This is an involuntary fork, created because the repository would not update mmSPI. SPI library used to communicate with an altera development board attached to four zigbee-header pins.
Dependents: Embedded_RTOS_Project
Fork of mmSPI by
mmSPI.cpp
- Committer:
- gatedClock
- Date:
- 2013-08-19
- Revision:
- 20:2d5cd38047ca
- Parent:
- 19:c2b753533b93
- Child:
- 21:e90dd0f8aaa1
File content as of revision 20:2d5cd38047ca:
/*----------------------------------------------//------------------------------ student : m-moore class : external SPI interface directory : mmSPI file : mmSPI.cpp ------------------------------------------------//----------------------------*/ #include "mmSPI.h" /*----------------------------------------------//------------------------------ ------------------------------------------------//----------------------------*/ //==============================================//============================== // consider resetting the fpga around here, because // the micro may be wiggling these signals before here. mmSPI::mmSPI() // constructor. { allocations(); // object allocations. *pSCLK = 0; // initialize. *pCPUclk = 0; // initialize. } //----------------------------------------------//------------------------------ mmSPI::~mmSPI() // destructor. { // deallocations. if (pMOSI) {delete pMOSI; pMOSI = NULL;} if (pMISO) {delete pMISO; pMISO = NULL;} if (pSCLK) {delete pSCLK; pSCLK = NULL;} if (pCPUclk) {delete pCPUclk; pCPUclk = NULL;} } //----------------------------------------------//------------------------------ void mmSPI::allocations(void) // object allocations. { pMOSI = new DigitalOut(mmSPI_MOSI); // SPI MOSI pin object. if (!pMOSI) error("\n\r mmSPI::allocations : FATAL malloc error for pMOSI. \n\r"); pMISO = new DigitalOut(mmSPI_MISO); // SPI MISO pin object. if (!pMISO) error("\n\r mmSPI::allocations : FATAL malloc error for pMISO. \n\r"); pSCLK = new DigitalOut(mmSPI_SCLK); // SPI SCLK pin object. if (!pSCLK) error("\n\r mmSPI::allocations : FATAL malloc error for pSCLK. \n\r"); pCPUclk = new DigitalOut(mmCPU_CLK); // SPI SCLK pin object. if (!pCPUclk) error("\n\r mmSPI::allocations : FATAL malloc error for pCPUclk. \n\r"); } //----------------------------------------------//------------------------------ void mmSPI::setSPIfrequency(float fFreq) // set SPI clock frequency. { fSPIfreq = fFreq; // promote to object scope. if (fSPIfreq < .05) // don't get near divide-by-zero. error("\n\r mmSPI::setSPIfrequency : FATAL SPI frequency set too low. \n\r"); fSPIquarterP = (1 / fSPIfreq) / 4; // figure quarter-cycle period. } //----------------------------------------------//------------------------------ // we're not going for speed, so lets go for good setup / hold. // send/receive a byte over SPI. // MSB out/in first. void mmSPI::transceive_byte(char *cReceive, char *cSend) { *cReceive = 0; // clear receive byte. for (dLoop01 = 7; dLoop01 >= 0; dLoop01--)// loop for 8 bits in the byte. { *pSCLK = 0; // SPI clock negedge. wait(fSPIquarterP); // until middle of clock low. *pMOSI = (*cSend >> dLoop01) & 1; // assert MOSI. // capture MISO. *cReceive = *cReceive | (*pMISO << dLoop01); wait(fSPIquarterP); // finish-out cycle. *pSCLK = 1; // SPI clock posedge. wait(fSPIquarterP); // finish-out cycle. wait(fSPIquarterP); // finish-out cycle. } } //----------------------------------------------//------------------------------ // transceive a character array. // limit is 256 characters. // MSB out/in first. void mmSPI::transceive_vector(char *cReceive, char *cSend, char cNumBytes) { for (dLoop02 = (cNumBytes - 1); dLoop02 >= 0; dLoop02--) transceive_byte(&(cReceive[dLoop02]), &(cSend[dLoop02])); *pCPUclk = 1; // pulse the CPU clock. wait(fSPIquarterP); wait(fSPIquarterP); *pCPUclk = 0; wait(fSPIquarterP); wait(fSPIquarterP); if (0) { *pSCLK = 1; wait(fSPIquarterP); wait(fSPIquarterP); *pSCLK = 0; wait(fSPIquarterP); wait(fSPIquarterP); } } //----------------------------------------------//------------------------------ // transceive a character array. // limit is 256 characters. // MSB out/in first. void mmSPI::transceive_vector2(char *pcReceive, char *pcSend, int dNumBytes) { int dClear; int dIndex; int dMosiByteIndex; int dMosiBitIndex; int dMisoByteIndex; int dMisoBitIndex; dIndex = (dNumBytes * 8) - 1; dMosiByteIndex = dIndex / 8; dMosiBitIndex = dIndex % 8; for (dClear = 0; dClear < dNumBytes; dClear++) pcReceive[dClear] = 0; *pCPUclk = 1; // pulse the CPU clock. wait(fSPIquarterP); wait(fSPIquarterP); *pCPUclk = 0; wait(fSPIquarterP); wait(fSPIquarterP); *pSCLK = 1; // pulse the SPI clock for parallel load. wait(fSPIquarterP); wait(fSPIquarterP); *pSCLK = 0; // pre-assert MOSI. *pMOSI = ((pcSend[dMosiByteIndex]) >> dMosiBitIndex) & 1; wait(fSPIquarterP); wait(fSPIquarterP); for (dIndex = (dNumBytes * 8) - 1; dIndex >= 0; dIndex--) { dMisoByteIndex = dIndex / 8; dMisoBitIndex = dIndex % 8; pcReceive[dMisoByteIndex] = pcReceive[dMisoByteIndex] | (*pMISO << dMisoBitIndex); *pSCLK = 1; wait(fSPIquarterP); wait(fSPIquarterP); *pSCLK = 0; if (dIndex < 0) dIndex = 0; dMosiByteIndex = (dIndex - 1) / 8; dMosiBitIndex = (dIndex - 1) % 8; *pMOSI = ((pcSend[dMosiByteIndex]) >> dMosiBitIndex) & 1; wait(fSPIquarterP); wait(fSPIquarterP); } } //----------------------------------------------//------------------------------ // transceive a character array. // limit is 256 characters. // MSB out/in first. void mmSPI::test_toggle_cpu_clock(void) { DigitalOut led0(LED4); while (1) { *pCPUclk = 1; led0 = 1; wait(1.0); *pCPUclk = 0; led0 = 0; wait(1.0); } } //----------------------------------------------//------------------------------ void mmSPI::force_write(char cDataHIgh, char cDataLow, char cAddress) { char pcReceive[8]; char pcSend [8]; int dLoop; for (dLoop = 0; dLoop < 8; dLoop++) pcSend[dLoop] = 0; // high data to R2. pcSend[7] = 0x02; pcSend[1] = 0xA8; pcSend[0] = cDataHIgh; transceive_vector(pcReceive, pcSend, 8); // low data to R1. pcSend[7] = 0x02; pcSend[1] = 0xA4; pcSend[0] = cDataLow; transceive_vector(pcReceive, pcSend, 8); // address to R3. pcSend[7] = 0x02; pcSend[1] = 0xAC; pcSend[0] = cAddress; transceive_vector(pcReceive, pcSend, 8); pcSend[7] = 0x02; pcSend[1] = 0x02; pcSend[0] = 0; // WE high. transceive_vector(pcReceive, pcSend, 8); pcSend[7] = 0x02; pcSend[1] = 0x00; pcSend[0] = 0; // WE low. transceive_vector(pcReceive, pcSend, 8); } //----------------------------------------------//------------------------------ void mmSPI::force_read(char cAddress) { char pcReceive[8]; char pcSend [8]; int dLoop; for (dLoop = 0; dLoop < 8; dLoop++) pcSend[dLoop] = 0; // address to R3. pcSend[7] = 0x02; pcSend[1] = 0xAC; pcSend[0] = cAddress; transceive_vector(pcReceive, pcSend, 8); // R2 gets data-H from memory. pcSend[7] = 0x02; pcSend[1] = 0xC8; pcSend[0] = cAddress; transceive_vector(pcReceive, pcSend, 8); // R1 gets data-L from memory. pcSend[7] = 0x02; pcSend[1] = 0xC4; pcSend[0] = cAddress; transceive_vector(pcReceive, pcSend, 8); // pcSend[7] = 0x02; // force IR. // pcSend[1] = 0xA4; // R1 <- immediate. // pcSend[0] = 0xEE; // immediate value. /// transceive_vector(pcReceive, pcSend, 8); // no-op scan. pcSend[7] = 0x02; pcSend[1] = 0x0; pcSend[0] = 0; transceive_vector(pcReceive, pcSend, 8); } //----------------------------------------------//------------------------------ void mmSPI::write_register(char