1

Fork of PID by Aaron Berk

Files at this revision

API Documentation at this revision

Comitter:
d15321854
Date:
Wed Feb 15 12:33:10 2017 +0000
Parent:
0:6e12a3e5af19
Commit message:
123

Changed in this revision

PID.cpp Show annotated file Show diff for this revision Revisions of this file
PID.h Show annotated file Show diff for this revision Revisions of this file
diff -r 6e12a3e5af19 -r 28542afc96d0 PID.cpp
--- a/PID.cpp	Thu Sep 02 16:48:10 2010 +0000
+++ b/PID.cpp	Wed Feb 15 12:33:10 2017 +0000
@@ -48,277 +48,136 @@
  * Includes
  */
 #include "PID.h"
-
-PID::PID(float Kc, float tauI, float tauD, float interval) {
-
-    usingFeedForward = false;
-    inAuto           = false;
-
-    //Default the limits to the full range of I/O: 3.3V
-    //Make sure to set these to more appropriate limits for
-    //your application.
-    setInputLimits(0.0, 3.3);
-    setOutputLimits(0.0, 3.3);
-
-    tSample_ = interval;
-
-    setTunings(Kc, tauI, tauD);
-
-    setPoint_             = 0.0;
-    processVariable_      = 0.0;
-    prevProcessVariable_  = 0.0;
-    controllerOutput_     = 0.0;
-    prevControllerOutput_ = 0.0;
+#include "mbed.h"
 
-    accError_ = 0.0;
-    bias_     = 0.0;
-    
-    realOutput_ = 0.0;
-
-}
-
-void PID::setInputLimits(float inMin, float inMax) {
-
-    //Make sure we haven't been given impossible values.
-    if (inMin >= inMax) {
-        return;
-    }
+PID::PID(double* Input, double* Output, double* Setpoint,
+        double Kp, double Ki, double Kd, int ControllerDirection, float* NOWTIME, float* LASTTIME)
+{
+  
+    myOutput = Output;
+    myInput = Input;
+    mySetpoint = Setpoint;
+  inAuto = false;
+  
+  PID::SetOutputLimits(0, 387);       //default output limit corresponds to 
+                        //the arduino pwm limits
 
-    //Rescale the working variables to reflect the changes.
-    prevProcessVariable_ *= (inMax - inMin) / inSpan_;
-    accError_            *= (inMax - inMin) / inSpan_;
+    SampleTime =0.01;             //default Controller Sample Time is 0.1 seconds
 
-    //Make sure the working variables are within the new limits.
-    if (prevProcessVariable_ > 1) {
-        prevProcessVariable_ = 1;
-    } else if (prevProcessVariable_ < 0) {
-        prevProcessVariable_ = 0;
-    }
-
-    inMin_  = inMin;
-    inMax_  = inMax;
-    inSpan_ = inMax - inMin;
-
+    PID::SetControllerDirection(ControllerDirection);
+    PID::SetTunings(Kp, Ki, Kd);
+    //float TIME=* NOWTIME
+    lastTime =* NOWTIME-SampleTime;                                                 ///*******************
+    //lastTime =0;                                                 ///*******************
 }
 
-void PID::setOutputLimits(float outMin, float outMax) {
-
-    //Make sure we haven't been given impossible values.
-    if (outMin >= outMax) {
-        return;
-    }
-
-    //Rescale the working variables to reflect the changes.
-    prevControllerOutput_ *= (outMax - outMin) / outSpan_;
-
-    //Make sure the working variables are within the new limits.
-    if (prevControllerOutput_ > 1) {
-        prevControllerOutput_ = 1;
-    } else if (prevControllerOutput_ < 0) {
-        prevControllerOutput_ = 0;
-    }
-
-    outMin_  = outMin;
-    outMax_  = outMax;
-    outSpan_ = outMax - outMin;
-
+void PID::SetSampleTime(int NewSampleTime)
+{
+   if (NewSampleTime > 0)
+   {
+      double ratio  = (double)NewSampleTime
+                      / (double)SampleTime;
+      ki *= ratio;
+      kd /= ratio;
+      SampleTime = (unsigned long)NewSampleTime;
+   }
 }
 
