Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: TFT_Test1 SourceCodePro31-SB Mandelbrot Mindwave-screen ... more
SPI_TFT.cpp
- Committer:
- dreschpe
- Date:
- 2013-02-03
- Revision:
- 10:071ae6e02fcf
- Parent:
- 9:a63fd1ad41b0
- Child:
- 11:9bb71766cafc
File content as of revision 10:071ae6e02fcf:
/* mbed library for 240*320 pixel display TFT based on HX8347D LCD Controller
* Copyright (c) 2011 Peter Drescher - DC2PD
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// fix bmp padding for Bitmap function
// speed up pixel
// 30.12.11 fix cls
// 11.03.12 use DMA to speed up
// 15.03.12 use SSEL for TFT CS to enable DMA Register writes
// 06.04.12 fix SSEL CS problem
// 06.04.12 use direct access to the spi register to speed up the library.
// 11.09.12 switch back to using io pin as cs to avoid problems with SSEL CS.
// 21.09.12 fix Bug in BMP_16
// 11.10.12 patch from Hans Bergles to get SPI1 working again
// 03.02.13 add a switch to switch off DMA use for LPC11U24
#include "SPI_TFT.h"
#include "mbed.h"
#define BPP 16 // Bits per pixel
#if defined TARGET_LPC1768
#define USE_DMA // we use dma to speed up
#define NO_MBED_LIB // we write direct to the SPI register to speed up
#endif
#if defined NO_DMA
#undef USE_DMA
#endif
//extern Serial pc;
//extern DigitalOut xx; // debug !!
SPI_TFT::SPI_TFT(PinName mosi, PinName miso, PinName sclk, PinName cs, PinName reset, const char *name)
: _spi(mosi, miso, sclk), _cs(cs), _reset(reset),GraphicsDisplay(name)
{
orientation = 0;
char_x = 0;
if (mosi == p11 || mosi == P0_18) spi_port = 0; // we must know the used SPI port to setup the DMA
else spi_port = 1;
tft_reset();
}
int SPI_TFT::width()
{
if (orientation == 0 || orientation == 2) return 240;
else return 320;
}
int SPI_TFT::height()
{
if (orientation == 0 || orientation == 2) return 320;
else return 240;
}
void SPI_TFT::set_orientation(unsigned int o)
{
orientation = o;
switch (orientation) {
case 0:
wr_reg(0x16, 0x08);
break;
case 1:
wr_reg(0x16, 0x68);
break;
case 2:
wr_reg(0x16, 0xC8);
break;
case 3:
wr_reg(0x16, 0xA8);
break;
}
WindowMax();
}
// write command to tft register
void SPI_TFT::wr_cmd(unsigned char cmd)
{
unsigned short spi_d;
spi_d = 0x7000 | cmd ;
_cs = 0;
#if defined NO_MBED_LIB
if (spi_port == 0) { // TFT on SSP0
LPC_SSP0->DR = spi_d;
// we have to wait for SPI IDLE to set CS back to high
do {
} while ((LPC_SSP0->SR & 0x10) == 0x10); // SPI0 not idle
} else {
LPC_SSP1->DR = spi_d;
do {
} while ((LPC_SSP1->SR & 0x10) == 0x10); // SPI1 not idle
}
#else
_spi.write(spi_d); // mbed lib
#endif
_cs = 1;
}
void SPI_TFT::wr_dat(unsigned char dat)
{
unsigned short spi_d;
spi_d = 0x7200 | dat;
_cs = 0;
#if defined NO_MBED_LIB
if (spi_port == 0) { // TFT on SSP0
LPC_SSP0->DR = spi_d;
// we have to wait for SPI IDLE to set CS back to high
do {
} while ((LPC_SSP0->SR & 0x10) == 0x10); // SPI0 not idle
} else {
LPC_SSP1->DR = spi_d;
do {
} while ((LPC_SSP1->SR & 0x10) == 0x10); // SPI1 not idle
}
#else
_spi.write(spi_d); // mbed lib
#endif
_cs = 1;
}
// the HX8347-D controller do not use the MISO (SDO) Signal.
// This is a bug - ?
