Project BioRobotics Group 19
Dependencies: FastPWM HIDScope MODSERIAL QEI biquadFilter mbed
main.cpp
- Committer:
- jordiluong
- Date:
- 2017-11-02
- Revision:
- 18:2b6f41f39a7f
- Parent:
- 17:f8dd5b8e4b52
- Child:
- 19:6f720e4fcb47
File content as of revision 18:2b6f41f39a7f:
#include "BiQuad.h" #include "FastPWM.h" #include "HIDScope.h" #include <math.h> #include "mbed.h" #include "MODSERIAL.h" #include "QEI.h" const double pi = 3.1415926535897; // Definition of pi // SERIAL COMMUNICATION WITH PC //////////////////////////////////////////////// MODSERIAL pc(USBTX, USBRX); HIDScope scope(4); // STATES ////////////////////////////////////////////////////////////////////// enum states{MOTORS_OFF, CALIBRATING, MOVING}; states currentState = MOTORS_OFF; // Start with motors off bool stateChanged = true; // Make sure the initialization of first state is executed // ENCODER ///////////////////////////////////////////////////////////////////// QEI Encoder1(D10,D11,NC,32); // CONNECT ENC1A TO D12, ENC1B TO D13 QEI Encoder2(D12,D13,NC,32); // CONNECT ENC2A TO D10, ENC2B TO D11 // PINS //////////////////////////////////////////////////////////////////////// DigitalOut motor1DirectionPin(D4); // Value 0: CCW; 1: CW PwmOut motor1MagnitudePin(D5); DigitalOut motor2DirectionPin(D7); // Value 0: CW; 1: CCW PwmOut motor2MagnitudePin(D6); InterruptIn button1(D2); // CONNECT BUT1 TO D2 InterruptIn button2(D3); // CONNECT BUT2 TO D3 InterruptIn button3(SW2); InterruptIn button4(SW3); AnalogIn potmeter1(A0); // CONNECT POT1 TO A0 AnalogIn potmeter2(A1); // CONNECT POT2 TO A1 DigitalOut led1(LED_RED); DigitalOut led2(LED_BLUE); DigitalOut led3(LED_GREEN); DigitalOut led4(D8); // CONNECT LED1 TO D8 DigitalOut led5(D9); // CONNECT LED2 TO D9 AnalogIn emg_r(A2); // CONNECT EMG TO A2 AnalogIn emg_l(A3); // CONNECT EMG TO A3 // MOTOR CONTROL /////////////////////////////////////////////////////////////// Ticker controllerTicker; // Ticker for the controller const double controllerTs = 1/200.1; // Time step for controllerTicker [s] const double motorRatio = 131.25; // Ratio of the gearbox in the motors [] const double radPerPulse = 2*pi/(32*motorRatio); // Amount of radians the motor rotates per encoder pulse [rad/pulse] volatile double xVelocity = 0, yVelocity = 0; // X and Y velocities of the end effector at the start const double velocity = 0.03; // X and Y velocity of the end effector when desired // MOTOR 1 volatile double position1; // Position of motor 1 [rad] volatile double reference1 = 2*pi*-5/360; // Desired rotation of motor 1 [rad] const double motor1Max = 0; // Maximum rotation of motor 1 [rad] const double motor1Min = 2*pi*-40/360; // Minimum rotation of motor 1 [rad] // Controller gains const double motor1_KP = 13; // Position gain [] const double motor1_KI = 7; // Integral gain [] const double motor1_KD = 0.3; // Derivative gain [] double motor1_err_int = 0, motor1_prev_err = 0; // Derivative filter coefficients const double motor1_f_a1 = 0.25, motor1_f_a2 = 0.8; // Derivative filter coefficients [] const double motor1_f_b0 = 1, motor1_f_b1 = 2, motor1_f_b2 = 0.8; // Derivative filter coefficients [] // Filter variables double motor1_f_v1 = 0, motor1_f_v2 = 0; // MOTOR 2 volatile double position2; // Position of motor 2 [rad] volatile double reference2 = 0; // Desired rotation of motor 2 [rad] const double motor2Max = 