-void PID::setTunings(float Kc, float tauI, float tauD) {
-
-    //Verify that the tunings make sense.
-    if (Kc == 0.0 || tauI < 0.0 || tauD < 0.0) {
-        return;
-    }
-
-    //Store raw values to hand back to user on request.
-    pParam_ = Kc;
-    iParam_ = tauI;
-    dParam_ = tauD;
-
-    float tempTauR;
-
-    if (tauI == 0.0) {
-        tempTauR = 0.0;
-    } else {
-        tempTauR = (1.0 / tauI) * tSample_;
-    }
-
-    //For "bumpless transfer" we need to rescale the accumulated error.
-    if (inAuto) {
-        if (tempTauR == 0.0) {
-            accError_ = 0.0;
-        } else {
-            accError_ *= (Kc_ * tauR_) / (Kc * tempTauR);
-        }
-    }
-
-    Kc_   = Kc;
-    tauR_ = tempTauR;
-    tauD_ = tauD / tSample_;
-
-}
-
-void PID::reset(void) {
-
-    float scaledBias = 0.0;
-
-    if (usingFeedForward) {
-        scaledBias = (bias_ - outMin_) / outSpan_;
-    } else {
-        scaledBias = (realOutput_ - outMin_) / outSpan_;
-    }
-
-    prevControllerOutput_ = scaledBias;
-    prevProcessVariable_  = (processVariable_ - inMin_) / inSpan_;
-
-    //Clear any error in the integral.
-    accError_ = 0;
-
+void PID::SetOutputLimits(double Min, double Max)
+{
+   if(Min >= Max) return;
+   outMin = Min;
+   outMax = Max;
+ 
+   if(inAuto)
+   {
+     if( *myOutput > outMax ) *myOutput = outMax;
+     else if( *myOutput < outMin ) *myOutput = outMin;
+   
+     if(ITerm > outMax) ITerm= outMax;
+     else if(ITerm < outMin) ITerm= outMin;
+   }
 }
 
-void PID::setMode(int mode) {
-
-    //We were in manual, and we just got set to auto.
-    //Reset the controller internals.
-    if (mode != 0 && !inAuto) {
-        reset();
-    }
-
-    inAuto = (mode != 0);
-
+void PID::SetTunings(double Kp, double Ki, double Kd)
+{
+   if (Kp<0 || Ki<0 || Kd<0) return;
+ 
+   dispKp = Kp; dispKi = Ki; dispKd = Kd;
+   
+   double SampleTimeInSec = ((double)SampleTime)/1000;  
+   kp = Kp;
+   ki = Ki * SampleTimeInSec;
+   kd = Kd / SampleTimeInSec;
+ 
+  if(controllerDirection ==REVERSE)
+   {
+      kp = (0 - kp);
+      ki = (0 - ki);
+      kd = (0 - kd);
+   }
 }
 
-void PID::setInterval(float interval) {
-
-    if (interval > 0) {
-        //Convert the time-based tunings to reflect this change.
-        tauR_     *= (interval / tSample_);
-        accError_ *= (tSample_ / interval);
-        tauD_     *= (interval / tSample_);
-        tSample_   = interval;
-    }
-
+void PID::Initialize()
+{
+   ITerm = *myOutput;
+   lastInput = *myInput;
+   if(ITerm > outMax) ITerm = outMax;
+   else if(ITerm < outMin) ITerm = outMin;
 }
 
-void PID::setSetPoint(float sp) {
-
-    setPoint_ = sp;
-
-}
-
-void PID::setProcessValue(float pv) {
-
-    processVariable_ = pv;
-
-}
-
-void PID::setBias(float bias){
-
-    bias_ = bias;
-    usingFeedForward = 1;
-
+void PID::SetMode(int Mode)
+{
+    bool newAuto = (Mode == AUTOMATIC);
+    if(newAuto == !inAuto)
+    {  /*we just went from manual to auto*/
+        PID::Initialize();
+    }
+    inAuto = newAuto;
 }
 