// A read will return 0 at the moment
unsigned short SPI_TFT::rd_dat (void)
{
unsigned short val = 0;
//val = _spi.write(0x73ff); /* Dummy read 1 */
//val = _spi.write(0x0000); /* Read D8..D15 */
return (val);
}
void SPI_TFT::wr_reg (unsigned char reg, unsigned char val)
{
wr_cmd(reg);
wr_dat(val);
}
unsigned short SPI_TFT::rd_reg (unsigned char reg)
{
wr_cmd(reg);
return(rd_dat());
}
void SPI_TFT::tft_reset()
{
//static unsigned short driverCode;
_spi.format(16,3); // 16 bit spi mode 3
_spi.frequency(48000000); // 48 Mhz SPI clock
_cs = 1; // cs high
_reset = 0; // display reset
wait_us(50);
_reset = 1; // end reset
wait_ms(5);
/* Start Initial Sequence ----------------------------------------------------*/
wr_reg(0xEA, 0x00); /* Reset Power Control 1 */
wr_reg(0xEB, 0x20); /* Power Control 2 */
wr_reg(0xEC, 0x0C); /* Power Control 3 */
wr_reg(0xED, 0xC4); /* Power Control 4 */
wr_reg(0xE8, 0x40); /* Source OPON_N */
wr_reg(0xE9, 0x38); /* Source OPON_I */
wr_reg(0xF1, 0x01); /* */
wr_reg(0xF2, 0x10); /* */
wr_reg(0x27, 0xA3); /* Display Control 2 */
/* Power On sequence ---------------------------------------------------------*/
wr_reg(0x1B, 0x1B); /* Power Control 2 */
wr_reg(0x1A, 0x01); /* Power Control 1 */
wr_reg(0x24, 0x2F); /* Vcom Control 2 */
wr_reg(0x25, 0x57); /* Vcom Control 3 */
wr_reg(0x23, 0x8D); /* Vcom Control 1 */
/* Gamma settings -----------------------------------------------------------*/
wr_reg(0x40,0x00); //
wr_reg(0x41,0x00); //
wr_reg(0x42,0x01); //
wr_reg(0x43,0x13); //
wr_reg(0x44,0x10); //
wr_reg(0x45,0x26); //
wr_reg(0x46,0x08); //
wr_reg(0x47,0x51); //
wr_reg(0x48,0x02); //
wr_reg(0x49,0x12); //
wr_reg(0x4A,0x18); //
wr_reg(0x4B,0x19); //
wr_reg(0x4C,0x14); //
wr_reg(0x50,0x19); //
wr_reg(0x51,0x2F); //
wr_reg(0x52,0x2C); //
wr_reg(0x53,0x3E); //
wr_reg(0x54,0x3F); //
wr_reg(0x55,0x3F); //
wr_reg(0x56,0x2E); //
wr_reg(0x57,0x77); //
wr_reg(0x58,0x0B); //
wr_reg(0x59,0x06); //
wr_reg(0x5A,0x07); //
wr_reg(0x5B,0x0D); //
wr_reg(0x5C,0x1D); //
wr_reg(0x5D,0xCC); //
/* Power + Osc ---------------------------------------------------------------*/
wr_reg(0x18, 0x0036); /* OSC Control 1 */
wr_reg(0x19, 0x0001); /* OSC Control 2 */
wr_reg(0x01, 0x0000); /* Display Mode Control */
wr_reg(0x1F, 0x0088); /* Power Control 6 */
wait_ms(5); /* Delay 5 ms */
wr_reg(0x1F, 0x0080); /* Power Control 6 */
wait_ms(5); /* Delay 5 ms */
wr_reg(0x1F, 0x0090); /* Power Control 6 */
wait_ms(5); /* Delay 5 ms */
wr_reg(0x1F, 0x00D0); /* Power Control 6 */
wait_ms(5); /* Delay 5 ms */
wr_reg(0x17, 0x0005); /* Colmod 16Bit/Pixel */
wr_reg(0x36, 0x0000); /* Panel Characteristic */
wr_reg(0x28, 0x0038); /* Display Control 3 */
wait_ms(40);
wr_reg(0x28, 0x003C); /* Display Control 3 */
switch (orientation) {
case 0:
wr_reg(0x16, 0x0008);
break;
case 1:
wr_reg(0x16, 0x0068);
break;
case 2:
wr_reg(0x16, 0x00C8);
break;
case 3:
wr_reg(0x16, 0x00A8);
break;
}
#if defined USE_DMA
// setup DMA channel 0
// Power up the GPDMA.
LPC_SC->PCONP |= (1UL << 29);
LPC_GPDMA->DMACConfig = 1; // enable DMA controller
// Reset the Interrupt status
LPC_GPDMA->DMACIntTCClear = 0x1;
LPC_GPDMA->DMACIntErrClr = 0x1;
LPC_GPDMACH0->DMACCLLI = 0;
#endif
WindowMax ();
}
void SPI_TFT::pixel(int x, int y, int color)
{
wr_reg(0x03, (x >> 0));
wr_reg(0x02, (x >> 8));
wr_reg(0x07, (y >> 0));
wr_reg(0x06, (y >> 8));
wr_cmd(0x22);
_cs = 0;
#if defined NO_MBED_LIB
if (spi_port == 0) { // TFT on SSP0
LPC_SSP0->CR0 &= ~(0x08UL); // set to 8 bit
LPC_SSP0->DR = 0x72; // start Data
LPC_SSP0->CR0 |= 0x08UL; // set back to 16 bit
LPC_SSP0->DR = color; // Pixel
// we have to wait for SPI IDLE to set CS back to high
do {
} while ((LPC_SSP0->SR & 0x10) == 0x10); // SPI0 not idle
} else {
LPC_SSP1->CR0 &= ~(0x08UL); // set to 8 bit
LPC_SSP1->DR = 0x72; // start Data
