Mirror with some correction

Dependencies:   mbed FastIO FastPWM USBDevice

Committer:
mjr
Date:
Sun Mar 19 05:30:53 2017 +0000
Revision:
78:1e00b3fa11af
Parent:
77:0b96f6867312
Child:
79:682ae3171a08
Ad hoc IR command send; Shift button 'AND' and 'OR' modes; new accelerometer auto centering options

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 35:e959ffba78fd 1 // USB Message Protocol
mjr 35:e959ffba78fd 2 //
mjr 74:822a92bc11d2 3 // This file is purely for documentation, to describe our USB protocol
mjr 74:822a92bc11d2 4 // for incoming messages (host to device). We use the standard HID setup
mjr 74:822a92bc11d2 5 // with one endpoint in each direction. See USBJoystick.cpp and .h for
mjr 74:822a92bc11d2 6 // the USB descriptors.
mjr 74:822a92bc11d2 7 //
mjr 74:822a92bc11d2 8 // Our incoming message protocol is an extended version of the protocol
mjr 74:822a92bc11d2 9 // used by the LedWiz. Our protocol is designed to be 100% backwards
mjr 74:822a92bc11d2 10 // compatible with clients using the original LedWiz wire protocol, as long
mjr 74:822a92bc11d2 11 // as they only send well-formed messages in the original protocol. The
mjr 74:822a92bc11d2 12 // "well-formed" part is an important condition, because our extensions to
mjr 74:822a92bc11d2 13 // the original protocol all consist of messages that aren't defined in the
mjr 74:822a92bc11d2 14 // original protocol and are meaningless to a real LedWiz.
mjr 35:e959ffba78fd 15 //
mjr 74:822a92bc11d2 16 // The protocol compatibility ensures that all original LedWiz clients can
mjr 74:822a92bc11d2 17 // also transparently access a Pinscape unit. Clients will simply think the
mjr 74:822a92bc11d2 18 // Pinscape unit is an LedWiz, thus they'll be able to operate 32 of our
mjr 74:822a92bc11d2 19 // ports. We designate the first 32 ports (ports 1-32) as the ones accessible
mjr 74:822a92bc11d2 20 // through the LedWiz protocol.
mjr 74:822a92bc11d2 21 //
mjr 74:822a92bc11d2 22 // In addition the wire-level protocol compatibility, we can provide legacy
mjr 74:822a92bc11d2 23 // LedWiz clients with access to more than 32 ports by emulating multiple
mjr 74:822a92bc11d2 24 // virtual LedWiz units. We can't do this across the wire protocol, since
mjr 74:822a92bc11d2 25 // the KL25Z USB interface constrains us to a single VID/PID (which is how
mjr 74:822a92bc11d2 26 // LedWiz clients distinguish units). However, virtuall all legacy LedWiz
mjr 74:822a92bc11d2 27 // clients access the device through a shared library, LEDWIZ.DLL, rather
mjr 74:822a92bc11d2 28 // than directly through USB. LEDWIZ.DLL is distributed by the LedWiz's
mjr 74:822a92bc11d2 29 // manufacturer and has a published client interface. We can thus provide
mjr 74:822a92bc11d2 30 // a replacement DLL that contains the logic needed to recognize a Pinscape
mjr 74:822a92bc11d2 31 // unit and represent it to clients as multiple LedWiz devices. This allows
mjr 74:822a92bc11d2 32 // old clients to access our full complement of ports without any changes
mjr 74:822a92bc11d2 33 // to the clients. We define some extended message types (SBX and PBX)
mjr 74:822a92bc11d2 34 // specifically to support this DLL feature.
mjr 74:822a92bc11d2 35 //
mjr 74:822a92bc11d2 36
mjr 35:e959ffba78fd 37
mjr 35:e959ffba78fd 38 // ------ OUTGOING MESSAGES (DEVICE TO HOST) ------
mjr 35:e959ffba78fd 39 //
mjr 47:df7a88cd249c 40 // General note: 16-bit and 32-bit fields in our reports are little-endian
mjr 47:df7a88cd249c 41 // unless otherwise specified.
mjr 47:df7a88cd249c 42 //
mjr 39:b3815a1c3802 43 // 1. Joystick reports
mjr 35:e959ffba78fd 44 // In most cases, our outgoing messages are HID joystick reports, using the
mjr 35:e959ffba78fd 45 // format defined in USBJoystick.cpp. This allows us to be installed on
mjr 35:e959ffba78fd 46 // Windows as a standard USB joystick, which all versions of Windows support
mjr 35:e959ffba78fd 47 // using in-the-box drivers. This allows a completely transparent, driverless,
mjr 39:b3815a1c3802 48 // plug-and-play installation experience on Windows. Our joystick report
mjr 39:b3815a1c3802 49 // looks like this (see USBJoystick.cpp for the formal HID report descriptor):
mjr 35:e959ffba78fd 50 //
mjr 55:4db125cd11a0 51 // ss status bits:
mjr 55:4db125cd11a0 52 // 0x01 -> plunger enabled
mjr 55:4db125cd11a0 53 // 0x02 -> night mode engaged
mjr 73:4e8ce0b18915 54 // 0x04,0x08,0x10 -> power sense status: meaningful only when
mjr 73:4e8ce0b18915 55 // the TV-on timer is used. Figure (ss>>2) & 0x07 to
mjr 73:4e8ce0b18915 56 // isolate the status bits. The resulting value is:
mjr 73:4e8ce0b18915 57 // 1 -> latch was on at last check
mjr 73:4e8ce0b18915 58 // 2 -> latch was off at last check, SET pin high
mjr 73:4e8ce0b18915 59 // 3 -> latch off, SET pin low, ready to check status
mjr 73:4e8ce0b18915 60 // 4 -> TV timer countdown in progress
mjr 73:4e8ce0b18915 61 // 5 -> TV relay is on
mjr 77:0b96f6867312 62 // 6 -> sending IR signals designated as TV ON signals
mjr 77:0b96f6867312 63 // 0x20 -> IR learning mode in progress
mjr 40:cc0d9814522b 64 // 00 2nd byte of status (reserved)
mjr 40:cc0d9814522b 65 // 00 3rd byte of status (reserved)
mjr 39:b3815a1c3802 66 // 00 always zero for joystick reports
mjr 40:cc0d9814522b 67 // bb joystick buttons, low byte (buttons 1-8, 1 bit per button)
mjr 40:cc0d9814522b 68 // bb joystick buttons, 2nd byte (buttons 9-16)
mjr 40:cc0d9814522b 69 // bb joystick buttons, 3rd byte (buttons 17-24)
mjr 40:cc0d9814522b 70 // bb joystick buttons, high byte (buttons 25-32)
mjr 39:b3815a1c3802 71 // xx low byte of X position = nudge/accelerometer X axis
mjr 39:b3815a1c3802 72 // xx high byte of X position
mjr 39:b3815a1c3802 73 // yy low byte of Y position = nudge/accelerometer Y axis
mjr 39:b3815a1c3802 74 // yy high byte of Y position
mjr 39:b3815a1c3802 75 // zz low byte of Z position = plunger position
mjr 39:b3815a1c3802 76 // zz high byte of Z position
mjr 39:b3815a1c3802 77 //
mjr 39:b3815a1c3802 78 // The X, Y, and Z values are 16-bit signed integers. The accelerometer
mjr 39:b3815a1c3802 79 // values are on an abstract scale, where 0 represents no acceleration,
mjr 39:b3815a1c3802 80 // negative maximum represents -1g on that axis, and positive maximum
mjr 39:b3815a1c3802 81 // represents +1g on that axis. For the plunger position, 0 is the park
mjr 39:b3815a1c3802 82 // position (the rest position of the plunger) and positive values represent
mjr 39:b3815a1c3802 83 // retracted (pulled back) positions. A negative value means that the plunger
mjr 39:b3815a1c3802 84 // is pushed forward of the park position.
mjr 39:b3815a1c3802 85 //
mjr 39:b3815a1c3802 86 // 2. Special reports
mjr 35:e959ffba78fd 87 // We subvert the joystick report format in certain cases to report other
mjr 35:e959ffba78fd 88 // types of information, when specifically requested by the host. This allows
mjr 35:e959ffba78fd 89 // our custom configuration UI on the Windows side to query additional
mjr 35:e959ffba78fd 90 // information that we don't normally send via the joystick reports. We
mjr 35:e959ffba78fd 91 // define a custom vendor-specific "status" field in the reports that we
mjr 35:e959ffba78fd 92 // use to identify these special reports, as described below.
mjr 35:e959ffba78fd 93 //
mjr 39:b3815a1c3802 94 // Normal joystick reports always have 0 in the high bit of the 2nd byte
mjr 35:e959ffba78fd 95 // of the report. Special non-joystick reports always have 1 in the high bit
mjr 35:e959ffba78fd 96 // of the first byte. (This byte is defined in the HID Report Descriptor
mjr 35:e959ffba78fd 97 // as an opaque vendor-defined value, so the joystick interface on the
mjr 35:e959ffba78fd 98 // Windows side simply ignores it.)
mjr 35:e959ffba78fd 99 //
mjr 52:8298b2a73eb2 100 // 2A. Plunger sensor status report
mjr 52:8298b2a73eb2 101 // Software on the PC can request a detailed status report from the plunger
mjr 52:8298b2a73eb2 102 // sensor. The status information is meant as an aid to installing and
mjr 52:8298b2a73eb2 103 // adjusting the sensor device for proper performance. For imaging sensor
mjr 52:8298b2a73eb2 104 // types, the status report includes a complete current image snapshot
mjr 52:8298b2a73eb2 105 // (an array of all of the pixels the sensor is currently imaging). For
mjr 52:8298b2a73eb2 106 // all sensor types, it includes the current plunger position registered
mjr 52:8298b2a73eb2 107 // on the sensor, and some timing information.
mjr 52:8298b2a73eb2 108 //
mjr 52:8298b2a73eb2 109 // To request the sensor status, the host sends custom protocol message 65 3
mjr 52:8298b2a73eb2 110 // (see below). The device replies with a message in this format:
mjr 52:8298b2a73eb2 111 //
mjr 52:8298b2a73eb2 112 // bytes 0:1 = 0x87FF
mjr 52:8298b2a73eb2 113 // byte 2 = 0 -> first (currently only) status report packet
mjr 52:8298b2a73eb2 114 // (additional packets could be added in the future if
mjr 52:8298b2a73eb2 115 // more fields need to be added)
mjr 52:8298b2a73eb2 116 // bytes 3:4 = number of pixels to be sent in following messages, as
mjr 52:8298b2a73eb2 117 // an unsigned 16-bit little-endian integer. This is 0 if
mjr 52:8298b2a73eb2 118 // the sensor isn't an imaging type.