-float PID::compute() {
-
-    //Pull in the input and setpoint, and scale them into percent span.
-    float scaledPV = (processVariable_ - inMin_) / inSpan_;
-
-    if (scaledPV > 1.0) {
-        scaledPV = 1.0;
-    } else if (scaledPV < 0.0) {
-        scaledPV = 0.0;
-    }
-
-    float scaledSP = (setPoint_ - inMin_) / inSpan_;
-    if (scaledSP > 1.0) {
-        scaledSP = 1;
-    } else if (scaledSP < 0.0) {
-        scaledSP = 0;
-    }
-
-    float error = scaledSP - scaledPV;
-
-    //Check and see if the output is pegged at a limit and only
-    //integrate if it is not. This is to prevent reset-windup.
-    if (!(prevControllerOutput_ >= 1 && error > 0) && !(prevControllerOutput_ <= 0 && error < 0)) {
-        accError_ += error;
-    }
-
-    //Compute the current slope of the input signal.
-    float dMeas = (scaledPV - prevProcessVariable_) / tSample_;
-
-    float scaledBias = 0.0;
-
-    if (usingFeedForward) {
-        scaledBias = (bias_ - outMin_) / outSpan_;
-    }
-
-    //Perform the PID calculation.
-    controllerOutput_ = scaledBias + Kc_ * (error + (tauR_ * accError_) - (tauD_ * dMeas));
-
-    //Make sure the computed output is within output constraints.
-    if (controllerOutput_ < 0.0) {
-        controllerOutput_ = 0.0;
-    } else if (controllerOutput_ > 1.0) {
-        controllerOutput_ = 1.0;
-    }
-
-    //Remember this output for the windup check next time.
-    prevControllerOutput_ = controllerOutput_;
-    //Remember the input for the derivative calculation next time.
-    prevProcessVariable_  = scaledPV;
-
-    //Scale the output from percent span back out to a real world number.
-    return ((controllerOutput_ * outSpan_) + outMin_);
-
+void PID::SetControllerDirection(int Direction)
+{
+   if(inAuto && Direction !=controllerDirection)
+   {
+    kp = (0 - kp);
+      ki = (0 - ki);
+      kd = (0 - kd);
+   }   
+   controllerDirection = Direction;
 }
 
-float PID::getInMin() {
-
-    return inMin_;
-
-}
-
-float PID::getInMax() {
-
-    return inMax_;
-
-}
-
-float PID::getOutMin() {
-
-    return outMin_;
-
-}
-
-float PID::getOutMax() {
-
-    return outMax_;
-
-}
+double PID::Compute(float* now)
+{
 