LPC_SSP1->CR0 |= 0x08UL; // set back to 16 bit
LPC_SSP1->DR = color;
// we have to wait for SPI IDLE to set CS back to high
do {
} while ((LPC_SSP1->SR & 0x10) == 0x10); // SPI1 not idle
}
#else
_spi.format(8,3); // 8 bit Mode 3
_spi.write(SPI_START | SPI_WR | SPI_DATA); // Write : RS = 1, RW = 0
_spi.format(16,3); // switch to 16 bit Mode 3
_spi.write(color); // Write D0..D15
#endif
_cs = 1;
}
void SPI_TFT::window (unsigned int x, unsigned int y, unsigned int w, unsigned int h)
{
wr_reg(0x03, x );
wr_reg(0x02, (x >> 8));
wr_reg(0x05, x+w-1 );
wr_reg(0x04, (x+w-1 >> 8));
wr_reg(0x07, y );
wr_reg(0x06, ( y >> 8));
wr_reg(0x09, ( y+h-1 ));
wr_reg(0x08, ( y+h-1 >> 8));
}
void SPI_TFT::WindowMax (void)
{
window (0, 0, width(), height());
}
void SPI_TFT::cls (void)
{
int pixel = ( width() * height());
#if defined USE_DMA
int dma_count;
int color = _background;
#endif
WindowMax();
wr_cmd(0x22);
#if defined NO_MBED_LIB
#if defined USE_DMA
LPC_GPDMACH0->DMACCSrcAddr = (uint32_t)&color;
#endif
_cs = 0;
if (spi_port == 0) { // TFT on SSP0
#if defined USE_DMA
LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP0->DR; // we send to SSP0
/* Enable SSP0 for DMA. */
LPC_SSP0->DMACR = 0x2;
#endif
LPC_SSP0->CR0 &= ~(0x08UL); // set to 8 bit
LPC_SSP0->DR = 0x72; // start byte
LPC_SSP0->CR0 |= 0x08UL; // set to 16 bit
} else {
#if defined USE_DMA
LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP1->DR; // we send to SSP1
/* Enable SSP1 for DMA. */
LPC_SSP1->DMACR = 0x2;
#endif
LPC_SSP1->CR0 &= ~(0x08UL); // set to 8 bit
LPC_SSP1->DR = 0x72; // start Data
LPC_SSP1->CR0 |= 0x08UL; // set to 16 bit
}
#if defined USE_DMA
// start DMA
do {
if (pixel > 4095) {
dma_count = 4095;
pixel = pixel - 4095;
} else {
dma_count = pixel;
pixel = 0;
}
LPC_GPDMA->DMACIntTCClear = 0x1;
LPC_GPDMA->DMACIntErrClr = 0x1;
LPC_GPDMACH0->DMACCControl = dma_count | (1UL << 18) | (1UL << 21) | (1UL << 31) ; // 16 bit transfer , no address increment, interrupt
LPC_GPDMACH0->DMACCConfig = DMA_CHANNEL_ENABLE | DMA_TRANSFER_TYPE_M2P | (spi_port ? DMA_DEST_SSP1_TX : DMA_DEST_SSP0_TX);
LPC_GPDMA->DMACSoftSReq = 0x1; // DMA request
do {
} while ((LPC_GPDMA->DMACRawIntTCStat & 0x01) == 0); // DMA is running
} while (pixel > 0);
if (spi_port == 0) { // TFT on SSP0
do {
} while ((0x0010 & LPC_SSP0->SR) == 0x10); // SPI FIFO not empty
/* disable SSP0 for DMA. */
LPC_SSP0->DMACR = 0x0;
} else {
do {
} while ((0x0010 & LPC_SSP1->SR) == 0x10); // SPI FIFO not empty
/* disable SSP1 for DMA. */
LPC_SSP1->DMACR = 0x0;
}
#else // no DMA
unsigned int i;
for (i = 0; i < ( width() * height()); i++)
_spi.write(_background);
#endif
#else // mbed lib
_cs = 0;
_spi.format(8,3); // 8 bit Mode 3
_spi.write(SPI_START | SPI_WR | SPI_DATA); // Write : RS = 1, RW = 0
_spi.format(16,3); // switch to 16 bit Mode 3
unsigned int i;
for (i = 0; i < ( width() * height()); i++)
_spi.write(_background);
#endif
_cs = 1;
}
void SPI_TFT::circle(int x0, int y0, int r, int color)
{
int draw_x0, draw_y0;
int draw_x1, draw_y1;
int draw_x2, draw_y2;
int draw_x3, draw_y3;
int draw_x4, draw_y4;
int draw_x5, draw_y5;
int draw_x6, draw_y6;
int draw_x7, draw_y7;
int xx, yy;
int di;
//WindowMax();
if (r == 0) { /* no radius */
return;
}
draw_x0 = draw_x1 = x0;
draw_y0 = draw_y1 = y0 + r;
if (draw_y0 < height()) {
pixel(draw_x0, draw_y0, color); /* 90 degree */
}
draw_x2 = draw_x3 = x0;
draw_y2 = draw_y3 = y0 - r;
if (draw_y2 >= 0) {
pixel(draw_x2, draw_y2, color); /* 270 degree */
}
draw_x4 = draw_x6 = x0 + r;
draw_y4 = draw_y6 = y0;
if (draw_x4 < width()) {
pixel(draw_x4, draw_y4, color); /* 0 degree */
}
draw_x5 = draw_x7 = x0 - r;
draw_y5 = draw_y7 = y0;
if (draw_x5>=0) {
pixel(draw_x5, draw_y5, color); /* 180 degree */
}
if (r == 1) {
return;
}
di = 3 - 2*r;
xx = 0;
yy = r;
while (xx < yy) {
if (di < 0) {
di += 4*xx + 6;