mjr 52:8298b2a73eb2 119 // bytes 5:6 = current plunger position registered on the sensor.
mjr 52:8298b2a73eb2 120 // For imaging sensors, this is the pixel position, so it's
mjr 52:8298b2a73eb2 121 // scaled from 0 to number of pixels - 1. For non-imaging
mjr 52:8298b2a73eb2 122 // sensors, this uses the generic joystick scale 0..4095.
mjr 52:8298b2a73eb2 123 // The special value 0xFFFF means that the position couldn't
mjr 52:8298b2a73eb2 124 // be determined,
mjr 52:8298b2a73eb2 125 // byte 7 = bit flags:
mjr 52:8298b2a73eb2 126 // 0x01 = normal orientation detected
mjr 52:8298b2a73eb2 127 // 0x02 = reversed orientation detected
mjr 52:8298b2a73eb2 128 // 0x04 = calibration mode is active (no pixel packets
mjr 52:8298b2a73eb2 129 // are sent for this reading)
mjr 52:8298b2a73eb2 130 // bytes 8:9:10 = average time for each sensor read, in 10us units.
mjr 52:8298b2a73eb2 131 // This is the average time it takes to complete the I/O
mjr 52:8298b2a73eb2 132 // operation to read the sensor, to obtain the raw sensor
mjr 52:8298b2a73eb2 133 // data for instantaneous plunger position reading. For
mjr 52:8298b2a73eb2 134 // an imaging sensor, this is the time it takes for the
mjr 52:8298b2a73eb2 135 // sensor to capture the image and transfer it to the
mjr 52:8298b2a73eb2 136 // microcontroller. For an analog sensor (e.g., an LVDT
mjr 52:8298b2a73eb2 137 // or potentiometer), it's the time to complete an ADC
mjr 52:8298b2a73eb2 138 // sample.
mjr 52:8298b2a73eb2 139 // bytes 11:12:13 = time it took to process the current frame, in 10us
mjr 52:8298b2a73eb2 140 // units. This is the software processing time that was
mjr 52:8298b2a73eb2 141 // needed to analyze the raw data read from the sensor.
mjr 52:8298b2a73eb2 142 // This is typically only non-zero for imaging sensors,
mjr 52:8298b2a73eb2 143 // where it reflects the time required to scan the pixel
mjr 52:8298b2a73eb2 144 // array to find the indicated plunger position. The time
mjr 52:8298b2a73eb2 145 // is usually zero or negligible for analog sensor types,
mjr 52:8298b2a73eb2 146 // since the only "analysis" is a multiplication to rescale
mjr 52:8298b2a73eb2 147 // the ADC sample.
mjr 52:8298b2a73eb2 148 //
mjr 52:8298b2a73eb2 149 // If the sensor is an imaging sensor type, this will be followed by a
mjr 52:8298b2a73eb2 150 // series of pixel messages. The imaging sensor types have too many pixels
mjr 52:8298b2a73eb2 151 // to send in a single USB transaction, so the device breaks up the array
mjr 52:8298b2a73eb2 152 // into as many packets as needed and sends them in sequence. For non-
mjr 52:8298b2a73eb2 153 // imaging sensors, the "number of pixels" field in the lead packet is
mjr 52:8298b2a73eb2 154 // zero, so obviously no pixel packets will follow. If the "calibration
mjr 52:8298b2a73eb2 155 // active" bit in the flags byte is set, no pixel packets are sent even
mjr 52:8298b2a73eb2 156 // if the sensor is an imaging type, since the transmission time for the
mjr 52:8298b2a73eb2 157 // pixels would intefere with the calibration process. If pixels are sent,
mjr 52:8298b2a73eb2 158 // they're sent in order starting at the first pixel. The format of each
mjr 52:8298b2a73eb2 159 // pixel packet is:
mjr 35:e959ffba78fd 160 //
mjr 35:e959ffba78fd 161 // bytes 0:1 = 11-bit index, with high 5 bits set to 10000. For
mjr 48:058ace2aed1d 162 // example, 0x8004 (encoded little endian as 0x04 0x80)
mjr 48:058ace2aed1d 163 // indicates index 4. This is the starting pixel number
mjr 48:058ace2aed1d 164 // in the report. The first report will be 0x00 0x80 to
mjr 48:058ace2aed1d 165 // indicate pixel #0.
mjr 47:df7a88cd249c 166 // bytes 2 = 8-bit unsigned int brightness level of pixel at index
mjr 47:df7a88cd249c 167 // bytes 3 = brightness of pixel at index+1
mjr 35:e959ffba78fd 168 // etc for the rest of the packet
mjr 35:e959ffba78fd 169 //
mjr 52:8298b2a73eb2 170 // Note that we currently only support one-dimensional imaging sensors
mjr 52:8298b2a73eb2 171 // (i.e., pixel arrays that are 1 pixel wide). The report format doesn't
mjr 52:8298b2a73eb2 172 // have any provision for a two-dimensional layout. The KL25Z probably
mjr 52:8298b2a73eb2 173 // isn't powerful enough to do real-time image analysis on a 2D image
mjr 52:8298b2a73eb2 174 // anyway, so it's unlikely that we'd be able to make 2D sensors work at
mjr 52:8298b2a73eb2 175 // all, but if we ever add such a thing we'll have to upgrade the report
mjr 52:8298b2a73eb2 176 // format here accordingly.
mjr 51:57eb311faafa 177 //
mjr 51:57eb311faafa 178 //
mjr 53:9b2611964afc 179 // 2B. Configuration report.
mjr 39:b3815a1c3802 180 // This is requested by sending custom protocol message 65 4 (see below).
mjr 39:b3815a1c3802 181 // In reponse, the device sends one report to the host using this format:
mjr 35:e959ffba78fd 182 //
mjr 35:e959ffba78fd 183 // bytes 0:1 = 0x8800. This has the bit pattern 10001 in the high
mjr 35:e959ffba78fd 184 // 5 bits, which distinguishes it from regular joystick
mjr 40:cc0d9814522b 185 // reports and from other special report types.
mjr 74:822a92bc11d2 186 // bytes 2:3 = total number of configured outputs, little endian. This
mjr 74:822a92bc11d2 187 // is the number of outputs with assigned functions in the
mjr 74:822a92bc11d2 188 // active configuration.
mjr 75:677892300e7a 189 // byte 4 = Pinscape unit number (0-15), little endian
mjr 75:677892300e7a 190 // byte 5 = reserved (currently always zero)
mjr 40:cc0d9814522b 191 // bytes 6:7 = plunger calibration zero point, little endian
mjr 40:cc0d9814522b 192 // bytes 8:9 = plunger calibration maximum point, little endian
mjr 52:8298b2a73eb2 193 // byte 10 = plunger calibration release time, in milliseconds
mjr 52:8298b2a73eb2 194 // byte 11 = bit flags:
mjr 40:cc0d9814522b 195 // 0x01 -> configuration loaded; 0 in this bit means that
mjr 40:cc0d9814522b 196 // the firmware has been loaded but no configuration
mjr 40:cc0d9814522b 197 // has been sent from the host
mjr 74:822a92bc11d2 198 // 0x02 -> SBX/PBX extension features: 1 in this bit means
mjr 74:822a92bc11d2 199 // that these features are present in this version.
mjr 78:1e00b3fa11af 200 // 0x04 -> new accelerometer features supported (adjustable
mjr 78:1e00b3fa11af 201 // dynamic range, auto-centering on/off, adjustable
mjr 78:1e00b3fa11af 202 // auto-centering time)
mjr 73:4e8ce0b18915 203 // bytes 12:13 = available RAM, in bytes, little endian. This is the amount
mjr 73:4e8ce0b18915 204 // of unused heap (malloc'able) memory. The firmware generally
mjr 73:4e8ce0b18915 205 // allocates all of the dynamic memory it needs during startup,
mjr 73:4e8ce0b18915 206 // so the free memory figure doesn't tend to fluctuate during
mjr 73:4e8ce0b18915 207 // normal operation. The dynamic memory used is a function of
mjr 73:4e8ce0b18915 208 // the set of features enabled.
mjr 35:e959ffba78fd 209 //
mjr 53:9b2611964afc 210 // 2C. Device ID report.
mjr 40:cc0d9814522b 211 // This is requested by sending custom protocol message 65 7 (see below).
mjr 40:cc0d9814522b 212 // In response, the device sends one report to the host using this format:
mjr 40:cc0d9814522b 213 //
mjr 52:8298b2a73eb2 214 // bytes 0:1 = 0x9000. This has bit pattern 10010 in the high 5 bits
mjr 52:8298b2a73eb2 215 // to distinguish this from other report types.
mjr 53:9b2611964afc 216 // byte 2 = ID type. This is the same ID type sent in the request.
mjr 53:9b2611964afc 217 // bytes 3-12 = requested ID. The ID is 80 bits in big-endian byte
mjr 53:9b2611964afc 218 // order. For IDs longer than 80 bits, we truncate to the
mjr 53:9b2611964afc 219 // low-order 80 bits (that is, the last 80 bits).
mjr 53:9b2611964afc 220 //
mjr 53:9b2611964afc 221 // ID type 1 = CPU ID. This is the globally unique CPU ID
mjr 53:9b2611964afc 222 // stored in the KL25Z CPU.
mjr 35:e959ffba78fd 223 //
mjr 53:9b2611964afc 224 // ID type 2 = OpenSDA ID. This is the globally unique ID
mjr 53:9b2611964afc 225 // for the connected OpenSDA controller, if known. This
mjr 53:9b2611964afc 226 // allow the host to figure out which USB MSD (virtual
mjr 53:9b2611964afc 227 // disk drive), if any, represents the OpenSDA module for
mjr 53:9b2611964afc 228 // this Pinscape USB interface. This is primarily useful
mjr 53:9b2611964afc 229 // to determine which MSD to write in order to update the
mjr 53:9b2611964afc 230 // firmware on a given Pinscape unit.
mjr 53:9b2611964afc 231 //
mjr 53:9b2611964afc 232 // 2D. Configuration variable report.
mjr 52:8298b2a73eb2 233 // This is requested by sending custom protocol message 65 9 (see below).
mjr 52:8298b2a73eb2 234 // In response, the device sends one report to the host using this format:
mjr 52:8298b2a73eb2 235 //
mjr 52:8298b2a73eb2 236 // bytes 0:1 = 0x9800. This has bit pattern 10011 in the high 5 bits
mjr 52:8298b2a73eb2 237 // to distinguish this from other report types.
mjr 52:8298b2a73eb2 238 // byte 2 = Variable ID. This is the same variable ID sent in the
mjr 52:8298b2a73eb2 239 // query message, to relate the reply to the request.
