drum team

Dependencies:   BLE_API X_NUCLEO_IDB0XA1 mbed

Fork of BLE_HeartRate_IDB0XA1 by ST

Committer:
fxanhkhoa
Date:
Sun Oct 30 00:13:37 2016 +0000
Revision:
22:65f63e2d06bd
ok

Who changed what in which revision?

UserRevisionLine numberNew contents of line
fxanhkhoa 22:65f63e2d06bd 1 #ifndef MPU6050_H
fxanhkhoa 22:65f63e2d06bd 2 #define MPU6050_H
fxanhkhoa 22:65f63e2d06bd 3
fxanhkhoa 22:65f63e2d06bd 4 #include "mbed.h"
fxanhkhoa 22:65f63e2d06bd 5 #include "math.h"
fxanhkhoa 22:65f63e2d06bd 6
fxanhkhoa 22:65f63e2d06bd 7 // Define registers per MPU6050, Register Map and Descriptions, Rev 4.2, 08/19/2013 6 DOF Motion sensor fusion device
fxanhkhoa 22:65f63e2d06bd 8 // Invensense Inc., www.invensense.com
fxanhkhoa 22:65f63e2d06bd 9 // See also MPU-6050 Register Map and Descriptions, Revision 4.0, RM-MPU-6050A-00, 9/12/2012 for registers not listed in
fxanhkhoa 22:65f63e2d06bd 10 // above document; the MPU6050 and MPU 9150 are virtually identical but the latter has an on-board magnetic sensor
fxanhkhoa 22:65f63e2d06bd 11 //
fxanhkhoa 22:65f63e2d06bd 12 #define XGOFFS_TC 0x00 // Bit 7 PWR_MODE, bits 6:1 XG_OFFS_TC, bit 0 OTP_BNK_VLD
fxanhkhoa 22:65f63e2d06bd 13 #define YGOFFS_TC 0x01
fxanhkhoa 22:65f63e2d06bd 14 #define ZGOFFS_TC 0x02
fxanhkhoa 22:65f63e2d06bd 15 #define X_FINE_GAIN 0x03 // [7:0] fine gain
fxanhkhoa 22:65f63e2d06bd 16 #define Y_FINE_GAIN 0x04
fxanhkhoa 22:65f63e2d06bd 17 #define Z_FINE_GAIN 0x05
fxanhkhoa 22:65f63e2d06bd 18 #define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer
fxanhkhoa 22:65f63e2d06bd 19 #define XA_OFFSET_L_TC 0x07
fxanhkhoa 22:65f63e2d06bd 20 #define YA_OFFSET_H 0x08
fxanhkhoa 22:65f63e2d06bd 21 #define YA_OFFSET_L_TC 0x09
fxanhkhoa 22:65f63e2d06bd 22 #define ZA_OFFSET_H 0x0A
fxanhkhoa 22:65f63e2d06bd 23 #define ZA_OFFSET_L_TC 0x0B
fxanhkhoa 22:65f63e2d06bd 24 #define SELF_TEST_X 0x0D
fxanhkhoa 22:65f63e2d06bd 25 #define SELF_TEST_Y 0x0E
fxanhkhoa 22:65f63e2d06bd 26 #define SELF_TEST_Z 0x0F
fxanhkhoa 22:65f63e2d06bd 27 #define SELF_TEST_A 0x10
fxanhkhoa 22:65f63e2d06bd 28 #define XG_OFFS_USRH 0x13 // User-defined trim values for gyroscope; supported in MPU-6050?
fxanhkhoa 22:65f63e2d06bd 29 #define XG_OFFS_USRL 0x14
fxanhkhoa 22:65f63e2d06bd 30 #define YG_OFFS_USRH 0x15
fxanhkhoa 22:65f63e2d06bd 31 #define YG_OFFS_USRL 0x16
fxanhkhoa 22:65f63e2d06bd 32 #define ZG_OFFS_USRH 0x17
fxanhkhoa 22:65f63e2d06bd 33 #define ZG_OFFS_USRL 0x18
fxanhkhoa 22:65f63e2d06bd 34 #define SMPLRT_DIV 0x19
fxanhkhoa 22:65f63e2d06bd 35 #define CONFIG 0x1A
fxanhkhoa 22:65f63e2d06bd 36 #define GYRO_CONFIG 0x1B
fxanhkhoa 22:65f63e2d06bd 37 #define ACCEL_CONFIG 0x1C
fxanhkhoa 22:65f63e2d06bd 38 #define FF_THR 0x1D // Free-fall
fxanhkhoa 22:65f63e2d06bd 39 #define FF_DUR 0x1E // Free-fall
fxanhkhoa 22:65f63e2d06bd 40 #define MOT_THR 0x1F // Motion detection threshold bits [7:0]
fxanhkhoa 22:65f63e2d06bd 41 #define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms
fxanhkhoa 22:65f63e2d06bd 42 #define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0]
fxanhkhoa 22:65f63e2d06bd 43 #define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms
fxanhkhoa 22:65f63e2d06bd 44 #define FIFO_EN 0x23
fxanhkhoa 22:65f63e2d06bd 45 #define I2C_MST_CTRL 0x24
fxanhkhoa 22:65f63e2d06bd 46 #define I2C_SLV0_ADDR 0x25
fxanhkhoa 22:65f63e2d06bd 47 #define I2C_SLV0_REG 0x26
fxanhkhoa 22:65f63e2d06bd 48 #define I2C_SLV0_CTRL 0x27
fxanhkhoa 22:65f63e2d06bd 49 #define I2C_SLV1_ADDR 0x28
fxanhkhoa 22:65f63e2d06bd 50 #define I2C_SLV1_REG 0x29
fxanhkhoa 22:65f63e2d06bd 51 #define I2C_SLV1_CTRL 0x2A
fxanhkhoa 22:65f63e2d06bd 52 #define I2C_SLV2_ADDR 0x2B
fxanhkhoa 22:65f63e2d06bd 53 #define I2C_SLV2_REG 0x2C
fxanhkhoa 22:65f63e2d06bd 54 #define I2C_SLV2_CTRL 0x2D
fxanhkhoa 22:65f63e2d06bd 55 #define I2C_SLV3_ADDR 0x2E
fxanhkhoa 22:65f63e2d06bd 56 #define I2C_SLV3_REG 0x2F
fxanhkhoa 22:65f63e2d06bd 57 #define I2C_SLV3_CTRL 0x30
fxanhkhoa 22:65f63e2d06bd 58 #define I2C_SLV4_ADDR 0x31
fxanhkhoa 22:65f63e2d06bd 59 #define I2C_SLV4_REG 0x32
fxanhkhoa 22:65f63e2d06bd 60 #define I2C_SLV4_DO 0x33
fxanhkhoa 22:65f63e2d06bd 61 #define I2C_SLV4_CTRL 0x34
fxanhkhoa 22:65f63e2d06bd 62 #define I2C_SLV4_DI 0x35
fxanhkhoa 22:65f63e2d06bd 63 #define I2C_MST_STATUS 0x36
fxanhkhoa 22:65f63e2d06bd 64 #define INT_PIN_CFG 0x37
fxanhkhoa 22:65f63e2d06bd 65 #define INT_ENABLE 0x38
fxanhkhoa 22:65f63e2d06bd 66 #define DMP_INT_STATUS 0x39 // Check DMP interrupt
fxanhkhoa 22:65f63e2d06bd 67 #define INT_STATUS 0x3A
fxanhkhoa 22:65f63e2d06bd 68 #define ACCEL_XOUT_H 0x3B
fxanhkhoa 22:65f63e2d06bd 69 #define ACCEL_XOUT_L 0x3C
fxanhkhoa 22:65f63e2d06bd 70 #define ACCEL_YOUT_H 0x3D
fxanhkhoa 22:65f63e2d06bd 71 #define ACCEL_YOUT_L 0x3E
fxanhkhoa 22:65f63e2d06bd 72 #define ACCEL_ZOUT_H 0x3F
fxanhkhoa 22:65f63e2d06bd 73 #define ACCEL_ZOUT_L 0x40
fxanhkhoa 22:65f63e2d06bd 74 #define TEMP_OUT_H 0x41
fxanhkhoa 22:65f63e2d06bd 75 #define TEMP_OUT_L 0x42
fxanhkhoa 22:65f63e2d06bd 76 #define GYRO_XOUT_H 0x43
fxanhkhoa 22:65f63e2d06bd 77 #define GYRO_XOUT_L 0x44
fxanhkhoa 22:65f63e2d06bd 78 #define GYRO_YOUT_H 0x45
fxanhkhoa 22:65f63e2d06bd 79 #define GYRO_YOUT_L 0x46
fxanhkhoa 22:65f63e2d06bd 80 #define GYRO_ZOUT_H 0x47
fxanhkhoa 22:65f63e2d06bd 81 #define GYRO_ZOUT_L 0x48
fxanhkhoa 22:65f63e2d06bd 82 #define EXT_SENS_DATA_00 0x49
fxanhkhoa 22:65f63e2d06bd 83 #define EXT_SENS_DATA_01 0x4A
fxanhkhoa 22:65f63e2d06bd 84 #define EXT_SENS_DATA_02 0x4B
fxanhkhoa 22:65f63e2d06bd 85 #define EXT_SENS_DATA_03 0x4C
fxanhkhoa 22:65f63e2d06bd 86 #define EXT_SENS_DATA_04 0x4D
fxanhkhoa 22:65f63e2d06bd 87 #define EXT_SENS_DATA_05 0x4E
fxanhkhoa 22:65f63e2d06bd 88 #define EXT_SENS_DATA_06 0x4F
fxanhkhoa 22:65f63e2d06bd 89 #define EXT_SENS_DATA_07 0x50