} else {
di += 4*(xx - yy) + 10;
yy--;
draw_y0--;
draw_y1--;
draw_y2++;
draw_y3++;
draw_x4--;
draw_x5++;
draw_x6--;
draw_x7++;
}
xx++;
draw_x0++;
draw_x1--;
draw_x2++;
draw_x3--;
draw_y4++;
draw_y5++;
draw_y6--;
draw_y7--;
if ( (draw_x0 <= width()) && (draw_y0>=0) ) {
pixel(draw_x0, draw_y0, color);
}
if ( (draw_x1 >= 0) && (draw_y1 >= 0) ) {
pixel(draw_x1, draw_y1, color);
}
if ( (draw_x2 <= width()) && (draw_y2 <= height()) ) {
pixel(draw_x2, draw_y2, color);
}
if ( (draw_x3 >=0 ) && (draw_y3 <= height()) ) {
pixel(draw_x3, draw_y3, color);
}
if ( (draw_x4 <= width()) && (draw_y4 >= 0) ) {
pixel(draw_x4, draw_y4, color);
}
if ( (draw_x5 >= 0) && (draw_y5 >= 0) ) {
pixel(draw_x5, draw_y5, color);
}
if ( (draw_x6 <=width()) && (draw_y6 <= height()) ) {
pixel(draw_x6, draw_y6, color);
}
if ( (draw_x7 >= 0) && (draw_y7 <= height()) ) {
pixel(draw_x7, draw_y7, color);
}
}
return;
}
void SPI_TFT::fillcircle(int x, int y, int r, int color)
{
int i;
for (i = 0; i <= r; i++)
circle(x,y,i,color);
}
void SPI_TFT::hline(int x0, int x1, int y, int color)
{
int w,i;
w = x1 - x0 + 1;
window(x0,y,w,1);
wr_cmd(0x22);
_cs = 0;
#if defined NO_MBED_LIB
if (spi_port == 0) { // TFT on SSP0
#if defined USE_DMA
LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP0->DR; // we send to SSP0
/* Enable SSP0 for DMA. */
LPC_SSP0->DMACR = 0x2;
#endif
LPC_SSP0->CR0 &= ~(0x08UL); // set to 8 bit
LPC_SSP0->DR = 0x72; // start Data
LPC_SSP0->CR0 |= 0x08UL; // set to 16 bit
} else {
#if defined USE_DMA
LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP1->DR; // we send to SSP1
/* Enable SSP1 for DMA. */
LPC_SSP1->DMACR = 0x2;
#endif
LPC_SSP1->CR0 &= ~(0x08UL); // set to 8 bit
LPC_SSP1->DR = 0x72; // start Data
LPC_SSP1->CR0 |= 0x08UL; // set to 16 bit
}
#if defined USE_DMA
LPC_GPDMA->DMACIntTCClear = 0x1;
LPC_GPDMA->DMACIntErrClr = 0x1;
LPC_GPDMACH0->DMACCSrcAddr = (uint32_t)&color;
LPC_GPDMACH0->DMACCControl = w | (1UL << 18) | (1UL << 21) | (1UL << 31) ; // 16 bit transfer , no address increment, interrupt
LPC_GPDMACH0->DMACCConfig = DMA_CHANNEL_ENABLE | DMA_TRANSFER_TYPE_M2P | (spi_port ? DMA_DEST_SSP1_TX : DMA_DEST_SSP0_TX);
LPC_GPDMA->DMACSoftSReq = 0x1; // start DMA
do {
} while ((LPC_GPDMA->DMACRawIntTCStat & 0x01) == 0); // DMA is running
if (spi_port == 0) { // TFT on SSP0
do {
} while ((LPC_SSP0->SR & 0x10) == 0x10); // SPI FIFO not empty
} else {
do {
} while ((LPC_SSP1->SR & 0x10) == 0x10); // SPI FIFO not empty
}
#else
for (i=0; i<w; i++) {
_spi.write(color);
}
#endif
#else // use mbed lib
_spi.format(8,3); // 8 bit Mode 3
_spi.write(SPI_START | SPI_WR | SPI_DATA); // Write : RS = 1, RW = 0
_spi.format(16,3); // switch to 16 bit Mode 3
for (i=0; i<w; i++) {
_spi.write(color);
}
#endif
_cs = 1;
WindowMax();
return;
}
void SPI_TFT::vline(int x, int y0, int y1, int color)
{
int h;
h = y1 - y0 + 1;
window(x,y0,1,h);
wr_cmd(0x22);
_cs = 0;
#if defined NO_MBED_LIB
if (spi_port == 0) { // TFT on SSP0
#if defined USE_DMA
LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP0->DR; // we send to SSP0
/* Enable SSP0 for DMA. */
LPC_SSP0->DMACR = 0x2;
#endif
LPC_SSP0->CR0 &= ~(0x08UL); // set to 8 bit
LPC_SSP0->DR = 0x72; // start Data
LPC_SSP0->CR0 |= 0x08UL; // set to 16 bit
} else {
#if defined USE_DMA
LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP1->DR; // we send to SSP1
/* Enable SSP1 for DMA. */
LPC_SSP1->DMACR = 0x2;
#endif
LPC_SSP1->CR0 &= ~(0x08UL); // set to 8 bit
LPC_SSP1->DR = 0x72; // start Data
LPC_SSP1->CR0 |= 0x08UL; // set to 16 bit
}
#if defined USE_DMA
LPC_GPDMA->DMACIntTCClear = 0x1;
LPC_GPDMA->DMACIntErrClr = 0x1;
LPC_GPDMACH0->DMACCSrcAddr = (uint32_t)&color;
LPC_GPDMACH0->DMACCControl = h | (1UL << 18) | (1UL << 21) | (1UL << 31) ; // 16 bit transfer , no address increment, interrupt