mjr 52:8298b2a73eb2 240 // bytes 3-8 = Current value of the variable, in the format for the
mjr 52:8298b2a73eb2 241 // individual variable type. The variable formats are
mjr 52:8298b2a73eb2 242 // described in the CONFIGURATION VARIABLES section below.
mjr 52:8298b2a73eb2 243 //
mjr 53:9b2611964afc 244 // 2E. Software build information report.
mjr 53:9b2611964afc 245 // This is requested by sending custom protocol message 65 10 (see below).
mjr 53:9b2611964afc 246 // In response, the device sends one report using this format:
mjr 53:9b2611964afc 247 //
mjr 73:4e8ce0b18915 248 // bytes 0:1 = 0xA000. This has bit pattern 10100 in the high 5 bits
mjr 77:0b96f6867312 249 // (and 10100000 in the high 8 bits) to distinguish it from
mjr 77:0b96f6867312 250 // other report types.
mjr 53:9b2611964afc 251 // bytes 2:5 = Build date. This is returned as a 32-bit integer,
mjr 53:9b2611964afc 252 // little-endian as usual, encoding a decimal value
mjr 53:9b2611964afc 253 // in the format YYYYMMDD giving the date of the build.
mjr 53:9b2611964afc 254 // E.g., Feb 16 2016 is encoded as 20160216 (decimal).
mjr 53:9b2611964afc 255 // bytes 6:9 = Build time. This is a 32-bit integer, little-endian,
mjr 53:9b2611964afc 256 // encoding a decimal value in the format HHMMSS giving
mjr 53:9b2611964afc 257 // build time on a 24-hour clock.
mjr 53:9b2611964afc 258 //
mjr 73:4e8ce0b18915 259 // 2F. Button status report.
mjr 73:4e8ce0b18915 260 // This is requested by sending custom protocol message 65 13 (see below).
mjr 73:4e8ce0b18915 261 // In response, the device sends one report using this format:
mjr 73:4e8ce0b18915 262 //
mjr 77:0b96f6867312 263 // bytes 0:1 = 0xA1. This has bit pattern 10100 in the high 5 bits (and
mjr 77:0b96f6867312 264 // 10100001 in the high 8 bits) to distinguish it from other
mjr 77:0b96f6867312 265 // report types.
mjr 73:4e8ce0b18915 266 // byte 2 = number of button reports
mjr 73:4e8ce0b18915 267 // byte 3 = Physical status of buttons 1-8, 1 bit each. The low-order
mjr 73:4e8ce0b18915 268 // bit (0x01) is button 1. Each bit is 0 if the button is off,
mjr 73:4e8ce0b18915 269 // 1 if on. This reflects the physical status of the button
mjr 73:4e8ce0b18915 270 // input pins, after debouncing but before any logical state
mjr 73:4e8ce0b18915 271 // processing. Pulse mode and shifting have no effect on the
mjr 73:4e8ce0b18915 272 // physical state; this simply indicates whether the button is
mjr 73:4e8ce0b18915 273 // electrically on (shorted to GND) or off (open circuit).
mjr 73:4e8ce0b18915 274 // byte 4 = buttons 9-16
mjr 73:4e8ce0b18915 275 // byte 5 = buttons 17-24
mjr 73:4e8ce0b18915 276 // byte 6 = buttons 25-32
mjr 73:4e8ce0b18915 277 // byte 7 = buttons 33-40
mjr 73:4e8ce0b18915 278 // byte 8 = buttons 41-48
mjr 73:4e8ce0b18915 279 //
mjr 77:0b96f6867312 280 // 2G. IR sensor data report.
mjr 77:0b96f6867312 281 // This is requested by sending custom protocol message 65 12 (see below).
mjr 77:0b96f6867312 282 // That command puts controller in IR learning mode for a short time, during
mjr 77:0b96f6867312 283 // which it monitors the IR sensor and send these special reports to relay the
mjr 77:0b96f6867312 284 // readings. The reports contain the raw data, plus the decoded command code
mjr 77:0b96f6867312 285 // and protocol information if the controller is able to recognize and decode
mjr 77:0b96f6867312 286 // the command.
mjr 52:8298b2a73eb2 287 //
mjr 77:0b96f6867312 288 // bytes 0:1 = 0xA2. This has bit pattern 10100 in the high 5 bits (and
mjr 77:0b96f6867312 289 // 10100010 in the high 8 bits to distinguish it from other
mjr 77:0b96f6867312 290 // report types.
mjr 77:0b96f6867312 291 // byte 2 = number of raw reports that follow
mjr 77:0b96f6867312 292 // bytes 3:4 = first raw report, as a little-endian 16-bit int. The
mjr 77:0b96f6867312 293 // value represents the time of an IR "space" or "mark" in
mjr 77:0b96f6867312 294 // 2us units. The low bit is 0 for a space and 1 for a mark.
mjr 77:0b96f6867312 295 // To recover the time in microseconds, mask our the low bit
mjr 77:0b96f6867312 296 // and multiply the result by 2. Received codes always
mjr 77:0b96f6867312 297 // alternate between spaces and marks. A space is an interval
mjr 77:0b96f6867312 298 // where the IR is off, and a mark is an interval with IR on.
mjr 77:0b96f6867312 299 // If the value is 0xFFFE (after masking out the low bit), it
mjr 77:0b96f6867312 300 // represents a timeout, that is, a time greater than or equal
mjr 77:0b96f6867312 301 // to the maximum that can be represented in this format,
mjr 77:0b96f6867312 302 // which is 131068us. None of the IR codes we can parse have
mjr 77:0b96f6867312 303 // any internal signal component this long, so a timeout value
mjr 77:0b96f6867312 304 // is generally seen only during a gap between codes where
mjr 77:0b96f6867312 305 // nothing is being transmitted.
mjr 77:0b96f6867312 306 // bytes 4:5 = second raw report
mjr 77:0b96f6867312 307 // (etc for remaining reports)
mjr 77:0b96f6867312 308 //
mjr 77:0b96f6867312 309 // If byte 2 is 0x00, it indicates that learning mode has expired without
mjr 77:0b96f6867312 310 // a code being received, so it's the last report sent for the learning
mjr 77:0b96f6867312 311 // session.
mjr 77:0b96f6867312 312 //
mjr 77:0b96f6867312 313 // If byte 2 is 0xFF, it indicates that a code has been successfully
mjr 77:0b96f6867312 314 // learned. The rest of the report contains the learned code instead
mjr 77:0b96f6867312 315 // of the raw data:
mjr 77:0b96f6867312 316 //
mjr 77:0b96f6867312 317 // byte 3 = protocol ID, which is an integer giving an internal code
mjr 77:0b96f6867312 318 // identifying the IR protocol that was recognized for the
mjr 77:0b96f6867312 319 // received data. See IRProtocolID.h for a list of the IDs.
mjr 77:0b96f6867312 320 // byte 4 = bit flags:
mjr 77:0b96f6867312 321 // 0x02 -> the protocol uses "dittos"
mjr 77:0b96f6867312 322 // bytes 5:6:7:8:9:10:11:12 = a little-endian 64-bit int containing
mjr 77:0b96f6867312 323 // the code received. The code is essentially the data payload
mjr 77:0b96f6867312 324 // of the IR packet, after removing bits that are purely
mjr 77:0b96f6867312 325 // structural, such as toggle bits and error correction bits.
mjr 77:0b96f6867312 326 // The mapping between the IR bit stream and our 64-bit is
mjr 77:0b96f6867312 327 // essentially arbitrary and varies by protocol, but it always
mjr 77:0b96f6867312 328 // has round-trip fidelity: using the 64-bit code value +
mjr 77:0b96f6867312 329 // protocol ID + flags to send an IR command will result in
mjr 77:0b96f6867312 330 // the same IR bit sequence being sent, modulo structural bits
mjr 77:0b96f6867312 331 // that need to be updates in the reconstruction (such as toggle
mjr 77:0b96f6867312 332 // bits or sequencing codes).
mjr 77:0b96f6867312 333 //
mjr 77:0b96f6867312 334 //
mjr 77:0b96f6867312 335 // WHY WE USE A HACKY APPROACH TO DIFFERENT REPORT TYPES
mjr 35:e959ffba78fd 336 //
mjr 35:e959ffba78fd 337 // The HID report system was specifically designed to provide a clean,
mjr 35:e959ffba78fd 338 // structured way for devices to describe the data they send to the host.
mjr 35:e959ffba78fd 339 // Our approach isn't clean or structured; it ignores the promises we
mjr 35:e959ffba78fd 340 // make about the contents of our report via the HID Report Descriptor
mjr 35:e959ffba78fd 341 // and stuffs our own different data format into the same structure.
mjr 35:e959ffba78fd 342 //
mjr 77:0b96f6867312 343 // We use this hacky approach only because we can't use the standard USB
mjr 77:0b96f6867312 344 // HID mechanism for varying report types, which is to provide multiple
mjr 77:0b96f6867312 345 // report descriptors and tag each report with a type byte that indicates
mjr 77:0b96f6867312 346 // which descriptor applies. We can't use that standard approach because
mjr 77:0b96f6867312 347 // we want to be 100% LedWiz compatible. The snag is that some Windows
mjr 77:0b96f6867312 348 // LedWiz clients parse the USB HID descriptors as part of identifying a
mjr 77:0b96f6867312 349 // USB HID device as a valid LedWiz unit, and will only recognize the device
mjr 77:0b96f6867312 350 // if certain properties of the HID descriptors match those of a real LedWiz.
mjr 77:0b96f6867312 351 // One of the features that's important to some clients is the descriptor
mjr 77:0b96f6867312 352 // link structure, which is affected by the layout of HID Report Descriptor
mjr 77:0b96f6867312 353 // entries. In order to match the expected layout, we can only define a
mjr 77:0b96f6867312 354 // single kind of output report. Since we have to use Joystick reports for
mjr 77:0b96f6867312 355 // the sake of VP and other pinball software, and we're only allowed the
mjr 77:0b96f6867312 356 // one report type, we have to make that one report type the Joystick type.
mjr 77:0b96f6867312 357 // That's why we overload the joystick reports with other meanings. It's a
mjr 77:0b96f6867312 358 // hack, but at least it's a fairly reliable and isolated hack, in that our
mjr 77:0b96f6867312 359 // special reports are only generated when clients specifically ask for
mjr 77:0b96f6867312 360 // them. Plus, even if a client who doesn't ask for a special report
mjr 77:0b96f6867312 361 // somehow gets one, the worst that happens is that they get a momentary
mjr 77:0b96f6867312 362 // spurious reading from the accelerometer and plunger.
