Mini Cheetah Actuator Branch Superseded by: https://github.com/bgkatz/motorcontrol

Dependencies:   mbed-dev-f303 FastPWM3

Superseded by: https://github.com/bgkatz/motorcontrol

FOC/foc.cpp

Committer:
benkatz
Date:
2019-10-10
Revision:
56:fe5056ac6740
Parent:
55:c4c9fec8539c

File content as of revision 56:fe5056ac6740:


#include "foc.h"
using namespace FastMath;


void abc( float theta, float d, float q, float *a, float *b, float *c){
    /// Inverse DQ0 Transform ///
    ///Phase current amplitude = lengh of dq vector///
    ///i.e. iq = 1, id = 0, peak phase current of 1///
    float cf = FastCos(theta);
    float sf = FastSin(theta);
    
    *a = cf*d - sf*q;                // Faster Inverse DQ0 transform
    *b = (0.86602540378f*sf-.5f*cf)*d - (-0.86602540378f*cf-.5f*sf)*q;
    *c = (-0.86602540378f*sf-.5f*cf)*d - (0.86602540378f*cf-.5f*sf)*q;
    }
    
    
void dq0(float theta, float a, float b, float c, float *d, float *q){
    /// DQ0 Transform ///
    ///Phase current amplitude = lengh of dq vector///
    ///i.e. iq = 1, id = 0, peak phase current of 1///
    
    float cf = FastCos(theta);
    float sf = FastSin(theta);
    
    *d = 0.6666667f*(cf*a + (0.86602540378f*sf-.5f*cf)*b + (-0.86602540378f*sf-.5f*cf)*c);   ///Faster DQ0 Transform
    *q = 0.6666667f*(-sf*a - (-0.86602540378f*cf-.5f*sf)*b - (0.86602540378f*cf-.5f*sf)*c);
       
    }
    
void svm(float v_bus, float u, float v, float w, int i_sector, float *dtc_u, float *dtc_v, float *dtc_w){
    /// Space Vector Modulation ///
    /// u,v,w amplitude = v_bus for full modulation depth ///
    
    float v_offset = (fminf3(u, v, w) + fmaxf3(u, v, w))*0.5f;
    
    // Dead-time compensation
    float u_comp = DTC_COMP*(-(i_sector==4) + (i_sector==3));
    float v_comp = DTC_COMP*(-(i_sector==2) + (i_sector==5));
    float w_comp = DTC_COMP*((i_sector==6) - (i_sector==1));
    
    
    *dtc_u = fminf(fmaxf((.5f*(u -v_offset)/(v_bus*(DTC_MAX-DTC_MIN)) + (DTC_MAX+DTC_MIN)*.5f + u_comp), DTC_MIN), DTC_MAX);
    *dtc_v = fminf(fmaxf((.5f*(v -v_offset)/(v_bus*(DTC_MAX-DTC_MIN)) + (DTC_MAX+DTC_MIN)*.5f + v_comp), DTC_MIN), DTC_MAX);
    *dtc_w = fminf(fmaxf((.5f*(w -v_offset)/(v_bus*(DTC_MAX-DTC_MIN)) + (DTC_MAX+DTC_MIN)*.5f + w_comp), DTC_MIN), DTC_MAX); 
    
    /*
    sinusoidal pwm
    *dtc_u = fminf(fmaxf((u/v_bus + .5f), DTC_MIN), DTC_MAX);
    *dtc_v = fminf(fmaxf((v/v_bus + .5f), DTC_MIN), DTC_MAX);
    *dtc_w = fminf(fmaxf((w/v_bus + .5f), DTC_MIN), DTC_MAX);
    */
     