LPC_GPDMACH0->DMACCConfig = DMA_CHANNEL_ENABLE | DMA_TRANSFER_TYPE_M2P | (spi_port ? DMA_DEST_SSP1_TX : DMA_DEST_SSP0_TX);
LPC_GPDMA->DMACSoftSReq = 0x1;
do {
} while ((LPC_GPDMA->DMACRawIntTCStat & 0x01) == 0); // DMA is running
if (spi_port == 0) { // TFT on SSP0
do {
} while ((LPC_SSP0->SR & 0x10) == 0x10); // SPI FIFO not empty
} else {
do {
} while ((LPC_SSP1->SR & 0x10) == 0x10); // SPI FIFO not empty
}
#else
for (int y=0; y<h; y++) {
_spi.write(color);
}
#endif
#else // use mbed lib
_spi.format(8,3); // 8 bit Mode 3
_spi.write(SPI_START | SPI_WR | SPI_DATA); // Write : RS = 1, RW = 0
_spi.format(16,3); // switch to 16 bit Mode 3
for (int y=0; y<h; y++) {
_spi.write(color);
}
#endif
_cs = 1;
WindowMax();
return;
}
void SPI_TFT::line(int x0, int y0, int x1, int y1, int color)
{
//WindowMax();
int dx = 0, dy = 0;
int dx_sym = 0, dy_sym = 0;
int dx_x2 = 0, dy_x2 = 0;
int di = 0;
dx = x1-x0;
dy = y1-y0;
if (dx == 0) { /* vertical line */
if (y1 > y0) vline(x0,y0,y1,color);
else vline(x0,y1,y0,color);
return;
}
if (dx > 0) {
dx_sym = 1;
} else {
dx_sym = -1;
}
if (dy == 0) { /* horizontal line */
if (x1 > x0) hline(x0,x1,y0,color);
else hline(x1,x0,y0,color);
return;
}
if (dy > 0) {
dy_sym = 1;
} else {
dy_sym = -1;
}
dx = dx_sym*dx;
dy = dy_sym*dy;
dx_x2 = dx*2;
dy_x2 = dy*2;
if (dx >= dy) {
di = dy_x2 - dx;
while (x0 != x1) {
pixel(x0, y0, color);
x0 += dx_sym;
if (di<0) {
di += dy_x2;
} else {
di += dy_x2 - dx_x2;
y0 += dy_sym;
}
}
pixel(x0, y0, color);
} else {
di = dx_x2 - dy;
while (y0 != y1) {
pixel(x0, y0, color);
y0 += dy_sym;
if (di < 0) {
di += dx_x2;
} else {
di += dx_x2 - dy_x2;
x0 += dx_sym;
}
}
pixel(x0, y0, color);
}
return;
}
void SPI_TFT::rect(int x0, int y0, int x1, int y1, int color)
{
if (x1 > x0) hline(x0,x1,y0,color);
else hline(x1,x0,y0,color);
if (y1 > y0) vline(x0,y0,y1,color);
else vline(x0,y1,y0,color);
if (x1 > x0) hline(x0,x1,y1,color);
else hline(x1,x0,y1,color);
if (y1 > y0) vline(x1,y0,y1,color);
else vline(x1,y1,y0,color);
return;
}
void SPI_TFT::fillrect(int x0, int y0, int x1, int y1, int color)
{
int h = y1 - y0 + 1;
int w = x1 - x0 + 1;
int pixel = h * w;
#if defined USE_DMA
int dma_count;
#endif
window(x0,y0,w,h);
wr_cmd(0x22);
_cs = 0;
#if defined NO_MBED_LIB
if (spi_port == 0) { // TFT on SSP0
#if defined USE_DMA
LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP0->DR; // we send to SSP0
/* Enable SSP0 for DMA. */
LPC_SSP0->DMACR = 0x2;
#endif
LPC_SSP0->CR0 &= ~(0x08UL); // set to 8 bit
LPC_SSP0->DR = 0x72; // start Data
LPC_SSP0->CR0 |= 0x08UL; // set to 16 bit
} else {
#if defined USE_DMA
LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP1->DR; // we send to SSP1
/* Enable SSP1 for DMA. */
LPC_SSP1->DMACR = 0x2;
#endif
LPC_SSP1->CR0 &= ~(0x08UL); // set to 8 bit
LPC_SSP1->DR = 0x72; // start Data
LPC_SSP1->CR0 |= 0x08UL; // set to 16 bit
}
#if defined USE_DMA
do {
if (pixel > 4095) {
dma_count = 4095;
pixel = pixel - 4095;
} else {
dma_count = pixel;
pixel = 0;
}
LPC_GPDMA->DMACIntTCClear = 0x1;
LPC_GPDMA->DMACIntErrClr = 0x1;
LPC_GPDMACH0->DMACCSrcAddr = (uint32_t)&color;
LPC_GPDMACH0->DMACCControl = dma_count | (1UL << 18) | (1UL << 21) | (1UL << 31) ; // 16 bit transfer , no address increment, interrupt
LPC_GPDMACH0->DMACCConfig = DMA_CHANNEL_ENABLE | DMA_TRANSFER_TYPE_M2P | (spi_port ? DMA_DEST_SSP1_TX : DMA_DEST_SSP0_TX);
LPC_GPDMA->DMACSoftSReq = 0x1;
do {
} while ((LPC_GPDMA->DMACRawIntTCStat & 0x01) == 0); // DMA is running
} while (pixel > 0);
if (spi_port == 0) { // TFT on SSP0
do {
} while ((LPC_SSP0->SR & 0x10) == 0x10); // SPI FIFO not empty
} else {
do {
} while ((LPC_SSP1->SR & 0x10) == 0x10); // SPI FIFO not empty
}
#else // no DMA
for (int p=0; p<pixel; p++) {
_spi.write(color);
}
#endif
#else // use mbed lib
_spi.format(8,3); // 8 bit Mode 3
_spi.write(SPI_START | SPI_WR | SPI_DATA); // Write : RS = 1, RW = 0