mjr 35:e959ffba78fd 363
mjr 35:e959ffba78fd 364
mjr 35:e959ffba78fd 365
mjr 35:e959ffba78fd 366 // ------- INCOMING MESSAGES (HOST TO DEVICE) -------
mjr 35:e959ffba78fd 367 //
mjr 35:e959ffba78fd 368 // For LedWiz compatibility, our incoming message format conforms to the
mjr 35:e959ffba78fd 369 // basic USB format used by real LedWiz units. This is simply 8 data
mjr 35:e959ffba78fd 370 // bytes, all private vendor-specific values (meaning that the Windows HID
mjr 35:e959ffba78fd 371 // driver treats them as opaque and doesn't attempt to parse them).
mjr 35:e959ffba78fd 372 //
mjr 35:e959ffba78fd 373 // Within this basic 8-byte format, we recognize the full protocol used
mjr 35:e959ffba78fd 374 // by real LedWiz units, plus an extended protocol that we define privately.
mjr 35:e959ffba78fd 375 // The LedWiz protocol leaves a large part of the potential protocol space
mjr 35:e959ffba78fd 376 // undefined, so we take advantage of this undefined region for our
mjr 35:e959ffba78fd 377 // extensions. This ensures that we can properly recognize all messages
mjr 35:e959ffba78fd 378 // intended for a real LedWiz unit, as well as messages from custom host
mjr 35:e959ffba78fd 379 // software that knows it's talking to a Pinscape unit.
mjr 35:e959ffba78fd 380
mjr 35:e959ffba78fd 381 // --- REAL LED WIZ MESSAGES ---
mjr 35:e959ffba78fd 382 //
mjr 74:822a92bc11d2 383 // The real LedWiz protocol has two message types, "SBA" and "PBA". The
mjr 74:822a92bc11d2 384 // message type can be determined from the first byte of the 8-byte message
mjr 74:822a92bc11d2 385 // packet: if the first byte 64 (0x40), it's an SBA message. If the first
mjr 74:822a92bc11d2 386 // byte is 0-49 or 129-132, it's a PBA message. All other byte values are
mjr 74:822a92bc11d2 387 // invalid in the original protocol and have undefined behavior if sent to
mjr 74:822a92bc11d2 388 // a real LedWiz. We take advantage of this to extend the protocol with
mjr 74:822a92bc11d2 389 // our new features by assigning new meanings to byte patterns that have no
mjr 74:822a92bc11d2 390 // meaning in the original protocol.
mjr 35:e959ffba78fd 391 //
mjr 74:822a92bc11d2 392 // "SBA" message: 64 xx xx xx xx ss 00 00
mjr 74:822a92bc11d2 393 // xx = on/off bit mask for 8 outputs
mjr 74:822a92bc11d2 394 // ss = global flash speed setting (valid values 1-7)
mjr 74:822a92bc11d2 395 // 00 = unused/reserved; client should set to zero (not enforced, but
mjr 74:822a92bc11d2 396 // strongly recommended in case of future additions)
mjr 35:e959ffba78fd 397 //
mjr 35:e959ffba78fd 398 // If the first byte has value 64 (0x40), it's an SBA message. This type of
mjr 35:e959ffba78fd 399 // message sets all 32 outputs individually ON or OFF according to the next
mjr 35:e959ffba78fd 400 // 32 bits (4 bytes) of the message, and sets the flash speed to the value in
mjr 74:822a92bc11d2 401 // the sixth byte. The flash speed sets the global cycle rate for flashing
mjr 74:822a92bc11d2 402 // outputs - outputs with their values set to the range 128-132. The speed
mjr 74:822a92bc11d2 403 // parameter is in ad hoc units that aren't documented in the LedWiz API, but
mjr 74:822a92bc11d2 404 // observations of real LedWiz units show that the "speed" is actually the
mjr 74:822a92bc11d2 405 // period, each unit representing 0.25s: so speed 1 is a 0.25s period, or 4Hz,
mjr 74:822a92bc11d2 406 // speed 2 is a 0.5s period or 2Hz, etc., up to speed 7 as a 1.75s period or
mjr 74:822a92bc11d2 407 // 0.57Hz. The period is the full waveform cycle time.
mjr 74:822a92bc11d2 408 //
mjr 35:e959ffba78fd 409 //
mjr 74:822a92bc11d2 410 // "PBA" message: bb bb bb bb bb bb bb bb
mjr 74:822a92bc11d2 411 // bb = brightness level, 0-49 or 128-132
mjr 35:e959ffba78fd 412 //
mjr 74:822a92bc11d2 413 // Note that there's no prefix byte indicating this message type. This
mjr 74:822a92bc11d2 414 // message is indicated simply by the first byte being in one of the valid
mjr 74:822a92bc11d2 415 // ranges.
mjr 74:822a92bc11d2 416 //
mjr 74:822a92bc11d2 417 // Each byte gives the new brightness level or flash pattern for one part.
mjr 74:822a92bc11d2 418 // The valid values are:
mjr 35:e959ffba78fd 419 //
mjr 35:e959ffba78fd 420 // 0-48 = fixed brightness level, linearly from 0% to 100% intensity
mjr 35:e959ffba78fd 421 // 49 = fixed brightness level at 100% intensity (same as 48)
mjr 35:e959ffba78fd 422 // 129 = flashing pattern, fade up / fade down (sawtooth wave)
mjr 35:e959ffba78fd 423 // 130 = flashing pattern, on / off (square wave)
mjr 35:e959ffba78fd 424 // 131 = flashing pattern, on for 50% duty cycle / fade down
mjr 35:e959ffba78fd 425 // 132 = flashing pattern, fade up / on for 50% duty cycle
mjr 35:e959ffba78fd 426 //
mjr 74:822a92bc11d2 427 // This message sets new brightness/flash settings for 8 ports. There's
mjr 74:822a92bc11d2 428 // no port number specified in the message; instead, the port is given by
mjr 74:822a92bc11d2 429 // the protocol state. Specifically, the device has an internal register
mjr 74:822a92bc11d2 430 // containing the base port for PBA messages. On reset AND after any SBA
mjr 74:822a92bc11d2 431 // message is received, the base port is set to 0. After any PBA message
mjr 74:822a92bc11d2 432 // is received and processed, the base port is incremented by 8, resetting
mjr 74:822a92bc11d2 433 // to 0 when it reaches 32. The bytes of the message set the brightness
mjr 74:822a92bc11d2 434 // levels for the base port, base port + 1, ..., base port + 7 respectively.
mjr 35:e959ffba78fd 435 //
mjr 74:822a92bc11d2 436 //
mjr 35:e959ffba78fd 437
mjr 35:e959ffba78fd 438 // --- PRIVATE EXTENDED MESSAGES ---
mjr 35:e959ffba78fd 439 //
mjr 35:e959ffba78fd 440 // All of our extended protocol messages are identified by the first byte:
mjr 35:e959ffba78fd 441 //
mjr 35:e959ffba78fd 442 // 65 -> Miscellaneous control message. The second byte specifies the specific
mjr 35:e959ffba78fd 443 // operation:
mjr 35:e959ffba78fd 444 //
mjr 39:b3815a1c3802 445 // 0 -> No Op - does nothing. (This can be used to send a test message on the
mjr 39:b3815a1c3802 446 // USB endpoint.)
mjr 39:b3815a1c3802 447 //
mjr 35:e959ffba78fd 448 // 1 -> Set device unit number and plunger status, and save the changes immediately
mjr 35:e959ffba78fd 449 // to flash. The device will automatically reboot after the changes are saved.
mjr 35:e959ffba78fd 450 // The additional bytes of the message give the parameters:
mjr 35:e959ffba78fd 451 //
mjr 35:e959ffba78fd 452 // third byte = new unit number (0-15, corresponding to nominal unit numbers 1-16)
mjr 35:e959ffba78fd 453 // fourth byte = plunger on/off (0=disabled, 1=enabled)
mjr 35:e959ffba78fd 454 //
mjr 35:e959ffba78fd 455 // 2 -> Begin plunger calibration mode. The device stays in this mode for about
mjr 35:e959ffba78fd 456 // 15 seconds, and sets the zero point and maximum retraction points to the
mjr 35:e959ffba78fd 457 // observed endpoints of sensor readings while the mode is running. After
mjr 35:e959ffba78fd 458 // the time limit elapses, the device automatically stores the results in
mjr 35:e959ffba78fd 459 // non-volatile flash memory and exits the mode.
mjr 35:e959ffba78fd 460 //
mjr 51:57eb311faafa 461 // 3 -> Send pixel dump. The device sends one complete image snapshot from the
mjr 51:57eb311faafa 462 // plunger sensor, as as series of pixel dump messages. (The message format
mjr 51:57eb311faafa 463 // isn't big enough to allow the whole image to be sent in one message, so
mjr 53:9b2611964afc 464 // the image is broken up into as many messages as necessary.) The device
mjr 53:9b2611964afc 465 // then resumes sending normal joystick messages. If the plunger sensor
mjr 53:9b2611964afc 466 // isn't an imaging type, or no sensor is installed, no pixel messages are
mjr 53:9b2611964afc 467 // sent. Parameters:
mjr 48:058ace2aed1d 468 //
mjr 48:058ace2aed1d 469 // third byte = bit flags:
mjr 51:57eb311faafa 470 // 0x01 = low res mode. The device rescales the sensor pixel array
mjr 51:57eb311faafa 471 // sent in the dump messages to a low-resolution subset. The
mjr 51:57eb311faafa 472 // size of the subset is determined by the device. This has
mjr 51:57eb311faafa 473 // no effect on the sensor operation; it merely reduces the
mjr 51:57eb311faafa 474 // USB transmission time to allow for a faster frame rate for
mjr 51:57eb311faafa 475 // viewing in the config tool.
mjr 35:e959ffba78fd 476 //
mjr 53:9b2611964afc 477 // fourth byte = extra exposure time in 100us (.1ms) increments. For
mjr 53:9b2611964afc 478 // imaging sensors, we'll add this delay to the minimum exposure
mjr 53:9b2611964afc 479 // time. This allows the caller to explicitly adjust the exposure
mjr 53:9b2611964afc 480 // level for calibration purposes.
mjr 53:9b2611964afc 481 //
mjr 35:e959ffba78fd 482 // 4 -> Query configuration. The device sends a special configuration report,
mjr 40:cc0d9814522b 483 // (see above; see also USBJoystick.cpp), then resumes sending normal
mjr 40:cc0d9814522b 484 // joystick reports.
mjr 35:e959ffba78fd 485 //
mjr 74:822a92bc11d2 486 // 5 -> Turn all outputs off and restore LedWiz defaults. Sets all output
mjr 74:822a92bc11d2 487 // ports to OFF and LedWiz brightness/mode setting 48, and sets the LedWiz
mjr 74:822a92bc11d2 488 // global flash speed to 2.