fxanhkhoa 22:65f63e2d06bd 90 #define EXT_SENS_DATA_08 0x51
fxanhkhoa 22:65f63e2d06bd 91 #define EXT_SENS_DATA_09 0x52
fxanhkhoa 22:65f63e2d06bd 92 #define EXT_SENS_DATA_10 0x53
fxanhkhoa 22:65f63e2d06bd 93 #define EXT_SENS_DATA_11 0x54
fxanhkhoa 22:65f63e2d06bd 94 #define EXT_SENS_DATA_12 0x55
fxanhkhoa 22:65f63e2d06bd 95 #define EXT_SENS_DATA_13 0x56
fxanhkhoa 22:65f63e2d06bd 96 #define EXT_SENS_DATA_14 0x57
fxanhkhoa 22:65f63e2d06bd 97 #define EXT_SENS_DATA_15 0x58
fxanhkhoa 22:65f63e2d06bd 98 #define EXT_SENS_DATA_16 0x59
fxanhkhoa 22:65f63e2d06bd 99 #define EXT_SENS_DATA_17 0x5A
fxanhkhoa 22:65f63e2d06bd 100 #define EXT_SENS_DATA_18 0x5B
fxanhkhoa 22:65f63e2d06bd 101 #define EXT_SENS_DATA_19 0x5C
fxanhkhoa 22:65f63e2d06bd 102 #define EXT_SENS_DATA_20 0x5D
fxanhkhoa 22:65f63e2d06bd 103 #define EXT_SENS_DATA_21 0x5E
fxanhkhoa 22:65f63e2d06bd 104 #define EXT_SENS_DATA_22 0x5F
fxanhkhoa 22:65f63e2d06bd 105 #define EXT_SENS_DATA_23 0x60
fxanhkhoa 22:65f63e2d06bd 106 #define MOT_DETECT_STATUS 0x61
fxanhkhoa 22:65f63e2d06bd 107 #define I2C_SLV0_DO 0x63
fxanhkhoa 22:65f63e2d06bd 108 #define I2C_SLV1_DO 0x64
fxanhkhoa 22:65f63e2d06bd 109 #define I2C_SLV2_DO 0x65
fxanhkhoa 22:65f63e2d06bd 110 #define I2C_SLV3_DO 0x66
fxanhkhoa 22:65f63e2d06bd 111 #define I2C_MST_DELAY_CTRL 0x67
fxanhkhoa 22:65f63e2d06bd 112 #define SIGNAL_PATH_RESET 0x68
fxanhkhoa 22:65f63e2d06bd 113 #define MOT_DETECT_CTRL 0x69
fxanhkhoa 22:65f63e2d06bd 114 #define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP
fxanhkhoa 22:65f63e2d06bd 115 #define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode
fxanhkhoa 22:65f63e2d06bd 116 #define PWR_MGMT_2 0x6C
fxanhkhoa 22:65f63e2d06bd 117 #define DMP_BANK 0x6D // Activates a specific bank in the DMP
fxanhkhoa 22:65f63e2d06bd 118 #define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank
fxanhkhoa 22:65f63e2d06bd 119 #define DMP_REG 0x6F // Register in DMP from which to read or to which to write
fxanhkhoa 22:65f63e2d06bd 120 #define DMP_REG_1 0x70
fxanhkhoa 22:65f63e2d06bd 121 #define DMP_REG_2 0x71
fxanhkhoa 22:65f63e2d06bd 122 #define FIFO_COUNTH 0x72
fxanhkhoa 22:65f63e2d06bd 123 #define FIFO_COUNTL 0x73
fxanhkhoa 22:65f63e2d06bd 124 #define FIFO_R_W 0x74
fxanhkhoa 22:65f63e2d06bd 125 #define WHO_AM_I_MPU6050 0x75 // Should return 0x68
fxanhkhoa 22:65f63e2d06bd 126
fxanhkhoa 22:65f63e2d06bd 127 // Using the GY-521 breakout board, I set ADO to 0 by grounding through a 4k7 resistor
fxanhkhoa 22:65f63e2d06bd 128 // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1
fxanhkhoa 22:65f63e2d06bd 129 #define ADO 0
fxanhkhoa 22:65f63e2d06bd 130 #if ADO
fxanhkhoa 22:65f63e2d06bd 131 #define MPU6050_ADDRESS 0x69<<1 // Device address when ADO = 1
fxanhkhoa 22:65f63e2d06bd 132 #else
fxanhkhoa 22:65f63e2d06bd 133 #define MPU6050_ADDRESS 0x68<<1 // Device address when ADO = 0
fxanhkhoa 22:65f63e2d06bd 134 #endif
fxanhkhoa 22:65f63e2d06bd 135
fxanhkhoa 22:65f63e2d06bd 136 // Set initial input parameters
fxanhkhoa 22:65f63e2d06bd 137 enum Ascale {
fxanhkhoa 22:65f63e2d06bd 138 AFS_2G = 0,
fxanhkhoa 22:65f63e2d06bd 139 AFS_4G,
fxanhkhoa 22:65f63e2d06bd 140 AFS_8G,
fxanhkhoa 22:65f63e2d06bd 141 AFS_16G
fxanhkhoa 22:65f63e2d06bd 142 };
fxanhkhoa 22:65f63e2d06bd 143
fxanhkhoa 22:65f63e2d06bd 144 enum Gscale {
fxanhkhoa 22:65f63e2d06bd 145 GFS_250DPS = 0,
fxanhkhoa 22:65f63e2d06bd 146 GFS_500DPS,
fxanhkhoa 22:65f63e2d06bd 147 GFS_1000DPS,
fxanhkhoa 22:65f63e2d06bd 148 GFS_2000DPS
fxanhkhoa 22:65f63e2d06bd 149 };
fxanhkhoa 22:65f63e2d06bd 150
fxanhkhoa 22:65f63e2d06bd 151 // Specify sensor full scale
fxanhkhoa 22:65f63e2d06bd 152 int Gscale = GFS_250DPS;
fxanhkhoa 22:65f63e2d06bd 153 int Ascale = AFS_2G;
fxanhkhoa 22:65f63e2d06bd 154
fxanhkhoa 22:65f63e2d06bd 155 //Set up I2C, (SDA,SCL)
fxanhkhoa 22:65f63e2d06bd 156 I2C i2c(I2C_SDA, I2C_SCL);
fxanhkhoa 22:65f63e2d06bd 157 I2C i2c2(PB_14,PB_13);
fxanhkhoa 22:65f63e2d06bd 158
fxanhkhoa 22:65f63e2d06bd 159 DigitalOut myled(LED1);
fxanhkhoa 22:65f63e2d06bd 160
fxanhkhoa 22:65f63e2d06bd 161 float aRes, gRes, aRes2, gRes2; // scale resolutions per LSB for the sensors
fxanhkhoa 22:65f63e2d06bd 162
fxanhkhoa 22:65f63e2d06bd 163 // Pin definitions
fxanhkhoa 22:65f63e2d06bd 164 int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins
fxanhkhoa 22:65f63e2d06bd 165
fxanhkhoa 22:65f63e2d06bd 166 int16_t accelCount[3],accelCount2[3]; // Stores the 16-bit signed accelerometer sensor output
fxanhkhoa 22:65f63e2d06bd 167 float ax, ay, az, ax2, ay2, az2; // Stores the real accel value in g's
fxanhkhoa 22:65f63e2d06bd 168 int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
fxanhkhoa 22:65f63e2d06bd 169 float gx, gy, gz, gx2, gy2, gz2; // Stores the real gyro value in degrees per seconds
fxanhkhoa 22:65f63e2d06bd 170 float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer
fxanhkhoa 22:65f63e2d06bd 171 int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius
fxanhkhoa 22:65f63e2d06bd 172 float temperature;
fxanhkhoa 22:65f63e2d06bd 173 float SelfTest[6];
fxanhkhoa 22:65f63e2d06bd 174
fxanhkhoa 22:65f63e2d06bd 175 int delt_t = 0; // used to control display output rate
fxanhkhoa 22:65f63e2d06bd 176 int count_mpu = 0; // used to control display output rate
fxanhkhoa 22:65f63e2d06bd 177
fxanhkhoa 22:65f63e2d06bd 178 // parameters for 6 DoF sensor fusion calculations
fxanhkhoa 22:65f63e2d06bd 179 float PI = 3.14159265358979323846f;
fxanhkhoa 22:65f63e2d06bd 180 float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3
fxanhkhoa 22:65f63e2d06bd 181 float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
fxanhkhoa 22:65f63e2d06bd 182 float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