    
    }

void zero_current(int *offset_1, int *offset_2){                                // Measure zero-offset of the current sensors
    int adc1_offset = 0;
    int adc2_offset = 0;
    int n = 1024;
    for (int i = 0; i<n; i++){                                                  // Average n samples of the ADC
        TIM1->CCR3 = (PWM_ARR>>1)*(1.0f);                                               // Write duty cycles
        TIM1->CCR2 = (PWM_ARR>>1)*(1.0f);
        TIM1->CCR1 = (PWM_ARR>>1)*(1.0f);
        ADC1->CR2  |= 0x40000000;                                               // Begin sample and conversion
        wait(.001);
        adc2_offset += ADC2->DR;
        adc1_offset += ADC1->DR;
        }
    *offset_1 = adc1_offset/n;
    *offset_2 = adc2_offset/n;
    }
    
void init_controller_params(ControllerStruct *controller){
    controller->ki_d = KI_D;
    controller->ki_q = KI_Q;
    controller->k_d = K_SCALE*I_BW;
    controller->k_q = K_SCALE*I_BW;
    controller->alpha = 1.0f - 1.0f/(1.0f - DT*I_BW*2.0f*PI);
    for(int i = 0; i<128; i++)
    {
        controller->inverter_tab[i] = 1.0f + 1.2f*exp(-0.0078125f*i/.032f);
    }
    }

void reset_foc(ControllerStruct *controller){
    TIM1->CCR3 = (PWM_ARR>>1)*(0.5f);
    TIM1->CCR1 = (PWM_ARR>>1)*(0.5f);
    TIM1->CCR2 = (PWM_ARR>>1)*(0.5f);
    controller->i_d_ref = 0;
    controller->i_q_ref = 0;
    controller->i_d = 0;
    controller->i_q = 0;
    controller->i_q_filt = 0;
    controller->q_int = 0;
    controller->d_int = 0;
    controller->v_q = 0;
    controller->v_d = 0;
    controller->otw_flag = 0;

    }
    
void reset_observer(ObserverStruct *observer){
    
    observer->temperature = 25.0f;
    observer->temp_measured = 25.0f;
    //observer->resistance = .1f;
    }
    
void limit_current_ref (ControllerStruct *controller){
    float i_q_max_limit = (0.5774f*controller->v_bus - controller->dtheta_elec*WB)/R_PHASE;
    float i_q_min_limit = (-0.5774f*controller->v_bus - controller->dtheta_elec*WB)/R_PHASE;
    controller->i_q_ref = fmaxf(fminf(i_q_max_limit, controller->i_q_ref), i_q_min_limit);
    }

void update_observer(ControllerStruct *controller, ObserverStruct *observer)
{
    /// Update observer estimates ///
    // Resistance observer //
    // Temperature Observer //
    observer->delta_t = (float)observer->temperature - T_AMBIENT;
    float i_sq = controller->i_d*controller->i_d + controller->i_q*controller->i_q;
    observer->q_in = (R_NOMINAL*1.5f)*(1.0f + .00393f*observer->delta_t)*i_sq;
    observer->q_out = observer->delta_t*R_TH;
    observer->temperature += (INV_M_TH*DT)*(observer->q_in-observer->q_out);
    
    //float r_d = (controller->v_d*(DTC_MAX-DTC_MIN) + SQRT3*controller->dtheta_elec*(L_Q*controller->i_q))/(controller->i_d*SQRT3);
    float r_q = (controller->v_q*(DTC_MAX-DTC_MIN) - SQRT3*controller->dtheta_elec*(L_D*controller->i_d + WB))/(controller->i_q*SQRT3);
    observer->resistance = r_q;//(r_d*controller->i_d + r_q*controller->i_q)/(controller->i_d + controller->i_q); // voltages more accurate at higher duty cycles
    
    //observer->resistance = controller->v_q/controller->i_q;
    if(isnan(observer->resistance) || isinf(observer->resistance)){observer->resistance = R_NOMINAL;}
    float t_raw = ((T_AMBIENT + ((observer->resistance/R_NOMINAL) - 1.0f)*254.5f));
    if(t_raw > 200.0f){t_raw = 200.0f;}
    else if(t_raw < 0.0f){t_raw = 0.0f;}
    observer->temp_measured = .999f*observer->temp_measured + .001f*t_raw;
    float e = (float)observer->temperature - observer->temp_measured;
    observer->trust = (1.0f - .004f*fminf(abs(controller->dtheta_elec), 250.0f)) * (.01f*(fminf(i_sq, 100.0f)));
    observer->temperature -= observer->trust*.0001f*e;
    //printf("%.3f\n\r", e);
    