mjr 35:e959ffba78fd 489 //
mjr 35:e959ffba78fd 490 // 6 -> Save configuration to flash. This saves all variable updates sent via
mjr 35:e959ffba78fd 491 // type 66 messages since the last reboot, then automatically reboots the
mjr 35:e959ffba78fd 492 // device to put the changes into effect.
mjr 35:e959ffba78fd 493 //
mjr 53:9b2611964afc 494 // third byte = delay time in seconds. The device will wait this long
mjr 53:9b2611964afc 495 // before disconnecting, to allow the PC to perform any cleanup tasks
mjr 53:9b2611964afc 496 // while the device is still attached (e.g., modifying Windows device
mjr 53:9b2611964afc 497 // driver settings)
mjr 53:9b2611964afc 498 //
mjr 40:cc0d9814522b 499 // 7 -> Query device ID. The device replies with a special device ID report
mjr 40:cc0d9814522b 500 // (see above; see also USBJoystick.cpp), then resumes sending normal
mjr 40:cc0d9814522b 501 // joystick reports.
mjr 40:cc0d9814522b 502 //
mjr 53:9b2611964afc 503 // The third byte of the message is the ID index to retrieve:
mjr 53:9b2611964afc 504 //
mjr 53:9b2611964afc 505 // 1 = CPU ID: returns the KL25Z globally unique CPU ID.
mjr 53:9b2611964afc 506 //
mjr 53:9b2611964afc 507 // 2 = OpenSDA ID: returns the OpenSDA TUID. This must be patched
mjr 53:9b2611964afc 508 // into the firmware by the PC host when the .bin file is
mjr 53:9b2611964afc 509 // installed onto the device. This will return all 'X' bytes
mjr 53:9b2611964afc 510 // if the value wasn't patched at install time.
mjr 53:9b2611964afc 511 //
mjr 40:cc0d9814522b 512 // 8 -> Engage/disengage night mode. The third byte of the message is 1 to
mjr 55:4db125cd11a0 513 // engage night mode, 0 to disengage night mode. The current mode isn't
mjr 55:4db125cd11a0 514 // stored persistently; night mode is always off after a reset.
mjr 40:cc0d9814522b 515 //
mjr 52:8298b2a73eb2 516 // 9 -> Query configuration variable. The second byte is the config variable
mjr 52:8298b2a73eb2 517 // number (see the CONFIGURATION VARIABLES section below). For the array
mjr 52:8298b2a73eb2 518 // variables (button assignments, output ports), the third byte is the
mjr 52:8298b2a73eb2 519 // array index. The device replies with a configuration variable report
mjr 52:8298b2a73eb2 520 // (see above) with the current setting for the requested variable.
mjr 52:8298b2a73eb2 521 //
mjr 53:9b2611964afc 522 // 10 -> Query software build information. No parameters. This replies with
mjr 53:9b2611964afc 523 // the software build information report (see above).
mjr 53:9b2611964afc 524 //
mjr 73:4e8ce0b18915 525 // 11 -> TV ON relay manual control. This allows testing and operating the
mjr 73:4e8ce0b18915 526 // relay from the PC. This doesn't change the power-up configuration;
mjr 73:4e8ce0b18915 527 // it merely allows the relay to be controlled directly.
mjr 73:4e8ce0b18915 528 //
mjr 73:4e8ce0b18915 529 // 0 = turn relay off
mjr 73:4e8ce0b18915 530 // 1 = turn relay on
mjr 73:4e8ce0b18915 531 // 2 = pulse the relay as though the power-on delay timer fired
mjr 73:4e8ce0b18915 532 //
mjr 77:0b96f6867312 533 // 12 -> Learn IR code. The device enters "IR learning mode". While in
mjr 77:0b96f6867312 534 // learning mode, the device reports the raw signals read through
mjr 77:0b96f6867312 535 // the IR sensor to the PC through the special IR learning report
mjr 77:0b96f6867312 536 // (see "2G" above). If a signal can be decoded through a known
mjr 77:0b96f6867312 537 // protocol, the device sends a final "2G" report with the decoded
mjr 77:0b96f6867312 538 // command, then terminates learning mode. If no signal can be
mjr 77:0b96f6867312 539 // decoded within a timeout period, the mode automatically ends,
mjr 77:0b96f6867312 540 // and the device sends a final IR learning report with zero raw
mjr 77:0b96f6867312 541 // signals to indicate termination. After initiating IR learning
mjr 77:0b96f6867312 542 // mode, the user should point the remote control with the key to
mjr 77:0b96f6867312 543 // be learned at the IR sensor on the KL25Z, and press and hold the
mjr 77:0b96f6867312 544 // key on the remote for a few seconds. Holding the key for a few
mjr 77:0b96f6867312 545 // moments is important because it lets the decoder sense the type
mjr 77:0b96f6867312 546 // of auto-repeat coding the remote uses. The learned code can be
mjr 77:0b96f6867312 547 // written to an IR config variable slot to program the controller
mjr 77:0b96f6867312 548 // to send the learned command on events like TV ON or a button
mjr 77:0b96f6867312 549 // press.
mjr 77:0b96f6867312 550 //
mjr 78:1e00b3fa11af 551 // 13 -> Get button status report. The device sends one button status
mjr 78:1e00b3fa11af 552 // report in response (see section "2F" above).
mjr 78:1e00b3fa11af 553 //
mjr 78:1e00b3fa11af 554 // 14 -> Manually center the accelerometer. This sets the accelerometer
mjr 78:1e00b3fa11af 555 // zero point to the running average of readings over the past few
mjr 78:1e00b3fa11af 556 // seconds.
mjr 78:1e00b3fa11af 557 //
mjr 78:1e00b3fa11af 558 // 15 -> Set up ad hoc IR command, part 1. This sets up the first part
mjr 78:1e00b3fa11af 559 // of an IR command to transmit. The device stores the data in an
mjr 78:1e00b3fa11af 560 // internal register for later use in message 65 16. Send the
mjr 78:1e00b3fa11af 561 // remainder of the command data with 65 16.
mjr 78:1e00b3fa11af 562 //
mjr 78:1e00b3fa11af 563 // byte 3 = IR protocol ID
mjr 78:1e00b3fa11af 564 // byte 4 = flags (IRFlagXxx bit flags)
mjr 78:1e00b3fa11af 565 // byte 5-8 = low-order 32 bits of command code, little-endian
mjr 78:1e00b3fa11af 566 //
mjr 78:1e00b3fa11af 567 // 16 -> Finish and send an ad hoc IR command. Use message 65 15 first
mjr 78:1e00b3fa11af 568 // to set up the start of the command data, then send this message
mjr 78:1e00b3fa11af 569 // to fill in the rest of the data and transmit the command. Upon
mjr 78:1e00b3fa11af 570 // receiving this message, the device performs the transmission.
mjr 78:1e00b3fa11af 571 //
mjr 78:1e00b3fa11af 572 // byte 3-6 = high-order 32 bits of command code, little-endian
mjr 78:1e00b3fa11af 573 //
mjr 73:4e8ce0b18915 574 //
mjr 35:e959ffba78fd 575 // 66 -> Set configuration variable. The second byte of the message is the config
mjr 35:e959ffba78fd 576 // variable number, and the remaining bytes give the new value for the variable.
mjr 53:9b2611964afc 577 // The value format is specific to each variable; see the CONFIGURATION VARIABLES
mjr 53:9b2611964afc 578 // section below for a list of the variables and their formats. This command
mjr 53:9b2611964afc 579 // only sets the value in RAM; it doesn't write the value to flash and doesn't
mjr 53:9b2611964afc 580 // put the change into effect. To save the new settings, the host must send a
mjr 53:9b2611964afc 581 // type 65 subtype 6 message (see above). That saves the settings to flash and
mjr 53:9b2611964afc 582 // reboots the device, which makes the new settings active.
mjr 35:e959ffba78fd 583 //
mjr 74:822a92bc11d2 584 // 67 -> "SBX". This is an extended form of the original LedWiz SBA message. This
mjr 74:822a92bc11d2 585 // version is specifically designed to support a replacement LEDWIZ.DLL on the
mjr 74:822a92bc11d2 586 // host that exposes one Pinscape device as multiple virtual LedWiz devices,
mjr 74:822a92bc11d2 587 // in order to give legacy clients access to more than 32 ports. Each virtual
mjr 74:822a92bc11d2 588 // LedWiz represents a block of 32 ports. The format of this message is the
mjr 74:822a92bc11d2 589 // same as for the original SBA, with the addition of one byte:
mjr 74:822a92bc11d2 590 //
mjr 74:822a92bc11d2 591 // 67 xx xx xx xx ss pp 00
mjr 74:822a92bc11d2 592 // xx = on/off switches for 8 ports, one bit per port
mjr 74:822a92bc11d2 593 // ss = global flash speed setting for this bank of ports, 1-7
mjr 74:822a92bc11d2 594 // pp = port group: 0 for ports 1-32, 1 for ports 33-64, etc
mjr 74:822a92bc11d2 595 // 00 = unused/reserved; client should set to zero
mjr 74:822a92bc11d2 596 //
mjr 74:822a92bc11d2 597 // As with SBA, this sets the on/off switch states for a block of 32 ports.
mjr 74:822a92bc11d2 598 // SBA always addresses ports 1-32; SBX can address any set of 32 ports.
mjr 74:822a92bc11d2 599 //
mjr 74:822a92bc11d2 600 // We keep a separate speed setting for each group of 32 ports. The purpose
mjr 74:822a92bc11d2 601 // of the SBX extension is to allow a custom LEDWIZ.DLL to expose multiple
mjr 74:822a92bc11d2 602 // virtual LedWiz units to legacy clients, so clients will expect each unit
mjr 74:822a92bc11d2 603 // to have its separate flash speed setting. Each block of 32 ports maps to
mjr 74:822a92bc11d2 604 // a virtual unit on the client side, so each block needs its own speed state.
mjr 74:822a92bc11d2 605 //
mjr 74:822a92bc11d2 606 // 68 -> "PBX". This is an extended form of the original LedWiz PBA message; it's
mjr 74:822a92bc11d2 607 // the PBA equivalent of our SBX extension above.
mjr 74:822a92bc11d2 608 //
mjr 74:822a92bc11d2 609 // 68 pp ee ee ee ee ee ee
mjr 74:822a92bc11d2 610 // pp = port group: 0 for ports 1-8, 1 for 9-16, etc
mjr 74:822a92bc11d2 611 // qq = sequence number: 0 for the first 8 ports in the group, etc
mjr 74:822a92bc11d2 612 // ee = brightness/flash values, 6 bits per port, packed into the bytes
mjr 74:822a92bc11d2 613 //
mjr 74:822a92bc11d2 614 // The port group 'pp' selects a group of 8 ports. Note that, unlike PBA,
mjr 74:822a92bc11d2 615 // the port group being updated is explicitly coded in the message, which makes
mjr 74:822a92bc11d2 616 // the message stateless. This eliminates any possibility of the client and
mjr 74:822a92bc11d2 617 // host getting out of sync as to which ports they're talking about. This
mjr 74:822a92bc11d2 618 // message doesn't affect the PBA port address state.