2*pi*25/360; // Maximum rotation of motor 2 [rad] const double motor2Min = 2*pi*-28/360; // Minimum rotation of motor 2 [rad] // Controller gains const double motor2_KP = 13; // Position gain [] const double motor2_KI = 5; // Integral gain [] const double motor2_KD = 0.1; // Derivative gain [] double motor2_err_int = 0, motor2_prev_err = 0; // Derivative filter coefficients const double motor2_f_a1 = 0.25, motor2_f_a2 = 0.8; // Derivative filter coefficients [] const double motor2_f_b0 = 1, motor2_f_b1 = 2, motor2_f_b2 = 0.8; // Derivative filter coefficients [] // Filter variables double motor2_f_v1 = 0, motor2_f_v2 = 0; // EMG ///////////////////////////////////////////////////////////////////////// Ticker emgLeft; // Ticker for EMG of left arm Ticker emgRight; // Ticker for EMG of right arm const double emgTs = 0.491; // Time step for EMG sampling // Filters BiQuadChain bqc; BiQuad bq2_high(0.875182, -1.750364, 0.87518, -1.73472, 0.766004); // High pass filter BiQuad bq3_notch(-1.1978e-16, 0.9561, 0.9780, -1.1978e-16, 0.9780); // Notch filter BiQuad bq1_low(3.65747e-2, 7.31495e-2, 3.65747e-2, -1.390892, 0.537191); // Low pass filter // Right arm volatile double emgFiltered_r; volatile double filteredAbs_r; volatile double emg_value_r; volatile double onoffsignal_r; volatile bool check_calibration_r = false; volatile double avg_emg_r; volatile bool active_r = false; // Left arm volatile double emgFiltered_l; volatile double filteredAbs_l; volatile double emg_value_l; volatile double onoffsignal_l; volatile bool check_calibration_l = false; volatile double avg_emg_l; volatile bool active_l = false; // PROCESS EMG SIGNALS ///////////////////////////////////////////////////////// Ticker processTicker; // Ticker for processing of EMG const double processTs = 0.1; // Time step for processing of EMG volatile bool xdir = true, ydir = false; // Direction the EMG signal moves the end effector volatile int count = 0; // Counter to change direction // FUNCTIONS /////////////////////////////////////////////////////////////////// // BIQUAD FILTER FOR DERIVATIVE OF ERROR /////////////////////////////////////// double biquad(double u, double &v1, double &v2, const double a1, const double a2, const double b0, const double b1, const double b2) { double v = u - a1*v1 - a2*v2; double y = b0*v + b1*v1 + b2*v2; v2 = v1; v1 = v; return y; } // PID-CONTROLLER WITH FILTER ////////////////////////////////////////////////// double PID_Controller(double e, const double Kp, const double Ki, const double Kd, double Ts, double &e_int, double &e_prev, double &f_v1, double &f_v2, const double f_a1, const double f_a2, const double f_b0, const double f_b1, const double f_b2) { // Derivative double e_der = (e - e_prev)/Ts; // Calculate the derivative of error e_der = biquad(e_der, f_v1, f_v2, f_a1, f_a2, f_b0, f_b1, f_b2); // Filter the derivative of error e_prev = e; // Integral e_int = e_int + Ts*e; // Calculate the integral of error // PID return Kp*e + Ki*e_int + Kd*e_der; // Calculate motor value } // MOTOR 1 ///////////////////////////////////////////////////////////////////// void RotateMotor1(double motor1Value) { if(currentState == MOVING) // Check if state is MOVING { if(motor1Value >= 0) motor1DirectionPin = 0; // Rotate motor 1 CW else motor1DirectionPin = 1; // Rotate motor 1 CCW if(fabs(motor1Value) > 1) motor1MagnitudePin = 1; else motor1MagnitudePin = fabs(motor1Value); } else motor1MagnitudePin = 0; } // MOTOR 2 ///////////////////////////////////////////////////////////////////// void RotateMotor2(double motor2Value) { if(currentState == MOVING) // Check if state is MOVING { if(motor2Value >= 0) motor2DirectionPin = 1; // Rotate motor 2 CW else motor2DirectionPin = 0; // Rotate motor 2 CCW if(fabs(motor2Value) > 1) motor2MagnitudePin = 1; else motor2MagnitudePin = fabs(motor2Value); } else motor2MagnitudePin = 0; } // MOTOR PID-CONTROLLER ////////////////////////////////////////////////////// void MotorController() { if(currentState == MOVING) { position1 = radPerPulse * Encoder1.getPulses(); // Get current position of motor 1 position2 = radPerPulse * Encoder2.getPulses(); // Get current position of motor 2 double motor1Value = PID_Controller(reference1 - position1, motor1_KP, // Calculate motor value motor 1 motor1_KI, motor1_KD, controllerTs, motor1_err_int, motor1_prev_err, motor1_f_v1, motor1_f_v2, motor1_f_a1, motor1_f_a2, motor1_f_b0, motor1_f_b1, motor1_f_b2); double motor2Value = PID_Controller(reference2 - position2, motor2_KP, // Calculate motor value motor 2 motor2_KI, motor2_KD, controllerTs, motor2_err_int, motor2_prev_err, motor2_f_v1, motor2_f_v2, motor2_f_a1, motor2_f_a2, motor2_f_b0, motor2_f_b1, motor2_f_b2); RotateMotor1(motor1Value); // Rotate motor 1 RotateMotor2(motor2Value); // Rotate motor 2 } } // TURN OFF MOTORS ///////////////////////////////////////////////////////////// void TurnMotorsOff() { motor1MagnitudePin = 0; motor2MagnitudePin = 0; } // EMG ///////////////////////////////////////////////////////////////////////// // Filter EMG signal of right arm void filter_r() { if(check_calibration_r == 1) { emg_value_r = emg_r.read(); // Get EMG signal emgFiltered_r = bqc.step(emg_value_r); // Filter EMG signal using BiQuad Chain filteredAbs_r = abs(emgFiltered_r); // Takes absolute value if (avg_emg_r != 0) { onoffsignal_r = filteredAbs_r/avg_emg_r; // Divide the emg_r signal by the max emg_r to calibrate the signal per person } } } // Filter EMG signal of left arm void filter_l() { if(check_calibration_l == 1) { emg_value_l = emg_l.read(); emgFiltered_l = bqc.step(emg_value_l); filteredAbs_l = abs( emgFiltered_l ); if (avg_emg_l != 0) { onoffsignal_l = filteredAbs_l/avg_emg_l; } } } // Check threshold right arm void check_emg_r() { double filteredAbs_temp_r; if((check_calibration_l == 1) && (check_calibration_r == 1)) { for(int i = 0; i<250; i++) { filter_r(); filteredAbs_temp_r = filteredAbs_temp_r + onoffsignal_r; wait(0.0004); } filteredAbs_temp_r = filteredAbs_temp_r/250; if(filteredAbs_temp_r<=0.3) //if signal is lower then 0.5 the blue light goes on { led1.write(1); //led 1 is rood en uit active_r = false; } else if(filteredAbs_temp_r > 0.3) //if signal does not pass threshold value, blue light goes on { led1.write(0); active_r = true; } } } // Check threshold left arm void check_emg_l() { double filteredAbs_temp_l; if((check_calibration_l == 1) && (check_calibration_r == 1)) { for( int i = 0; i<250; i++) { filter_l(); filteredAbs_temp_l = filteredAbs_temp_l + onoffsignal_l; wait(0.0004); } filteredAbs_temp_l = filteredAbs_temp_l/250; if(filteredAbs_temp_l <= 0.3) //if signal is lower then 0.5 the blue light goes on { led2.write(1); active_l = false; } else if(filteredAbs_temp_l > 0.3) //if signal does not pass threshold value, blue