fxanhkhoa 22:65f63e2d06bd 183 float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
fxanhkhoa 22:65f63e2d06bd 184 float pitch, yaw, roll,pitch2,yaw2,roll2;
fxanhkhoa 22:65f63e2d06bd 185 float deltat = 0.0f; // integration interval for both filter schemes
fxanhkhoa 22:65f63e2d06bd 186 int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval
fxanhkhoa 22:65f63e2d06bd 187 float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
fxanhkhoa 22:65f63e2d06bd 188
fxanhkhoa 22:65f63e2d06bd 189 class MPU6050 {
fxanhkhoa 22:65f63e2d06bd 190
fxanhkhoa 22:65f63e2d06bd 191 protected:
fxanhkhoa 22:65f63e2d06bd 192
fxanhkhoa 22:65f63e2d06bd 193 public:
fxanhkhoa 22:65f63e2d06bd 194 //===================================================================================================================
fxanhkhoa 22:65f63e2d06bd 195 //====== Set of useful function to access acceleratio, gyroscope, and temperature data
fxanhkhoa 22:65f63e2d06bd 196 //===================================================================================================================
fxanhkhoa 22:65f63e2d06bd 197
fxanhkhoa 22:65f63e2d06bd 198 void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
fxanhkhoa 22:65f63e2d06bd 199 {
fxanhkhoa 22:65f63e2d06bd 200 char data_write[2];
fxanhkhoa 22:65f63e2d06bd 201 data_write[0] = subAddress;
fxanhkhoa 22:65f63e2d06bd 202 data_write[1] = data;
fxanhkhoa 22:65f63e2d06bd 203 i2c.write(address, data_write, 2, 0);
fxanhkhoa 22:65f63e2d06bd 204 }
fxanhkhoa 22:65f63e2d06bd 205
fxanhkhoa 22:65f63e2d06bd 206 void writeByte2(uint8_t address, uint8_t subAddress, uint8_t data)
fxanhkhoa 22:65f63e2d06bd 207 {
fxanhkhoa 22:65f63e2d06bd 208 char data_write[2];
fxanhkhoa 22:65f63e2d06bd 209 data_write[0] = subAddress;
fxanhkhoa 22:65f63e2d06bd 210 data_write[1] = data;
fxanhkhoa 22:65f63e2d06bd 211 i2c2.write(address, data_write, 2, 0);
fxanhkhoa 22:65f63e2d06bd 212 }
fxanhkhoa 22:65f63e2d06bd 213
fxanhkhoa 22:65f63e2d06bd 214 char readByte(uint8_t address, uint8_t subAddress)
fxanhkhoa 22:65f63e2d06bd 215 {
fxanhkhoa 22:65f63e2d06bd 216 char data[1]; // `data` will store the register data
fxanhkhoa 22:65f63e2d06bd 217 char data_write[1];
fxanhkhoa 22:65f63e2d06bd 218 data_write[0] = subAddress;
fxanhkhoa 22:65f63e2d06bd 219 i2c.write(address, data_write, 1, 1); // no stop
fxanhkhoa 22:65f63e2d06bd 220 i2c.read(address, data, 1, 0);
fxanhkhoa 22:65f63e2d06bd 221 return data[0];
fxanhkhoa 22:65f63e2d06bd 222 }
fxanhkhoa 22:65f63e2d06bd 223
fxanhkhoa 22:65f63e2d06bd 224 char readByte2(uint8_t address, uint8_t subAddress)
fxanhkhoa 22:65f63e2d06bd 225 {
fxanhkhoa 22:65f63e2d06bd 226 char data[1]; // `data` will store the register data
fxanhkhoa 22:65f63e2d06bd 227 char data_write[1];
fxanhkhoa 22:65f63e2d06bd 228 data_write[0] = subAddress;
fxanhkhoa 22:65f63e2d06bd 229 i2c2.write(address, data_write, 1, 1); // no stop
fxanhkhoa 22:65f63e2d06bd 230 i2c2.read(address, data, 1, 0);
fxanhkhoa 22:65f63e2d06bd 231 return data[0];
fxanhkhoa 22:65f63e2d06bd 232 }
fxanhkhoa 22:65f63e2d06bd 233
fxanhkhoa 22:65f63e2d06bd 234 void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
fxanhkhoa 22:65f63e2d06bd 235 {
fxanhkhoa 22:65f63e2d06bd 236 char data[14];
fxanhkhoa 22:65f63e2d06bd 237 char data_write[1];
fxanhkhoa 22:65f63e2d06bd 238 data_write[0] = subAddress;
fxanhkhoa 22:65f63e2d06bd 239 i2c.write(address, data_write, 1, 1); // no stop
fxanhkhoa 22:65f63e2d06bd 240 i2c.read(address, data, count, 0);
fxanhkhoa 22:65f63e2d06bd 241 for(int ii = 0; ii < count; ii++) {
fxanhkhoa 22:65f63e2d06bd 242 dest[ii] = data[ii];
fxanhkhoa 22:65f63e2d06bd 243 }
fxanhkhoa 22:65f63e2d06bd 244 }
fxanhkhoa 22:65f63e2d06bd 245
fxanhkhoa 22:65f63e2d06bd 246 void readBytes2(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
fxanhkhoa 22:65f63e2d06bd 247 {
fxanhkhoa 22:65f63e2d06bd 248 char data[14];
fxanhkhoa 22:65f63e2d06bd 249 char data_write[1];
fxanhkhoa 22:65f63e2d06bd 250 data_write[0] = subAddress;
fxanhkhoa 22:65f63e2d06bd 251 i2c2.write(address, data_write, 1, 1); // no stop
fxanhkhoa 22:65f63e2d06bd 252 i2c2.read(address, data, count, 0);
fxanhkhoa 22:65f63e2d06bd 253 for(int ii = 0; ii < count; ii++) {
fxanhkhoa 22:65f63e2d06bd 254 dest[ii] = data[ii];
fxanhkhoa 22:65f63e2d06bd 255 }
fxanhkhoa 22:65f63e2d06bd 256 }
fxanhkhoa 22:65f63e2d06bd 257
fxanhkhoa 22:65f63e2d06bd 258
fxanhkhoa 22:65f63e2d06bd 259 void getGres() {
fxanhkhoa 22:65f63e2d06bd 260 switch (Gscale)
fxanhkhoa 22:65f63e2d06bd 261 {
fxanhkhoa 22:65f63e2d06bd 262 // Possible gyro scales (and their register bit settings) are:
fxanhkhoa 22:65f63e2d06bd 263 // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11).
fxanhkhoa 22:65f63e2d06bd 264 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
fxanhkhoa 22:65f63e2d06bd 265 case GFS_250DPS:
fxanhkhoa 22:65f63e2d06bd 266 gRes = 250.0/32768.0;
fxanhkhoa 22:65f63e2d06bd 267 break;
fxanhkhoa 22:65f63e2d06bd 268 case GFS_500DPS:
fxanhkhoa 22:65f63e2d06bd 269 gRes = 500.0/32768.0;
fxanhkhoa 22:65f63e2d06bd 270 break;
fxanhkhoa 22:65f63e2d06bd 271 case GFS_1000DPS:
fxanhkhoa 22:65f63e2d06bd 272 gRes = 1000.0/32768.0;
fxanhkhoa 22:65f63e2d06bd 273 break;
fxanhkhoa 22:65f63e2d06bd 274 case GFS_2000DPS:
fxanhkhoa 22:65f63e2d06bd 275 gRes = 2000.0/32768.0;
fxanhkhoa 22:65f63e2d06bd 276 break;
fxanhkhoa 22:65f63e2d06bd 277 }
fxanhkhoa 22:65f63e2d06bd 278 }
fxanhkhoa 22:65f63e2d06bd 279
fxanhkhoa 22:65f63e2d06bd 280 void getAres() {
fxanhkhoa 22:65f63e2d06bd 281 switch (Ascale)
fxanhkhoa 22:65f63e2d06bd 282 {
fxanhkhoa 22:65f63e2d06bd 283 // Possible accelerometer scales (and their register bit settings) are:
fxanhkhoa 22:65f63e2d06bd 284 // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11).
