LoRaWAN end device MAC layer for SX1272 and SX1276. Supports LoRaWAN-1.0 and LoRaWAN-1.1
Dependents: LoRaWAN-SanJose_Bootcamp LoRaWAN-grove-cayenne LoRaWAN-classC-demo LoRaWAN-grove-cayenne ... more
radio chip selection
Radio chip driver is not included, because two options are available.
If you're using SX1272 or SX1276, then import sx127x driver into your program.
if you're using SX1261 or SX1262, then import sx126x driver into your program.
If you're using NAmote72 or Murata discovery, then you must import only sx127x driver.
application project requirements
This library requires mbed TLS to be enabled.
The file mbed_app.json
must be present in the project using this library:
{ "macros": [ "MBEDTLS_CMAC_C" ] }
regional PHY selection
All end device configuration is done in Commissioning.h, define desired radio frequency band of operation in this header file.
Commissioning.h is located in the application using this library.
end device provisioning
End device is provisioned by editing Commissioning.h in the application which is using this library
To use LoRaWAN-1.0 OTA: make sure LORAWAN_ROOT_APPKEY
is undefined.
To use LoRaWAN-1.1 OTA, define LORAWAN_ROOT_APPKEY
.
To select OTA operation, define LORAWAN_JOIN_EUI
, then LORAWAN_DEVICE_EUI
must be defined, along with root key(s).
To select ABP operation, undefine LORAWAN_JOIN_EUI
: then define session keys
LoRaWAN 1.0 name | LoRaWAN 1.1 name | Comissioning.h defne | description | |
---|---|---|---|---|
OTA | DevEUI | DevEUI | LORAWAN_DEVICE_EUI | uniquely identifies end device |
OTA | AppEUI | JoinEUI | LORAWAN_JOIN_EUI | |
OTA | AppKey | NwkKey | LORAWAN_ROOT_NWKKEY | root key for network server |
OTA | (note 1) | AppKey | LORAWAN_ROOT_APPKEY | root key for application server |
ABP | NwkSKey | (note 3) | LORAWAN_FNwkSIntKey | network session key |
ABP | (note 2) | SNwkSIntKey | LORAWAN_SNwkSIntKey | mac layer network integrity key |
ABP | (note 2) | NwkSEncKey | LORAWAN_NwkSEncKey | network session encryption key |
ABP | (note 2) | FNwkSIntKey | LORAWAN_FNwkSIntKey | forwarding network session integrity key |
ABP | AppSKey | AppSKey | LORAWAN_APPSKEY | application session encryption key |
(note 1): LoRaWAN-1.0 OTA uses a single root key for both network server and application server.
In LoRaWAN-1.0 OTA: the single root AppKey is used to generate NwkSkey and AppSKey.
(note 2): In LoRaWAN-1.0 (both OTA and ABP) SNwkSIntKey, NwkSEncKey. FNwkSIntKey are of same value and are collectively known as NwkSKey.
(note 3): LoRaWAN-1.0 uses single network session key, LoRaWAN-1.1 uses 3 network session keys. Both use a unique application session key.
In LoRaWAN-1.1 OTA: the root NwkKey is used to generate SNwkSIntKey, NwkSEncKey, FNwkSIntKey
In LoRaWAN-1.1 OTA: the root AppKey is used to generate AppSKey
in ABP mode, the DevAddr, and session keys are fixed (never change), and frame counters never reset to zero.
ABP operation has no concept of: root keys, or DevEUI or JoinEUI/AppEUI.
in OTA mode, the DevAddr and session keys are assigned at join procedure, and frame counters reset at join.
eeprom
This library includes eeprom driver to support non-volatile storage required by LoRaWAN specification.
Currently eeprom is implemented for STM32L1 family and STM32L0 family.
Writing of values are wear-leveled to increase endurance; each write operation circulates across several memory locations. A read operation returns the highest value found. This simple method is used for sequence numbers which only increase.
value name | used in | |
---|---|---|
DevNonce | OTA | for Join request (note 1) |
RJcount1 | OTA | for ReJoin Type 1 request |
FCntUp | ABP | uplink frame counter |
NFCntDown | ABP | downlink frame counter |
AFCntDown | ABP | downlink frame counter |
AFCntDown is only used in LoRaWAN-1.1 when application payload is present in downlink and FPort > 0.
NFCntDown is used in LoRaWAN-1.1 when FPort is zero in downlink or application payload not present.
NFCntDown is the only downlink frame counter used in LoRaWAN-1.0
(note 1) OTA DevNonce is random number in LoRaWAN-1.0, therefore not stored in eeprom. DevNonce in LoRaWAN-1.1 is forever increasing (non-volatile) number upon each join request,.
RJcount0 is only stored in RAM because the value resets upon new session from JoinAccept, therefore not stored in eeprom.
Frame counters in OTA mode reset upon new session in join request, therefore are stored in RAM instead of eeprom for OTA.
radio driver support
When SX127x driver is used, both SX1272 and SX1276 are supported without defining at compile time. The chip is detected at start-up.
Supported radio platforms:
Alternately, when SX126x driver is imported, the SX126xDVK1xAS board is used.
low-speed clock oscillator selection
LoRaWAN uses 32768Hz crystal to permit low-power operation.
However, some mbed targets might revert to low-speed internal oscillator, which is not accurate enough for LoRaWAN operation.
An oscillator check is performed at initialization; program will not start if internal oscillator is used.
To force LSE watch crystal, add to mbed_app.json
{ "macros": [ "MBEDTLS_CMAC_C" ], "target_overrides": { "<your-target>": { "target.lse_available": true } } }
mac/LoRaMac1v1.cpp
- Committer:
- Wayne Roberts
- Date:
- 2018-03-29
- Revision:
- 5:4e9d41359897
- Parent:
- 4:e4bfe9183f94
- Child:
- 7:4b6f960dcca2
File content as of revision 5:4e9d41359897:
#include "LoRaMacPrivate.h" #include "LoRaMacCrypto.h" //#define ADR_ACK_LIMIT 64 //#define ADR_ACK_DELAY 32 #define LORA_MAC_FRMPAYLOAD_OVERHEAD 13 // MHDR(1) + FHDR(7) + Port(1) + MIC(4) #define RECEIVE_DELAY1_us 1000000 #define LORAMAC_MFR_LEN 4 /*! * LoRaMAC Battery level indicator */ typedef enum eLoRaMacBatteryLevel { /*! * External power source */ BAT_LEVEL_EXT_SRC = 0x00, /*! * Battery level empty */ BAT_LEVEL_EMPTY = 0x01, /*! * Battery level full */ BAT_LEVEL_FULL = 0xFE, /*! * Battery level - no measurement available */ BAT_LEVEL_NO_MEASURE = 0xFF, }LoRaMacBatteryLevel_t; /*! * LoRaMac internal state */ flags_t flags; void (*function_pending)(void); // one-shot /*! * Current channel index */ uint8_t Channel; static MlmeIndication_t MlmeIndication; static MlmeConfirm_t MlmeConfirm; static McpsIndication_t McpsIndication; static McpsConfirm_t McpsConfirm; uint32_t LoRaMacDevAddr; uint32_t LoRaMacNetID; static skey_t keys; uint8_t MacCommandsBufferToRepeatIndex; uint8_t MacCommandsBufferIndex; uint8_t MacCommandsBuffer[LORA_MAC_COMMAND_MAX_LENGTH]; static uint8_t MacCommandsBufferToRepeat[LORA_MAC_COMMAND_MAX_LENGTH]; LoRaMacParams_t LoRaMacParams; #ifdef LORAWAN_JOIN_EUI static const uint8_t *LoRaMacDevEui; static const uint8_t *LoRaMacJoinEui; static const uint8_t *RootNwkKey; static const uint8_t *RootAppKey; static uint8_t MaxJoinRequestTrials; static uint8_t JSEncKey[16]; // TODO move to keys static uint8_t JSIntKey[16]; // TODO move to keys static uint8_t JoinReqType; static uint16_t LoRaMacDevNonce; uint16_t RJcount0; static uint32_t FCntUp; static uint32_t NFCntDown; /**< set to next expected value */ static uint32_t AFCntDown; /**< set to next expected value */ #endif /* LORAWAN_JOIN_EUI */ static uint16_t ADR_ACK_LIMIT; static uint16_t ADR_ACK_DELAY; DeviceClass_t LoRaMacDeviceClass; uint8_t tx_buf_len; const LoRaMacHeader_t* uplinkMHDR = (LoRaMacHeader_t*)&Radio::radio.tx_buf[0]; static uint32_t RxWindow1Delay_us; static uint32_t RxWindow2Delay_us; LoRaMacHeader_t last_up_macHdr; static uint8_t rxFRMPayload[244]; static const LoRaMacPrimitives_t *LoRaMacPrimitives; static const LoRaMacCallback_t *LoRaMacCallbacks; /*! * LoRaMAC frame counter. Each time a packet is received the counter is incremented. * Only the 16 LSB bits are received */ static uint16_t ConfFCntDown; static uint16_t ConfFCntUp; static void PrepareRxDoneAbort(LoRaMacEventInfoStatus_t); LoRaMacStatus_t AddMacCommand( uint8_t cmd, uint8_t p1, uint8_t p2 ) { LoRaMacStatus_t status = LORAMAC_STATUS_SERVICE_UNKNOWN; // The maximum buffer length must take MAC commands to re-send into account. uint8_t bufLen = LORA_MAC_COMMAND_MAX_LENGTH - MacCommandsBufferToRepeatIndex; MAC_PRINTF("AddMacCommand(%02x, %02x, %02x)\r\n", cmd, p1, p2); switch( cmd ) { case MOTE_MAC_LINK_CHECK_REQ: case MOTE_MAC_DEVICE_TIME_REQ: if( MacCommandsBufferIndex < bufLen ) { MacCommandsBuffer[MacCommandsBufferIndex++] = cmd; // No payload for this command status = LORAMAC_STATUS_OK; } break; case MOTE_MAC_LINK_ADR_ANS: if( MacCommandsBufferIndex < ( bufLen - 1 ) ) { MAC_PRINTF("LINK_ADR_ANS %02x ", p1); MacCommandsBuffer[MacCommandsBufferIndex++] = cmd; // Margin MacCommandsBuffer[MacCommandsBufferIndex++] = p1; status = LORAMAC_STATUS_OK; } break; case MOTE_MAC_DUTY_CYCLE_ANS: if( MacCommandsBufferIndex < bufLen ) { MacCommandsBuffer[MacCommandsBufferIndex++] = cmd; // No payload for this answer status = LORAMAC_STATUS_OK; } break; case MOTE_MAC_RX_PARAM_SETUP_ANS: if( MacCommandsBufferIndex < ( bufLen - 1 ) ) { MacCommandsBuffer[MacCommandsBufferIndex++] = cmd; // Status: Datarate ACK, Channel ACK MacCommandsBuffer[MacCommandsBufferIndex++] = p1; status = LORAMAC_STATUS_OK; } break; case MOTE_MAC_DEV_STATUS_ANS: if( MacCommandsBufferIndex < ( bufLen - 2 ) ) { MacCommandsBuffer[MacCommandsBufferIndex++] = cmd; // 1st byte Battery // 2nd byte Margin MacCommandsBuffer[MacCommandsBufferIndex++] = p1; MacCommandsBuffer[MacCommandsBufferIndex++] = p2; status = LORAMAC_STATUS_OK; } break; case MOTE_MAC_NEW_CHANNEL_ANS: if( MacCommandsBufferIndex < ( bufLen - 1 ) ) { MacCommandsBuffer[MacCommandsBufferIndex++] = cmd; // Status: Datarate range OK, Channel frequency OK MacCommandsBuffer[MacCommandsBufferIndex++] = p1; status = LORAMAC_STATUS_OK; } break; case MOTE_MAC_RX_TIMING_SETUP_ANS: if( MacCommandsBufferIndex < bufLen ) { MacCommandsBuffer[MacCommandsBufferIndex++] = cmd; // No payload for this answer status = LORAMAC_STATUS_OK; } break; #ifdef LORAWAN_JOIN_EUI case MOTE_MAC_REKEY_IND: if( MacCommandsBufferIndex < bufLen-1 ) { MacCommandsBuffer[MacCommandsBufferIndex++] = cmd; // minor version: if (RootAppKey == NULL) MacCommandsBuffer[MacCommandsBufferIndex++] = 0; // lorawan1v0 else MacCommandsBuffer[MacCommandsBufferIndex++] = 1; // lorawan1v1 status = LORAMAC_STATUS_OK; } break; case MOTE_MAC_REJOIN_PARAM_ANS: if( MacCommandsBufferIndex < bufLen-1 ) { MacCommandsBuffer[MacCommandsBufferIndex++] = cmd; MacCommandsBuffer[MacCommandsBufferIndex++] = p1; status = LORAMAC_STATUS_OK; } break; #else case MOTE_MAC_RESET_IND: if( MacCommandsBufferIndex < bufLen-1 ) { MacCommandsBuffer[MacCommandsBufferIndex++] = cmd; // minor version: MacCommandsBuffer[MacCommandsBufferIndex++] = p1; status = LORAMAC_STATUS_OK; } break; #endif /* !LORAWAN_JOIN_EUI */ default: MAC_PRINTF("unknown-addCmd %02x\r\n", cmd); return LORAMAC_STATUS_SERVICE_UNKNOWN; } // ..switch( cmd ) if( status == LORAMAC_STATUS_OK ) { flags.MacCommandsInNextTx = true; } return status; } // ..AddMacCommand() LoRaMacStatus_t SetTxContinuousWave( uint16_t timeout ) { int8_t txPowerIndex = 0; int8_t txPower = 0; txPowerIndex = region_LimitTxPower( LoRaMacParams.ChannelsTxPower ); txPower = TxPowers[txPowerIndex]; Radio::SetTxContinuousWave( Channels[Channel].FreqHz, txPower, timeout ); flags.uplink_in_progress = 1; return LORAMAC_STATUS_OK; } __attribute__((weak)) LoRaMacStatus_t LoRaMacMlmeRequestClassB( const MlmeReq_t *mlmeRequest ) { return LORAMAC_STATUS_SERVICE_UNKNOWN; } __attribute__((weak)) LoRaMacStatus_t AddMacCommandClassB( uint8_t cmd, uint8_t p1, uint8_t p2 ) { return LORAMAC_STATUS_SERVICE_UNKNOWN; } __attribute__((weak)) void ResetMacParametersClassB() { } static void ResetMacParameters( void ) { #ifdef LORAWAN_JOIN_EUI flags.IsLoRaMacNetworkJoined = 0; NFCntDown = 0; AFCntDown = 0; #endif /* LORAWAN_JOIN_EUI */ #ifdef DUTY_ENABLE DutyInit(); #endif /* DUTY_ENABLE */ MacCommandsBufferIndex = 0; MacCommandsBufferToRepeatIndex = 0; //IsRxWindowsEnabled = true; LoRaMacParams.ChannelsTxPower = LoRaMacParamsDefaults.ChannelsTxPower; LoRaMacParams.ChannelsDatarate = LoRaMacParamsDefaults.ChannelsDatarate; LoRaMacParams.MaxRxWindow_us = LoRaMacParamsDefaults.MaxRxWindow_us; LoRaMacParams.ReceiveDelay1_us = LoRaMacParamsDefaults.ReceiveDelay1_us; LoRaMacParams.ReceiveDelay2_us = LoRaMacParamsDefaults.ReceiveDelay2_us; #ifdef LORAWAN_JOIN_EUI LoRaMacParams.JoinAcceptDelay1_us = LoRaMacParamsDefaults.JoinAcceptDelay1_us; LoRaMacParams.JoinAcceptDelay2_us = LoRaMacParamsDefaults.JoinAcceptDelay2_us; #endif /* LORAWAN_JOIN_EUI */ LoRaMacParams.Rx1DrOffset = LoRaMacParamsDefaults.Rx1DrOffset; LoRaMacParams.NbTrans = LoRaMacParamsDefaults.NbTrans; LoRaMacParams.Rx2Channel = LoRaMacParamsDefaults.Rx2Channel; memcpy( ( uint8_t* ) LoRaMacParams.ChannelsMask, ( uint8_t* ) LoRaMacParamsDefaults.ChannelsMask, sizeof( LoRaMacParams.ChannelsMask ) ); LoRaMacParams.NbEnabledChannels = LoRaMacParamsDefaults.NbEnabledChannels; #if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) memcpy( ( uint8_t* ) ChannelsMaskRemaining, ( uint8_t* ) LoRaMacParamsDefaults.ChannelsMask, sizeof( LoRaMacParams.ChannelsMask ) ); #endif flags.SrvAckRequested = false; flags.MacCommandsInNextTx = false; // Initialize channel index. Channel = LORA_MAX_NB_CHANNELS; ResetMacParametersClassB(); } // ..ResetMacParameters() static bool ValidatePayloadLength( uint8_t lenN, int8_t datarate, uint8_t fOptsLen ) { uint16_t maxN = 0; uint8_t payloadSize; // Get the maximum payload length maxN = MaxPayloadOfDatarate[datarate]; // Calculate the resulting payload size payloadSize = ( lenN + fOptsLen ); // Validation of the application payload size if( payloadSize <= maxN ) { return true; } return false; } static uint8_t ParseMacCommandsToRepeat( uint8_t* cmdBufIn, uint8_t length, uint8_t* cmdBufOut ) { uint8_t i = 0; uint8_t cmdCount = 0; if( ( cmdBufIn == NULL ) || ( cmdBufOut == NULL ) ) { return 0; } for( i = 0; i < length; i++ ) { switch( cmdBufIn[i] ) { // STICKY case MOTE_MAC_RX_PARAM_SETUP_ANS: { cmdBufOut[cmdCount++] = cmdBufIn[i++]; cmdBufOut[cmdCount++] = cmdBufIn[i]; break; } case MOTE_MAC_RX_TIMING_SETUP_ANS: { cmdBufOut[cmdCount++] = cmdBufIn[i]; break; } // NON-STICKY case MOTE_MAC_DEV_STATUS_ANS: { // 2 bytes payload i += 2; break; } case MOTE_MAC_LINK_ADR_ANS: case MOTE_MAC_NEW_CHANNEL_ANS: { // 1 byte payload i++; break; } case SRV_MAC_ADR_PARAM_SETUP_ANS: case MOTE_MAC_DUTY_CYCLE_ANS: case MOTE_MAC_LINK_CHECK_REQ: { // 0 byte payload break; } default: break; } } return cmdCount; } LoRaMacStatus_t PrepareFrame( LoRaMacHeader_t *macHdr, LoRaMacFrameCtrl_t *fCtrl, uint8_t fPort, void *fBuffer, uint16_t fBufferSize ) { uint32_t fcnt_up; uint16_t i; #ifdef LORAWAN_JOIN_EUI uint32_t mic = 0; #endif /* LORAWAN_JOIN_EUI */ const void* payload = fBuffer; uint8_t framePort = fPort; uint8_t LoRaMacTxPayloadLen = 0; tx_buf_len = 0; if( fBuffer == NULL ) { fBufferSize = 0; } LoRaMacTxPayloadLen = fBufferSize; Radio::radio.tx_buf[tx_buf_len++] = macHdr->Value; switch( macHdr->Bits.MType ) { #ifdef LORAWAN_JOIN_EUI case FRAME_TYPE_JOIN_REQ: if (LoRaMacJoinEui == NULL || LoRaMacDevEui == NULL) return LORAMAC_STATUS_PARAMETER_INVALID; RxWindow1Delay_us = LoRaMacParams.JoinAcceptDelay1_us - RADIO_WAKEUP_TIME_us; RxWindow2Delay_us = LoRaMacParams.JoinAcceptDelay2_us - RADIO_WAKEUP_TIME_us; memcpyr( Radio::radio.tx_buf + tx_buf_len, LoRaMacJoinEui, 8 ); tx_buf_len += 8; memcpyr( Radio::radio.tx_buf + tx_buf_len, LoRaMacDevEui, 8 ); tx_buf_len += 8; if (RootAppKey == NULL) LoRaMacDevNonce = Radio::Random(); /* lorawan 1.0 */ else { LoRaMacDevNonce = eeprom_read(EEPROM_DEVNONCE); /* joinReq DevNonce value is never re-used in 1v1 */ if (eeprom_increment_value(EEPROM_DEVNONCE) < 0) return LORAMAC_STATUS_EEPROM_FAIL; } MAC_PRINTF("DevNonce:%u ", LoRaMacDevNonce); Radio::radio.tx_buf[tx_buf_len++] = LoRaMacDevNonce & 0xFF; Radio::radio.tx_buf[tx_buf_len++] = ( LoRaMacDevNonce >> 8 ) & 0xFF; if (LoRaMacJoinComputeMic(false, Radio::radio.tx_buf, tx_buf_len & 0xFF, RootNwkKey, &mic) < 0) return LORAMAC_STATUS_SERVICE_UNKNOWN; Radio::radio.tx_buf[tx_buf_len++] = mic & 0xFF; Radio::radio.tx_buf[tx_buf_len++] = ( mic >> 8 ) & 0xFF; Radio::radio.tx_buf[tx_buf_len++] = ( mic >> 16 ) & 0xFF; Radio::radio.tx_buf[tx_buf_len++] = ( mic >> 24 ) & 0xFF; break; case FRAME_TYPE_REJOIN_REQ: RxWindow1Delay_us = LoRaMacParams.JoinAcceptDelay1_us - RADIO_WAKEUP_TIME_us; RxWindow2Delay_us = LoRaMacParams.JoinAcceptDelay2_us - RADIO_WAKEUP_TIME_us; Radio::radio.tx_buf[tx_buf_len++] = JoinReqType; tx_buf_len = tx_buf_len; if (JoinReqType == 0 || JoinReqType == 2) { LoRaMacDevNonce = RJcount0++; /* NetID + DevEUI */ Radio::radio.tx_buf[tx_buf_len++] = ( LoRaMacNetID ) & 0xFF; Radio::radio.tx_buf[tx_buf_len++] = ( LoRaMacNetID >> 8 ) & 0xFF; Radio::radio.tx_buf[tx_buf_len++] = ( LoRaMacNetID >> 16 ) & 0xFF; memcpyr( Radio::radio.tx_buf + tx_buf_len, LoRaMacDevEui, 8 ); tx_buf_len += 8; Radio::radio.tx_buf[tx_buf_len++] = LoRaMacDevNonce & 0xFF; Radio::radio.tx_buf[tx_buf_len++] = ( LoRaMacDevNonce >> 8 ) & 0xFF; if (LoRaMacJoinComputeMic(false, Radio::radio.tx_buf, tx_buf_len & 0xFF, keys.SNwkSIntKey, &mic) < 0) return LORAMAC_STATUS_SERVICE_UNKNOWN; } else if (JoinReqType == 1) { /* JoinEUI + DevEUI */ LoRaMacDevNonce = eeprom_read(EEPROM_RJCOUNT1); if (eeprom_increment_value(EEPROM_RJCOUNT1) < 0) return LORAMAC_STATUS_EEPROM_FAIL; memcpyr( Radio::radio.tx_buf + tx_buf_len, LoRaMacJoinEui, 8 ); tx_buf_len += 8; memcpyr( Radio::radio.tx_buf + tx_buf_len, LoRaMacDevEui, 8 ); tx_buf_len += 8; Radio::radio.tx_buf[tx_buf_len++] = LoRaMacDevNonce & 0xFF; Radio::radio.tx_buf[tx_buf_len++] = ( LoRaMacDevNonce >> 8 ) & 0xFF; //print_buf(JSIntKey, 16, "JSIntKey"); if (LoRaMacJoinComputeMic(false, Radio::radio.tx_buf, tx_buf_len & 0xFF, JSIntKey, &mic) < 0) return LORAMAC_STATUS_SERVICE_UNKNOWN; } Radio::radio.tx_buf[tx_buf_len++] = mic & 0xFF; Radio::radio.tx_buf[tx_buf_len++] = ( mic >> 8 ) & 0xFF; Radio::radio.tx_buf[tx_buf_len++] = ( mic >> 16 ) & 0xFF; Radio::radio.tx_buf[tx_buf_len++] = ( mic >> 24 ) & 0xFF; MAC_PRINTF("up-rejoin-frame len%u type%u\r\n", tx_buf_len, JoinReqType); break; #endif /* LORAWAN_JOIN_EUI */ case FRAME_TYPE_DATA_CONFIRMED_UP: //Intentional fallthrough case FRAME_TYPE_DATA_UNCONFIRMED_UP: #ifdef LORAWAN_JOIN_EUI if (!flags.IsLoRaMacNetworkJoined) { return LORAMAC_STATUS_NO_NETWORK_JOINED; // No network has been joined yet } if (flags.OptNeg && flags.need_ReKeyConf) { /* lorawan1v1 need rekeying confirmation */ LoRaMacStatus_t s = AddMacCommand(MOTE_MAC_REKEY_IND, 0, 0); if (s != LORAMAC_STATUS_OK) return s; if (McpsIndication.ADR_ACK_CNT > ADR_ACK_DELAY) { /* give up sending rekey indication, try joining again */ flags.IsLoRaMacNetworkJoined = false; return LORAMAC_STATUS_NO_NETWORK_JOINED; } } fcnt_up = FCntUp; #else if (flags.need_ResetConf) { LoRaMacStatus_t s = AddMacCommand(MOTE_MAC_RESET_IND, flags.OptNeg, 0); if (s != LORAMAC_STATUS_OK) return s; } fcnt_up = eeprom_read(EEPROM_FCNTUP); #endif /* LORAWAN_JOIN_EUI */ if( ValidatePayloadLength( LoRaMacTxPayloadLen, LoRaMacParams.ChannelsDatarate, MacCommandsBufferIndex ) == false ) { MAC_PRINTF("LoRaMacTxPayloadLen%u, FOptsLen%u\r\n", LoRaMacTxPayloadLen, MacCommandsBufferIndex); return LORAMAC_STATUS_LENGTH_ERROR; } RxWindow1Delay_us = LoRaMacParams.ReceiveDelay1_us - RADIO_WAKEUP_TIME_us; RxWindow2Delay_us = LoRaMacParams.ReceiveDelay2_us - RADIO_WAKEUP_TIME_us; if( flags.SrvAckRequested == true ) { flags.SrvAckRequested = false; fCtrl->Bits.Ack = 1; } Radio::radio.tx_buf[tx_buf_len++] = ( LoRaMacDevAddr ) & 0xFF; Radio::radio.tx_buf[tx_buf_len++] = ( LoRaMacDevAddr >> 8 ) & 0xFF; Radio::radio.tx_buf[tx_buf_len++] = ( LoRaMacDevAddr >> 16 ) & 0xFF; Radio::radio.tx_buf[tx_buf_len++] = ( LoRaMacDevAddr >> 24 ) & 0xFF; Radio::radio.tx_buf[tx_buf_len++] = fCtrl->Value; // FCntUp will be inserted in SendFrameOnChannel(), where MIC is inserted also tx_buf_len += 2; ConfFCntUp = 0; if (flags.OptNeg) { if (macHdr->Bits.MType == FRAME_TYPE_DATA_CONFIRMED_UP) { #ifdef LORAWAN_JOIN_EUI ConfFCntUp = FCntUp; #else ConfFCntUp = eeprom_read(EEPROM_FCNTUP); #endif /* LORAWAN_JOIN_EUI */ } } // Copy the MAC commands which must be re-send into the MAC command buffer memcpy( &MacCommandsBuffer[MacCommandsBufferIndex], MacCommandsBufferToRepeat, MacCommandsBufferToRepeatIndex ); MacCommandsBufferIndex += MacCommandsBufferToRepeatIndex; if( ( payload != NULL ) && ( LoRaMacTxPayloadLen > 0 ) ) { if( ( MacCommandsBufferIndex <= LORA_MAC_COMMAND_MAX_LENGTH ) && ( flags.MacCommandsInNextTx == true ) ) { MAC_PRINTF("uplink mac-cmds %u into FOpts at %u ", MacCommandsBufferIndex, tx_buf_len); fCtrl->Bits.FOptsLen += MacCommandsBufferIndex; // Update FCtrl field with new value of OptionsLength Radio::radio.tx_buf[0x05] = fCtrl->Value; /* lorawan1v1: encode FOpts using NWkSEncKey */ if (flags.OptNeg) { LoRaMacEncrypt(0, MacCommandsBuffer, MacCommandsBufferIndex, keys.NwkSEncKey, LoRaMacDevAddr, UP_LINK, fcnt_up, Radio::radio.tx_buf + tx_buf_len); tx_buf_len += MacCommandsBufferIndex; } else { for( i = 0; i < MacCommandsBufferIndex; i++ ) { Radio::radio.tx_buf[tx_buf_len++] = MacCommandsBuffer[i]; MAC_PRINTF("%02x ", MacCommandsBuffer[i]); } MAC_PRINTF(" fCtrl->Value:%02x\r\n", Radio::radio.tx_buf[0x05]); } } } else { if( ( MacCommandsBufferIndex > 0 ) && ( flags.MacCommandsInNextTx ) ) { MAC_PRINTF("uplink mac-cmds %u port0 ", MacCommandsBufferIndex); for (i = 0; i < MacCommandsBufferIndex; i++) MAC_PRINTF("%02x ", MacCommandsBuffer[i]); MAC_PRINTF("\r\n"); LoRaMacTxPayloadLen = MacCommandsBufferIndex; payload = MacCommandsBuffer; framePort = 0; } } flags.MacCommandsInNextTx = false; // Store MAC commands which must be re-send in case the device does not receive a downlink anymore MacCommandsBufferToRepeatIndex = ParseMacCommandsToRepeat( MacCommandsBuffer, MacCommandsBufferIndex, MacCommandsBufferToRepeat ); if( MacCommandsBufferToRepeatIndex > 0 ) { flags.MacCommandsInNextTx = true; } MacCommandsBufferIndex = 0; if( ( payload != NULL ) && ( LoRaMacTxPayloadLen > 0 ) ) { const uint8_t* keyPtr; Radio::radio.tx_buf[tx_buf_len++] = framePort; if( framePort == 0 ) { DEBUG_CRYPT_BUF(keys.NwkSEncKey, 16, "NwkSEncKey", 0); keyPtr = keys.NwkSEncKey; } else { DEBUG_CRYPT_BUF(keys.AppSKey, 16, "AppSKey", 0); keyPtr = keys.AppSKey; } LoRaMacEncrypt(1, (uint8_t* ) payload, LoRaMacTxPayloadLen, keyPtr, LoRaMacDevAddr, UP_LINK, fcnt_up, Radio::radio.tx_buf + tx_buf_len); } tx_buf_len = tx_buf_len + LoRaMacTxPayloadLen; /* mic cacluation in SendFrameOnChannel() */ break; case FRAME_TYPE_PROPRIETARY: if( ( fBuffer != NULL ) && ( LoRaMacTxPayloadLen > 0 ) ) { memcpy( Radio::radio.tx_buf + tx_buf_len, ( uint8_t* ) fBuffer, LoRaMacTxPayloadLen ); tx_buf_len = tx_buf_len + LoRaMacTxPayloadLen; } break; default: return LORAMAC_STATUS_SERVICE_UNKNOWN; } flags.uplink_mtype = macHdr->Bits.MType; flags.uplink_in_progress = LoRaMacParams.NbTrans; return LORAMAC_STATUS_OK; } // ..PrepareFrame() LoRaMacStatus_t Send( LoRaMacHeader_t *macHdr, uint8_t fPort, void *fBuffer, uint16_t fBufferSize ) { LoRaMacFrameCtrl_t fCtrl; LoRaMacStatus_t status = LORAMAC_STATUS_PARAMETER_INVALID; fCtrl.Value = 0; fCtrl.Bits.FOptsLen = 0; if( LoRaMacDeviceClass == CLASS_B ) { fCtrl.Bits.FPending = 1; } else { fCtrl.Bits.FPending = 0; } fCtrl.Bits.Ack = false; fCtrl.Bits.AdrAckReq = false; fCtrl.Bits.Adr = flags.AdrCtrlOn; // Prepare the frame status = PrepareFrame( macHdr, &fCtrl, fPort, fBuffer, fBufferSize ); // Validate status if( status != LORAMAC_STATUS_OK ) { return status; } // Reset confirm parameters McpsConfirm.NbRetries = 0; McpsConfirm.AckReceived = false; status = LORAMAC_STATUS_OK; if (flags.rxing) function_pending = region_ScheduleTx; else region_ScheduleTx( ); return status; } // ..Send() LoRaMacStatus_t waitingFor; LoRaMacStatus_t LoRaMacMlmeRequest( const MlmeReq_t *mlmeRequest ) { LoRaMacStatus_t status = LORAMAC_STATUS_SERVICE_UNKNOWN; #ifdef LORAWAN_JOIN_EUI LoRaMacHeader_t macHdr; #endif /* LORAWAN_JOIN_EUI */ if( mlmeRequest == NULL ) { return LORAMAC_STATUS_PARAMETER_INVALID; } if (flags.uplink_in_progress > 0) { MAC_PRINTF("LoRaMacMlmeRequest() BUSY\r\n"); return waitingFor; } MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_MLMEREQ; MlmeIndication.MlmeIndication = mlmeRequest->Type; waitingFor = LORAMAC_STATUS_WAITING_FOR_TXSTART; MAC_PRINTF("LoRaMacMlmeRequest() "); switch( mlmeRequest->Type ) { #ifdef LORAWAN_JOIN_EUI case MLME_JOIN: { if( ( mlmeRequest->Req.Join.DevEui == NULL ) || ( mlmeRequest->Req.Join.JoinEui == NULL ) || ( mlmeRequest->Req.Join.NwkKey == NULL ) || ( mlmeRequest->Req.Join.NbTrials == 0 ) ) { return LORAMAC_STATUS_PARAMETER_INVALID; } LoRaMacDevEui = mlmeRequest->Req.Join.DevEui; LoRaMacJoinEui = mlmeRequest->Req.Join.JoinEui; RootNwkKey = mlmeRequest->Req.Join.NwkKey; RootAppKey = mlmeRequest->Req.Join.AppKey; MaxJoinRequestTrials = mlmeRequest->Req.Join.NbTrials; /*if (RootAppKey != NULL) {*/ LoRaMacGenerateJoinKey(0x05, RootNwkKey, LoRaMacDevEui, JSEncKey); //print_buf(JSEncKey, 16, "new-JSEncKey"); LoRaMacGenerateJoinKey(0x06, RootNwkKey, LoRaMacDevEui, JSIntKey); //print_buf(JSIntKey, 16, "new-JSIntKey"); /*}*/ JoinReqType = 0xff; // Reset variable JoinRequestTrials MlmeIndication.JoinRequestTrials = 0; // Setup header information macHdr.Value = 0; macHdr.Bits.MType = FRAME_TYPE_JOIN_REQ; ResetMacParameters( ); // Add a +1, since we start to count from 0 LoRaMacParams.ChannelsDatarate = region_AlternateDatarate( MlmeIndication.JoinRequestTrials + 1 ); status = Send( &macHdr, 0, NULL, 0 ); break; } case MLME_REJOIN_1: if ( mlmeRequest->Req.Join.JoinEui == NULL ) return LORAMAC_STATUS_PARAMETER_INVALID; LoRaMacJoinEui = mlmeRequest->Req.Join.JoinEui; JoinReqType = 0x01; // fall-thru case MLME_REJOIN_0: case MLME_REJOIN_2: // Type2 can only be sent via mac-command if( ( mlmeRequest->Req.Join.DevEui == NULL ) || ( mlmeRequest->Req.Join.NwkKey == NULL ) || ( mlmeRequest->Req.Join.NbTrials == 0 ) ) { MAC_PRINTF(" (missing %p %p %d)\n", mlmeRequest->Req.Join.DevEui, mlmeRequest->Req.Join.NwkKey, mlmeRequest->Req.Join.NbTrials ); return LORAMAC_STATUS_PARAMETER_INVALID; } RootNwkKey = mlmeRequest->Req.Join.NwkKey; LoRaMacDevEui = mlmeRequest->Req.Join.DevEui; LoRaMacGenerateJoinKey(0x05, RootNwkKey, LoRaMacDevEui, JSEncKey); LoRaMacGenerateJoinKey(0x06, RootNwkKey, LoRaMacDevEui, JSIntKey); RootAppKey = mlmeRequest->Req.Join.AppKey; macHdr.Value = 0; macHdr.Bits.MType = FRAME_TYPE_REJOIN_REQ; if (mlmeRequest->Type == MLME_REJOIN_0) JoinReqType = 0x00; else if (mlmeRequest->Type == MLME_REJOIN_2) JoinReqType = 0x02; MaxJoinRequestTrials = mlmeRequest->Req.Join.NbTrials; status = Send( &macHdr, 0, NULL, 0 ); break; #endif /* LORAWAN_JOIN_EUI */ case MLME_LINK_CHECK: status = AddMacCommand( MOTE_MAC_LINK_CHECK_REQ, 0, 0 ); break; case MLME_TIME_REQ: status = AddMacCommand( MOTE_MAC_DEVICE_TIME_REQ, 0, 0 ); break; case MLME_TXCW: status = SetTxContinuousWave( mlmeRequest->Req.TxCw.Timeout ); break; case MLME_PING_SLOT_INFO: { uint8_t value = mlmeRequest->Req.PingSlotInfo.Value; status = LoRaMacMlmeRequestClassB(mlmeRequest); if (status == LORAMAC_STATUS_OK) status = AddMacCommandClassB( MOTE_MAC_PING_SLOT_INFO_REQ, value, 0 ); break; } case MLME_BEACON_ACQUISITION: case MLME_BEACON_TIMING: status = LoRaMacMlmeRequestClassB(mlmeRequest); break; default: break; } // ...switch( mlmeRequest->Type ) if( status != LORAMAC_STATUS_OK ) MlmeConfirm.MlmeRequest = MLME_NONE; else { MlmeConfirm.MlmeRequest = mlmeRequest->Type; } return status; } // ..LoRaMacMlmeRequest() LoRaMacStatus_t LoRaMacMibGetRequestConfirm( MibRequestConfirm_t *mibGet ) { LoRaMacStatus_t status = LORAMAC_STATUS_OK; switch( mibGet->Type ) { case MIB_APP_SKEY: mibGet->Param.key = keys.AppSKey; break; case MIB_FNwkSIntKey: mibGet->Param.key = keys.FNwkSIntKey; break; case MIB_SNwkSIntKey: mibGet->Param.key = keys.SNwkSIntKey; break; case MIB_NwkSEncKey: mibGet->Param.key = keys.NwkSEncKey; break; case MIB_NwkSKey: /* lorawan 1.0 */ mibGet->Param.key = keys.FNwkSIntKey; break; case MIB_RX2_CHANNEL: mibGet->Param.Rx2Channel = LoRaMacParams.Rx2Channel; break; case MIB_DEVICE_CLASS: mibGet->Param.Class = LoRaMacDeviceClass; break; case MIB_ADR: mibGet->Param.AdrEnable = flags.AdrCtrlOn; break; case MIB_DEV_ADDR: mibGet->Param.DevAddr = LoRaMacDevAddr; break; case MIB_PUBLIC_NETWORK: mibGet->Param.EnablePublicNetwork = flags.PublicNetwork; break; case MIB_CHANNELS_MASK: mibGet->Param.ChannelsMask = LoRaMacParams.ChannelsMask; LoRaMacParams.NbEnabledChannels = region_CountNbEnabledChannels(); break; #ifdef LORAWAN_JOIN_EUI case MIB_NETWORK_JOINED: mibGet->Param.IsNetworkJoined = flags.IsLoRaMacNetworkJoined; break; #endif /* LORAWAN_JOIN_EUI */ } // ..switch( mibGet->Type ) return status; } LoRaMacStatus_t LoRaMacQueryTxPossible(uint8_t size, LoRaMacTxInfo_t* txInfo) { int8_t datarate = LoRaMacParamsDefaults.ChannelsDatarate; uint8_t fOptLen = MacCommandsBufferIndex + MacCommandsBufferToRepeatIndex; if( txInfo == NULL ) { return LORAMAC_STATUS_PARAMETER_INVALID; } //AdrNextDr( flags.AdrCtrlOn, false, &datarate ); txInfo->CurrentPayloadSize = MaxPayloadOfDatarate[datarate]; if( txInfo->CurrentPayloadSize >= fOptLen ) { txInfo->MaxPossiblePayload = txInfo->CurrentPayloadSize - fOptLen; } else { return LORAMAC_STATUS_MAC_CMD_LENGTH_ERROR; } if( ValidatePayloadLength( size, datarate, 0 ) == false ) { return LORAMAC_STATUS_LENGTH_ERROR; } if( ValidatePayloadLength( size, datarate, fOptLen ) == false ) { return LORAMAC_STATUS_MAC_CMD_LENGTH_ERROR; } return LORAMAC_STATUS_OK; } LoRaMacStatus_t LoRaMacMcpsRequest( McpsReq_t *mcpsRequest ) { LoRaMacStatus_t status = LORAMAC_STATUS_SERVICE_UNKNOWN; LoRaMacHeader_t macHdr; uint8_t fPort = 0; void *fBuffer; uint16_t fBufferSize; int8_t datarate; bool readyToSend = false; if( mcpsRequest == NULL ) { return LORAMAC_STATUS_PARAMETER_INVALID; } if (flags.uplink_in_progress > 0) { MAC_PRINTF("LoRaMacMcpsRequest() in_progress BUSY\r\n"); return waitingFor; } if (ConfFCntUp > 0) { // unacknowledged confirmed uplink pending, must resend previous uplink MAC_PRINTF("LoRaMacMcpsRequest() ConfFCntUp%u\r\n", ConfFCntUp); return LORAMAC_STATUS_BUSY_UPCONF; } #ifdef LORAWAN_JOIN_EUI if (!flags.IsLoRaMacNetworkJoined) return LORAMAC_STATUS_NO_NETWORK_JOINED; #endif /* LORAWAN_JOIN_EUI */ macHdr.Value = 0; memset ( ( uint8_t* ) &McpsConfirm, 0, sizeof( McpsConfirm ) ); McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_MCPSREQ; McpsConfirm.McpsRequest = mcpsRequest->Type; datarate = mcpsRequest->Req.Datarate; fBufferSize = mcpsRequest->Req.fBufferSize; fBuffer = mcpsRequest->Req.fBuffer; readyToSend = true; switch( mcpsRequest->Type ) { case MCPS_UNCONFIRMED: { macHdr.Bits.MType = FRAME_TYPE_DATA_UNCONFIRMED_UP; fPort = mcpsRequest->Req.fPort; break; } case MCPS_CONFIRMED: { //AckTimeoutRetriesCounter = 1; //AckTimeoutRetries = mcpsRequest->Req.NbTrials; macHdr.Bits.MType = FRAME_TYPE_DATA_CONFIRMED_UP; fPort = mcpsRequest->Req.fPort; break; } case MCPS_PROPRIETARY: { macHdr.Bits.MType = FRAME_TYPE_PROPRIETARY; break; } default: readyToSend = false; break; } if( readyToSend == true ) { if( flags.AdrCtrlOn == false ) { if( ValueInRange( datarate, LORAMAC_TX_MIN_DATARATE, LORAMAC_TX_MAX_DATARATE ) == true ) { LoRaMacParams.ChannelsDatarate = datarate; } else { return LORAMAC_STATUS_PARAMETER_INVALID; } } status = Send( &macHdr, fPort, fBuffer, fBufferSize ); } return status; } // ..LoRaMacMcpsRequest() __attribute__((weak)) LoRaMacStatus_t SwitchClassB( DeviceClass_t deviceClass ) { return LORAMAC_STATUS_DEVICE_OFF; } void RxWindowSetup( unsigned freq, int8_t datarate, unsigned bandwidth, uint16_t timeout) { uint8_t downlinkDatarate = Datarates[datarate]; RadioModems_t modem; //RadioState_t rs = Radio::GetStatus(); MAC_PRINTF(" rxwin-dr%u-sf%u ", datarate, downlinkDatarate); Radio::SetChannel( freq ); // Store downlink datarate McpsIndication.RxDatarate = ( uint8_t ) datarate; #if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868) || defined(USE_BAND_ARIB_8CH) if( datarate == DR_7 ) { modem = MODEM_FSK; Radio::SetRxConfig( modem, 50e3, downlinkDatarate * 1e3, 0, 83.333e3, 5, 0, false, 0, true, false); } else { modem = MODEM_LORA; Radio::SetRxConfig( modem, bandwidth, downlinkDatarate, 1, 0, 8, timeout, false, 0, false, true); } #elif defined( USE_BAND_470 ) || defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) modem = MODEM_LORA; Radio::SetRxConfig( modem, bandwidth, downlinkDatarate, 1, 0, 8, timeout, false, 0, false, true); #endif Radio::SetRxMaxPayloadLength( modem, MaxPayloadOfDatarate[datarate] + LORA_MAC_FRMPAYLOAD_OVERHEAD ); } //..RxWindowSetup() static void RxWindow2Start( void ) { /* TODO: join accept rx2 channel unique */ if (LoRaMacDeviceClass == CLASS_C) Radio::Rx( 0 ); // Continuous mode else Radio::Rx( LoRaMacParams.MaxRxWindow_us ); McpsIndication.RxSlot = 2; } static void mlme_confirm(LoRaMacEventInfoStatus_t status) { MlmeConfirm.Status = status; if (MlmeConfirm.MlmeRequest != MLME_NONE) { if (LoRaMacPrimitives->MacMlmeConfirm != NULL) LoRaMacPrimitives->MacMlmeConfirm( &MlmeConfirm ); MlmeConfirm.MlmeRequest = MLME_NONE; MlmeIndication.MlmeIndication = MLME_NONE; } } static void mcps_confirm(LoRaMacEventInfoStatus_t status) { McpsConfirm.Status = status; if (McpsConfirm.McpsRequest != MCPS_NONE) { if (LoRaMacPrimitives->MacMcpsConfirm) LoRaMacPrimitives->MacMcpsConfirm( &McpsConfirm ); McpsConfirm.McpsRequest = MCPS_NONE; } } #if defined(LORAWAN_JOIN_EUI) static struct { bool forced; uint8_t dr; uint8_t type; uint8_t retries; uint8_t Period; LowPowerTimeout event; struct { uint8_t MaxTimeN; uint8_t MaxCountN; unsigned uplinks_since; bool enabled; } type0; } rejoin; void _rejoin_retry(void); void rejoin_retry() { LoRaMacStatus_t status; LoRaMacHeader_t macHdr; macHdr.Value = 0; macHdr.Bits.MType = FRAME_TYPE_REJOIN_REQ; LoRaMacParams.ChannelsDatarate = rejoin.dr; JoinReqType = rejoin.type; status = Send( &macHdr, 0, NULL, 0 ); if (status != LORAMAC_STATUS_OK) { MAC_PRINTF("rejoin-send-failed%d ", status); } MAC_PRINTF("Rejoin%u ", JoinReqType); if (rejoin.forced) { if (--rejoin.retries > 0) { us_timestamp_t period_us = (1 << rejoin.Period) + random_at_most(32000000); rejoin.event.attach_us(_rejoin_retry, period_us); MAC_PRINTF("try%u", rejoin.retries); } else rejoin.forced = false; } MAC_PRINTF("\r\n"); } void _rejoin_retry() { if (flags.uplink_in_progress > 0) { function_pending = rejoin_retry; } else rejoin_retry(); } #endif /* LORAWAN_JOIN_EUI */ void finish_uplink(LoRaMacEventInfoStatus_t status) { if ((flags.uplink_in_progress > 0 && McpsIndication.RxSlot == 2) || status == LORAMAC_EVENT_INFO_STATUS_OK) { if ((uplinkMHDR->Bits.MType == FRAME_TYPE_DATA_CONFIRMED_UP && status == LORAMAC_EVENT_INFO_STATUS_OK) || uplinkMHDR->Bits.MType != FRAME_TYPE_DATA_CONFIRMED_UP) flags.uplink_in_progress--; if (flags.uplink_in_progress > 0) { McpsIndication.Status = status; if (LoRaMacPrimitives->MacMcpsIndication != NULL) LoRaMacPrimitives->MacMcpsIndication( &McpsIndication ); if (flags.rxing) function_pending = region_ScheduleTx; else { region_ScheduleTx( ); } } else region_session_start(status); } #ifdef LORAWAN_JOIN_EUI LoRaMacHeader_t macHdr; macHdr.Value = Radio::radio.tx_buf[0]; if (macHdr.Bits.MType != FRAME_TYPE_REJOIN_REQ) { if (rejoin.type0.enabled && --rejoin.type0.uplinks_since == 0) { rejoin.type0.uplinks_since = 1 << (rejoin.type0.MaxCountN + 4); rejoin.type = 0; rejoin_retry(); return; } } #endif /* LORAWAN_JOIN_EUI */ McpsIndication.RxSlot = 0; waitingFor = LORAMAC_STATUS_OK; if (function_pending != NULL) { function_pending(); function_pending = NULL; } } // ..finish_uplink() LowPowerTimeout TxDelayedEvent; void OnTxDelayedIsr() { flags.OnTxDelayed = true; } static void OnTxDelayedTimerEvent() { MAC_PRINTF("OnTxDelayedTimerEvent() "); #ifdef LORAWAN_JOIN_EUI LoRaMacHeader_t macHdr; LoRaMacFrameCtrl_t fCtrl; if (!flags.IsLoRaMacNetworkJoined) { // Add a +1, since we start to count from 0 LoRaMacParams.ChannelsDatarate = region_AlternateDatarate( MlmeIndication.JoinRequestTrials + 1 ); macHdr.Value = 0; macHdr.Bits.MType = FRAME_TYPE_JOIN_REQ; fCtrl.Value = 0; fCtrl.Bits.Adr = flags.AdrCtrlOn; /* In case of join request retransmissions, the stack must prepare * the frame again, because the network server keeps track of the random * LoRaMacDevNonce values to prevent reply attacks. */ PrepareFrame( &macHdr, &fCtrl, 0, NULL, 0 ); /* TODO PrepareFrame() != LORAMAC_STATUS_OK */ } #endif /* LORAWAN_JOIN_EUI */ if (flags.rxing) function_pending = region_ScheduleTx; else { region_ScheduleTx( ); } } // ..OnTxDelayedTimerEvent() static void RxWindow2Setup(void) { MAC_PRINTF("RxWindow2Setup %uhz dr%u", LoRaMacParams.Rx2Channel.FrequencyHz, LoRaMacParams.Rx2Channel.Datarate); RxWindowSetup( LoRaMacParams.Rx2Channel.FrequencyHz, LoRaMacParams.Rx2Channel.Datarate, region_GetRxBandwidth( LoRaMacParams.Rx2Channel.Datarate ), region_GetRxSymbolTimeout( LoRaMacParams.Rx2Channel.Datarate ) ); waitingFor = LORAMAC_STATUS_WAITING_FOR_RX2; } static void PrepareRxDoneAbort(LoRaMacEventInfoStatus_t status) { MAC_PRINTF("rxAbort "); if( ( McpsIndication.RxSlot == 1 ) && ( LoRaMacDeviceClass == CLASS_C ) ) { RxWindow2Setup(); RxWindow2Start(); // start continuous rx2 reception } #ifdef LORAWAN_JOIN_EUI if (!flags.IsLoRaMacNetworkJoined && LoRaMacJoinEui != NULL && LoRaMacDevEui == NULL) { TxDelayedEvent.attach_us(OnTxDelayedIsr, 1000000); MAC_PRINTF("RxDoneAbort-join-tx-delay"); } #endif /* LORAWAN_JOIN_EUI */ McpsIndication.Status = status; if (LoRaMacPrimitives->MacMcpsIndication != NULL) LoRaMacPrimitives->MacMcpsIndication( &McpsIndication ); // RxAbort mcps_confirm(status); // RXAbort mlme_confirm(status); finish_uplink(status); MAC_PRINTF("\r\n"); } // ..PrepareRxDoneAbort() static LoRaMacStatus_t SwitchClass( DeviceClass_t deviceClass ) { LoRaMacStatus_t status = LORAMAC_STATUS_PARAMETER_INVALID; switch( LoRaMacDeviceClass ) { case CLASS_A: { MAC_PRINTF("CLASS_A "); if (deviceClass == CLASS_B) status = SwitchClassB(deviceClass); if (deviceClass == CLASS_C) { MAC_PRINTF("->C "); LoRaMacDeviceClass = deviceClass; RxWindow2Setup(); RxWindow2Start(); // continuous rx2 reception status = LORAMAC_STATUS_OK; } break; } case CLASS_B: { MAC_PRINTF("CLASS_B "); if( deviceClass == CLASS_A ) { MAC_PRINTF("->A "); LoRaMacDeviceClass = deviceClass; status = LORAMAC_STATUS_OK; } break; } case CLASS_C: { MAC_PRINTF("CLASS_C "); if( deviceClass == CLASS_A ) { MAC_PRINTF("->A "); LoRaMacDeviceClass = deviceClass; // Set the radio into sleep to setup a defined state Radio::Sleep( ); status = LORAMAC_STATUS_OK; } break; } } MAC_PRINTF("\r\n"); return status; } LoRaMacStatus_t LoRaMacMibSetRequestConfirm( MibRequestConfirm_t *mibSet ) { LoRaMacStatus_t status = LORAMAC_STATUS_OK; if (mibSet == NULL) return LORAMAC_STATUS_PARAMETER_INVALID; if (flags.uplink_in_progress > 0) return waitingFor; switch (mibSet->Type) { case