light goes on { led2.write(0); active_l = true; } } } // Calibrate right arm void calibration_r() { led3.write(0); double signal_collection_r = 0; for(int n =0; n < 5000; n++) //read for 5000 samples as calibration { filter_r(); emg_value_r = emg_r.read(); emgFiltered_r = bqc.step( emg_value_r ); filteredAbs_r = abs(emgFiltered_r); signal_collection_r = signal_collection_r + filteredAbs_r ; wait(0.0004); if (n == 4999) { avg_emg_r = signal_collection_r / n; } } led3.write(1); check_calibration_r = 1; } // Calibrate left arm void calibration_l() { led3.write(0); double signal_collection_l = 0; for(int n = 0; n < 5000; n++) //read for 5000 samples as calibration { filter_l(); emg_value_l = emg_l.read(); emgFiltered_l = bqc.step(emg_value_l); filteredAbs_l = abs(emgFiltered_l); signal_collection_l = signal_collection_l + filteredAbs_l ; wait(0.0004); if (n == 4999) { avg_emg_l = signal_collection_l / n; } } led3.write(1); wait(1); check_calibration_l = 1; } // DETERMINE JOINT VELOCITIES ////////////////////////////////////////////////// void JointVelocities() { if(currentState == MOVING) { //position1 = radPerPulse * Encoder1.getPulses(); //position2 = radPerPulse * Encoder2.getPulses(); if(active_l && active_r) // If both left and right EMG are active for 1 second the direction of control changes { count += 1; if(count == 20) { active_l = false; active_r = false; xdir = !xdir; ydir = !ydir; led4 = !led4; led5 = !led5; xVelocity = 0; yVelocity = 0; } } else count = 0; if(xdir) // Control in x-direction { if(active_r && count == 0 && // Checks whether EMG is active, changing direction and max rotation of motors reference1 > motor1Min && reference2 < motor2Max) { xVelocity = velocity; // Give velocity to end effector } else if(active_l && count == 0 && reference1 < motor1Max && reference2 > motor2Min) { xVelocity = -velocity; } else xVelocity = 0; } else if(ydir) // Control in y-direction { if(active_r && count == 0 && reference2 < motor2Max ) //&& reference1 > motor2Min) { yVelocity = velocity; } else if(active_l && count == 0 && reference2 > motor2Min ) //&& reference1 > motor2Min) { yVelocity = -velocity; } else yVelocity = 0; } // Construct Jacobian double q[4]; q[0] = position1, q[1] = -position1; q[2] = position2, q[3] = -position2; double T2[3]; // Second column of the jacobian double T3[3]; // Third column of the jacobian double T4[3]; // Fourth column of the jacobian double T1[6]; static const signed char b_T1[3] = { 1, 0, 0 }; double J_data[6]; T2[0] = 1.0; T2[1] = 0.365 * cos(q[0]); T2[2] = 0.365 * sin(q[0]); T3[0] = 1.0; T3[1] = 0.365 * cos(q[0]) + 0.2353720459187964 * sin((0.21406068356382149 + q[0]) + q[1]); T3[2] = 0.365 * sin(q[0]) - 0.2353720459187964 * cos((0.21406068356382149 + q[0]) + q[1]); T4[0] = 1.0; T4[1] = (0.365 * cos(q[0]) + 0.2353720459187964 * sin((0.21406068356382149 + q[0]) + q[1])) + 0.265 * sin((q[0] + q[1]) + q[2]); T4[2] = (0.365 * sin(q[0]) - 0.2353720459187964 * cos((0.21406068356382149 + q[0]) + q[1])) - 0.265 * cos((q[0] + q[1]) + q[2]); for (int i = 0; i < 3; i++) { T1[i] = (double)b_T1[i] - T2[i]; T1[3 + i] = T3[i] - T4[i]; } for (int i = 0; i < 2; i++) { for (int j = 0; j < 3; j++) { J_data[j + 3 * i] = T1[j + 3 * i]; } } // Here the first row of the Jacobian is cut off, so we do not take rotation into consideration // Note: the matrices from now on will we constructed rowwise