { motor_out = velocity_out * -1; } else { motor_out = velocity_out; } if (velocity_out > 1 || velocity_out < -1) { motor_out = 1; } return motor_out; } int get_current_position() { pos_semaphore.wait(); return position; } void attach_ISR() { I1.rise(&move); I1.fall(&move); I2.rise(&move); I2.fall(&move); I3.rise(&move); I3.fall(&move); } float combine_control_out(float position_control_out, float velocity_control_out, float current_velocity) { float velocity_out = 0; if (current_velocity <= 0) { velocity_out = std::max(position_control_out, velocity_control_out); } else { velocity_out = std::min(position_control_out, velocity_control_out); } return velocity_out; } float get_current_velocity(float current_position) { float velocity_factor = (1000 / (timer_velocity.read_ms() - last_time_MtrCtlr)); float velocity = ((current_position - previous_position) / 6) * velocity_factor; last_time_MtrCtlr = timer_velocity.read_ms(); previous_position = current_position; return velocity; } void update_lead(float velocity_out) { // No functionality for breaking if (velocity_out >= 0) { lead = 2; } else { lead = -2; } } void motorInitSequence() { motorCtrlTicker.attach_us(&motorCtrlTick, 100000); last_pos_error = target_position; last_time_MtrCtlr = 0; MotorPWM.write(1); MotorPWM.period(pwm_period); motorOut(0); wait(3.0); orState = readRotorState(); attach_ISR(); if (target_velocity > 0) { lead = 2; for (int i = 1; i < 4; i++) { motorOut(i); wait(0.2); } } else { lead = -2; for (int i = 5; i > 2; i--) { motorOut(i); wait(0.2); } } current_position = get_current_position(); previous_position = current_position; timer_velocity.start(); } void motorCtrlFn() { while (1) { thread_motorCtrl.signal_wait(0x1); current_position = get_current_position(); float current_velocity = get_current_velocity(current_position); float velocity_error = target_velocity - current_velocity; float velocity_control_out = get_vel_control_out(velocity_error); float position_error = target_position - (current_position / 6); float position_control_out = get_pos_control_out(position_error); float velocity_out = combine_control_out(position_control_out, velocity_control_out, current_velocity); float motor_out = get_motor_out(position_control_out); update_lead(velocity_out); MotorPWM.period(pwm_period); MotorPWM.write(motor_out); if (i > 10) { pc.printf("Velocity = %f, Position = %f, MotorOut = %f, y = %f, lead = %d\r\n", current_velocity, (position / 6), motor_out, velocity_out, lead); i = 0; } i++; } } //Main int main() { motorInitSequence(); thread_motorCtrl.start(motorCtrlFn); }