mjr 74:822a92bc11d2 619 //
mjr 74:822a92bc11d2 620 // The brightness values are *almost* the same as in PBA, but not quite. We
mjr 74:822a92bc11d2 621 // remap the flashing state values as follows:
mjr 74:822a92bc11d2 622 //
mjr 74:822a92bc11d2 623 // 0-48 = brightness level, 0% to 100%, on a linear scale
mjr 74:822a92bc11d2 624 // 49 = brightness level 100% (redundant with 48)
mjr 74:822a92bc11d2 625 // 60 = PBA 129 equivalent, sawtooth
mjr 74:822a92bc11d2 626 // 61 = PBA 130 equivalent, square wave (on/off)
mjr 74:822a92bc11d2 627 // 62 = PBA 131 equivalent, on/fade down
mjr 74:822a92bc11d2 628 // 63 = PBA 132 equivalent, fade up/on
mjr 74:822a92bc11d2 629 //
mjr 74:822a92bc11d2 630 // We reassign the brightness levels like this because it allows us to pack
mjr 74:822a92bc11d2 631 // every possible value into 6 bits. This allows us to fit 8 port settings
mjr 74:822a92bc11d2 632 // into six bytes. The 6-bit fields are packed into the 8 bytes consecutively
mjr 74:822a92bc11d2 633 // starting with the low-order bit of the first byte. An efficient way to
mjr 74:822a92bc11d2 634 // pack the 'ee' fields given the brightness values is to shift each group of
mjr 74:822a92bc11d2 635 // four bytes into a uint, then shift the uint into three 'ee' bytes:
mjr 74:822a92bc11d2 636 //
mjr 74:822a92bc11d2 637 // unsigned int tmp1 = bri[0] | (bri[1]<<6) | (bri[2]<<12) | (bri[3]<<18);
mjr 74:822a92bc11d2 638 // unsigned int tmp2 = bri[4] | (bri[5]<<6) | (bri[6]<<12) | (bri[7]<<18);
mjr 74:822a92bc11d2 639 // unsigned char port_group = FIRST_PORT_TO_ADDRESS / 8;
mjr 74:822a92bc11d2 640 // unsigned char msg[8] = {
mjr 74:822a92bc11d2 641 // 68, pp,
mjr 74:822a92bc11d2 642 // tmp1 & 0xFF, (tmp1 >> 8) & 0xFF, (tmp1 >> 16) & 0xFF,
mjr 74:822a92bc11d2 643 // tmp2 & 0xFF, (tmp2 >> 8) & 0xFF, (tmp2 >> 16) & 0xFF
mjr 74:822a92bc11d2 644 // };
mjr 74:822a92bc11d2 645 //
mjr 35:e959ffba78fd 646 // 200-228 -> Set extended output brightness. This sets outputs N to N+6 to the
mjr 35:e959ffba78fd 647 // respective brightness values in the 2nd through 8th bytes of the message
mjr 35:e959ffba78fd 648 // (output N is set to the 2nd byte value, N+1 is set to the 3rd byte value,
mjr 35:e959ffba78fd 649 // etc). Each brightness level is a linear brightness level from 0-255,
mjr 35:e959ffba78fd 650 // where 0 is 0% brightness and 255 is 100% brightness. N is calculated as
mjr 35:e959ffba78fd 651 // (first byte - 200)*7 + 1:
mjr 35:e959ffba78fd 652 //
mjr 35:e959ffba78fd 653 // 200 = outputs 1-7
mjr 35:e959ffba78fd 654 // 201 = outputs 8-14
mjr 35:e959ffba78fd 655 // 202 = outputs 15-21
mjr 35:e959ffba78fd 656 // ...
mjr 35:e959ffba78fd 657 // 228 = outputs 197-203
mjr 35:e959ffba78fd 658 //
mjr 53:9b2611964afc 659 // This message is the way to address ports 33 and higher. Original LedWiz
mjr 53:9b2611964afc 660 // protocol messages can't access ports above 32, since the protocol is
mjr 53:9b2611964afc 661 // hard-wired for exactly 32 ports.
mjr 35:e959ffba78fd 662 //
mjr 53:9b2611964afc 663 // Note that the extended output messages differ from regular LedWiz commands
mjr 35:e959ffba78fd 664 // in two ways. First, the brightness is the ONLY attribute when an output is
mjr 53:9b2611964afc 665 // set using this mode. There's no separate ON/OFF state per output as there
mjr 35:e959ffba78fd 666 // is with the SBA/PBA messages. To turn an output OFF with this message, set
mjr 35:e959ffba78fd 667 // the intensity to 0. Setting a non-zero intensity turns it on immediately
mjr 35:e959ffba78fd 668 // without regard to the SBA status for the port. Second, the brightness is
mjr 35:e959ffba78fd 669 // on a full 8-bit scale (0-255) rather than the LedWiz's approximately 5-bit
mjr 35:e959ffba78fd 670 // scale, because there are no parts of the range reserved for flashing modes.
mjr 35:e959ffba78fd 671 //
mjr 35:e959ffba78fd 672 // Outputs 1-32 can be controlled by EITHER the regular LedWiz SBA/PBA messages
mjr 35:e959ffba78fd 673 // or by the extended messages. The latest setting for a given port takes
mjr 35:e959ffba78fd 674 // precedence. If an SBA/PBA message was the last thing sent to a port, the
mjr 35:e959ffba78fd 675 // normal LedWiz combination of ON/OFF and brightness/flash mode status is used
mjr 35:e959ffba78fd 676 // to determine the port's physical output setting. If an extended brightness
mjr 35:e959ffba78fd 677 // message was the last thing sent to a port, the LedWiz ON/OFF status and
mjr 35:e959ffba78fd 678 // flash modes are ignored, and the fixed brightness is set. Outputs 33 and
mjr 35:e959ffba78fd 679 // higher inherently can't be addressed or affected by SBA/PBA messages.
mjr 53:9b2611964afc 680 //
mjr 53:9b2611964afc 681 // (The precedence scheme is designed to accommodate a mix of legacy and DOF
mjr 53:9b2611964afc 682 // software transparently. The behavior described is really just to ensure
mjr 53:9b2611964afc 683 // transparent interoperability; it's not something that host software writers
mjr 53:9b2611964afc 684 // should have to worry about. We expect that anyone writing new software will
mjr 53:9b2611964afc 685 // just use the extended protocol and ignore the old LedWiz commands, since
mjr 53:9b2611964afc 686 // the extended protocol is easier to use and more powerful.)
mjr 35:e959ffba78fd 687
mjr 35:e959ffba78fd 688
mjr 35:e959ffba78fd 689 // ------- CONFIGURATION VARIABLES -------
mjr 35:e959ffba78fd 690 //
mjr 35:e959ffba78fd 691 // Message type 66 (see above) sets one configuration variable. The second byte
mjr 35:e959ffba78fd 692 // of the message is the variable ID, and the rest of the bytes give the new
mjr 35:e959ffba78fd 693 // value, in a variable-specific format. 16-bit values are little endian.
mjr 55:4db125cd11a0 694 // Any bytes at the end of the message not otherwise specified are reserved
mjr 55:4db125cd11a0 695 // for future use and should always be set to 0 in the message data.
mjr 35:e959ffba78fd 696 //
mjr 77:0b96f6867312 697 // Variable IDs:
mjr 77:0b96f6867312 698 //
mjr 53:9b2611964afc 699 // 0 -> QUERY ONLY: Describe the configuration variables. The device
mjr 53:9b2611964afc 700 // sends a config variable query report with the following fields:
mjr 53:9b2611964afc 701 //
mjr 53:9b2611964afc 702 // byte 3 -> number of scalar (non-array) variables (these are
mjr 53:9b2611964afc 703 // numbered sequentially from 1 to N)
mjr 53:9b2611964afc 704 // byte 4 -> number of array variables (these are numbered
mjr 53:9b2611964afc 705 // sequentially from 256-N to 255)
mjr 53:9b2611964afc 706 //
mjr 53:9b2611964afc 707 // The description query is meant to allow the host to capture all
mjr 53:9b2611964afc 708 // configuration settings on the device without having to know what
mjr 53:9b2611964afc 709 // the variables mean or how many there are. This is useful for
mjr 53:9b2611964afc 710 // backing up the settings in a file on the PC, for example, or for
mjr 53:9b2611964afc 711 // capturing them to restore after a firmware update. This allows
mjr 53:9b2611964afc 712 // more flexible interoperability between unsynchronized versions
mjr 53:9b2611964afc 713 // of the firmware and the host software.
mjr 53:9b2611964afc 714 //
mjr 53:9b2611964afc 715 // 1 -> USB device ID. This sets the USB vendor and product ID codes
mjr 53:9b2611964afc 716 // to use when connecting to the PC. For LedWiz emulation, use
mjr 35:e959ffba78fd 717 // vendor 0xFAFA and product 0x00EF + unit# (where unit# is the
mjr 53:9b2611964afc 718 // nominal LedWiz unit number, from 1 to 16). If you have any
mjr 53:9b2611964afc 719 // REAL LedWiz units in your system, we recommend starting the
mjr 53:9b2611964afc 720 // Pinscape LedWiz numbering at 8 to avoid conflicts with the
mjr 53:9b2611964afc 721 // real LedWiz units. If you don't have any real LedWiz units,
mjr 53:9b2611964afc 722 // you can number your Pinscape units starting from 1.
mjr 35:e959ffba78fd 723 //
mjr 53:9b2611964afc 724 // If LedWiz emulation isn't desired or causes host conflicts,
mjr 53:9b2611964afc 725 // use our private ID: Vendor 0x1209, product 0xEAEA. (These IDs
mjr 53:9b2611964afc 726 // are registered with http://pid.codes, a registry for open-source
mjr 53:9b2611964afc 727 // USB devices, so they're guaranteed to be free of conflicts with
mjr 53:9b2611964afc 728 // other properly registered devices). The device will NOT appear
mjr 53:9b2611964afc 729 // as an LedWiz if you use the private ID codes, but DOF (R3 or
mjr 53:9b2611964afc 730 // later) will still recognize it as a Pinscape controller.