fxanhkhoa 22:65f63e2d06bd 285 // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value:
fxanhkhoa 22:65f63e2d06bd 286 case AFS_2G:
fxanhkhoa 22:65f63e2d06bd 287 aRes = 2.0/32768.0;
fxanhkhoa 22:65f63e2d06bd 288 break;
fxanhkhoa 22:65f63e2d06bd 289 case AFS_4G:
fxanhkhoa 22:65f63e2d06bd 290 aRes = 4.0/32768.0;
fxanhkhoa 22:65f63e2d06bd 291 break;
fxanhkhoa 22:65f63e2d06bd 292 case AFS_8G:
fxanhkhoa 22:65f63e2d06bd 293 aRes = 8.0/32768.0;
fxanhkhoa 22:65f63e2d06bd 294 break;
fxanhkhoa 22:65f63e2d06bd 295 case AFS_16G:
fxanhkhoa 22:65f63e2d06bd 296 aRes = 16.0/32768.0;
fxanhkhoa 22:65f63e2d06bd 297 break;
fxanhkhoa 22:65f63e2d06bd 298 }
fxanhkhoa 22:65f63e2d06bd 299 }
fxanhkhoa 22:65f63e2d06bd 300
fxanhkhoa 22:65f63e2d06bd 301
fxanhkhoa 22:65f63e2d06bd 302 void readAccelData(int16_t * destination)
fxanhkhoa 22:65f63e2d06bd 303 {
fxanhkhoa 22:65f63e2d06bd 304 uint8_t rawData[6]; // x/y/z accel register data stored here
fxanhkhoa 22:65f63e2d06bd 305 readBytes(MPU6050_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
fxanhkhoa 22:65f63e2d06bd 306 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
fxanhkhoa 22:65f63e2d06bd 307 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
fxanhkhoa 22:65f63e2d06bd 308 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
fxanhkhoa 22:65f63e2d06bd 309 }
fxanhkhoa 22:65f63e2d06bd 310
fxanhkhoa 22:65f63e2d06bd 311 void readAccelData2(int16_t * destination)
fxanhkhoa 22:65f63e2d06bd 312 {
fxanhkhoa 22:65f63e2d06bd 313 uint8_t rawData[6]; // x/y/z accel register data stored here
fxanhkhoa 22:65f63e2d06bd 314 readBytes2(MPU6050_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array
fxanhkhoa 22:65f63e2d06bd 315 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
fxanhkhoa 22:65f63e2d06bd 316 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
fxanhkhoa 22:65f63e2d06bd 317 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
fxanhkhoa 22:65f63e2d06bd 318 }
fxanhkhoa 22:65f63e2d06bd 319
fxanhkhoa 22:65f63e2d06bd 320 void readGyroData(int16_t * destination)
fxanhkhoa 22:65f63e2d06bd 321 {
fxanhkhoa 22:65f63e2d06bd 322 uint8_t rawData[6]; // x/y/z gyro register data stored here
fxanhkhoa 22:65f63e2d06bd 323 readBytes(MPU6050_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
fxanhkhoa 22:65f63e2d06bd 324 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
fxanhkhoa 22:65f63e2d06bd 325 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
fxanhkhoa 22:65f63e2d06bd 326 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
fxanhkhoa 22:65f63e2d06bd 327 }
fxanhkhoa 22:65f63e2d06bd 328
fxanhkhoa 22:65f63e2d06bd 329 void readGyroData2(int16_t * destination)
fxanhkhoa 22:65f63e2d06bd 330 {
fxanhkhoa 22:65f63e2d06bd 331 uint8_t rawData[6]; // x/y/z gyro register data stored here
fxanhkhoa 22:65f63e2d06bd 332 readBytes2(MPU6050_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
fxanhkhoa 22:65f63e2d06bd 333 destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value
fxanhkhoa 22:65f63e2d06bd 334 destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ;
fxanhkhoa 22:65f63e2d06bd 335 destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ;
fxanhkhoa 22:65f63e2d06bd 336 }
fxanhkhoa 22:65f63e2d06bd 337
fxanhkhoa 22:65f63e2d06bd 338 int16_t readTempData()
fxanhkhoa 22:65f63e2d06bd 339 {
fxanhkhoa 22:65f63e2d06bd 340 uint8_t rawData[2]; // x/y/z gyro register data stored here
fxanhkhoa 22:65f63e2d06bd 341 readBytes(MPU6050_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
fxanhkhoa 22:65f63e2d06bd 342 return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value
fxanhkhoa 22:65f63e2d06bd 343 }
fxanhkhoa 22:65f63e2d06bd 344
fxanhkhoa 22:65f63e2d06bd 345 int16_t readTempData2()
fxanhkhoa 22:65f63e2d06bd 346 {
fxanhkhoa 22:65f63e2d06bd 347 uint8_t rawData[2]; // x/y/z gyro register data stored here
fxanhkhoa 22:65f63e2d06bd 348 readBytes2(MPU6050_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array
fxanhkhoa 22:65f63e2d06bd 349 return (int16_t)(((int16_t)rawData[0]) << 8 | rawData[1]) ; // Turn the MSB and LSB into a 16-bit value
fxanhkhoa 22:65f63e2d06bd 350 }
fxanhkhoa 22:65f63e2d06bd 351
fxanhkhoa 22:65f63e2d06bd 352
fxanhkhoa 22:65f63e2d06bd 353
fxanhkhoa 22:65f63e2d06bd 354 // Configure the motion detection control for low power accelerometer mode
fxanhkhoa 22:65f63e2d06bd 355 void LowPowerAccelOnly()
fxanhkhoa 22:65f63e2d06bd 356 {
fxanhkhoa 22:65f63e2d06bd 357
fxanhkhoa 22:65f63e2d06bd 358 // The sensor has a high-pass filter necessary to invoke to allow the sensor motion detection algorithms work properly
fxanhkhoa 22:65f63e2d06bd 359 // Motion detection occurs on free-fall (acceleration below a threshold for some time for all axes), motion (acceleration
fxanhkhoa 22:65f63e2d06bd 360 // above a threshold for some time on at least one axis), and zero-motion toggle (acceleration on each axis less than a
fxanhkhoa 22:65f63e2d06bd 361 // threshold for some time sets this flag, motion above the threshold turns it off). The high-pass filter takes gravity out
fxanhkhoa 22:65f63e2d06bd 362 // consideration for these threshold evaluations; otherwise, the flags would be set all the time!