double Jvelocity[4]; Jvelocity[0] = J_data[1]; Jvelocity[1] = J_data[4]; Jvelocity[2] = J_data[2]; Jvelocity[3] = J_data[5]; // Creating the inverse Jacobian double Jvelocity_inv[4]; // The inverse matrix of the jacobian double determ = Jvelocity[0]*Jvelocity[3]-Jvelocity[1]*Jvelocity[2]; // The determinant of the matrix Jvelocity_inv[0] = Jvelocity[3]/determ; Jvelocity_inv[1] = -Jvelocity[1]/determ; Jvelocity_inv[2] = -Jvelocity[2]/determ; Jvelocity_inv[3] = Jvelocity[0]/determ; // Now the velocity of the joints are found by giving the velocity of the end-effector and the inverse jacobian double msh[2]; // The velocity the joints have to have msh[0] = xVelocity*Jvelocity_inv[0] + yVelocity*Jvelocity_inv[1]; msh[1] = xVelocity*Jvelocity_inv[2] + yVelocity*Jvelocity_inv[3]; // Determine reference position of motor 1 if(reference1 + msh[0]*processTs > motor1Max) reference1 = motor1Max; else if(reference1 + msh[0]*processTs < motor1Min) reference1 = motor1Min; else reference1 = reference1 + msh[0]*processTs; // Determine reference position of motor 2 if(reference2 + msh[1]*processTs > motor2Max) reference2 = motor2Max; else if(reference2 + msh[1]*processTs < motor2Min) reference2 = motor2Min; else reference2 = reference2 + msh[1]*processTs; /*scope.set(0,reference1); scope.set(1,position1); scope.set(2,reference2); scope.set(3,position2); scope.send();*/ pc.printf("position 1 %f, 2 %f \r\n", position1/2/pi*360, position2/2/pi*360); pc.printf("reference 1 %f, 2 %f \r\n", reference1/2/pi*360, reference2/2/pi*360); } } // STATES ////////////////////////////////////////////////////////////////////// void ProcessStateMachine() { switch(currentState) { case MOTORS_OFF: { // State initialization if(stateChanged) { pc.printf("Entering MOTORS_OFF \r\n" "Press button 1 to enter CALIBRATING \r\n"); TurnMotorsOff(); // Turn motors off stateChanged = false; } // Continue button if(!button1) { currentState = CALIBRATING; stateChanged = true; break; } break; } case CALIBRATING: { // State initialization if(stateChanged) { pc.printf("Entering CALIBRATING \r\n" "Tighten muscles until green LED is off \r\n"); stateChanged = false; calibration_r(); // Calibrate right arm calibration_l(); // Calibrate left arm currentState = MOVING; stateChanged = true; } break; } case MOVING: { // State initialization if(stateChanged) { pc.printf("Entering MOVING \r\n"); stateChanged = false; } break; } default: { TurnMotorsOff(); // Turn motors off for safety break; } } } // MAIN FUNCTION /////////////////////////////////////////////////////////////// int main() { // Serial communication pc.baud(115200); // Start values of LEDs led1.write(1); led2.write(1); led3.write(1); led4.write(1); led5.write(0); pc.printf("START \r\n"); bqc.add(&bq1_low ).add(&bq2_high ).add(&bq3_notch ); // Make BiQuad Chain processTicker.attach(&JointVelocities, processTs); // Ticker to process EMG controllerTicker.attach(&MotorController, controllerTs); // Ticker to control motor 1 (PID) emgRight.attach(&check_emg_r, emgTs); // Ticker to sample EMG of right arm emgLeft.attach(&check_emg_l, emgTs); // Ticker to sample EMG of left arm motor1MagnitudePin.period_ms(1); // PWM frequency of motor 1 (Should actually be 5 - 10 kHz) motor2MagnitudePin.period_ms(1); // PWM frequency of motor 2 (Should actually be 5 - 10 kHz) while(true) { ProcessStateMachine(); // Execute states function } }