mjr 53:9b2611964afc 731 //
mjr 53:9b2611964afc 732 // bytes 3:4 -> USB Vendor ID
mjr 53:9b2611964afc 733 // bytes 5:6 -> USB Product ID
mjr 53:9b2611964afc 734 //
mjr 53:9b2611964afc 735 // 2 -> Pinscape Controller unit number for DOF. The Pinscape unit
mjr 53:9b2611964afc 736 // number is independent of the LedWiz unit number, and indepedent
mjr 53:9b2611964afc 737 // of the USB vendor/product IDs. DOF (R3 and later) uses this to
mjr 53:9b2611964afc 738 // identify the unit for the extended Pinscape functionality.
mjr 53:9b2611964afc 739 // For easiest DOF configuration, we recommend numbering your
mjr 53:9b2611964afc 740 // units sequentially starting at 1 (regardless of whether or not
mjr 53:9b2611964afc 741 // you have any real LedWiz units).
mjr 53:9b2611964afc 742 //
mjr 53:9b2611964afc 743 // byte 3 -> unit number, from 1 to 16
mjr 35:e959ffba78fd 744 //
mjr 55:4db125cd11a0 745 // 3 -> Enable/disable joystick reports.
mjr 55:4db125cd11a0 746 //
mjr 55:4db125cd11a0 747 // byte 2 -> 1 to enable, 0 to disable
mjr 35:e959ffba78fd 748 //
mjr 55:4db125cd11a0 749 // When joystick reports are disabled, the device registers as a generic HID
mjr 55:4db125cd11a0 750 // device, and only sends the private report types used by the Windows config
mjr 55:4db125cd11a0 751 // tool. It won't appear to Windows as a USB game controller or joystick.
mjr 55:4db125cd11a0 752 //
mjr 55:4db125cd11a0 753 // Note that this doesn't affect whether the device also registers a keyboard
mjr 55:4db125cd11a0 754 // interface. A keyboard interface will appear if and only if any buttons
mjr 55:4db125cd11a0 755 // (including virtual buttons, such as the ZB Launch Ball feature) are assigned
mjr 55:4db125cd11a0 756 // to generate keyboard key input.
mjr 55:4db125cd11a0 757 //
mjr 77:0b96f6867312 758 // 4 -> Accelerometer settings
mjr 35:e959ffba78fd 759 //
mjr 55:4db125cd11a0 760 // byte 3 -> orientation:
mjr 55:4db125cd11a0 761 // 0 = ports at front (USB ports pointing towards front of cabinet)
mjr 55:4db125cd11a0 762 // 1 = ports at left
mjr 55:4db125cd11a0 763 // 2 = ports at right
mjr 55:4db125cd11a0 764 // 3 = ports at rear
mjr 77:0b96f6867312 765 // byte 4 -> dynamic range
mjr 78:1e00b3fa11af 766 // 0 = +/- 1G (2G hardware mode, but rescales joystick reports to 1G
mjr 78:1e00b3fa11af 767 // range; compatible with older versions)
mjr 77:0b96f6867312 768 // 1 = +/- 2G (2G hardware mode)
mjr 77:0b96f6867312 769 // 2 = +/- 4G (4G hardware mode)
mjr 77:0b96f6867312 770 // 3 = +/- 8G (8G hardware mode)
mjr 78:1e00b3fa11af 771 // byte 5 -> Auto-centering mode
mjr 78:1e00b3fa11af 772 // 0 = auto-centering on, 5 second timer (default, compatible
mjr 78:1e00b3fa11af 773 // with older versions)
mjr 78:1e00b3fa11af 774 // 1-60 = auto-centering on with the given time in seconds
mjr 78:1e00b3fa11af 775 // 61-245 = reserved
mjr 78:1e00b3fa11af 776 // 255 = auto-centering off; manual centering only
mjr 55:4db125cd11a0 777 //
mjr 55:4db125cd11a0 778 // 5 -> Plunger sensor type.
mjr 35:e959ffba78fd 779 //
mjr 55:4db125cd11a0 780 // byte 3 -> plunger type:
mjr 55:4db125cd11a0 781 // 0 = none (disabled)
mjr 55:4db125cd11a0 782 // 1 = TSL1410R linear image sensor, 1280x1 pixels, serial mode
mjr 55:4db125cd11a0 783 // *2 = TSL1410R, parallel mode
mjr 55:4db125cd11a0 784 // 3 = TSL1412R linear image sensor, 1536x1 pixels, serial mode
mjr 55:4db125cd11a0 785 // *4 = TSL1412R, parallel mode
mjr 55:4db125cd11a0 786 // 5 = Potentiometer with linear taper, or any other device that
mjr 55:4db125cd11a0 787 // represents the position reading with a single analog voltage
mjr 55:4db125cd11a0 788 // *6 = AEDR8300 optical quadrature sensor, 75lpi
mjr 55:4db125cd11a0 789 // *7 = AS5304 magnetic quadrature sensor, 160 steps per 2mm
mjr 55:4db125cd11a0 790 //
mjr 55:4db125cd11a0 791 // * The sensor types marked with asterisks (*) are reserved for types
mjr 55:4db125cd11a0 792 // that aren't currently implemented but could be added in the future.
mjr 55:4db125cd11a0 793 // Selecting these types will effectively disable the plunger.
mjr 55:4db125cd11a0 794 //
mjr 55:4db125cd11a0 795 // 6 -> Plunger pin assignments.
mjr 47:df7a88cd249c 796 //
mjr 55:4db125cd11a0 797 // byte 3 -> pin assignment 1
mjr 55:4db125cd11a0 798 // byte 4 -> pin assignment 2
mjr 55:4db125cd11a0 799 // byte 5 -> pin assignment 3
mjr 55:4db125cd11a0 800 // byte 6 -> pin assignment 4
mjr 55:4db125cd11a0 801 //
mjr 55:4db125cd11a0 802 // All of the pins use the standard GPIO port format (see "GPIO pin number
mjr 55:4db125cd11a0 803 // mappings" below). The actual use of the four pins depends on the plunger
mjr 55:4db125cd11a0 804 // type, as shown below. "NC" means that the pin isn't used at all for the
mjr 55:4db125cd11a0 805 // corresponding plunger type.
mjr 35:e959ffba78fd 806 //
mjr 55:4db125cd11a0 807 // Plunger Type Pin 1 Pin 2 Pin 3 Pin 4
mjr 35:e959ffba78fd 808 //
mjr 55:4db125cd11a0 809 // TSL1410R/1412R, serial SI (DigitalOut) CLK (DigitalOut) AO (AnalogIn) NC
mjr 55:4db125cd11a0 810 // TSL1410R/1412R, parallel SI (DigitalOut) CLK (DigitalOut) AO1 (AnalogIn) AO2 (AnalogIn)
mjr 55:4db125cd11a0 811 // Potentiometer AO (AnalogIn) NC NC NC
mjr 55:4db125cd11a0 812 // AEDR8300 A (InterruptIn) B (InterruptIn) NC NC
mjr 55:4db125cd11a0 813 // AS5304 A (InterruptIn) B (InterruptIn) NC NC
mjr 55:4db125cd11a0 814 //
mjr 55:4db125cd11a0 815 // 7 -> Plunger calibration button pin assignments.
mjr 35:e959ffba78fd 816 //
mjr 55:4db125cd11a0 817 // byte 3 -> features enabled/disabled: bit mask consisting of:
mjr 55:4db125cd11a0 818 // 0x01 button input is enabled
mjr 55:4db125cd11a0 819 // 0x02 lamp output is enabled
mjr 55:4db125cd11a0 820 // byte 4 -> DigitalIn pin for the button switch
mjr 55:4db125cd11a0 821 // byte 5 -> DigitalOut pin for the indicator lamp
mjr 55:4db125cd11a0 822 //
mjr 55:4db125cd11a0 823 // Note that setting a pin to NC (Not Connected) will disable it even if the
mjr 55:4db125cd11a0 824 // corresponding feature enable bit (in byte 3) is set.
mjr 35:e959ffba78fd 825 //
mjr 55:4db125cd11a0 826 // 8 -> ZB Launch Ball setup. This configures the ZB Launch Ball feature.
mjr 55:4db125cd11a0 827 //
mjr 55:4db125cd11a0 828 // byte 3 -> LedWiz port number (1-255) mapped to "ZB Launch Ball" in DOF
mjr 55:4db125cd11a0 829 // byte 4 -> key type
mjr 55:4db125cd11a0 830 // byte 5 -> key code
mjr 55:4db125cd11a0 831 // bytes 6:7 -> "push" distance, in 1/1000 inch increments (16 bit little endian)
mjr 55:4db125cd11a0 832 //
mjr 55:4db125cd11a0 833 // Set the port number to 0 to disable the feature. The key type and key code
mjr 55:4db125cd11a0 834 // fields use the same conventions as for a button mapping (see below). The
mjr 55:4db125cd11a0 835 // recommended push distance is 63, which represents .063" ~ 1/16".
mjr 35:e959ffba78fd 836 //
mjr 35:e959ffba78fd 837 // 9 -> TV ON relay setup. This requires external circuitry implemented on the
mjr 35:e959ffba78fd 838 // Expansion Board (or an equivalent circuit as described in the Build Guide).
mjr 55:4db125cd11a0 839 //
mjr 55:4db125cd11a0 840 // byte 3 -> "power status" input pin (DigitalIn)
mjr 55:4db125cd11a0 841 // byte 4 -> "latch" output (DigitalOut)
mjr 55:4db125cd11a0 842 // byte 5 -> relay trigger output (DigitalOut)
mjr 55:4db125cd11a0 843 // bytes 6:7 -> delay time in 10ms increments (16 bit little endian);
mjr 55:4db125cd11a0 844 // e.g., 550 (0x26 0x02) represents 5.5 seconds
mjr 55:4db125cd11a0 845 //
mjr 55:4db125cd11a0 846 // Set the delay time to 0 to disable the feature. The pin assignments will
mjr 55:4db125cd11a0 847 // be ignored if the feature is disabled.
mjr 35:e959ffba78fd 848 //
mjr 77:0b96f6867312 849 // If an IR remote control transmitter is installed (see variable 17), we'll
mjr 77:0b96f6867312 850 // also transmit any IR codes designated as TV ON codes when the startup timer
mjr 77:0b96f6867312 851 // finishes. This allows TVs to be turned on via IR remotes codes rather than
mjr 77:0b96f6867312 852 // hard-wiring them through the relay. The relay can be omitted in this case.
mjr 77:0b96f6867312 853 //
mjr 35:e959ffba78fd 854 // 10 -> TLC5940NT setup. This chip is an external PWM controller, with 32 outputs
mjr 35:e959ffba78fd 855 // per chip and a serial data interface that allows the chips to be daisy-
mjr 35:e959ffba78fd 856 // chained. We can use these chips to add an arbitrary number of PWM output
mjr 55:4db125cd11a0 857 // ports for the LedWiz emulation.