fxanhkhoa 22:65f63e2d06bd 363
fxanhkhoa 22:65f63e2d06bd 364 uint8_t c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
fxanhkhoa 22:65f63e2d06bd 365 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x30); // Clear sleep and cycle bits [5:6]
fxanhkhoa 22:65f63e2d06bd 366 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x30); // Set sleep and cycle bits [5:6] to zero to make sure accelerometer is running
fxanhkhoa 22:65f63e2d06bd 367
fxanhkhoa 22:65f63e2d06bd 368 c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
fxanhkhoa 22:65f63e2d06bd 369 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0x38); // Clear standby XA, YA, and ZA bits [3:5]
fxanhkhoa 22:65f63e2d06bd 370 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x00); // Set XA, YA, and ZA bits [3:5] to zero to make sure accelerometer is running
fxanhkhoa 22:65f63e2d06bd 371
fxanhkhoa 22:65f63e2d06bd 372 c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
fxanhkhoa 22:65f63e2d06bd 373 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
fxanhkhoa 22:65f63e2d06bd 374 // Set high-pass filter to 0) reset (disable), 1) 5 Hz, 2) 2.5 Hz, 3) 1.25 Hz, 4) 0.63 Hz, or 7) Hold
fxanhkhoa 22:65f63e2d06bd 375 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x00); // Set ACCEL_HPF to 0; reset mode disbaling high-pass filter
fxanhkhoa 22:65f63e2d06bd 376
fxanhkhoa 22:65f63e2d06bd 377 c = readByte(MPU6050_ADDRESS, CONFIG);
fxanhkhoa 22:65f63e2d06bd 378 writeByte(MPU6050_ADDRESS, CONFIG, c & ~0x07); // Clear low-pass filter bits [2:0]
fxanhkhoa 22:65f63e2d06bd 379 writeByte(MPU6050_ADDRESS, CONFIG, c | 0x00); // Set DLPD_CFG to 0; 260 Hz bandwidth, 1 kHz rate
fxanhkhoa 22:65f63e2d06bd 380
fxanhkhoa 22:65f63e2d06bd 381 c = readByte(MPU6050_ADDRESS, INT_ENABLE);
fxanhkhoa 22:65f63e2d06bd 382 writeByte(MPU6050_ADDRESS, INT_ENABLE, c & ~0xFF); // Clear all interrupts
fxanhkhoa 22:65f63e2d06bd 383 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x40); // Enable motion threshold (bits 5) interrupt only
fxanhkhoa 22:65f63e2d06bd 384
fxanhkhoa 22:65f63e2d06bd 385 // Motion detection interrupt requires the absolute value of any axis to lie above the detection threshold
fxanhkhoa 22:65f63e2d06bd 386 // for at least the counter duration
fxanhkhoa 22:65f63e2d06bd 387 writeByte(MPU6050_ADDRESS, MOT_THR, 0x80); // Set motion detection to 0.256 g; LSB = 2 mg
fxanhkhoa 22:65f63e2d06bd 388 writeByte(MPU6050_ADDRESS, MOT_DUR, 0x01); // Set motion detect duration to 1 ms; LSB is 1 ms @ 1 kHz rate
fxanhkhoa 22:65f63e2d06bd 389
fxanhkhoa 22:65f63e2d06bd 390 wait(0.1); // Add delay for accumulation of samples
fxanhkhoa 22:65f63e2d06bd 391
fxanhkhoa 22:65f63e2d06bd 392 c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
fxanhkhoa 22:65f63e2d06bd 393 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x07); // Clear high-pass filter bits [2:0]
fxanhkhoa 22:65f63e2d06bd 394 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | 0x07); // Set ACCEL_HPF to 7; hold the initial accleration value as a referance
fxanhkhoa 22:65f63e2d06bd 395
fxanhkhoa 22:65f63e2d06bd 396 c = readByte(MPU6050_ADDRESS, PWR_MGMT_2);
fxanhkhoa 22:65f63e2d06bd 397 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c & ~0xC7); // Clear standby XA, YA, and ZA bits [3:5] and LP_WAKE_CTRL bits [6:7]
fxanhkhoa 22:65f63e2d06bd 398 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, c | 0x47); // Set wakeup frequency to 5 Hz, and disable XG, YG, and ZG gyros (bits [0:2])
fxanhkhoa 22:65f63e2d06bd 399
fxanhkhoa 22:65f63e2d06bd 400 c = readByte(MPU6050_ADDRESS, PWR_MGMT_1);
fxanhkhoa 22:65f63e2d06bd 401 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c & ~0x20); // Clear sleep and cycle bit 5
fxanhkhoa 22:65f63e2d06bd 402 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, c | 0x20); // Set cycle bit 5 to begin low power accelerometer motion interrupts
fxanhkhoa 22:65f63e2d06bd 403
fxanhkhoa 22:65f63e2d06bd 404 }
fxanhkhoa 22:65f63e2d06bd 405
fxanhkhoa 22:65f63e2d06bd 406
fxanhkhoa 22:65f63e2d06bd 407 void resetMPU6050() {
fxanhkhoa 22:65f63e2d06bd 408 // reset device
fxanhkhoa 22:65f63e2d06bd 409 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
fxanhkhoa 22:65f63e2d06bd 410 wait(0.1);
fxanhkhoa 22:65f63e2d06bd 411 }
fxanhkhoa 22:65f63e2d06bd 412
fxanhkhoa 22:65f63e2d06bd 413
fxanhkhoa 22:65f63e2d06bd 414 void initMPU6050()
fxanhkhoa 22:65f63e2d06bd 415 {
fxanhkhoa 22:65f63e2d06bd 416 // Initialize MPU6050 device
fxanhkhoa 22:65f63e2d06bd 417 // wake up device
fxanhkhoa 22:65f63e2d06bd 418 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors
fxanhkhoa 22:65f63e2d06bd 419 wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt
fxanhkhoa 22:65f63e2d06bd 420
fxanhkhoa 22:65f63e2d06bd 421 // get stable time source
fxanhkhoa 22:65f63e2d06bd 422 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
fxanhkhoa 22:65f63e2d06bd 423
fxanhkhoa 22:65f63e2d06bd 424 // Configure Gyro and Accelerometer
fxanhkhoa 22:65f63e2d06bd 425 // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively;
fxanhkhoa 22:65f63e2d06bd 426 // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both
fxanhkhoa 22:65f63e2d06bd 427 // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate
fxanhkhoa 22:65f63e2d06bd 428 writeByte(MPU6050_ADDRESS, CONFIG, 0x03);
fxanhkhoa 22:65f63e2d06bd 429
fxanhkhoa 22:65f63e2d06bd 430 // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV)
fxanhkhoa 22:65f63e2d06bd 431 writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above
fxanhkhoa 22:65f63e2d06bd 432
fxanhkhoa 22:65f63e2d06bd 433 // Set gyroscope full scale range
fxanhkhoa 22:65f63e2d06bd 434 // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3
fxanhkhoa 22:65f63e2d06bd 435 uint8_t c = readByte(MPU6050_ADDRESS, GYRO_CONFIG);
fxanhkhoa 22:65f63e2d06bd 436 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
fxanhkhoa 22:65f63e2d06bd 437 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
fxanhkhoa 22:65f63e2d06bd 438 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro
fxanhkhoa 22:65f63e2d06bd 439
fxanhkhoa 22:65f63e2d06bd 440 // Set accelerometer configuration
fxanhkhoa 22:65f63e2d06bd 441 c = readByte(MPU6050_ADDRESS, ACCEL_CONFIG);
fxanhkhoa 22:65f63e2d06bd 442 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5]
fxanhkhoa 22:65f63e2d06bd 443 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3]
fxanhkhoa 22:65f63e2d06bd 444 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer
fxanhkhoa 22:65f63e2d06bd 445
fxanhkhoa 22:65f63e2d06bd 446 // Configure Interrupts and Bypass Enable
fxanhkhoa 22:65f63e2d06bd 447 // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips
fxanhkhoa 22:65f63e2d06bd 448 // can join the I2C bus and all can be controlled by the Arduino as master
fxanhkhoa 22:65f63e2d06bd 449 writeByte(MPU6050_ADDRESS, INT_PIN_CFG, 0x22);
fxanhkhoa 22:65f63e2d06bd 450 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt
fxanhkhoa 22:65f63e2d06bd 451 }
fxanhkhoa 22:65f63e2d06bd 452
fxanhkhoa 22:65f63e2d06bd 453 // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average
fxanhkhoa 22:65f63e2d06bd 454 // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers.