-float PID::getInterval() {
-
-    return tSample_;
-
-}
-
-float PID::getPParam() {
-
-    return pParam_;
-
-}
-
-float PID::getIParam() {
-
-    return iParam_;
-
-}
-
-float PID::getDParam() {
-
-    return dParam_;
-
-}
+   float timeChange = (* now - lastTime);
+   //Serial.print("  timeChange: ");
+   //Serial.print(timeChange);
+   if(timeChange>=SampleTime)
+   {
+      /*Compute all the working error variables*/
+      double input = *myInput;
+      double error = *mySetpoint - input;
+      ITerm+= (dispKi * error);
+      if(abs(ITerm/error) > outMax) ITerm= error*outMax;
+      else if(abs(ITerm/error) < outMin) ITerm= error*outMin;
+      double dInput = (input - lastInput);
+ 
+      /*Compute PID Output*/
+      //double output = dispKp * error + ITerm- dispKd * dInput;
+      double output =(1+dispKd*dInput)*(dispKp*error + dispKi*ITerm);
+      //if(abs(output/(*mySetpoint)) > outMax) output= (*mySetpoint)*outMax;
+      //else if(abs(output/(*mySetpoint)) < outMin) output= (*mySetpoint)*outMin;
+      *myOutput = output + input;
+      //printf("**********************mySetpoint:%.3f\n",*mySetpoint);
+      //printf("**********************input:%.3f\n",input);
+      //printf("**********************myOutput:%.3f\n",*myOutput);
+      if( *myOutput > outMax ) *myOutput = outMax;
+        else if( *myOutput < outMin ) *myOutput = outMin;
+      //printf("**********************myOutput:%.3f\n",*myOutput);
+      //printf("********PID do**************\n");
+      /*Remember some variables for next time*/
+      lastInput = input;
+      lastTime = * now;
+    }
+}
\ No newline at end of file
diff -r 6e12a3e5af19 -r 28542afc96d0 PID.h
--- a/PID.h	Thu Sep 02 16:48:10 2010 +0000
+++ b/PID.h	Wed Feb 15 12:33:10 2017 +0000
@@ -44,170 +44,83 @@
  *  http://www.controlguru.com/
  */
 
-#ifndef PID_H
-#define PID_H
-
 /**
  * Includes
  */
 #include "mbed.h"
 
-/**
- * Defines
- */
-#define MANUAL_MODE 0
-#define AUTO_MODE   1
-
-/**
- * Proportional-integral-derivative controller.
- */
-class PID {
-
-public:
+class PID
+{
 
-    /**
-     * Constructor.
-     *
-     * Sets default limits [0-3.3V], calculates tuning parameters, and sets
-     * manual mode with no bias.
-     *
-     * @param Kc - Tuning parameter
-     * @param tauI - Tuning parameter
-     * @param tauD - Tuning parameter
-     * @param interval PID calculation performed every interval seconds.
-     */
-    PID(float Kc, float tauI, float tauD, float interval);
 
-    /**
-     * Scale from inputs to 0-100%.
-     *
-     * @param InMin The real world value corresponding to 0%.
-     * @param InMax The real world value corresponding to 100%.
-     */
-    void setInputLimits(float inMin , float inMax);
+  public:
 
-    /**
-     * Scale from outputs to 0-100%.
-     *
-     * @param outMin The real world value corresponding to 0%.
-     * @param outMax The real world value corresponding to 100%.
-     */
-    void setOutputLimits(float outMin, float outMax);
-
-    /**
-     * Calculate PID constants.
-     *
-     * Allows parameters to be changed on the fly without ruining calculations.
-     *
-     * @param Kc - Tuning parameter
-     * @param tauI - Tuning parameter
-     * @param tauD - Tuning parameter
-     */
-    void setTunings(float Kc, float tauI, float tauD);
+  //Constants used in some of the functions below
+  #define AUTOMATIC 1
+  #define MANUAL  0
+  #define DIRECT  0
+  #define REVERSE  1
 
-    /**
-     * Reinitializes controller internals. Automatically
-     * called on a manual to auto transition.
-     */
-    void reset(void);
-    
-    /**
-     * Set PID to manual or auto mode.
-     *
-     * @param mode        0 -> Manual
-     *             Non-zero -> Auto
-     */
-    void setMode(int mode);
-    
-    /**
-     * Set how fast the PID loop is run.
-     *
-     * @param interval PID calculation peformed every interval seconds.
-     */
-    void setInterval(float interval);
     
-    /**
-     * Set the set point.
-     *
-     * @param sp The set point as a real world value.
-     */
-    void setSetPoint(float sp);
-    
-    /**
-     * Set the process value.
-     *
-     * @param pv The process value as a real world value.
-     */
-    void setProcessValue(float pv);
-    
-    /**
-     * Set the bias.
-     *
-     * @param bias The bias for the controller output.
-     */
-    void setBias(float bias);
+  //commonly used functions **************************************************************************
+    PID(double*, double*, double*,        // * constructor.  links the PID to the Input, Output, and 
+        double, double, double, int, float*, float*);     //   Setpoint.  Initial tuning parameters are also set here
+  
+    void SetMode(int Mode);               // * sets PID to either Manual (0) or Auto (non-0)
 