_spi.format(16,3); // switch to 16 bit Mode 3
for (int p=0; p<pixel; p++) {
_spi.write(color);
}
#endif
_cs = 1;
WindowMax();
return;
}
void SPI_TFT::locate(int x, int y)
{
char_x = x;
char_y = y;
}
int SPI_TFT::columns()
{
return width() / font[1];
}
int SPI_TFT::rows()
{
return height() / font[2];
}
int SPI_TFT::_putc(int value)
{
if (value == '\n') { // new line
char_x = 0;
char_y = char_y + font[2];
if (char_y >= height() - font[2]) {
char_y = 0;
}
} else {
character(char_x, char_y, value);
}
return value;
}
void SPI_TFT::character(int x, int y, int c)
{
unsigned int hor,vert,offset,bpl,j,i,b;
unsigned char* zeichen;
unsigned char z,w;
#if defined USE_DMA
unsigned int pixel;
unsigned int p;
unsigned int dma_count,dma_off;
uint16_t *buffer;
#endif
if ((c < 31) || (c > 127)) return; // test char range
// read font parameter from start of array
offset = font[0]; // bytes / char
hor = font[1]; // get hor size of font
vert = font[2]; // get vert size of font
bpl = font[3]; // bytes per line
if (char_x + hor > width()) {
char_x = 0;
char_y = char_y + vert;
if (char_y >= height() - font[2]) {
char_y = 0;
}
}
window(char_x, char_y,hor,vert); // char box
wr_cmd(0x22);
#if defined USE_DMA
pixel = hor * vert; // calculate buffer size
buffer = (uint16_t *) malloc (2*pixel); // we need a buffer for the 16 bit
if (buffer == NULL) {
//led = 1;
//pc.printf("Malloc error !\n\r");
return; // error no memory
}
zeichen = &font[((c -32) * offset) + 4]; // start of char bitmap
w = zeichen[0]; // width of actual char
p = 0;
// construct the char into the buffer
for (j=0; j<vert; j++) { // vert line
for (i=0; i<hor; i++) { // horz line
z = zeichen[bpl * i + ((j & 0xF8) >> 3)+1];
b = 1 << (j & 0x07);
if (( z & b ) == 0x00) {
buffer[p] = _background;
} else {
buffer[p] = _foreground;
}
p++;
}
}
// copy the buffer with DMA SPI to display
dma_off = 0; // offset for DMA transfer
_cs = 0;
if (spi_port == 0) { // TFT on SSP0
LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP0->DR; // we send to SSP0
/* Enable SSP0 for DMA. */
LPC_SSP0->DMACR = 0x2;
LPC_SSP0->CR0 &= ~(0x08UL); // set to 8 bit
LPC_SSP0->DR = 0x72; // start Data
LPC_SSP0->CR0 |= 0x08UL; // set to 16 bit
} else {
LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP1->DR; // we send to SSP1
/* Enable SSP1 for DMA. */
LPC_SSP1->DMACR = 0x2;
LPC_SSP1->CR0 &= ~(0x08UL); // set to 8 bit
LPC_SSP1->DR = 0x72; // start Data
LPC_SSP1->CR0 |= 0x08UL; // set to 16 bit
}
// start DMA
do {
if (pixel > 4095) { // this is a giant font !
dma_count = 4095;
pixel = pixel - 4095;
} else {
dma_count = pixel;
pixel = 0;
}
LPC_GPDMA->DMACIntTCClear = 0x1;
LPC_GPDMA->DMACIntErrClr = 0x1;
LPC_GPDMACH0->DMACCSrcAddr = (uint32_t) (buffer + dma_off);
LPC_GPDMACH0->DMACCControl = dma_count | (1UL << 18) | (1UL << 21) | (1UL << 31) | DMA_CHANNEL_SRC_INC ; // 16 bit transfer , address increment, interrupt
LPC_GPDMACH0->DMACCConfig = DMA_CHANNEL_ENABLE | DMA_TRANSFER_TYPE_M2P | (spi_port ? DMA_DEST_SSP1_TX : DMA_DEST_SSP0_TX);
LPC_GPDMA->DMACSoftSReq = 0x1;
do {
} while ((LPC_GPDMA->DMACRawIntTCStat & 0x01) == 0); // DMA is running
dma_off = dma_off + dma_count;
} while (pixel > 0);
free ((uint16_t *) buffer);
if (spi_port == 0) { // TFT on SSP0
do {
} while ((LPC_SSP0->SR & 0x10) == 0x10); // SPI0 not idle
/* disable SSP0 for DMA. */
LPC_SSP0->DMACR = 0x0;
} else {
do {
} while ((LPC_SSP1->SR & 0x10) == 0x10); // SPI1 not idle
/* disable SSP1 for DMA. */
LPC_SSP1->DMACR = 0x0;
}
#else // no dma
_cs = 0;
#if defined NO_MBED_LIB
if (spi_port == 0) { // TFT on SSP0
LPC_SSP0->CR0 &= ~(0x08UL); // set to 8 bit
LPC_SSP0->DR = 0x72; // start Data
LPC_SSP0->CR0 |= 0x08UL; // set to 16 bit
} else {
LPC_SSP1->CR0 &= ~(0x08UL); // set to 8 bit
LPC_SSP1->DR = 0x72; // start Data
LPC_SSP1->CR0 |= 0x08UL; // set to 16 bit