fxanhkhoa 22:65f63e2d06bd 455 void calibrateMPU6050(float * dest1, float * dest2)
fxanhkhoa 22:65f63e2d06bd 456 {
fxanhkhoa 22:65f63e2d06bd 457 uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
fxanhkhoa 22:65f63e2d06bd 458 uint16_t ii, packet_count, fifo_count;
fxanhkhoa 22:65f63e2d06bd 459 int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
fxanhkhoa 22:65f63e2d06bd 460
fxanhkhoa 22:65f63e2d06bd 461 // reset device, reset all registers, clear gyro and accelerometer bias registers
fxanhkhoa 22:65f63e2d06bd 462 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
fxanhkhoa 22:65f63e2d06bd 463 wait(0.1);
fxanhkhoa 22:65f63e2d06bd 464
fxanhkhoa 22:65f63e2d06bd 465 // get stable time source
fxanhkhoa 22:65f63e2d06bd 466 // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001
fxanhkhoa 22:65f63e2d06bd 467 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x01);
fxanhkhoa 22:65f63e2d06bd 468 writeByte(MPU6050_ADDRESS, PWR_MGMT_2, 0x00);
fxanhkhoa 22:65f63e2d06bd 469 wait(0.2);
fxanhkhoa 22:65f63e2d06bd 470
fxanhkhoa 22:65f63e2d06bd 471 // Configure device for bias calculation
fxanhkhoa 22:65f63e2d06bd 472 writeByte(MPU6050_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts
fxanhkhoa 22:65f63e2d06bd 473 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable FIFO
fxanhkhoa 22:65f63e2d06bd 474 writeByte(MPU6050_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source
fxanhkhoa 22:65f63e2d06bd 475 writeByte(MPU6050_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master
fxanhkhoa 22:65f63e2d06bd 476 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes
fxanhkhoa 22:65f63e2d06bd 477 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP
fxanhkhoa 22:65f63e2d06bd 478 wait(0.015);
fxanhkhoa 22:65f63e2d06bd 479
fxanhkhoa 22:65f63e2d06bd 480 // Configure MPU6050 gyro and accelerometer for bias calculation
fxanhkhoa 22:65f63e2d06bd 481 writeByte(MPU6050_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz
fxanhkhoa 22:65f63e2d06bd 482 writeByte(MPU6050_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
fxanhkhoa 22:65f63e2d06bd 483 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
fxanhkhoa 22:65f63e2d06bd 484 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
fxanhkhoa 22:65f63e2d06bd 485
fxanhkhoa 22:65f63e2d06bd 486 uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
fxanhkhoa 22:65f63e2d06bd 487 uint16_t accelsensitivity = 16384; // = 16384 LSB/g
fxanhkhoa 22:65f63e2d06bd 488
fxanhkhoa 22:65f63e2d06bd 489 // Configure FIFO to capture accelerometer and gyro data for bias calculation
fxanhkhoa 22:65f63e2d06bd 490 writeByte(MPU6050_ADDRESS, USER_CTRL, 0x40); // Enable FIFO
fxanhkhoa 22:65f63e2d06bd 491 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 1024 bytes in MPU-6050)
fxanhkhoa 22:65f63e2d06bd 492 wait(0.08); // accumulate 80 samples in 80 milliseconds = 960 bytes
fxanhkhoa 22:65f63e2d06bd 493
fxanhkhoa 22:65f63e2d06bd 494 // At end of sample accumulation, turn off FIFO sensor read
fxanhkhoa 22:65f63e2d06bd 495 writeByte(MPU6050_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
fxanhkhoa 22:65f63e2d06bd 496 readBytes(MPU6050_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count
fxanhkhoa 22:65f63e2d06bd 497 fifo_count = ((uint16_t)data[0] << 8) | data[1];
fxanhkhoa 22:65f63e2d06bd 498 packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
fxanhkhoa 22:65f63e2d06bd 499
fxanhkhoa 22:65f63e2d06bd 500 for (ii = 0; ii < packet_count; ii++) {
fxanhkhoa 22:65f63e2d06bd 501 int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
fxanhkhoa 22:65f63e2d06bd 502 readBytes(MPU6050_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging
fxanhkhoa 22:65f63e2d06bd 503 accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
fxanhkhoa 22:65f63e2d06bd 504 accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
fxanhkhoa 22:65f63e2d06bd 505 accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
fxanhkhoa 22:65f63e2d06bd 506 gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
fxanhkhoa 22:65f63e2d06bd 507 gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
fxanhkhoa 22:65f63e2d06bd 508 gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
fxanhkhoa 22:65f63e2d06bd 509
fxanhkhoa 22:65f63e2d06bd 510 accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
fxanhkhoa 22:65f63e2d06bd 511 accel_bias[1] += (int32_t) accel_temp[1];
fxanhkhoa 22:65f63e2d06bd 512 accel_bias[2] += (int32_t) accel_temp[2];
fxanhkhoa 22:65f63e2d06bd 513 gyro_bias[0] += (int32_t) gyro_temp[0];
fxanhkhoa 22:65f63e2d06bd 514 gyro_bias[1] += (int32_t) gyro_temp[1];
fxanhkhoa 22:65f63e2d06bd 515 gyro_bias[2] += (int32_t) gyro_temp[2];
fxanhkhoa 22:65f63e2d06bd 516
fxanhkhoa 22:65f63e2d06bd 517 }
fxanhkhoa 22:65f63e2d06bd 518 accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
fxanhkhoa 22:65f63e2d06bd 519 accel_bias[1] /= (int32_t) packet_count;
fxanhkhoa 22:65f63e2d06bd 520 accel_bias[2] /= (int32_t) packet_count;
fxanhkhoa 22:65f63e2d06bd 521 gyro_bias[0] /= (int32_t) packet_count;
fxanhkhoa 22:65f63e2d06bd 522 gyro_bias[1] /= (int32_t) packet_count;
fxanhkhoa 22:65f63e2d06bd 523 gyro_bias[2] /= (int32_t) packet_count;
fxanhkhoa 22:65f63e2d06bd 524
fxanhkhoa 22:65f63e2d06bd 525 if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
fxanhkhoa 22:65f63e2d06bd 526 else {accel_bias[2] += (int32_t) accelsensitivity;}
fxanhkhoa 22:65f63e2d06bd 527
fxanhkhoa 22:65f63e2d06bd 528 // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
fxanhkhoa 22:65f63e2d06bd 529 data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
fxanhkhoa 22:65f63e2d06bd 530 data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
fxanhkhoa 22:65f63e2d06bd 531 data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
fxanhkhoa 22:65f63e2d06bd 532 data[3] = (-gyro_bias[1]/4) & 0xFF;
fxanhkhoa 22:65f63e2d06bd 533 data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
fxanhkhoa 22:65f63e2d06bd 534 data[5] = (-gyro_bias[2]/4) & 0xFF;
fxanhkhoa 22:65f63e2d06bd 535
fxanhkhoa 22:65f63e2d06bd 536 // Push gyro biases to hardware registers
fxanhkhoa 22:65f63e2d06bd 537 writeByte(MPU6050_ADDRESS, XG_OFFS_USRH, data[0]);
fxanhkhoa 22:65f63e2d06bd 538 writeByte(MPU6050_ADDRESS, XG_OFFS_USRL, data[1]);
fxanhkhoa 22:65f63e2d06bd 539 writeByte(MPU6050_ADDRESS, YG_OFFS_USRH, data[2]);
fxanhkhoa 22:65f63e2d06bd 540 writeByte(MPU6050_ADDRESS, YG_OFFS_USRL, data[3]);
fxanhkhoa 22:65f63e2d06bd 541 writeByte(MPU6050_ADDRESS, ZG_OFFS_USRH, data[4]);
fxanhkhoa 22:65f63e2d06bd 542 writeByte(MPU6050_ADDRESS, ZG_OFFS_USRL, data[5]);
fxanhkhoa 22:65f63e2d06bd 543
fxanhkhoa 22:65f63e2d06bd 544 dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction
fxanhkhoa 22:65f63e2d06bd 545 dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
fxanhkhoa 22:65f63e2d06bd 546 dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
fxanhkhoa 22:65f63e2d06bd 547
fxanhkhoa 22:65f63e2d06bd 548 // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
fxanhkhoa 22:65f63e2d06bd 549 // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
fxanhkhoa 22:65f63e2d06bd 550 // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
fxanhkhoa 22:65f63e2d06bd 551 // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
fxanhkhoa 22:65f63e2d06bd 552 // the accelerometer biases calculated above must be divided by 8.
