Template for LPC1768
Dependencies: Gimbal MLX90620 Socket lwip-eth lwip-sys lwip mbed-rtos mbed
Fork of EkkoEye by
CMLX90620.cpp
- Committer:
- Mike
- Date:
- 2016-04-14
- Revision:
- 53:72f350a6d09c
File content as of revision 53:72f350a6d09c:
/* * CMLX90620.cpp * * Created on: 12 Mar 2016 * Author: mike */ //NOTE: "Step Measurement Mode" was removed from new MLX90620 data sheet, page 22 dated Sept 19 2012 // which is used in this implementation #include "mbed.h" #include "CMLX90620.h" extern char* EEbuf; extern char* RamBuf; extern char* RamCmmd; //must reside in main.cpp const int PTATSENS = 0x90; //ram offset = 0x90, PTAT sensor reading, 16b const int TGCSENS = 0x91; //ram offset = 0x91, TGC sensor reading, 16b const int MLXCONFIG = 0x92; //ram offset = 0x92, config register, 16b const int MLXTRIM = 0x93; //ram offset = 0x93, oscillator trim, lsb>6b of 16b const int EETRIM = 0xf7; //eep offset = 0xf0, 1 byte, oscillator trim value unsigned short Config = 0; //MLX90620 configuration register unsigned short OscTrim = 0; //MLX90620 oscillator trim register unsigned short PtatD = 0; //MLX90620 PTAT data register short VCP = 0; //VCP / TGC short Vth25X = 0; float TaXX = 0.0; //For To signed char AcpX = 0; signed char BcpX = 0; float Kt1fX = 0.0; float Kt2fX = 0.0; signed char TGCX = 0; char BiScaleX = 0; unsigned short theta0X = 0; char theta0ScaleX = 0; char deltaThetaScaleX = 0; unsigned short elipsonX = 0; signed char AiPixelX = 0; //eeprom address range 0x00 - 0x3f signed char BiPixelX = 0; //eeprom address range 0x40 - 0x7f char dThetaPixelX = 0; //eeprom address range 0x80 - 0xbf short VirPixelX = 0; double TempPxlX = 0; const int TOINDEX = 0xd4; //eep offset = 0xD4 and 0xE0 (0xD4 + 0x0C), 6 bytes + 6 bytes const int TAINDEX = 0xda; //eep offset = 0xDA, 6 bytes //--------------------------------------------------------------------------------------------------------------------------------------// // Constructor MLX90620::MLX90620(PinName sda, PinName scl, const char* name) : _i2c(sda, scl){ _i2c.frequency(100000); //set up i2c speed _i2c.stop(); } //--------------------------------------------------------------------------------------------------------------------------------------// //copy contents of EEPROM inside the MLX90620 into a local buffer. Data is used for lookup tables and parameters int MLX90620::LoadEEPROM() { //clear out buffer first for(int i = 0; i < 256; i++) { EEbuf[i] = 0; } //load the entire EEPROM EEbuf[0] = 0; if(!_i2c.write(0xa0, EEbuf, 1, true)) { //0 returned is ok _i2c.read(0xa0, EEbuf, 256); //load contents of EEPROM } else { _i2c.stop(); return(1); } return(0); } //--------------------------------------------------------------------------------------------------------------------------------------// //copy oscillator offset from EEbuf to MLX90620 (MS byte = 0) int MLX90620::SetOscTrimReg() { RamCmmd[0] = 4; //command RamCmmd[1] = EEbuf[EETRIM] - 0xaa; //LS byte check RamCmmd[2] = EEbuf[EETRIM]; //oscillator trim value RamCmmd[3] = 0x100 - 0xaa; //MS byte check RamCmmd[4] = 0; //MS byte = 0 int r = _i2c.write(0xc0, RamCmmd, 5, false); return(r); } //--------------------------------------------------------------------------------------------------------------------------------------// //get oscillator offset register from MLX90620 unsigned short MLX90620::GetOscTrimReg() { RamCmmd[0] = 2; //command RamCmmd[1] = MLXTRIM; //address of register RamCmmd[2] = 0; //address step RamCmmd[3] = 1; //# of reads _i2c.write(0xc0, RamCmmd, 4, true); _i2c.read(0xc0, RamCmmd, 2); OscTrim = (RamCmmd[1] << 8) + RamCmmd[0]; return(OscTrim); } //--------------------------------------------------------------------------------------------------------------------------------------// //initialize the configuration register //******* NOTE: Step measurement mode was removed from new data sheet dated Sept 19 2012 int MLX90620::SetConfigReg() { RamCmmd[0] = 3; //command // RamCmmd[1] = 0x14c - 0x55; //LS byte check // RamCmmd[2] = 0x4c; //LS config value, step meas mode, 4Hz array ******* RamCmmd[1] = 0xf9; //LS byte check RamCmmd[2] = 0x4e; //LS config value, step meas mode, 4Hz array ******* RamCmmd[3] = 0x27; //MS byte check RamCmmd[4] = 0x7c; //MS config value, 2Hz Ta, 400k i2c int r = _i2c.write(0xc0, RamCmmd, 5, false); return(r); } //--------------------------------------------------------------------------------------------------------------------------------------// //get configuration register from MLX90620 unsigned short MLX90620::GetConfigReg() { RamCmmd[0] = 2; //command RamCmmd[1] = MLXCONFIG; //address of register RamCmmd[2] = 0; //address step RamCmmd[3] = 1; //# of reads _i2c.write(0xc0, RamCmmd, 4, true); _i2c.read(0xc0, RamCmmd, 2); Config = (RamCmmd[1] << 8) + RamCmmd[0]; return(Config); } //--------------------------------------------------------------------------------------------------------------------------------------// //get PTAT register from MLX90620 unsigned short MLX90620::GetPTATReg() { RamCmmd[0] = 2; //command RamCmmd[1] = PTATSENS; //address of register RamCmmd[2] = 0; //address step RamCmmd[3] = 1; //# of reads _i2c.write(0xc0, RamCmmd, 4, true); _i2c.read(0xc0, RamCmmd, 2); PtatD = (RamCmmd[1] << 8) + RamCmmd[0]; return(PtatD); } //--------------------------------------------------------------------------------------------------------------------------------------// //get VCP / TGC register from MLX90620 short MLX90620::GetTGCReg() { RamCmmd[0] = 2; //command RamCmmd[1] = TGCSENS; //address of register RamCmmd[2] = 0; //address step RamCmmd[3] = 1; //# of reads _i2c.write(0xc0, RamCmmd, 4, true); _i2c.read(0xc0, RamCmmd, 2); VCP = (RamCmmd[1] << 8) + RamCmmd[0]; return(VCP); } //--------------------------------------------------------------------------------------------------------------------------------------// //get RAM dump from MLX90620 bool firstDump = false; void MLX90620::LoadMLXRam() { RamCmmd[0] = 2; //command RamCmmd[1] = 0; //start address RamCmmd[2] = 1; //address step RamCmmd[3] = 0x40; //# of reads _i2c.write(0xc0, RamCmmd, 4, true); _i2c.read(0xc0, RamBuf, 0x80); PtatD = MLX90620::GetPTATReg(); VCP = MLX90620::GetTGCReg(); } //--------------------------------------------------------------------------------------------------------------------------------------// //start measurement MLX90620 int MLX90620::StartMeasurement() { RamCmmd[0] = 1; //command RamCmmd[1] = 8; //address of config register int r = _i2c.write(0xc0, RamCmmd, 2, false); return(r); } //--------------------------------------------------------------------------------------------------------------------------------------// // Initial Calculations for Ta and To float MLX90620::GetDieTemp() { PtatD = MLX90620::GetPTATReg(); float TaX = (-Kt1fX + sqrtf(powf(Kt1fX, 2.0) - 4.0 * Kt2fX * (Vth25X - PtatD)))/(2.0 * Kt2fX) + 25.0; return(TaX); } //--------------------------------------------------------------------------------------------------------------------------------------// // Initial Calculations for Ta and To void MLX90620::CalcTa_To() { //Calculate Ta first Vth25X = (EEbuf[TAINDEX + 1] << 8) + EEbuf[TAINDEX + 0]; short Kt1 = (EEbuf[TAINDEX + 3] << 8) + EEbuf[TAINDEX + 2]; short Kt2 = (EEbuf[TAINDEX + 5] << 8) + EEbuf[TAINDEX + 4]; Kt1fX = Kt1 / 1024.0; Kt2fX = Kt2 / 1048576.0; TaXX = MLX90620::GetDieTemp(); //Calculate To AcpX = EEbuf[TOINDEX + 0]; BcpX = EEbuf[TOINDEX + 1]; // unsigned short thetaCPX = (EEbuf[TOINDEX + 3] << 8) + EEbuf[TOINDEX + 2]; TGCX = EEbuf[TOINDEX + 4]; BiScaleX = EEbuf[TOINDEX + 5]; theta0X = (EEbuf[TOINDEX + 13] << 8) + EEbuf[TOINDEX + 12]; theta0ScaleX = EEbuf[TOINDEX + 14]; deltaThetaScaleX = EEbuf[TOINDEX + 15]; elipsonX = (EEbuf[TOINDEX + 17] << 8) + EEbuf[TOINDEX + 16]; /* printf("Vth(25) = %6d 0x%x\nTa1 = %6d 0x%x\nTa2 = %6d 0x%x\n", Vth25X, Vth25X, Kt1, Kt1, Kt2, Kt2); printf("Kt1fX = %f\nKt2fX = %f\nTaXX = %f\n\n", Kt1fX, Kt2fX, TaXX); printf("Acp = %6d 0x%x\nBcp = %6d 0x%x\nThCP = %6d 0x%x\n", AcpX, AcpX, BcpX, BcpX, thetaCPX, thetaCPX); printf("TGC = %6d 0x%x\nBiS = %6d 0x%x\nTh0 = %6d 0x%x\n", TGCX, TGCX, BiScaleX, BiScaleX, theta0X, theta0X); printf("T0s = %6d 0x%x\nDts = %6d 0x%x\nelip = %6d 0x%x\n\n", theta0ScaleX, theta0ScaleX, deltaThetaScaleX, deltaThetaScaleX, elipsonX, elipsonX); */ } //--------------------------------------------------------------------------------------------------------------------------------------// // Pixel Temperature Calculation double MLX90620::CalcPixel(int Pixel) { AiPixelX = EEbuf[Pixel]; //eeprom address range 0x00 - 0x3f BiPixelX = EEbuf[Pixel + 0x40]; //eeprom address range 0x40 - 0x7f dThetaPixelX = EEbuf[Pixel + 0x80]; //eeprom address range 0x08 - 0xbf VirPixelX = (RamBuf[Pixel * 2 + 1] << 8) + RamBuf[Pixel * 2]; //ram address range 0x000 - 0x08f, 16b float Vcp_off_comp = VCP - (AcpX + BcpX / powf(2.0,BiScaleX) * (TaXX - 25.0)); float VirPixel_off_comp = VirPixelX - (AiPixelX + BiPixelX / powf(2.0,BiScaleX) * (TaXX - 25.0)); float VirPixel_off_comp2 = (float(AiPixelX) + float(BiPixelX) / float(1 << BiScaleX) * (TaXX - 25.0)); VirPixel_off_comp2 = VirPixelX - VirPixel_off_comp2; float VirPixel_tgc_comp = VirPixel_off_comp - TGCX / 32.0 * Vcp_off_comp; float elipsonf = elipsonX / 32768.0; float VirPixel_comp = VirPixel_tgc_comp / elipsonf; double theta28 = theta0X / powf(2.0, theta0ScaleX) + dThetaPixelX / powf(2.0, deltaThetaScaleX); double TempPxl = powf((VirPixel_comp / theta28 + powf((TaXX + 273.15), 4.0)), (1.0 / 4.0)) - 273.15; /* printf("pixel = %d\n", Pixel); printf("Acp = %d\nBcp = %d\nBiS = %d\n", AcpX, BcpX, BiScaleX); printf("Vcp = %d\neps = %d\nTGC = %d\n", VCP, elipsonX, TGCX); printf("Vcp_off_comp = %f\n", Vcp_off_comp); printf("VirPixel_off_comp = %f\n", VirPixel_off_comp); printf("VirPixel = %d\n", VirPixelX); printf("AiPixel = %d\n", AiPixelX); printf("BiPixel = %d\n", BiPixelX); printf("BiScale = %d\n", BiScaleX); printf("2^BiScale = %f\n", (powf(2.0,BiScaleX))); printf("1 << BiScale = %d\n", (1 << BiScaleX)); printf("Ta-25.0 = %f\n", (TaXX - 25.0)); printf("BiPix/2^BiScale = %f\n", (BiPixelX / powf(2.0,BiScaleX))); printf("AiP+BiP/2^BiScale)*(Ta-25= %f\n", (AiPixelX + BiPixelX / powf(2.0,BiScaleX) * (TaXX - 25.0))); printf("VirPixel_off_comp again = %f\n", (VirPixelX - (AiPixelX + BiPixelX / powf(2.0,BiScaleX) * (TaXX - 25.0)))); printf("VirPixel_off_comp2 step = %f\n", VirPixel_off_comp2); printf("VirPixel_tgc_comp = %f\n", VirPixel_tgc_comp); printf("elipsonf = %f\n", elipsonf); printf("VirPixel_comp = %f\n", VirPixel_comp); printf("theta28 = %f << double print problem\n", (theta28 * 100000000.0)); //<<< can't print a double printf("TempPxl = %f\n", TempPxl); */ return(TempPxl); }