}
#else // mbed lib
_spi.format(8,3); // 8 bit Mode 3
_spi.write(SPI_START | SPI_WR | SPI_DATA); // Write : RS = 1, RW = 0
_spi.format(16,3); // switch to 16 bit Mode 3
#endif
zeichen = &font[((c -32) * offset) + 4]; // start of char bitmap
w = zeichen[0]; // width of actual char
for (j=0; j<vert; j++) { // vert line
for (i=0; i<hor; i++) { // horz line
z = zeichen[bpl * i + ((j & 0xF8) >> 3)+1];
b = 1 << (j & 0x07);
if (( z & b ) == 0x00) {
_spi.write(_background);
} else {
_spi.write(_foreground);
}
}
}
#endif // no DMA
_cs = 1;
WindowMax();
if ((w + 2) < hor) { // x offset to next char
char_x += w + 2;
} else char_x += hor;
}
void SPI_TFT::set_font(unsigned char* f)
{
font = f;
}
void SPI_TFT::Bitmap(unsigned int x, unsigned int y, unsigned int w, unsigned int h,unsigned char *bitmap)
{
unsigned int j;
int padd;
unsigned short *bitmap_ptr = (unsigned short *)bitmap;
// the lines are padded to multiple of 4 bytes in a bitmap
padd = -1;
do {
padd ++;
} while (2*(w + padd)%4 != 0);
window(x, y, w, h);
wr_cmd(0x22);
_cs = 0;
#if defined NO_MBED_LIB
if (spi_port == 0) { // TFT on SSP0
#if defined USE_DMA
LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP0->DR; // we send to SSP0
/* Enable SSP0 for DMA. */
LPC_SSP0->DMACR = 0x2;
#endif
LPC_SSP0->CR0 &= ~(0x08UL); // set to 8 bit
LPC_SSP0->DR = 0x72; // start Data
LPC_SSP0->CR0 |= 0x08UL; // set to 16 bit
} else {
#if defined USE_DMA
LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP1->DR; // we send to SSP1
/* Enable SSP1 for DMA. */
LPC_SSP1->DMACR = 0x2;
#endif
LPC_SSP1->CR0 &= ~(0x08UL); // set to 8 bit
LPC_SSP1->DR = 0x72; // start Data command
LPC_SSP1->CR0 |= 0x08UL; // set to 16 bit
}
bitmap_ptr += ((h - 1)* (w + padd));
#if defined USE_DMA
for (j = 0; j < h; j++) { //Lines
LPC_GPDMA->DMACIntTCClear = 0x1;
LPC_GPDMA->DMACIntErrClr = 0x1;
LPC_GPDMACH0->DMACCSrcAddr = (uint32_t)bitmap_ptr;
LPC_GPDMACH0->DMACCControl = w | (1UL << 18) | (1UL << 21) | (1UL << 31) | DMA_CHANNEL_SRC_INC ; // 16 bit transfer , address increment, interrupt
LPC_GPDMACH0->DMACCConfig = DMA_CHANNEL_ENABLE | DMA_TRANSFER_TYPE_M2P | (spi_port ? DMA_DEST_SSP1_TX : DMA_DEST_SSP0_TX);
LPC_GPDMA->DMACSoftSReq = 0x1;
do {
} while ((LPC_GPDMA->DMACRawIntTCStat & 0x01) == 0); // DMA is running
bitmap_ptr -= w;
bitmap_ptr -= padd;
}
#else
unsigned int i;
for (j = 0; j < h; j++) { //Lines
for (i = 0; i < w; i++) { // copy pixel data to TFT
_spi.write(*bitmap_ptr); // one line
bitmap_ptr++;
}
bitmap_ptr -= 2*w;
bitmap_ptr -= padd;
}
#endif
if (spi_port == 0) { // TFT on SSP0
do {
} while ((LPC_SSP0->SR & 0x10) == 0x10); // SPI FIFO not empty
} else {
do {
} while ((LPC_SSP1->SR & 0x10) == 0x10); // SPI FIFO not empty
}
#else // use mbed lib
_spi.format(8,3); // 8 bit Mode 3
_spi.write(SPI_START | SPI_WR | SPI_DATA); // Write : RS = 1, RW = 0
_spi.format(16,3); // switch to 16 bit Mode 3
unsigned int i;
for (j = 0; j < h; j++) { //Lines
for (i = 0; i < w; i++) { // copy pixel data to TFT
_spi.write(*bitmap_ptr); // one line
bitmap_ptr++;
}
bitmap_ptr -= 2*w;
bitmap_ptr -= padd;
}
#endif
_cs = 1;
WindowMax();
}
int SPI_TFT::BMP_16(unsigned int x, unsigned int y, const char *Name_BMP)
{
#define OffsetPixelWidth 18
#define OffsetPixelHeigh 22
#define OffsetFileSize 34
#define OffsetPixData 10
#define OffsetBPP 28
char filename[50];
unsigned char BMP_Header[54];
unsigned short BPP_t;
unsigned int PixelWidth,PixelHeigh,start_data;
unsigned int i,off;
int padd,j;
unsigned short *line;
// get the filename
LocalFileSystem local("local");
sprintf(&filename[0],"/local/");
i=7;
while (*Name_BMP!='\0') {
filename[i++]=*Name_BMP++;
}
fprintf(stderr, "filename : %s \n\r",filename);
FILE *Image = fopen((const char *)&filename[0], "rb"); // open the bmp file
if (!Image) {
return(0); // error file not found !