fxanhkhoa 22:65f63e2d06bd 553
fxanhkhoa 22:65f63e2d06bd 554 int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
fxanhkhoa 22:65f63e2d06bd 555 readBytes(MPU6050_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values
fxanhkhoa 22:65f63e2d06bd 556 accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1];
fxanhkhoa 22:65f63e2d06bd 557 readBytes(MPU6050_ADDRESS, YA_OFFSET_H, 2, &data[0]);
fxanhkhoa 22:65f63e2d06bd 558 accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1];
fxanhkhoa 22:65f63e2d06bd 559 readBytes(MPU6050_ADDRESS, ZA_OFFSET_H, 2, &data[0]);
fxanhkhoa 22:65f63e2d06bd 560 accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1];
fxanhkhoa 22:65f63e2d06bd 561
fxanhkhoa 22:65f63e2d06bd 562 uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
fxanhkhoa 22:65f63e2d06bd 563 uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
fxanhkhoa 22:65f63e2d06bd 564
fxanhkhoa 22:65f63e2d06bd 565 for(ii = 0; ii < 3; ii++) {
fxanhkhoa 22:65f63e2d06bd 566 if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
fxanhkhoa 22:65f63e2d06bd 567 }
fxanhkhoa 22:65f63e2d06bd 568
fxanhkhoa 22:65f63e2d06bd 569 // Construct total accelerometer bias, including calculated average accelerometer bias from above
fxanhkhoa 22:65f63e2d06bd 570 accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
fxanhkhoa 22:65f63e2d06bd 571 accel_bias_reg[1] -= (accel_bias[1]/8);
fxanhkhoa 22:65f63e2d06bd 572 accel_bias_reg[2] -= (accel_bias[2]/8);
fxanhkhoa 22:65f63e2d06bd 573
fxanhkhoa 22:65f63e2d06bd 574 data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
fxanhkhoa 22:65f63e2d06bd 575 data[1] = (accel_bias_reg[0]) & 0xFF;
fxanhkhoa 22:65f63e2d06bd 576 data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
fxanhkhoa 22:65f63e2d06bd 577 data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
fxanhkhoa 22:65f63e2d06bd 578 data[3] = (accel_bias_reg[1]) & 0xFF;
fxanhkhoa 22:65f63e2d06bd 579 data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
fxanhkhoa 22:65f63e2d06bd 580 data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
fxanhkhoa 22:65f63e2d06bd 581 data[5] = (accel_bias_reg[2]) & 0xFF;
fxanhkhoa 22:65f63e2d06bd 582 data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
fxanhkhoa 22:65f63e2d06bd 583
fxanhkhoa 22:65f63e2d06bd 584 // Push accelerometer biases to hardware registers
fxanhkhoa 22:65f63e2d06bd 585 // writeByte(MPU6050_ADDRESS, XA_OFFSET_H, data[0]);
fxanhkhoa 22:65f63e2d06bd 586 // writeByte(MPU6050_ADDRESS, XA_OFFSET_L_TC, data[1]);
fxanhkhoa 22:65f63e2d06bd 587 // writeByte(MPU6050_ADDRESS, YA_OFFSET_H, data[2]);
fxanhkhoa 22:65f63e2d06bd 588 // writeByte(MPU6050_ADDRESS, YA_OFFSET_L_TC, data[3]);
fxanhkhoa 22:65f63e2d06bd 589 // writeByte(MPU6050_ADDRESS, ZA_OFFSET_H, data[4]);
fxanhkhoa 22:65f63e2d06bd 590 // writeByte(MPU6050_ADDRESS, ZA_OFFSET_L_TC, data[5]);
fxanhkhoa 22:65f63e2d06bd 591
fxanhkhoa 22:65f63e2d06bd 592 // Output scaled accelerometer biases for manual subtraction in the main program
fxanhkhoa 22:65f63e2d06bd 593 dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
fxanhkhoa 22:65f63e2d06bd 594 dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
fxanhkhoa 22:65f63e2d06bd 595 dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
fxanhkhoa 22:65f63e2d06bd 596 }
fxanhkhoa 22:65f63e2d06bd 597
fxanhkhoa 22:65f63e2d06bd 598
fxanhkhoa 22:65f63e2d06bd 599 // Accelerometer and gyroscope self test; check calibration wrt factory settings
fxanhkhoa 22:65f63e2d06bd 600 void MPU6050SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass
fxanhkhoa 22:65f63e2d06bd 601 {
fxanhkhoa 22:65f63e2d06bd 602 uint8_t rawData[4] = {0, 0, 0, 0};
fxanhkhoa 22:65f63e2d06bd 603 uint8_t selfTest[6];
fxanhkhoa 22:65f63e2d06bd 604 float factoryTrim[6];
fxanhkhoa 22:65f63e2d06bd 605
fxanhkhoa 22:65f63e2d06bd 606 // Configure the accelerometer for self-test
fxanhkhoa 22:65f63e2d06bd 607 writeByte(MPU6050_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g
fxanhkhoa 22:65f63e2d06bd 608 writeByte(MPU6050_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s
fxanhkhoa 22:65f63e2d06bd 609 wait(0.25); // Delay a while to let the device execute the self-test
fxanhkhoa 22:65f63e2d06bd 610 rawData[0] = readByte(MPU6050_ADDRESS, SELF_TEST_X); // X-axis self-test results
fxanhkhoa 22:65f63e2d06bd 611 rawData[1] = readByte(MPU6050_ADDRESS, SELF_TEST_Y); // Y-axis self-test results
fxanhkhoa 22:65f63e2d06bd 612 rawData[2] = readByte(MPU6050_ADDRESS, SELF_TEST_Z); // Z-axis self-test results
fxanhkhoa 22:65f63e2d06bd 613 rawData[3] = readByte(MPU6050_ADDRESS, SELF_TEST_A); // Mixed-axis self-test results
fxanhkhoa 22:65f63e2d06bd 614 // Extract the acceleration test results first
fxanhkhoa 22:65f63e2d06bd 615 selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer
fxanhkhoa 22:65f63e2d06bd 616 selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 4 ; // YA_TEST result is a five-bit unsigned integer
fxanhkhoa 22:65f63e2d06bd 617 selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) >> 4 ; // ZA_TEST result is a five-bit unsigned integer
fxanhkhoa 22:65f63e2d06bd 618 // Extract the gyration test results first
fxanhkhoa 22:65f63e2d06bd 619 selfTest[3] = rawData[0] & 0x1F ; // XG_TEST result is a five-bit unsigned integer
fxanhkhoa 22:65f63e2d06bd 620 selfTest[4] = rawData[1] & 0x1F ; // YG_TEST result is a five-bit unsigned integer
fxanhkhoa 22:65f63e2d06bd 621 selfTest[5] = rawData[2] & 0x1F ; // ZG_TEST result is a five-bit unsigned integer
fxanhkhoa 22:65f63e2d06bd 622 // Process results to allow final comparison with factory set values
fxanhkhoa 22:65f63e2d06bd 623 factoryTrim[0] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[0] - 1.0f)/30.0f))); // FT[Xa] factory trim calculation
fxanhkhoa 22:65f63e2d06bd 624 factoryTrim[1] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[1] - 1.0f)/30.0f))); // FT[Ya] factory trim calculation
fxanhkhoa 22:65f63e2d06bd 625 factoryTrim[2] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[2] - 1.0f)/30.0f))); // FT[Za] factory trim calculation
fxanhkhoa 22:65f63e2d06bd 626 factoryTrim[3] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[3] - 1.0f) )); // FT[Xg] factory trim calculation
fxanhkhoa 22:65f63e2d06bd 627 factoryTrim[4] = (-25.0f*131.0f)*(pow( 1.046f , (selfTest[4] - 1.0f) )); // FT[Yg] factory trim calculation
fxanhkhoa 22:65f63e2d06bd 628 factoryTrim[5] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[5] - 1.0f) )); // FT[Zg] factory trim calculation
fxanhkhoa 22:65f63e2d06bd 629
fxanhkhoa 22:65f63e2d06bd 630 // Output self-test results and factory trim calculation if desired
fxanhkhoa 22:65f63e2d06bd 631 // Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]);
fxanhkhoa 22:65f63e2d06bd 632 // Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]);
fxanhkhoa 22:65f63e2d06bd 633 // Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]);
fxanhkhoa 22:65f63e2d06bd 634 // Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]);
fxanhkhoa 22:65f63e2d06bd 635
fxanhkhoa 22:65f63e2d06bd 636 // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response
fxanhkhoa 22:65f63e2d06bd 637 // To get to percent, must multiply by 100 and subtract result from 100
fxanhkhoa 22:65f63e2d06bd 638 for (int i = 0; i < 6; i++) {
fxanhkhoa 22:65f63e2d06bd 639 destination[i] = 100.0f + 100.0f*(selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences
fxanhkhoa 22:65f63e2d06bd 640 }
fxanhkhoa 22:65f63e2d06bd 641
fxanhkhoa 22:65f63e2d06bd 642 }
fxanhkhoa 22:65f63e2d06bd 643
fxanhkhoa 22:65f63e2d06bd 644
fxanhkhoa 22:65f63e2d06bd 645 // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays"
fxanhkhoa 22:65f63e2d06bd 646 // (see http://www.x-io.co.uk/category/open-source/ for examples and more details)
fxanhkhoa 22:65f63e2d06bd 647 // which fuses acceleration and rotation rate to produce a quaternion-based estimate of relative
fxanhkhoa 22:65f63e2d06bd 648 // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc.
fxanhkhoa 22:65f63e2d06bd 649 // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms
fxanhkhoa 22:65f63e2d06bd 650 // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz!