cRegister, char cValue, char * pcReceive, char * pcSend) { int dLoop; // loop index. // clear transmit vector. for (dLoop = 0; dLoop < 8; dLoop++) pcSend[dLoop] = 0x00; pcSend[7] = 0x02; // mbed sends a command. // align into instruction word. pcSend[1] = ((cRegister & 0x07) << 2) | 0xA0; pcSend[0] = cValue & 0xFF; // immediate value to i.w. transceive_vector2(pcReceive, pcSend, 8); // transmit command. // clear transmit vector. for (dLoop = 0; dLoop < 8; dLoop++) pcSend[dLoop] = 0x00; } //----------------------------------------------//------------------------------ // returns the content of // a CPU register. char mmSPI::read_register(char cRegister, char * pcReceive, char * pcSend) { int dLoop; // int dComplement; // dComplement = 7 - (int) cRegister; // send all 0. for (dLoop = 0; dLoop < 8; dLoop++) pcSend[dLoop] = 0x00; transceive_vector2(pcReceive, pcSend, 8); // snap & scan-out reg contents. return (pcReceive[6 - cRegister]); // return the particular reg value. } //----------------------------------------------//------------------------------ void mmSPI::write_memory(char cHData, char cLdata, char cAddress, char * pcReceive, char * pcSend) { int dLoop; // loop index. // clear transmit vector. for (dLoop = 0; dLoop < 8; dLoop++) pcSend[dLoop] = 0x00; /* CTRL = 7 R0 = 6 R1 = 5 R2 = 4 R3 = 3 PC = 2 IR-H = 1 IR-L = 0 */ // R3 <- address. // R2 <- high-data. // R1 <- low-data. write_register(0x03,cAddress, pcReceive, pcSend); write_register(0x02,cHData, pcReceive, pcSend); write_register(0x01,cLdata, pcReceive, pcSend); pcSend[7] = 0x00; // write-enable high. pcSend[1] = 0x02; pcSend[0] = 0x00; transceive_vector2(pcReceive, pcSend, 8); pcSend[7] = 0x00; // write-enable low. pcSend[1] = 0x00; pcSend[0] = 0x00; transceive_vector2(pcReceive, pcSend, 8); // clear transmit vector. for (dLoop = 0; dLoop < 8; dLoop++) pcSend[dLoop] = 0x00; } //----------------------------------------------//------------------------------ // fetch a word from main memory. unsigned int mmSPI::read_memory(char cAddress, char * pcReceive, char * pcSend) { int dLoop; // loop index. unsigned int udMemoryContent; // return variable. char cHData; // returned data-high. char cLData; // returned data-low. // clear transmit vector. for (dLoop = 0; dLoop < 8; dLoop++) pcSend[dLoop] = 0x00; /* CTRL = 7 R0 = 6 R1 = 5 R2 = 4 R3 = 3 PC = 2 IR-H = 1 IR-L = 0 */ // R3 <- address. write_register(0x03,cAddress, pcReceive, pcSend); pcSend[7] = 0x02; // mbed sends command. pcSend[1] = 0xC8; // R2 <- MM[R3] pcSend[0] = 0x00; transceive_vector2(pcReceive, pcSend, 8); // send command. pcSend[7] = 0x02; // mbed sends command. pcSend[1] = 0xC4; // R1 <- MM[R3] pcSend[0] = 0x00; transceive_vector2(pcReceive, pcSend, 8); // send command. // obtain MM content. cHData = read_register(0x02, pcReceive, pcSend); cLData = read_register(0x01, pcReceive, pcSend); udMemoryContent = (cHData << 8) + cLData; // build the memory word. // clear transmit vector. for (dLoop = 0; dLoop < 8; dLoop++) pcSend[dLoop] = 0x00; return udMemoryContent; // return the memory word. } //----------------------------------------------//------------------------------ void mmSPI::write_pulse(char * pcReceive, char * pcSend) { pcSend[7] = 0x02; // write-enable high. pcSend[1] = 0x02; pcSend[0] = 0x00; transceive_vector2(pcReceive, pcSend, 8); pcSend[7] = 0x02; // write-enable low. pcSend[1] = 0x00; pcSend[0] = 0x00; transceive_vector2(pcReceive, pcSend, 8); pcSend[7] = 0x00; pcSend[6] = 0x00; pcSend[5] = 0x00; pcSend[4] = 0x00; pcSend[3] = 0x00; pcSend[2] = 0x00; pcSend[1] = 0x00; pcSend[0] = 0x00; } //----------------------------------------------//------------------------------