}
fread(&BMP_Header[0],1,54,Image); // get the BMP Header
if (BMP_Header[0] != 0x42 || BMP_Header[1] != 0x4D) { // check magic byte
fclose(Image);
return(-1); // error no BMP file
}
BPP_t = BMP_Header[OffsetBPP] + (BMP_Header[OffsetBPP + 1] << 8);
if (BPP_t != 0x0010) {
fclose(Image);
return(-2); // error no 16 bit BMP
}
PixelHeigh = BMP_Header[OffsetPixelHeigh] + (BMP_Header[OffsetPixelHeigh + 1] << 8) + (BMP_Header[OffsetPixelHeigh + 2] << 16) + (BMP_Header[OffsetPixelHeigh + 3] << 24);
PixelWidth = BMP_Header[OffsetPixelWidth] + (BMP_Header[OffsetPixelWidth + 1] << 8) + (BMP_Header[OffsetPixelWidth + 2] << 16) + (BMP_Header[OffsetPixelWidth + 3] << 24);
if (PixelHeigh > height() + y || PixelWidth > width() + x) {
fclose(Image);
return(-3); // to big
}
start_data = BMP_Header[OffsetPixData] + (BMP_Header[OffsetPixData + 1] << 8) + (BMP_Header[OffsetPixData + 2] << 16) + (BMP_Header[OffsetPixData + 3] << 24);
line = (unsigned short *) malloc (2 * PixelWidth); // we need a buffer for a line
if (line == NULL) {
return(-4); // error no memory
}
// the bmp lines are padded to multiple of 4 bytes
padd = -1;
do {
padd ++;
} while ((PixelWidth * 2 + padd)%4 != 0);
//fseek(Image, 70 ,SEEK_SET);
window(x, y,PixelWidth ,PixelHeigh);
wr_cmd(0x22);
_cs = 0;
#if defined NO_MBED_LIB
if (spi_port == 0) { // TFT on SSP0
#if defined USE_DMA
LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP0->DR; // we send to SSP0
/* Enable SSP0 for DMA. */
LPC_SSP0->DMACR = 0x2;
#endif
LPC_SSP0->CR0 &= ~(0x08UL); // set to 8 bit
LPC_SSP0->DR = 0x72; // start Data
LPC_SSP0->CR0 |= 0x08UL; // set to 16 bit
} else {
#if defined USE_DMA
LPC_GPDMACH0->DMACCDestAddr = (uint32_t)&LPC_SSP1->DR; // we send to SSP1
/* Enable SSP1 for DMA. */
LPC_SSP1->DMACR = 0x2;
#endif
LPC_SSP1->CR0 &= ~(0x08UL); // set to 8 bit
LPC_SSP1->DR = 0x72; // start Data
LPC_SSP1->CR0 |= 0x08UL; // set to 16 bit
}
for (j = PixelHeigh - 1; j >= 0; j--) { //Lines bottom up
off = j * (PixelWidth * 2 + padd) + start_data; // start of line
fseek(Image, off ,SEEK_SET);
fread(line,1,PixelWidth * 2,Image); // read a line - slow !
#if defined USE_DMA
LPC_GPDMA->DMACIntTCClear = 0x1;
LPC_GPDMA->DMACIntErrClr = 0x1;
LPC_GPDMACH0->DMACCSrcAddr = (uint32_t)line;
LPC_GPDMACH0->DMACCControl = PixelWidth | (1UL << 18) | (1UL << 21) | (1UL << 31) | DMA_CHANNEL_SRC_INC ; // 16 bit transfer , address increment, interrupt
LPC_GPDMACH0->DMACCConfig = DMA_CHANNEL_ENABLE | DMA_TRANSFER_TYPE_M2P | (spi_port ? DMA_DEST_SSP1_TX : DMA_DEST_SSP0_TX);
LPC_GPDMA->DMACSoftSReq = 0x1;
do {
} while ((LPC_GPDMA->DMACRawIntTCStat & 0x01) == 0); // DMA is running
#else
for (i = 0; i < PixelWidth; i++) { // copy pixel data to TFT
_spi.write(line[i]); // one 16 bit pixel
}
#endif
}
if (spi_port == 0) { // TFT on SSP0
do {
} while ((LPC_SSP0->SR & 0x10) == 0x10); // SPI FIFO not empty
} else {
do {
} while ((LPC_SSP1->SR & 0x10) == 0x10); // SPI FIFO not empty
}
#else // use mbed lib
_spi.format(8,3); // 8 bit Mode 3
_spi.write(SPI_START | SPI_WR | SPI_DATA); // Write : RS = 1, RW = 0
_spi.format(16,3); // switch to 16 bit Mode 3
for (j = PixelHeigh - 1; j >= 0; j--) { //Lines bottom up
off = j * (PixelWidth * 2 + padd) + start_data; // start of line
fseek(Image, off ,SEEK_SET);
fread(line,1,PixelWidth * 2,Image); // read a line - slow !
for (i = 0; i < PixelWidth; i++) { // copy pixel data to TFT
_spi.write(line[i]); // one 16 bit pixel
}
}
#endif
_cs = 1;
free (line);
fclose(Image);
WindowMax();
return(1);
}
TFT with HX8347D controller