fxanhkhoa 22:65f63e2d06bd 651 void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz)
fxanhkhoa 22:65f63e2d06bd 652 {
fxanhkhoa 22:65f63e2d06bd 653 float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability
fxanhkhoa 22:65f63e2d06bd 654 float norm; // vector norm
fxanhkhoa 22:65f63e2d06bd 655 float f1, f2, f3; // objective funcyion elements
fxanhkhoa 22:65f63e2d06bd 656 float J_11or24, J_12or23, J_13or22, J_14or21, J_32, J_33; // objective function Jacobian elements
fxanhkhoa 22:65f63e2d06bd 657 float qDot1, qDot2, qDot3, qDot4;
fxanhkhoa 22:65f63e2d06bd 658 float hatDot1, hatDot2, hatDot3, hatDot4;
fxanhkhoa 22:65f63e2d06bd 659 float gerrx, gerry, gerrz, gbiasx, gbiasy, gbiasz; // gyro bias error
fxanhkhoa 22:65f63e2d06bd 660
fxanhkhoa 22:65f63e2d06bd 661 // Auxiliary variables to avoid repeated arithmetic
fxanhkhoa 22:65f63e2d06bd 662 float _halfq1 = 0.5f * q1;
fxanhkhoa 22:65f63e2d06bd 663 float _halfq2 = 0.5f * q2;
fxanhkhoa 22:65f63e2d06bd 664 float _halfq3 = 0.5f * q3;
fxanhkhoa 22:65f63e2d06bd 665 float _halfq4 = 0.5f * q4;
fxanhkhoa 22:65f63e2d06bd 666 float _2q1 = 2.0f * q1;
fxanhkhoa 22:65f63e2d06bd 667 float _2q2 = 2.0f * q2;
fxanhkhoa 22:65f63e2d06bd 668 float _2q3 = 2.0f * q3;
fxanhkhoa 22:65f63e2d06bd 669 float _2q4 = 2.0f * q4;
fxanhkhoa 22:65f63e2d06bd 670 // float _2q1q3 = 2.0f * q1 * q3;
fxanhkhoa 22:65f63e2d06bd 671 // float _2q3q4 = 2.0f * q3 * q4;
fxanhkhoa 22:65f63e2d06bd 672
fxanhkhoa 22:65f63e2d06bd 673 // Normalise accelerometer measurement
fxanhkhoa 22:65f63e2d06bd 674 norm = sqrt(ax * ax + ay * ay + az * az);
fxanhkhoa 22:65f63e2d06bd 675 if (norm == 0.0f) return; // handle NaN
fxanhkhoa 22:65f63e2d06bd 676 norm = 1.0f/norm;
fxanhkhoa 22:65f63e2d06bd 677 ax *= norm;
fxanhkhoa 22:65f63e2d06bd 678 ay *= norm;
fxanhkhoa 22:65f63e2d06bd 679 az *= norm;
fxanhkhoa 22:65f63e2d06bd 680
fxanhkhoa 22:65f63e2d06bd 681 // Compute the objective function and Jacobian
fxanhkhoa 22:65f63e2d06bd 682 f1 = _2q2 * q4 - _2q1 * q3 - ax;
fxanhkhoa 22:65f63e2d06bd 683 f2 = _2q1 * q2 + _2q3 * q4 - ay;
fxanhkhoa 22:65f63e2d06bd 684 f3 = 1.0f - _2q2 * q2 - _2q3 * q3 - az;
fxanhkhoa 22:65f63e2d06bd 685 J_11or24 = _2q3;
fxanhkhoa 22:65f63e2d06bd 686 J_12or23 = _2q4;
fxanhkhoa 22:65f63e2d06bd 687 J_13or22 = _2q1;
fxanhkhoa 22:65f63e2d06bd 688 J_14or21 = _2q2;
fxanhkhoa 22:65f63e2d06bd 689 J_32 = 2.0f * J_14or21;
fxanhkhoa 22:65f63e2d06bd 690 J_33 = 2.0f * J_11or24;
fxanhkhoa 22:65f63e2d06bd 691
fxanhkhoa 22:65f63e2d06bd 692 // Compute the gradient (matrix multiplication)
fxanhkhoa 22:65f63e2d06bd 693 hatDot1 = J_14or21 * f2 - J_11or24 * f1;
fxanhkhoa 22:65f63e2d06bd 694 hatDot2 = J_12or23 * f1 + J_13or22 * f2 - J_32 * f3;
fxanhkhoa 22:65f63e2d06bd 695 hatDot3 = J_12or23 * f2 - J_33 *f3 - J_13or22 * f1;
fxanhkhoa 22:65f63e2d06bd 696 hatDot4 = J_14or21 * f1 + J_11or24 * f2;
fxanhkhoa 22:65f63e2d06bd 697
fxanhkhoa 22:65f63e2d06bd 698 // Normalize the gradient
fxanhkhoa 22:65f63e2d06bd 699 norm = sqrt(hatDot1 * hatDot1 + hatDot2 * hatDot2 + hatDot3 * hatDot3 + hatDot4 * hatDot4);
fxanhkhoa 22:65f63e2d06bd 700 hatDot1 /= norm;
fxanhkhoa 22:65f63e2d06bd 701 hatDot2 /= norm;
fxanhkhoa 22:65f63e2d06bd 702 hatDot3 /= norm;
fxanhkhoa 22:65f63e2d06bd 703 hatDot4 /= norm;
fxanhkhoa 22:65f63e2d06bd 704
fxanhkhoa 22:65f63e2d06bd 705 // Compute estimated gyroscope biases
fxanhkhoa 22:65f63e2d06bd 706 gerrx = _2q1 * hatDot2 - _2q2 * hatDot1 - _2q3 * hatDot4 + _2q4 * hatDot3;
fxanhkhoa 22:65f63e2d06bd 707 gerry = _2q1 * hatDot3 + _2q2 * hatDot4 - _2q3 * hatDot1 - _2q4 * hatDot2;
fxanhkhoa 22:65f63e2d06bd 708 gerrz = _2q1 * hatDot4 - _2q2 * hatDot3 + _2q3 * hatDot2 - _2q4 * hatDot1;
fxanhkhoa 22:65f63e2d06bd 709
fxanhkhoa 22:65f63e2d06bd 710 // Compute and remove gyroscope biases
fxanhkhoa 22:65f63e2d06bd 711 gbiasx += gerrx * deltat * zeta;
fxanhkhoa 22:65f63e2d06bd 712 gbiasy += gerry * deltat * zeta;
fxanhkhoa 22:65f63e2d06bd 713 gbiasz += gerrz * deltat * zeta;
fxanhkhoa 22:65f63e2d06bd 714 // gx -= gbiasx;
fxanhkhoa 22:65f63e2d06bd 715 // gy -= gbiasy;
fxanhkhoa 22:65f63e2d06bd 716 // gz -= gbiasz;
fxanhkhoa 22:65f63e2d06bd 717
fxanhkhoa 22:65f63e2d06bd 718 // Compute the quaternion derivative
fxanhkhoa 22:65f63e2d06bd 719 qDot1 = -_halfq2 * gx - _halfq3 * gy - _halfq4 * gz;
fxanhkhoa 22:65f63e2d06bd 720 qDot2 = _halfq1 * gx + _halfq3 * gz - _halfq4 * gy;
fxanhkhoa 22:65f63e2d06bd 721 qDot3 = _halfq1 * gy - _halfq2 * gz + _halfq4 * gx;
fxanhkhoa 22:65f63e2d06bd 722 qDot4 = _halfq1 * gz + _halfq2 * gy - _halfq3 * gx;
fxanhkhoa 22:65f63e2d06bd 723
fxanhkhoa 22:65f63e2d06bd 724 // Compute then integrate estimated quaternion derivative
fxanhkhoa 22:65f63e2d06bd 725 q1 += (qDot1 -(beta * hatDot1)) * deltat;
fxanhkhoa 22:65f63e2d06bd 726 q2 += (qDot2 -(beta * hatDot2)) * deltat;
fxanhkhoa 22:65f63e2d06bd 727 q3 += (qDot3 -(beta * hatDot3)) * deltat;
fxanhkhoa 22:65f63e2d06bd 728 q4 += (qDot4 -(beta * hatDot4)) * deltat;
fxanhkhoa 22:65f63e2d06bd 729
fxanhkhoa 22:65f63e2d06bd 730 // Normalize the quaternion
fxanhkhoa 22:65f63e2d06bd 731 norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
fxanhkhoa 22:65f63e2d06bd 732 norm = 1.0f/norm;
fxanhkhoa 22:65f63e2d06bd 733 q[0] = q1 * norm;
fxanhkhoa 22:65f63e2d06bd 734 q[1] = q2 * norm;
fxanhkhoa 22:65f63e2d06bd 735 q[2] = q3 * norm;
fxanhkhoa 22:65f63e2d06bd 736 q[3] = q4 * norm;
fxanhkhoa 22:65f63e2d06bd 737
fxanhkhoa 22:65f63e2d06bd 738 }
fxanhkhoa 22:65f63e2d06bd 739
fxanhkhoa 22:65f63e2d06bd 740
fxanhkhoa 22:65f63e2d06bd 741 };
fxanhkhoa 22:65f63e2d06bd 742 #endif