    if(observer->temperature > TEMP_MAX){controller->otw_flag = 1;}
    else{controller->otw_flag = 0;}
}

float linearize_dtc(ControllerStruct *controller, float dtc)
{
    float duty = fmaxf(fminf(abs(dtc), .999f), 0.0f);;
    int index = (int) (duty*127.0f);
    float val1 = controller->inverter_tab[index];
    float val2 = controller->inverter_tab[index+1];
    return val1 + (val2 - val1)*(duty*128.0f - (float)index);
}

void field_weaken(ControllerStruct *controller)
{
       /// Field Weakening ///
       
       controller->fw_int += .001f*(0.5f*OVERMODULATION*controller->v_bus - controller->v_ref);
       controller->fw_int = fmaxf(fminf(controller->fw_int, 0.0f), -I_FW_MAX);
       controller->i_d_ref = controller->fw_int;
       float q_max = sqrt(controller->i_max*controller->i_max - controller->i_d_ref*controller->i_d_ref);
       controller->i_q_ref = fmaxf(fminf(controller->i_q_ref, q_max), -q_max);
       //float i_cmd_mag_sq = controller->i_d_ref*controller->i_d_ref + controller->i_q_ref*controller->i_q_ref;
       
}
void commutate(ControllerStruct *controller, ObserverStruct *observer, GPIOStruct *gpio, float theta)
{
       /// Commutation Loop ///
       controller->loop_count ++;   
       if(PHASE_ORDER){                                                                          // Check current sensor ordering
           controller->i_b = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset);    // Calculate phase currents from ADC readings
           controller->i_c = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset);
           }
        else{
            controller->i_b = I_SCALE*(float)(controller->adc1_raw - controller->adc1_offset);    
           controller->i_c = I_SCALE*(float)(controller->adc2_raw - controller->adc2_offset);
           }
       controller->i_a = -controller->i_b - controller->i_c;       
       if((abs(controller->i_b) > 41.0f)|(abs(controller->i_c) > 41.0f)|(abs(controller->i_a) > 41.0f)){controller->oc_flag = 1;}
       
       float s = FastSin(theta); 
       float c = FastCos(theta);                            
       dq0(controller->theta_elec, controller->i_a, controller->i_b, controller->i_c, &controller->i_d, &controller->i_q);    //dq0 transform on currents
       //controller->i_d = 0.6666667f*(c*controller->i_a + (0.86602540378f*s-.5f*c)*controller->i_b + (-0.86602540378f*s-.5f*c)*controller->i_c);   ///Faster DQ0 Transform
       //controller->i_q = 0.6666667f*(-s*controller->i_a - (-0.86602540378f*c-.5f*s)*controller->i_b - (0.86602540378f*c-.5f*s)*controller->i_c);
        
        controller->i_q_filt = 0.95f*controller->i_q_filt + 0.05f*controller->i_q;
        controller->i_d_filt = 0.95f*controller->i_d_filt + 0.05f*controller->i_d;
        
        
        // Filter the current references to the desired closed-loop bandwidth
        //controller->i_d_ref_filt = (1.0f-controller->alpha)*controller->i_d_ref_filt + controller->alpha*controller->i_d_ref;
        //controller->i_q_ref_filt = (1.0f-controller->alpha)*controller->i_q_ref_filt + controller->alpha*controller->i_q_ref;
        
        controller->i_max = I_MAX*(!controller->otw_flag) + I_MAX_CONT*controller->otw_flag;
        
        // Temperature Controller //
        /*
        if(observer->temperature > TEMP_MAX)
        {
            float qdot_des = 1.0f*(TEMP_MAX - observer->temperature);
            float i_limit = sqrt((qdot_des + observer->q_out)/(R_NOMINAL*1.5f));
            controller->i_max = fmaxf(fminf(i_limit, I_MAX), I_MAX_CONT);
        }
        else{controller->i_max = I_MAX;}
        */
        
        limit_norm(&controller->i_d_ref, &controller->i_q_ref, controller->i_max);