MIB_CHANNELS_MASK: if( mibSet->Param.ChannelsMask ) { #if defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) bool chanMaskState = true; #if defined( USE_BAND_915_HYBRID ) chanMaskState = ValidateChannelMask( mibSet->Param.ChannelsMask ); #endif if( chanMaskState == true ) { if( ( CountNbEnabled125kHzChannels( mibSet->Param.ChannelsMask ) < 2 ) && ( CountNbEnabled125kHzChannels( mibSet->Param.ChannelsMask ) > 0 ) ) { status = LORAMAC_STATUS_PARAMETER_INVALID; } else { memcpy( ( uint8_t* ) LoRaMacParams.ChannelsMask, ( uint8_t* ) mibSet->Param.ChannelsMask, sizeof( LoRaMacParams.ChannelsMask ) ); for ( uint8_t i = 0; i < sizeof( LoRaMacParams.ChannelsMask ) / 2; i++ ) { // Disable channels which are no longer available ChannelsMaskRemaining[i] &= LoRaMacParams.ChannelsMask[i]; } } } else { status = LORAMAC_STATUS_PARAMETER_INVALID; } #elif defined( USE_BAND_470 ) memcpy( ( uint8_t* ) LoRaMacParams.ChannelsMask, ( uint8_t* ) mibSet->Param.ChannelsMask, sizeof( LoRaMacParams.ChannelsMask ) ); #else memcpy( ( uint8_t* ) LoRaMacParams.ChannelsMask, ( uint8_t* ) mibSet->Param.ChannelsMask, 2 ); #endif LoRaMacParams.NbEnabledChannels = region_CountNbEnabledChannels(); } else { status = LORAMAC_STATUS_PARAMETER_INVALID; } break; #ifdef LORAWAN_JOIN_EUI /* values which cannot be set in OTA */ case MIB_NwkSKey: case MIB_SNwkSIntKey: case MIB_NwkSEncKey: case MIB_FNwkSIntKey: case MIB_APP_SKEY: case MIB_DEV_ADDR: case MIB_NETWORK_JOINED: #endif case MIB_RX2_CHANNEL: return LORAMAC_STATUS_PARAMETER_INVALID; case MIB_DEVICE_CLASS: status = SwitchClass(mibSet->Param.Class); break; case MIB_ADR: flags.AdrCtrlOn = mibSet->Param.AdrEnable; break; case MIB_PUBLIC_NETWORK: flags.PublicNetwork = mibSet->Param.EnablePublicNetwork; Radio::SetPublicNetwork( flags.PublicNetwork ); break; #ifndef LORAWAN_JOIN_EUI case MIB_SNwkSIntKey: flags.have_SNwkSIntKey = 1; memcpy( keys.SNwkSIntKey, mibSet->Param.key, sizeof(keys.SNwkSIntKey) ); if (flags.have_NwkSEncKey) { flags.OptNeg = 1; flags.need_ResetConf = 1; } break; case MIB_NwkSEncKey: flags.have_NwkSEncKey = 1; memcpy( keys.NwkSEncKey, mibSet->Param.key, sizeof(keys.NwkSEncKey) ); if (flags.have_SNwkSIntKey) { flags.OptNeg = 1; flags.need_ResetConf = 1; } break; case MIB_APP_SKEY: memcpy( keys.AppSKey, mibSet->Param.key, sizeof( keys.AppSKey ) ); break; case MIB_FNwkSIntKey: memcpy( keys.FNwkSIntKey, mibSet->Param.key, sizeof( keys.FNwkSIntKey ) ); break; case MIB_NwkSKey: /* lorawan 1.0 ABP */ memcpy( keys.FNwkSIntKey, mibSet->Param.key, sizeof( keys.FNwkSIntKey ) ); memcpy( keys.SNwkSIntKey, mibSet->Param.key, sizeof( keys.SNwkSIntKey) ); memcpy( keys.NwkSEncKey, mibSet->Param.key, sizeof( keys.NwkSEncKey) ); flags.OptNeg = 0; break; case MIB_DEV_ADDR: LoRaMacDevAddr = mibSet->Param.DevAddr; break; #endif /* !LORAWAN_JOIN_EUI */ } // ..switch( mibSet->Type ) return status; } // ..LoRaMacMibSetRequestConfirm() __attribute__((weak)) LoRaMacStatus_t LoRaMacClassBInitialization( void ) { return LORAMAC_STATUS_OK; } LowPowerTimeout RxWindowEvent1; LowPowerTimeout RxWindowEvent2; static void RxWindow1Start( void ) { if (LoRaMacDeviceClass == CLASS_C) Radio::Rx( 0 ); // Continuous mode else Radio::Rx( LoRaMacParams.MaxRxWindow_us ); McpsIndication.RxSlot = 1; } volatile us_timestamp_t tx_done_at; static void OnRadioTxDone( us_timestamp_t at_us ) { if ((RxWindow1Delay_us < 100000 || RxWindow1Delay_us > 10000000) || (RxWindow2Delay_us < 100000 || RxWindow2Delay_us > 10000000)) { PrepareRxDoneAbort(LORAMAC_EVENT_INFO_BAD_RX_DELAY); return; } waitingFor = LORAMAC_STATUS_WAITING_FOR_RX1; // Setup timers RxWindowEvent1.attach_us(RxWindow1Start, RxWindow1Delay_us); if( LoRaMacDeviceClass != CLASS_C ) { RxWindowEvent2.attach_us(RxWindow2Start, RxWindow2Delay_us); } McpsIndication.RxSlot = 0; tx_done_at = at_us; if( LoRaMacDeviceClass != CLASS_C ) { region_rx1_setup(Channel); Radio::Sleep( ); } else { RxWindow2Setup(); RxWindow2Start(); } // Store last tx channel //LastTxChannel = Channel; #ifdef DUTY_ENABLE DutyTxDone(at_us); #endif /* DUTY_ENABLE */ } // ..OnRadioTxDone() static void OnRadioTxTimeout( void ) { if( LoRaMacDeviceClass != CLASS_C ) { Radio::Sleep( ); } else { RxWindow2Setup(); RxWindow2Start(); } finish_uplink(LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT); mcps_confirm(LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT); mlme_confirm(LORAMAC_EVENT_INFO_STATUS_TX_TIMEOUT); } // ..OnRadioTxTimeout() __attribute__((weak)) bool beacon_rx_done_payload(uint8_t* payload, uint16_t size) { return false; } static void print_mtype(uint8_t mt) { #ifdef MAC_DEBUG const char* cp; switch (mt) { #ifdef LORAWAN_JOIN_EUI case FRAME_TYPE_JOIN_REQ: cp = "JOIN_REQ "; break; case FRAME_TYPE_JOIN_ACCEPT: cp = "JOIN_ACC "; break; case FRAME_TYPE_REJOIN_REQ: cp = "REJOIN_REQ"; break; #endif /* LORAWAN_JOIN_EUI */ case FRAME_TYPE_DATA_UNCONFIRMED_UP: cp = "UNCONF_UP"; break; case FRAME_TYPE_DATA_UNCONFIRMED_DOWN: cp = "UNCONF_DN"; break; case FRAME_TYPE_DATA_CONFIRMED_UP: cp = "CONF_UP"; break; case FRAME_TYPE_DATA_CONFIRMED_DOWN: cp = "CONF_DN"; break; case FRAME_TYPE_PROPRIETARY: cp = "P"; break; default: return; } MAC_PRINTF("MTYPE_%s ", cp); #endif /* MAC_DEBUG */ } /* bool a: true=AFCntDown, false=NFCntDown */ uint32_t get_fcntdwn(bool a) { #ifdef LORAWAN_JOIN_EUI if (a) return AFCntDown; else return NFCntDown; #else if (a) return eeprom_read(EEPROM_AFCNTDWN); else return eeprom_read(EEPROM_NFCNTDWN); #endif } __attribute__((weak)) bool ProcessMacCommandsClassB(uint8_t* payload, uint8_t* macIndex) { return false; /* false: not taken */ } static bool ValidateDatarate( int8_t datarate, uint16_t* channelsMask ) { if( ValueInRange( datarate, LORAMAC_TX_MIN_DATARATE, LORAMAC_TX_MAX_DATARATE ) == false ) { return false; } for( uint8_t i = 0, k = 0; i < LORA_MAX_NB_CHANNELS; i += 16, k++ ) { for( uint8_t j = 0; j < 16; j++ ) { if( ( ( channelsMask[k] & ( 1 << j ) ) != 0 ) ) {// Check datarate validity for enabled channels if( ValueInRange( datarate, Channels[i + j].DrRange.Fields.Min, Channels[i + j].DrRange.Fields.Max ) == true ) { // At least 1 channel has been found we can return OK. return true; } } } } return false; } static bool Rx2FreqInRange( uint32_t freq ) { #if defined( USE_BAND_433 ) || defined( USE_BAND_780 ) || defined( USE_BAND_868 ) || defined (USE_BAND_ARIB_8CH) if( Radio::CheckRfFrequency( freq ) == true ) #elif defined( USE_BAND_470 ) || defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) if( ( Radio::CheckRfFrequency( freq ) == true ) && ( freq >= LORAMAC_FIRST_RX1_CHANNEL ) && ( freq <= LORAMAC_LAST_RX1_CHANNEL ) && ( ( ( freq - ( uint32_t ) LORAMAC_FIRST_RX1_CHANNEL ) % ( uint32_t ) LORAMAC_STEPWIDTH_RX1_CHANNEL ) == 0 ) ) #endif { return true; } return false; } __attribute__((weak)) void deviceTimeClassB(uint32_t secs, uint32_t subsecs) { } /* return -1 for unknown mac cmd */ static int ProcessMacCommands( uint8_t *payload, uint8_t macIndex, uint8_t commandsSize, uint8_t snr, us_timestamp_t us_rxDone_at ) { uint8_t buf[2]; int ret = 0; MACC_PRINTF("ProcessMacCommands(, %u, %u,,) ", macIndex, commandsSize); while (macIndex < commandsSize) { MACC_PRINTF("ProcessMacCommands %u(0x%02x): ", macIndex, payload[macIndex]); // Decode Frame MAC commands switch (payload[macIndex++]) { case SRV_MAC_LINK_CHECK_ANS: MACC_PRINTF("LINK_CHECK_ANS "); buf[0] = payload[macIndex++]; buf[1] = payload[macIndex++]; MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK; MlmeConfirm.fields.link.DemodMargin = buf[0]; MlmeConfirm.fields.link.NbGateways = buf[1]; break; case SRV_MAC_LINK_ADR_REQ: MACC_PRINTF("LINK_ADR_REQ "); { uint8_t i; int8_t txPower = 0; uint8_t Redundancy = 0; adr_t adr; adr.status = 0x07; // Initialize local copy of the channels mask array for( i = 0; i < 6; i++ ) { adr.channelsMask[i] = LoRaMacParams.ChannelsMask[i]; } adr.datarate = payload[macIndex++]; txPower = adr.datarate & 0x0F; adr.datarate = ( adr.datarate >> 4 ) & 0x0F; MACC_PRINTF("dr%u power%u ", adr.datarate, txPower); if( ( flags.AdrCtrlOn == false ) && ( ( LoRaMacParams.ChannelsDatarate != adr.datarate ) || ( LoRaMacParams.ChannelsTxPower != txPower ) ) ) { // ADR disabled don't handle ADR requests if server tries to change datarate or txpower MACC_PRINTF("AdrCtrlOn:%u dr%u != dr%u, %d != %d\r\n", flags.AdrCtrlOn, LoRaMacParams.ChannelsDatarate, adr.datarate, LoRaMacParams.ChannelsTxPower, txPower ); // Answer the server with fail status // Power ACK = 0 // Data rate ACK = 0 // Channel mask = 0 AddMacCommand( MOTE_MAC_LINK_ADR_ANS, 0, 0 ); macIndex += 3; // Skip over the remaining bytes of the request break; } adr.chMask = ( uint16_t )payload[macIndex++]; adr.chMask |= ( uint16_t )payload[macIndex++] << 8; Redundancy = payload[macIndex++]; adr.chMaskCntl = ( Redundancy >> 4 ) & 0x07; if ((Redundancy & 0x0f) > 0) LoRaMacParams.NbTrans = Redundancy & 0x0f; MACC_PRINTF("chMask:%04x chMaskCntl:%x nbTrans:%u ", adr.chMask, adr.chMaskCntl, LoRaMacParams.NbTrans); region_adr_request(&adr); if( ValidateDatarate( adr.datarate, adr.channelsMask ) == false ) { MACC_PRINTF("badDr "); adr.status &= 0xFD; // Datarate KO } // // Remark MaxTxPower = 0 and MinTxPower = 5 // if( ValueInRange( txPower, LORAMAC_MAX_TX_POWER, LORAMAC_MIN_TX_POWER ) == false ) { MACC_PRINTF("badPower(max:%d given:%d min:%d) ", LORAMAC_MAX_TX_POWER, txPower, LORAMAC_MIN_TX_POWER); adr.status &= 0xFB; // TxPower KO } MACC_PRINTF("status:%x (idx %u) ", adr.status, macIndex); if( ( adr.status & 0x07 ) == 0x07 ) { LoRaMacParams.ChannelsDatarate = adr.datarate; LoRaMacParams.ChannelsTxPower = txPower; memcpy( ( uint8_t* )LoRaMacParams.ChannelsMask, ( uint8_t* )adr.channelsMask, sizeof( LoRaMacParams.ChannelsMask ) ); LoRaMacParams.NbEnabledChannels = region_CountNbEnabledChannels(); } AddMacCommand( MOTE_MAC_LINK_ADR_ANS, adr.status, 0 ); } break; case SRV_MAC_RX_PARAM_SETUP_REQ: { uint8_t status = 0x07; int8_t datarate = 0; int8_t drOffset = 0; uint32_t freq = 0; drOffset = ( payload[macIndex] >> 4 ) & 0x07; datarate = payload[macIndex] & 0x0F; macIndex++; freq = ( uint32_t )payload[macIndex++]; freq |= ( uint32_t )payload[macIndex++] << 8; freq |= ( uint32_t )payload[macIndex++] << 16; freq *= 100; MACC_PRINTF("RX_PARAM_SETUP_REQ %uhz drOffset:%u dr%u ", freq, drOffset, datarate); if( Rx2FreqInRange( freq ) == false ) { status &= 0xFE; // Channel frequency KO } if( ValueInRange( datarate, LORAMAC_RX_MIN_DATARATE, LORAMAC_RX_MAX_DATARATE ) == false ) { status &= 0xFD; // Datarate KO } #if ( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) ) if( ( ValueInRange( datarate, DR_5, DR_7 ) == true ) || ( datarate > DR_13 ) ) { status &= 0xFD; // Datarate KO } #endif if( ValueInRange( drOffset, LORAMAC_MIN_RX1_DR_OFFSET, LORAMAC_MAX_RX1_DR_OFFSET ) == false ) { status &= 0xFB; // Rx1DrOffset range KO } MACC_PRINTF("status:0x%02x ", status); if( ( status & 0x07 ) == 0x07 ) { LoRaMacParams.Rx2Channel.Datarate = datarate; LoRaMacParams.Rx2Channel.FrequencyHz = freq; LoRaMacParams.Rx1DrOffset = drOffset; } AddMacCommand( MOTE_MAC_RX_PARAM_SETUP_ANS, status, 0 ); } break; case SRV_MAC_DEV_STATUS_REQ: MACC_PRINTF("DEV_STATUS_REQ "); { uint8_t batteryLevel = BAT_LEVEL_NO_MEASURE; if( ( LoRaMacCallbacks != NULL ) && ( LoRaMacCallbacks->GetBatteryLevel != NULL ) ) { batteryLevel = LoRaMacCallbacks->GetBatteryLevel( ); } AddMacCommand( MOTE_MAC_DEV_STATUS_ANS, batteryLevel, snr ); break; } case SRV_MAC_NEW_CHANNEL_REQ: { uint8_t status = 0x03; #if defined( USE_BAND_470 ) || defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) status &= 0xFC; // Channel frequency and datarate KO macIndex += 5; #else int8_t channelIndex = 0; ChannelParams_t chParam; channelIndex = payload[macIndex++]; chParam.FreqHz = ( uint32_t )payload[macIndex++]; chParam.FreqHz |= ( uint32_t )payload[macIndex++] << 8; chParam.FreqHz |= ( uint32_t )payload[macIndex++] << 16; chParam.FreqHz *= 100; chParam.DrRange.Value = payload[macIndex++]; MACC_PRINTF("NEW_CHANNEL_REQ ch%u %uhz drRange:%02x ", channelIndex, chParam.Frequency, chParam.DrRange.Value); if( chParam.FreqHz == 0 ) { if( channelIndex < 3 ) { status &= 0xFC; } else { if( LoRaMacChannelRemove( channelIndex ) != LORAMAC_STATUS_OK ) { status &= 0xFC; } } } else { switch( LoRaMacChannelAdd( channelIndex, chParam ) ) { case LORAMAC_STATUS_OK: { MACC_PRINTF("add-ok "); break; } case LORAMAC_STATUS_FREQUENCY_INVALID: { MACC_PRINTF("add-bad-freq "); status &= 0xFE; break; } case LORAMAC_STATUS_DATARATE_INVALID: { MACC_PRINTF("add-bad-dr "); status &= 0xFD; break; } case LORAMAC_STATUS_FREQ_AND_DR_INVALID: { MACC_PRINTF("add-bad-both "); status &= 0xFC; break; } default: { MACC_PRINTF("add-bad-? "); status &= 0xFC; break; } } } #endif MACC_PRINTF("status:%x ", status); AddMacCommand( MOTE_MAC_NEW_CHANNEL_ANS, status, 0 ); } break; case SRV_MAC_ADR_PARAM_SETUP_REQ: MACC_PRINTF("ADR_PARAM_SETUP_REQ"); { uint8_t exps = payload[macIndex++] & 0x0F; ADR_ACK_LIMIT = 1 << (exps >> 4); ADR_ACK_DELAY = 1 << (exps & 0x0f); } AddMacCommand(SRV_MAC_ADR_PARAM_SETUP_ANS, 0, 0); break; case SRV_MAC_RX_TIMING_SETUP_REQ: MACC_PRINTF("RX_TIMING_SETUP_REQ"); { uint8_t delay = payload[macIndex++] & 0x0F; if( delay == 0 ) { delay++; } LoRaMacParams.ReceiveDelay1_us = delay * 1e6; LoRaMacParams.ReceiveDelay2_us = LoRaMacParams.ReceiveDelay1_us + 1e6; AddMacCommand( MOTE_MAC_RX_TIMING_SETUP_ANS, 0, 0 ); } break; #ifdef LORAWAN_JOIN_EUI case SRV_MAC_REKEY_CONF: macIndex++; //TODO server_version = payload[macIndex++]; flags.need_ReKeyConf = 0; break; case SRV_MAC_FORCE_REJOIN_REQ: { uint16_t cmd_payload = payload[macIndex++]; cmd_payload |= payload[macIndex++] << 8; rejoin.type = (cmd_payload >> 4) & 7; if (rejoin.type == 2) JoinReqType = 2; else { JoinReqType = 0; rejoin.type = 0; } rejoin.dr = cmd_payload & 0x0f; LoRaMacParams.ChannelsDatarate = rejoin.dr; rejoin.retries = 1 + ((cmd_payload >> 8) & 7); MAC_PRINTF("FORCE_REJOIN 0x%04x dr%u type%u tries%u ", cmd_payload, LoRaMacParams.ChannelsDatarate, JoinReqType, rejoin.retries); { rejoin.Period = (cmd_payload >> 11) & 7; /* first forced-rejoin attempt must be immediate */ rejoin.event.attach_us(_rejoin_retry, 50000); rejoin.forced = true; } } break; case SRV_MAC_REJOIN_PARAM_REQ: { uint8_t p = payload[macIndex++]; rejoin.type0.MaxTimeN = p >> 4; rejoin.type0.MaxCountN = p & 0xf; rejoin.type0.enabled = true; MACC_PRINTF("REJOIN_PARAM MaxTimeN%u MaxCountN%u ", rejoin.type0.MaxTimeN, rejoin.type0.MaxCountN); rejoin.type0.uplinks_since = 1 << (rejoin.type0.MaxCountN + 4); AddMacCommand(MOTE_MAC_REJOIN_PARAM_ANS, 0, 0); } break; #else case SRV_MAC_RESET_CONF: macIndex++; //TODO server_version = payload[macIndex++]; flags.need_ResetConf = 0; break; #endif /* !LORAWAN_JOIN_EUI */ case SRV_MAC_DEVICE_TIME_ANS: { uint32_t subusecs, secs; us_timestamp_t us_since_tx_done; secs = payload[macIndex++]; secs += payload[macIndex++] << 8; secs += payload[macIndex++] << 16; secs += payload[macIndex++] << 24; subusecs = payload[macIndex++] * 3906.5; //MAC_PRINTF("secs:%u, subusecs:%u\r\n", secs, subusecs); deviceTimeClassB(secs, subusecs); us_since_tx_done = Radio::lpt.read_us() - tx_done_at; MlmeConfirm.fields.time.uSeconds += us_since_tx_done; while (us_since_tx_done >= 1000000) { MlmeConfirm.fields.time.Seconds++; us_since_tx_done -= 1000000; } MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK; MlmeConfirm.fields.time.Seconds = secs; MlmeConfirm.fields.time.uSeconds = subusecs; } break; default: --macIndex; if (ProcessMacCommandsClassB(payload, &macIndex)) { /* mac command was taken */ //MACC_PRINTF("B-cont\r\n"); } #ifdef DUTY_ENABLE else if (ProcessMacCommandsDuty(payload, &macIndex)) { /* mac command was taken */ } #endif /* DUTY_ENABLE */ else { ret = -1; MAC_PRINTF("[31munknown mac:0x%02x at %u[0m\r\n", payload[macIndex-1], macIndex-1); } break; } // ..switch(payload[macIndex++]) MACC_PRINTF("\r\n"); } // ..while( macIndex < commandsSize ) return ret; } // ..ProcessMacCommands() #define MAX_FCNT_GAP 0x4000 /* return: true == send downlink ack */ static int rx_downlink(uint8_t pktHeaderLen, uint8_t* rx_payload, uint16_t rx_size, int8_t snr, us_timestamp_t us_rxDone_at) { LoRaMacHeader_t macHdr; LoRaMacFrameCtrl_t fCtrl; uint32_t myFCntDwn32, rxFCnt32; uint8_t rxFPort; uint16_t rxFCnt16; uint32_t address; uint32_t mic, micRx; uint8_t appPayloadStartIndex = 0; bool skipIndication = false; uint8_t frameLen = 0; bool is_AFCntDown; block_t block; macHdr.Value = rx_payload[0]; address = rx_payload[pktHeaderLen++]; address |= ( (uint32_t)rx_payload[pktHeaderLen++] << 8 ); address |= ( (uint32_t)rx_payload[pktHeaderLen++] << 16 ); address |= ( (uint32_t)rx_payload[pktHeaderLen++] << 24 ); fCtrl.Value = rx_payload[pktHeaderLen++]; rxFCnt16 = ( uint16_t )rx_payload[pktHeaderLen++]; rxFCnt16 |= ( uint16_t )rx_payload[pktHeaderLen++] << 8; is_AFCntDown = false; if (( ( rx_size - 4 ) - (8 + fCtrl.Bits.FOptsLen) ) > 0) { appPayloadStartIndex = 8 + fCtrl.Bits.FOptsLen; rxFPort = rx_payload[appPayloadStartIndex++]; if (flags.OptNeg && rxFPort > 0) is_AFCntDown = true; } /* else no payload/fport present */ myFCntDwn32 = get_fcntdwn(is_AFCntDown); McpsIndication.expectedFCntDown = myFCntDwn32; McpsIndication.receivedFCntDown = rxFCnt16; rxFCnt32 = (myFCntDwn32 & 0xffff0000) | rxFCnt16; DEBUG_MIC_DOWN(" rxFCnt32:%" PRIu32" ", rxFCnt32); micRx = ( uint32_t )rx_payload[rx_size - LORAMAC_MFR_LEN]; micRx |= ( ( uint32_t )rx_payload[rx_size - LORAMAC_MFR_LEN + 1] << 8 ); micRx |= ( ( uint32_t )rx_payload[rx_size - LORAMAC_MFR_LEN + 2] << 16 ); micRx |= ( ( uint32_t )rx_payload[rx_size - LORAMAC_MFR_LEN + 3] << 24 ); block.b.header = 0x49; if (flags.OptNeg) block.b.confFCnt = ConfFCntUp; else block.b.confFCnt = 0; block.b.dr = 0; block.b.ch = 0; block.b.dir = DOWN_LINK; block.b.DevAddr = address; block.b.FCnt = rxFCnt32; block.b.zero8 = 0; block.b.lenMsg = rx_size - LORAMAC_MFR_LEN; mic = LoRaMacComputeMic(&block, rx_payload, keys.SNwkSIntKey); if (micRx != mic) { bool ignore_rx = true; PrepareRxDoneAbort(LORAMAC_EVENT_INFO_STATUS_MIC_FAIL); MAC_PRINTF("\e[31mmicFail"); if (flags.OptNeg) { block.b.confFCnt = ConfFCntUp - 1; mic = LoRaMacComputeMic(&block, rx_payload, keys.SNwkSIntKey); if (micRx == mic) ignore_rx = false; else { block.b.confFCnt = 0; mic = LoRaMacComputeMic(&block, rx_payload, keys.SNwkSIntKey); if (micRx == mic) ignore_rx = false; } } if (ignore_rx) { MAC_PRINTF("\e[0m\r\n"); return -1; } else { McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_MIC_FAIL; if (LoRaMacPrimitives->MacMcpsIndication != NULL) LoRaMacPrimitives->MacMcpsIndication( &McpsIndication ); } } else { /* downlink with good MIC means previous confirmed uplink was receied */ ConfFCntUp = 0; if (McpsIndication.RxSlot == 1) // no need for RX2 with good mic on rx1 RxWindowEvent2.detach(); } McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_OK; //McpsIndication.Multicast = 0;//multicast; McpsIndication.FramePending = fCtrl.Bits.FPending; McpsIndication.Buffer = NULL; McpsIndication.BufferSize = 0; MacCommandsBufferToRepeatIndex = 0; if (macHdr.Bits.MType == FRAME_TYPE_DATA_CONFIRMED_DOWN) { flags.SrvAckRequested = true; McpsIndication.McpsIndication = MCPS_CONFIRMED; #ifdef LORAWAN_JOIN_EUI if (flags.IsLoRaMacNetworkJoined) #endif /* LORAWAN_JOIN_EUI */ if (flags.OptNeg) ConfFCntDown = rxFCnt16; } else { // FRAME_TYPE_DATA_UNCONFIRMED_DOWN: ConfFCntDown = 0; flags.SrvAckRequested = false; McpsIndication.McpsIndication = MCPS_UNCONFIRMED; } if (fCtrl.Bits.FOptsLen > 