-    /**
-     * PID calculation.
-     *
-     * @return The controller output as a float between outMin and outMax.
-     */
-    float compute(void);
+    double Compute(float*);                       // * performs the PID calculation.  it should be
+                                          //   called every time loop() cycles. ON/OFF and
+                                          //   calculation frequency can be set using SetMode
+                                          //   SetSampleTime respectively
 
-    //Getters.
-    float getInMin();
-    float getInMax();
-    float getOutMin();
-    float getOutMax();
-    float getInterval();
-    float getPParam();
-    float getIParam();
-    float getDParam();
+    void SetOutputLimits(double, double); //clamps the output to a specific range. 0-255 by default, but
+                      //it's likely the user will want to change this depending on
+                      //the application
+  
 
-private:
-
-    bool usingFeedForward;
-    bool inAuto;
 
-    //Actual tuning parameters used in PID calculation.
-    float Kc_;
-    float tauR_;
-    float tauD_;
-    
-    //Raw tuning parameters.
-    float pParam_;
-    float iParam_;
-    float dParam_;
-    
-    //The point we want to reach.
-    float setPoint_;         
-    //The thing we measure.
-    float processVariable_;  
-    float prevProcessVariable_;
-    //The output that affects the process variable.
-    float controllerOutput_; 
-    float prevControllerOutput_;
+  //available but not commonly used functions ********************************************************
+    void SetTunings(double, double,       // * While most users will set the tunings once in the 
+                    double);            //   constructor, this function gives the user the option
+                                          //   of changing tunings during runtime for Adaptive control
+  void SetControllerDirection(int);   // * Sets the Direction, or "Action" of the controller. DIRECT
+                      //   means the output will increase when error is positive. REVERSE
+                      //   means the opposite.  it's very unlikely that this will be needed
+                      //   once it is set in the constructor.
+    void SetSampleTime(int);              // * sets the frequency, in Milliseconds, with which 
+                                          //   the PID calculation is performed.  default is 100
+                      
+                      
+                      
+  //Display functions ****************************************************************
+  double GetKp();             // These functions query the pid for interal values.
+  double GetKi();             //  they were created mainly for the pid front-end,
+  double GetKd();             // where it's important to know what is actually 
+  int GetMode();              //  inside the PID.
+  int GetDirection();           //
 
-    //We work in % for calculations so these will scale from
-    //real world values to 0-100% and back again.
-    float inMin_;
-    float inMax_;
-    float inSpan_;
-    float outMin_;
-    float outMax_;
-    float outSpan_;
+  private:
+  void Initialize();
+  
+  double dispKp;        // * we'll hold on to the tuning parameters in user-entered 
+  double dispKi;        //   format for display purposes
+  double dispKd;        //
+    
+  double kp;                  // * (P)roportional Tuning Parameter
+    double ki;                  // * (I)ntegral Tuning Parameter
+    double kd;                  // * (D)erivative Tuning Parameter
+
+  int controllerDirection;
 
-    //The accumulated error, i.e. integral.
-    float accError_;
-    //The controller output bias.
-    float bias_;
+    double *myInput;              // * Pointers to the Input, Output, and Setpoint variables
+    double *myOutput;             //   This creates a hard link between the variables and the 
+    double *mySetpoint;           //   PID, freeing the user from having to constantly tell us
+                                  //   what these values are.  with pointers we'll just know.
+        
+  float lastTime;
+  double ITerm, lastInput;
 
-    //The interval between samples.
-    float tSample_;          
-
-    //Controller output as a real world value.
-    volatile float realOutput_;
-
-};
-
-#endif /* PID_H */
+  float SampleTime;
+  double outMin, outMax;
+  bool inAuto;
+};
\ No newline at end of file