       /// PI Controller ///
       float i_d_error = controller->i_d_ref - controller->i_d;
       float i_q_error = controller->i_q_ref - controller->i_q;//  + cogging_current;
       
       // Calculate feed-forward voltages //
       float v_d_ff = SQRT3*(0.0f*controller->i_d_ref*R_PHASE  - controller->dtheta_elec*L_Q*controller->i_q);   //feed-forward voltages
       float v_q_ff =  SQRT3*(0.0f*controller->i_q_ref*R_PHASE +  controller->dtheta_elec*(L_D*controller->i_d + 0.0f*WB));
       
       // Integrate Error //
       controller->d_int += controller->k_d*controller->ki_d*i_d_error;   
       controller->q_int += controller->k_q*controller->ki_q*i_q_error;
       
       controller->d_int = fmaxf(fminf(controller->d_int, OVERMODULATION*controller->v_bus), - OVERMODULATION*controller->v_bus);
       controller->q_int = fmaxf(fminf(controller->q_int, OVERMODULATION*controller->v_bus), - OVERMODULATION*controller->v_bus); 
       
       //limit_norm(&controller->d_int, &controller->q_int, OVERMODULATION*controller->v_bus);     
       controller->v_d = controller->k_d*i_d_error + controller->d_int;// + v_d_ff;  
       controller->v_q = controller->k_q*i_q_error + controller->q_int;// + v_q_ff; 
       //controller->v_q = 0.0f;
       //controller->v_d = 1.0f*controller->v_bus;
       controller->v_ref = sqrt(controller->v_d*controller->v_d + controller->v_q*controller->v_q);
       
       limit_norm(&controller->v_d, &controller->v_q, OVERMODULATION*controller->v_bus);       // Normalize voltage vector to lie within curcle of radius v_bus
       float dtc = controller->v_ref/controller->v_bus;
       float scale = linearize_dtc(controller, dtc);
       //controller->v_d = scale*controller->v_d;
       //controller->v_q = scale*controller->v_q;
       //float dtc_q = controller->v_q/controller->v_bus;
       
       //linearize_dtc(&dtc_q);
       //controller->v_d = dtc_d*controller->v_bus;
       //controller->v_q = dtc_q*controller->v_bus;
       abc(controller->theta_elec + 0.0f*DT*controller->dtheta_elec, scale*controller->v_d, scale*controller->v_q, &controller->v_u, &controller->v_v, &controller->v_w); //inverse dq0 transform on voltages
       controller->current_sector = ((controller->i_a>0)<<2)|((controller->i_b>0)<<1)|(controller->i_c>0);
       svm(controller->v_bus, controller->v_u, controller->v_v, controller->v_w, controller->current_sector, &controller->dtc_u, &controller->dtc_v, &controller->dtc_w); //space vector modulation
       
       
        

       if(PHASE_ORDER){                                                         // Check which phase order to use, 
            TIM1->CCR3 = (PWM_ARR)*(1.0f-controller->dtc_u);                        // Write duty cycles
            TIM1->CCR2 = (PWM_ARR)*(1.0f-controller->dtc_v);
            TIM1->CCR1 = (PWM_ARR)*(1.0f-controller->dtc_w);
        }
        else{
            TIM1->CCR3 = (PWM_ARR)*(1.0f-controller->dtc_u);
            TIM1->CCR1 = (PWM_ARR)*(1.0f-controller->dtc_v);
            TIM1->CCR2 =  (PWM_ARR)*(1.0f-controller->dtc_w);
        }

       controller->theta_elec = theta;                                          
       
    }
    
    
void torque_control(ControllerStruct *controller){
    float torque_ref = controller->kp*(controller->p_des - controller->theta_mech) + controller->t_ff + controller->kd*(controller->v_des - controller->dtheta_mech);
    //float torque_ref = -.1*(controller->p_des - controller->theta_mech);
    controller->i_q_ref = torque_ref/KT_OUT;    
    controller->i_d_ref = 0.0f;
    }