0) { // Decode Options field MAC commands if (flags.OptNeg) { uint32_t FCnt32; bool fromStored; uint8_t macDecrypt[16]; DEBUG_CRYPT_BUF(keys.NwkSEncKey, 16, "NwkSEncKey", 0); if (appPayloadStartIndex > 0) { /* rx header has AFCntDown: not for use with FOpts */ FCnt32 = get_fcntdwn(false); fromStored = true; } else { /* NFCntDown received in rx header */ FCnt32 = (get_fcntdwn(false) & 0xffff0000) | rxFCnt16; fromStored = false; } DEBUG_CRYPT("FCnt32:%" PRIu32" ", FCnt32); DEBUG_CRYPT_BUF(rx_payload+8, fCtrl.Bits.FOptsLen, "FOpts-rx", 0); LoRaMacEncrypt(0, rx_payload+8, fCtrl.Bits.FOptsLen, keys.NwkSEncKey, LoRaMacDevAddr, DOWN_LINK, FCnt32, macDecrypt); DEBUG_CRYPT_BUF(macDecrypt, fCtrl.Bits.FOptsLen, "FOpts-decrypt", 0); if (ProcessMacCommands(macDecrypt, 0, fCtrl.Bits.FOptsLen, snr, us_rxDone_at) < 0) { if (fromStored) { MAC_PRINTF("fromStored-"); } MAC_PRINTF("FCnt32:%lu ", FCnt32); } } else { MAC_PRINTF("ProcessMacCommands-FOpts "); ProcessMacCommands( rx_payload, 8, fCtrl.Bits.FOptsLen + 8, snr, us_rxDone_at ); } } if (appPayloadStartIndex > 0) { frameLen = ( rx_size - 4 ) - appPayloadStartIndex; McpsIndication.Port = rxFPort; if (rxFPort == 0) { if( ( fCtrl.Bits.FOptsLen == 0 ) /*&& ( multicast == 0 )*/ ) { uint8_t macDecrypt[16]; LoRaMacPayloadDecrypt(rx_payload + appPayloadStartIndex, frameLen, keys.NwkSEncKey, address, DOWN_LINK, rxFCnt32, macDecrypt ); // Decode frame payload MAC commands MAC_PRINTF("ProcessMacCommands-payload "); if (ProcessMacCommands( macDecrypt, 0, frameLen, snr, us_rxDone_at ) < 0) { MAC_PRINTF(" rxFCnt32:%" PRIu32 " ", rxFCnt32); } } else { skipIndication = true; } } else { /* rxFPort > 0 */ MAC_PRINTF("rxFCnt32:%" PRIu32" %08" PRIx32" ", rxFCnt32, address); MAC_PRINTF("FCntDown%" PRIu32 " ", rxFCnt32); DEBUG_CRYPT(" addr%" PRIx32" len%u\r\n", address, frameLen); DEBUG_CRYPT_BUF(rx_payload + appPayloadStartIndex, frameLen, "rxEncd", 0); DEBUG_CRYPT_BUF(keys.AppSKey, 16, "AppSKey", 0); LoRaMacPayloadDecrypt(rx_payload + appPayloadStartIndex, frameLen, keys.AppSKey, address, DOWN_LINK, rxFCnt32, rxFRMPayload ); if( skipIndication == false ) { McpsIndication.Buffer = rxFRMPayload; McpsIndication.BufferSize = frameLen; McpsIndication.RxData = true; } } } // ..if have payload if (!skipIndication) { McpsIndication.AckReceived = fCtrl.Bits.Ack; McpsConfirm.AckReceived = fCtrl.Bits.Ack; if (LoRaMacPrimitives->MacMcpsIndication != NULL) LoRaMacPrimitives->MacMcpsIndication( &McpsIndication ); // RxDone } if (McpsIndication.RxSlot == 1 || McpsIndication.RxSlot == 2) McpsIndication.ADR_ACK_CNT = 0; /* set FCntDwn to next expected value, if last NbTrans */ #ifdef LORAWAN_JOIN_EUI if (flags.uplink_in_progress <= 1 && last_up_macHdr.Bits.MType == FRAME_TYPE_DATA_CONFIRMED_UP) { if (fCtrl.Bits.Ack) { FCntUp++; } else { MAC_PRINTF("\e[31mrx-!ack\e[0m\n"); } } if (is_AFCntDown) { AFCntDown = rxFCnt32 + 1; } else { NFCntDown = rxFCnt32 + 1; } #else /* if last NbTrans confirmed uplink ack'd ok: increment FCntUp */ if (flags.uplink_in_progress <= 1 && fCtrl.Bits.Ack && last_up_macHdr.Bits.MType == FRAME_TYPE_DATA_CONFIRMED_UP) { eeprom_increment_value(EEPROM_FCNTUP); /* TODO handle ee-failure return */ } if (is_AFCntDown) eeprom_write_word(EEPROM_AFCNTDWN, rxFCnt32 + 1); else eeprom_write_word(EEPROM_NFCNTDWN, rxFCnt32 + 1); #endif /* !LORAWAN_JOIN_EUI */ return 0; } // ...rx_downlink() #ifdef LORAWAN_JOIN_EUI typedef union { struct { uint8_t mhdr; unsigned int joinNonce : 24; unsigned int Home_NetID : 24; uint32_t DevAddr; struct { uint8_t RX2dr : 4; // 0,1,2,3 uint8_t RX1DRoffset : 3; // 4,5,6 uint8_t OptNeg : 1; // 7 } DLSettings; uint8_t RxDelay; } __attribute__((packed)) fields; uint8_t octets[13]; } joinAccept_t; #endif /* LORAWAN_JOIN_EUI */ #define JOIN_ACCEPT_MAX_SIZE 34 static void OnRadioRxDone(uint8_t *rx_payload, uint16_t rx_size, int16_t rssi, int8_t snr, us_timestamp_t us_rxDone_at) { LoRaMacEventInfoStatus_t status = LORAMAC_EVENT_INFO_STATUS_UNKNOWN_MTYPE; LoRaMacHeader_t macHdr; #ifdef LORAWAN_JOIN_EUI uint8_t _jaDecrypted[JOIN_ACCEPT_MAX_SIZE]; uint32_t mic, micRx; const uint8_t* key; const joinAccept_t* ja; #endif /* LORAWAN_JOIN_EUI */ uint8_t pktHeaderLen = 0; McpsConfirm.AckReceived = false; McpsIndication.Rssi = rssi; McpsIndication.Snr = snr; McpsIndication.Port = 0; //McpsIndication.Multicast = 0; McpsIndication.FramePending = 0; McpsIndication.Buffer = NULL; McpsIndication.BufferSize = 0; McpsIndication.RxData = false; McpsIndication.AckReceived = false; McpsIndication.McpsIndication = MCPS_UNCONFIRMED; if (MlmeConfirm.Status == LORAMAC_EVENT_INFO_STATUS_SENDING) { /* when regular downlink is sent in response to rejoin request */ MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_OK; } if( LoRaMacDeviceClass != CLASS_C ) { Radio::Sleep( ); } MAC_PRINTF("OnRadioRxDone(%u) RxSlot%d ", rx_size, McpsIndication.RxSlot); if (beacon_rx_done_payload(rx_payload, rx_size)) return; macHdr.Value = rx_payload[pktHeaderLen++]; MAC_PRINTF(" rx-"); print_mtype(macHdr.Bits.MType); switch (macHdr.Bits.MType) { #ifdef LORAWAN_JOIN_EUI case FRAME_TYPE_JOIN_ACCEPT: /* always permitting join accept because it might be due to rejoin */ if (rx_size >= JOIN_ACCEPT_MAX_SIZE) { printf("joinAccept overSize %u\r\n", rx_size); return; } DEBUG_CRYPT_BUF(rx_payload, rx_size, "rxBuf", 0); MAC_PRINTF("JoinReqType:%02x ", JoinReqType); if (JoinReqType == 0xff) { DEBUG_CRYPT_BUF(RootNwkKey, 16, "NwkKey", 0); key = RootNwkKey; } else { key = JSEncKey; DEBUG_CRYPT_BUF(JSEncKey, 16, "JSEncKey", 0); } LoRaMacJoinDecrypt( rx_payload + 1, rx_size - 1, key, &_jaDecrypted[1]); DEBUG_CRYPT_BUF(_jaDecrypted, rx_size, "macbuf", 0); _jaDecrypted[0] = macHdr.Value; ja = (joinAccept_t*)_jaDecrypted; flags.OptNeg = ja->fields.DLSettings.OptNeg; if (flags.OptNeg) { uint8_t micBuf[40]; uint8_t* ptr = micBuf; if (RootAppKey == NULL) { MAC_PRINTF("OptNeg-without-AppKey "); PrepareRxDoneAbort(LORAMAC_EVENT_INFO_STATUS_NO_APPKEY); return; } *ptr++ = JoinReqType; memcpyr(ptr, LoRaMacJoinEui, 8); ptr += 8; *ptr++ = LoRaMacDevNonce & 0xff; *ptr++ = LoRaMacDevNonce >> 8; memcpy(ptr, _jaDecrypted, rx_size - LORAMAC_MFR_LEN); ptr += rx_size - LORAMAC_MFR_LEN; DEBUG_MIC_BUF_DOWN(JSIntKey, 16, "JSIntKey", ROW_MIC); DEBUG_MIC_BUF_DOWN(micBuf, ptr - micBuf, "jaMic-in", ROW_MIC+1); if (LoRaMacJoinComputeMic(false, micBuf, ptr - micBuf, JSIntKey, &mic ) < 0) { MAC_PRINTF("cryptFail\r\n"); return; } } else { if (LoRaMacJoinComputeMic(false, _jaDecrypted, rx_size - LORAMAC_MFR_LEN, RootNwkKey, &mic ) < 0) { MAC_PRINTF("cryptFail\r\n"); return; } } micRx = ( uint32_t )_jaDecrypted[rx_size - LORAMAC_MFR_LEN]; micRx |= ( ( uint32_t )_jaDecrypted[rx_size - LORAMAC_MFR_LEN + 1] << 8 ); micRx |= ( ( uint32_t )_jaDecrypted[rx_size - LORAMAC_MFR_LEN + 2] << 16 ); micRx |= ( ( uint32_t )_jaDecrypted[rx_size - LORAMAC_MFR_LEN + 3] << 24 ); MAC_PRINTF("JOIN_ACCEPT %u,OptNeg%" PRIu32" ", rx_size, flags.OptNeg); if (micRx == mic) { if (McpsIndication.RxSlot == 1) // no need for RX2 with good mic on rx1 RxWindowEvent2.detach(); #ifdef LORAWAN_ROOT_APPKEY if (flags.OptNeg) { MlmeConfirm.fields.join.myJoinNonce = eeprom_read(EEPROM_JOINNONCE); MlmeConfirm.fields.join.rxJoinNonce = ja->fields.joinNonce; if (MlmeConfirm.fields.join.rxJoinNonce <= MlmeConfirm.fields.join.myJoinNonce) { /* replay attack */ PrepareRxDoneAbort(LORAMAC_EVENT_INFO_STATUS_JOINNONCE); return; } flags.need_ReKeyConf = 1; LoRaMacJoinComputeSKeys_1v1( RootNwkKey, RootAppKey, _jaDecrypted+1, LoRaMacJoinEui, LoRaMacDevNonce, &keys); eeprom_write_word(EEPROM_JOINNONCE, MlmeConfirm.fields.join.rxJoinNonce); } else #endif /* LORAWAN_ROOT_APPKEY */ LoRaMacJoinComputeSKeys_1v0( RootNwkKey, _jaDecrypted+1, LoRaMacDevNonce, &keys); DEBUG_CRYPT_BUF(keys.AppSKey , 16, "create-AppSKey", 0); LoRaMacNetID = ja->fields.Home_NetID; LoRaMacDevAddr = ja->fields.DevAddr; // DLSettings LoRaMacParams.Rx1DrOffset = ja->fields.DLSettings.RX1DRoffset; LoRaMacParams.Rx2Channel.Datarate = ja->fields.DLSettings.RX2dr; // RxDelay LoRaMacParams.ReceiveDelay1_us = (ja->fields.RxDelay & 0x0f) * 1000000; if( LoRaMacParams.ReceiveDelay1_us == 0 ) { LoRaMacParams.ReceiveDelay1_us = 1000000; } LoRaMacParams.ReceiveDelay2_us = LoRaMacParams.ReceiveDelay1_us + 1000000; MAC_PRINTF("rx1droffset:%u, rx2dr%u rxDelays:%" PRIu32" %" PRIu32", devaddr:%08" PRIx32" ", LoRaMacParams.Rx1DrOffset, LoRaMacParams.Rx2Channel.Datarate, LoRaMacParams.ReceiveDelay1_us, LoRaMacParams.ReceiveDelay2_us, LoRaMacDevAddr ); #if !( defined( USE_BAND_915 ) || defined( USE_BAND_915_HYBRID ) ) // TODO //CFList if( ( rx_size - 1 ) > 16 ) { ChannelParams_t param; param.DrRange.Value = ( LORAMAC_TX_MAX_DATARATE << 4 ) | LORAMAC_TX_MIN_DATARATE; for( uint8_t i = 3, j = 0; i < ( 5 + 3 ); i++, j += 3 ) { param.FreqHz = ( ( uint32_t )_jaDecrypted[13 + j] | ( ( uint32_t )_jaDecrypted[14 + j] << 8 ) | ( ( uint32_t )_jaDecrypted[15 + j] << 16 ) ) * 100; if( param.FreqHz != 0 ) { LoRaMacChannelAdd( i, param ); } else { LoRaMacChannelRemove( i ); } } } #endif status = LORAMAC_EVENT_INFO_STATUS_OK; flags.IsLoRaMacNetworkJoined = true; LoRaMacParams.ChannelsDatarate = LoRaMacParamsDefaults.ChannelsDatarate; MAC_PRINTF("JoinReqType%x\r\n", JoinReqType); FCntUp = 0; NFCntDown = 0; AFCntDown = 0; ConfFCntDown = 0; RJcount0 = 0; McpsIndication.ADR_ACK_CNT = 0; rejoin.event.detach(); // must always notify application layer MlmeConfirm.MlmeRequest = MLME_JOIN; region_session_start(LORAMAC_EVENT_INFO_STATUS_OK); } else { /* join-accept mic fail */ status = LORAMAC_EVENT_INFO_STATUS_JOIN_FAIL; MAC_PRINTF("ja-mic-fail rx:%" PRIx32 " calc:%" PRIx32" size:%d\r\n", micRx, mic, rx_size); if (MlmeIndication.MlmeIndication != MLME_NONE) { MlmeIndication.Status = LORAMAC_EVENT_INFO_STATUS_MIC_FAIL; if (LoRaMacPrimitives->MacMlmeIndication != NULL) LoRaMacPrimitives->MacMlmeIndication(&MlmeIndication); } } break; #endif /* LORAWAN_JOIN_EUI */ case FRAME_TYPE_DATA_CONFIRMED_DOWN: case FRAME_TYPE_DATA_UNCONFIRMED_DOWN: if (rx_downlink(pktHeaderLen, rx_payload, rx_size, snr, us_rxDone_at) == 0) status = LORAMAC_EVENT_INFO_STATUS_OK; break; case FRAME_TYPE_PROPRIETARY: { McpsIndication.McpsIndication = MCPS_PROPRIETARY; McpsIndication.Status = LORAMAC_EVENT_INFO_STATUS_OK; McpsIndication.Buffer = Radio::radio.rx_buf; McpsIndication.BufferSize = rx_size - pktHeaderLen; if (LoRaMacPrimitives->MacMcpsIndication != NULL) LoRaMacPrimitives->MacMcpsIndication( &McpsIndication ); // RxDone break; } default: MAC_PRINTF("unknown frame type:%02x\r\n", macHdr.Value); PrepareRxDoneAbort(LORAMAC_EVENT_INFO_STATUS_UNKNOWN_MTYPE); break; } // ..switch( macHdr.Bits.MType ) if (LoRaMacDeviceClass == CLASS_C) { if (McpsIndication.RxSlot == 1) { RxWindow2Setup(); RxWindow2Start(); // immiediately to continuous rx2 reception McpsIndication.RxSlot = 2; } } { finish_uplink(status); mcps_confirm(status); // RxDone mlme_confirm(status); } MAC_PRINTF("\r\n"); flags.rxing = false; } // ..OnRadioRxDone() __attribute__((weak)) bool beacon_rx_timeout() { return false; } void OnRadioRxTimeout( void ) { MAC_PRINTF("OnRadioRxTimeout()%d ", McpsIndication.RxSlot); #ifdef LORAWAN_JOIN_EUI MAC_PRINTF(",%u ", flags.IsLoRaMacNetworkJoined); #endif /* LORAWAN_JOIN_EUI */ if (beacon_rx_timeout()) return; if (McpsIndication.RxSlot == 1) RxWindow2Setup(); if (LoRaMacDeviceClass == CLASS_C) RxWindow2Start(); else Radio::Sleep( ); if (McpsIndication.RxSlot == 2) { #ifdef LORAWAN_JOIN_EUI if (flags.IsLoRaMacNetworkJoined) { #endif /* LORAWAN_JOIN_EUI */ if (uplinkMHDR->Bits.MType == FRAME_TYPE_DATA_UNCONFIRMED_UP) { /* sent once, stoping now */ mcps_confirm(LORAMAC_EVENT_INFO_STATUS_RX2_TIMEOUT); } mlme_confirm(LORAMAC_EVENT_INFO_STATUS_RX2_TIMEOUT); #ifdef LORAWAN_JOIN_EUI } else { if (++MlmeIndication.JoinRequestTrials < MaxJoinRequestTrials) { TxDelayedEvent.attach_us(OnTxDelayedIsr, 1000000); MAC_PRINTF("RxTImeout-join-tx-delay\r\n"); MAC_PRINTF("join-try%u of%u ", MlmeIndication.JoinRequestTrials, MaxJoinRequestTrials); if (MlmeIndication.MlmeIndication != MLME_NONE) { MlmeIndication.Status = LORAMAC_EVENT_INFO_STATUS_RX2_TIMEOUT; if (LoRaMacPrimitives->MacMlmeIndication) LoRaMacPrimitives->MacMlmeIndication(&MlmeIndication); } } else { mlme_confirm(LORAMAC_EVENT_INFO_STATUS_JOIN_FAIL); } } #endif /* LORAWAN_JOIN_EUI */ finish_uplink(LORAMAC_EVENT_INFO_STATUS_RX2_TIMEOUT); } // ..if (McpsIndication.RxSlot == 2) MAC_PRINTF("\r\n"); flags.rxing = false; } // ..OnRadioRxTimeout() __attribute__((weak)) void on_dio0_top_half(us_timestamp_t dio0_at) { } static void OnRadioRxError( void ) { if( LoRaMacDeviceClass != CLASS_C ) { Radio::Sleep( ); } else { RxWindow2Setup(); RxWindow2Start(); } if (McpsIndication.RxSlot == 2) { flags.uplink_in_progress = 0; // TODO check mlme_confirm(LORAMAC_EVENT_INFO_STATUS_RX2_ERROR); mcps_confirm(LORAMAC_EVENT_INFO_STATUS_RX2_ERROR); } } // ..OnRadioRxError const RadioEvents_t RadioEvents = { /* Dio0_top_half */ on_dio0_top_half, /* TxDone */ OnRadioTxDone, /* TxTimeout */ OnRadioTxTimeout, /* RxDone */ OnRadioRxDone, /* RxTimeout */ OnRadioRxTimeout, /* RxError */ OnRadioRxError, /* FhssChangeChannel */ NULL, /* CadDone */ NULL }; LoRaMacStatus_t LoRaMacInitialization( const LoRaMacPrimitives_t *primitives, const LoRaMacCallback_t *callbacks ) { if( primitives == NULL ) { return LORAMAC_STATUS_PARAMETER_INVALID; } if( ( primitives->MacMcpsConfirm == NULL ) || ( primitives->MacMcpsIndication == NULL ) || ( primitives->MacMlmeConfirm == NULL ) || ( primitives->MacMlmeIndication == NULL ) ) { return LORAMAC_STATUS_PARAMETER_INVALID; } if (targetCheckLSE() < 0) return LORAMAC_STATUS_LSE; LoRaMacPrimitives = primitives; LoRaMacCallbacks = callbacks; LoRaMacDeviceClass = CLASS_A; #ifdef DUTY_ENABLE DutyInit(); #endif /* DUTY_ENABLE */ region_mac_init(); ResetMacParameters( ); // Initialize Radio driver LoRaMacClassBInitialization(); Radio::Init( &RadioEvents ); // Random seed initialization srand(Radio::Random()); flags.PublicNetwork = true; Radio::SetPublicNetwork( flags.PublicNetwork ); Radio::Sleep( ); McpsIndication.RxSlot = -1; function_pending = NULL; McpsConfirm.McpsRequest = MCPS_NONE; #ifdef LORAWAN_JOIN_EUI MaxJoinRequestTrials = 1; #else flags.have_SNwkSIntKey = 0; flags.have_NwkSEncKey = 0; flags.OptNeg = 0; #endif /* !LORAWAN_JOIN_EUI */ LoRaMacCryptoInit(); MlmeIndication.MlmeIndication = MLME_NONE; ADR_ACK_LIMIT = DEFAULT_ADR_ACK_LIMIT; ADR_ACK_DELAY = DEFAULT_ADR_ACK_DELAY; return LORAMAC_STATUS_OK; } // ..LoRaMacInitialization() void SendFrameOnChannel( uint8_t ch_num ) { int8_t txPowerIndex = 0; int8_t txPower = 0; uint8_t tx_len = tx_buf_len; uint32_t mic; /* TODO: if beacon guard, defer until pingslot 0 */ last_up_macHdr.Value = Radio::radio.tx_buf[0]; if (last_up_macHdr.Bits.MType == FRAME_TYPE_DATA_UNCONFIRMED_UP || last_up_macHdr.Bits.MType == FRAME_TYPE_DATA_CONFIRMED_UP) { LoRaMacFrameCtrl_t* fCtrl = (LoRaMacFrameCtrl_t*)&Radio::radio.tx_buf[5]; block_t block; uint32_t fcnt_up; #ifdef LORAWAN_JOIN_EUI fcnt_up = FCntUp; #else fcnt_up = eeprom_read(EEPROM_FCNTUP); #endif /* LORAWAN_JOIN_EUI */ fCtrl->Bits.AdrAckReq = false; if (fCtrl->Bits.Adr) { if (McpsIndication.ADR_ACK_CNT >= ADR_ACK_LIMIT) { if (LoRaMacParamsDefaults.ChannelsDatarate > LORAMAC_TX_MIN_DATARATE || LoRaMacParams.ChannelsTxPower > LORAMAC_DEFAULT_TX_POWER || LoRaMacParams.NbEnabledChannels < LoRaMacParamsDefaults.NbEnabledChannels) fCtrl->Bits.AdrAckReq = true; if (McpsIndication.ADR_ACK_CNT >= (ADR_ACK_LIMIT + ADR_ACK_DELAY)) { /* if tx power less than default: increase tx power, otherwise decrease datarate */ if (LoRaMacParams.ChannelsTxPower > LORAMAC_DEFAULT_TX_POWER) { LoRaMacParams.ChannelsTxPower--; } else if (LoRaMacParams.ChannelsDatarate > LORAMAC_TX_MIN_DATARATE) { LoRaMacParams.ChannelsDatarate--; McpsIndication.ADR_ACK_CNT -= ADR_ACK_DELAY; } else { memcpy(LoRaMacParams.ChannelsMask, LoRaMacParamsDefaults.ChannelsMask, sizeof(LoRaMacParams.ChannelsMask)); LoRaMacParams.NbEnabledChannels = LoRaMacParamsDefaults.NbEnabledChannels; } } } } // ..if (fCtrl->Bits.Adr) Radio::radio.tx_buf[6] = fcnt_up & 0xFF; Radio::radio.tx_buf[7] = ( fcnt_up >> 8 ) & 0xFF; block.b.header = 0x49; block.b.confFCnt = 0; block.b.dr = 0; block.b.ch = 0; block.b.dir = UP_LINK; block.b.DevAddr = LoRaMacDevAddr; block.b.FCnt = fcnt_up; block.b.zero8 = 0; block.b.lenMsg = tx_len; if (flags.OptNeg) { uint16_t cmacF, cmacS; cmacF = LoRaMacComputeMic(&block, Radio::radio.tx_buf, keys.FNwkSIntKey); block.b.confFCnt = ConfFCntDown; block.b.dr = LoRaMacParams.ChannelsDatarate; block.b.ch = ch_num; cmacS = LoRaMacComputeMic(&block, Radio::radio.tx_buf, keys.SNwkSIntKey) & 0xffff; mic = cmacS | (cmacF << 16); ConfFCntDown = 0; /* single use */ } else mic = LoRaMacComputeMic(&block, Radio::radio.tx_buf, keys.FNwkSIntKey); Radio::radio.tx_buf[tx_buf_len + 0] = mic & 0xFF; Radio::radio.tx_buf[tx_buf_len + 1] = ( mic >> 8 ) & 0xFF; Radio::radio.tx_buf[tx_buf_len + 2] = ( mic >> 16 ) & 0xFF; Radio::radio.tx_buf[tx_buf_len + 3] = ( mic >> 24 ) & 0xFF; tx_len += LORAMAC_MFR_LEN; MAC_PRINTF("FCntUp%u ", fcnt_up); #ifdef LORAWAN_JOIN_EUI McpsConfirm.UpLinkCounter = FCntUp; #else McpsConfirm.UpLinkCounter = eeprom_read(EEPROM_FCNTUP); #endif /* !LORAWAN_JOIN_EUI */ if (flags.uplink_in_progress <= 1) McpsIndication.ADR_ACK_CNT++; } // ..if sending (un)conf txPowerIndex = region_LimitTxPower( LoRaMacParams.ChannelsTxPower ); txPower = TxPowers[txPowerIndex]; if (MlmeConfirm.MlmeRequest != MLME_NONE) { MlmeConfirm.Status = LORAMAC_EVENT_INFO_STATUS_SENDING; } if (McpsConfirm.McpsRequest != MCPS_NONE) { McpsConfirm.Status = LORAMAC_EVENT_INFO_STATUS_SENDING; McpsConfirm.Datarate = LoRaMacParams.ChannelsDatarate; McpsConfirm.TxPower = txPowerIndex; McpsConfirm.UpLinkFreqHz = Channels[ch_num].FreqHz; } Radio::SetChannel(Channels[ch_num].FreqHz); if (MlmeIndication.MlmeIndication != MLME_NONE) MlmeIndication.freqHz = Channels[ch_num].FreqHz; region_tx_setup(txPower, tx_len); // Store the time on air //McpsConfirm.TxTimeOnAir = TxTimeOnAir_us; //MlmeConfirm.TxTimeOnAir = TxTimeOnAir_us; // Send now waitingFor = LORAMAC_STATUS_WAITING_FOR_TXDONE; Radio::Send(tx_len); MAC_PRINTF(" sfoc %u, %" PRIu32"hz\r\n", tx_len, Channels[ch_num].FreqHz); /* if this is unconfirmed up, and last NbTrans */ if (last_up_macHdr.Bits.MType == FRAME_TYPE_DATA_UNCONFIRMED_UP && flags.uplink_in_progress <= 1) { #ifdef LORAWAN_JOIN_EUI FCntUp++; #else if (eeprom_increment_value(EEPROM_FCNTUP) < 0) { mcps_confirm(LORAMAC_EVENT_INFO_STATUS_INCR_FAIL); // SendFrame fail } #endif } } // ..SendFrameOnChannel() uint8_t CountBits( uint16_t mask, uint8_t nbBits ) { uint8_t nbActiveBits = 0; for( uint8_t j = 0; j < nbBits; j++ ) { if( ( mask & ( 1 << j ) ) == ( 1 << j ) ) { nbActiveBits++; } } return nbActiveBits; } void LoRaMacPrintStatus() { MAC_PRINTF("uplink_in_progress:%u, ConfFCntUp%u\r\n", flags.uplink_in_progress, ConfFCntUp); MAC_PRINTF("function_pending:%p\r\n", function_pending); MAC_PRINTF("rx delays:%u, %u, %u, %u\r\n", RxWindow1Delay_us, LoRaMacParams.ReceiveDelay1_us, RxWindow2Delay_us, LoRaMacParams.ReceiveDelay2_us ); if (flags.uplink_in_progress) { MAC_PRINTF("since txDone:%u\r\n", Radio::lpt.read_us() - tx_done_at); } Radio::PrintStatus(); } us_timestamp_t LoRaMacReadTimer() { return Radio::lpt.read_us(); } int8_t LoRaMacGetRxSlot() { return McpsIndication.RxSlot; } void LoRaMacUserContext() { Radio::UserContext(); if (flags.OnTxDelayed) { OnTxDelayedTimerEvent(); flags.OnTxDelayed = false; } }