mjr 55:4db125cd11a0 858 //
mjr 35:e959ffba78fd 859 // byte 3 = number of chips attached (connected in daisy chain)
mjr 35:e959ffba78fd 860 // byte 4 = SIN pin - Serial data (must connect to SPIO MOSI -> PTC6 or PTD2)
mjr 35:e959ffba78fd 861 // byte 5 = SCLK pin - Serial clock (must connect to SPIO SCLK -> PTC5 or PTD1)
mjr 35:e959ffba78fd 862 // byte 6 = XLAT pin - XLAT (latch) signal (any GPIO pin)
mjr 35:e959ffba78fd 863 // byte 7 = BLANK pin - BLANK signal (any GPIO pin)
mjr 35:e959ffba78fd 864 // byte 8 = GSCLK pin - Grayscale clock signal (must be a PWM-out capable pin)
mjr 35:e959ffba78fd 865 //
mjr 55:4db125cd11a0 866 // Set the number of chips to 0 to disable the feature. The pin assignments are
mjr 55:4db125cd11a0 867 // ignored if the feature is disabled.
mjr 55:4db125cd11a0 868 //
mjr 35:e959ffba78fd 869 // 11 -> 74HC595 setup. This chip is an external shift register, with 8 outputs per
mjr 35:e959ffba78fd 870 // chip and a serial data interface that allows daisy-chaining. We use this
mjr 35:e959ffba78fd 871 // chips to add extra digital outputs for the LedWiz emulation. In particular,
mjr 35:e959ffba78fd 872 // the Chime Board (part of the Expansion Board suite) uses these to add timer-
mjr 55:4db125cd11a0 873 // protected outputs for coil devices (knockers, chimes, bells, etc).
mjr 55:4db125cd11a0 874 //
mjr 35:e959ffba78fd 875 // byte 3 = number of chips attached (connected in daisy chain)
mjr 35:e959ffba78fd 876 // byte 4 = SIN pin - Serial data (any GPIO pin)
mjr 35:e959ffba78fd 877 // byte 5 = SCLK pin - Serial clock (any GPIO pin)
mjr 35:e959ffba78fd 878 // byte 6 = LATCH pin - LATCH signal (any GPIO pin)
mjr 35:e959ffba78fd 879 // byte 7 = ENA pin - ENABLE signal (any GPIO pin)
mjr 35:e959ffba78fd 880 //
mjr 55:4db125cd11a0 881 // Set the number of chips to 0 to disable the feature. The pin assignments are
mjr 55:4db125cd11a0 882 // ignored if the feature is disabled.
mjr 55:4db125cd11a0 883 //
mjr 53:9b2611964afc 884 // 12 -> Disconnect reboot timeout. The reboot timeout allows the controller software
mjr 51:57eb311faafa 885 // to automatically reboot the KL25Z after it detects that the USB connection is
mjr 51:57eb311faafa 886 // broken. On some hosts, the device isn't able to reconnect after the initial
mjr 51:57eb311faafa 887 // connection is lost. The reboot timeout is a workaround for these cases. When
mjr 51:57eb311faafa 888 // the software detects that the connection is no longer active, it will reboot
mjr 51:57eb311faafa 889 // the KL25Z automatically if a new connection isn't established within the
mjr 55:4db125cd11a0 890 // timeout period. Set the timeout to 0 to disable the feature (i.e., the device
mjr 55:4db125cd11a0 891 // will never automatically reboot itself on a broken connection).
mjr 55:4db125cd11a0 892 //
mjr 55:4db125cd11a0 893 // byte 3 -> reboot timeout in seconds; 0 = disabled
mjr 51:57eb311faafa 894 //
mjr 53:9b2611964afc 895 // 13 -> Plunger calibration. In most cases, the calibration is set internally by the
mjr 52:8298b2a73eb2 896 // device by running the calibration procedure. However, it's sometimes useful
mjr 52:8298b2a73eb2 897 // for the host to be able to get and set the calibration, such as to back up
mjr 52:8298b2a73eb2 898 // the device settings on the PC, or to save and restore the current settings
mjr 52:8298b2a73eb2 899 // when installing a software update.
mjr 52:8298b2a73eb2 900 //
mjr 52:8298b2a73eb2 901 // bytes 3:4 = rest position (unsigned 16-bit little-endian)
mjr 52:8298b2a73eb2 902 // bytes 5:6 = maximum retraction point (unsigned 16-bit little-endian)
mjr 52:8298b2a73eb2 903 // byte 7 = measured plunger release travel time in milliseconds
mjr 52:8298b2a73eb2 904 //
mjr 53:9b2611964afc 905 // 14 -> Expansion board configuration. This doesn't affect the controller behavior
mjr 52:8298b2a73eb2 906 // directly; the individual options related to the expansion boards (such as
mjr 52:8298b2a73eb2 907 // the TLC5940 and 74HC595 setup) still need to be set separately. This is
mjr 52:8298b2a73eb2 908 // stored so that the PC config UI can store and recover the information to
mjr 52:8298b2a73eb2 909 // present in the UI. For the "classic" KL25Z-only configuration, simply set
mjr 52:8298b2a73eb2 910 // all of the fields to zero.
mjr 52:8298b2a73eb2 911 //
mjr 53:9b2611964afc 912 // byte 3 = board set type. At the moment, the Pinscape expansion boards
mjr 53:9b2611964afc 913 // are the only ones supported in the software. This allows for
mjr 53:9b2611964afc 914 // adding new designs or independent designs in the future.
mjr 53:9b2611964afc 915 // 0 = Standalone KL25Z (no expansion boards)
mjr 53:9b2611964afc 916 // 1 = Pinscape expansion boards
mjr 53:9b2611964afc 917 //
mjr 53:9b2611964afc 918 // byte 4 = board set interface revision. This *isn't* the version number
mjr 53:9b2611964afc 919 // of the board itself, but rather of its software interface. In
mjr 53:9b2611964afc 920 // other words, this doesn't change every time the EAGLE layout
mjr 53:9b2611964afc 921 // for the board changes. It only changes when a revision is made
mjr 53:9b2611964afc 922 // that affects the software, such as a GPIO pin assignment.
mjr 53:9b2611964afc 923 //
mjr 55:4db125cd11a0 924 // For Pinscape expansion boards (board set type = 1):
mjr 55:4db125cd11a0 925 // 0 = first release (Feb 2016)
mjr 53:9b2611964afc 926 //
mjr 55:4db125cd11a0 927 // bytes 5:8 = additional hardware-specific data. These slots are used
mjr 55:4db125cd11a0 928 // to store extra data specific to the expansion boards selected.
mjr 55:4db125cd11a0 929 //
mjr 55:4db125cd11a0 930 // For Pinscape expansion boards (board set type = 1):
mjr 55:4db125cd11a0 931 // byte 5 = number of main interface boards
mjr 55:4db125cd11a0 932 // byte 6 = number of MOSFET power boards
mjr 55:4db125cd11a0 933 // byte 7 = number of chime boards
mjr 53:9b2611964afc 934 //
mjr 53:9b2611964afc 935 // 15 -> Night mode setup.
mjr 53:9b2611964afc 936 //
mjr 53:9b2611964afc 937 // byte 3 = button number - 1..MAX_BUTTONS, or 0 for none. This selects
mjr 53:9b2611964afc 938 // a physically wired button that can be used to control night mode.
mjr 53:9b2611964afc 939 // The button can also be used as normal for PC input if desired.
mjr 55:4db125cd11a0 940 // Note that night mode can still be activated via a USB command
mjr 55:4db125cd11a0 941 // even if no button is assigned.
mjr 55:4db125cd11a0 942 //
mjr 53:9b2611964afc 943 // byte 4 = flags:
mjr 66:2e3583fbd2f4 944 //
mjr 66:2e3583fbd2f4 945 // 0x01 -> The wired input is an on/off switch: night mode will be
mjr 53:9b2611964afc 946 // active when the input is switched on. If this bit isn't
mjr 66:2e3583fbd2f4 947 // set, the input is a momentary button: pushing the button
mjr 53:9b2611964afc 948 // toggles night mode.
mjr 55:4db125cd11a0 949 //
mjr 66:2e3583fbd2f4 950 // 0x02 -> Night Mode is assigned to the SHIFTED button (see Shift
mjr 66:2e3583fbd2f4 951 // Button setup at variable 16). This can only be used
mjr 66:2e3583fbd2f4 952 // in momentary mode; it's ignored if flag bit 0x01 is set.
mjr 66:2e3583fbd2f4 953 // When the shift flag is set, the button only toggles
mjr 66:2e3583fbd2f4 954 // night mode when you press it while also holding down
mjr 66:2e3583fbd2f4 955 // the Shift button.
mjr 66:2e3583fbd2f4 956 //
mjr 53:9b2611964afc 957 // byte 5 = indicator output number - 1..MAX_OUT_PORTS, or 0 for none. This
mjr 53:9b2611964afc 958 // selects an output port that will be turned on when night mode is
mjr 53:9b2611964afc 959 // activated. Night mode activation overrides any setting made by
mjr 53:9b2611964afc 960 // the host.
mjr 53:9b2611964afc 961 //
mjr 66:2e3583fbd2f4 962 // 16 -> Shift Button setup. One button can be designated as a "Local Shift
mjr 66:2e3583fbd2f4 963 // Button" that can be pressed to select a secondary meaning for other
mjr 78:1e00b3fa11af 964 // buttons. This isn't the same as the PC keyboard Shift keys; those can
mjr 66:2e3583fbd2f4 965 // be programmed using the USB key codes for Left Shift and Right Shift.
mjr 66:2e3583fbd2f4 966 // Rather, this applies a LOCAL shift feature in the cabinet button that
mjr 66:2e3583fbd2f4 967 // lets you select a secondary meaning. For example, you could assign
mjr 66:2e3583fbd2f4 968 // the Start button to the "1" key (VP "Start Game") normally, but have
mjr 66:2e3583fbd2f4 969 // its meaning change to the "5" key ("Insert Coin") when the shift
mjr 66:2e3583fbd2f4 970 // button is pressed. This provides access to more control functions
mjr 66:2e3583fbd2f4 971 // without adding more physical buttons.
mjr 66:2e3583fbd2f4 972 //
mjr 78:1e00b3fa11af 973 // byte 3 = button number - 1..MAX_BUTTONS, or 0 for none
mjr 78:1e00b3fa11af 974 // byte 4 = mode (default is 0):
mjr 66:2e3583fbd2f4 975 //
mjr 78:1e00b3fa11af 976 // 0 -> Shift OR Key mode. In this mode, the Shift button doesn't
mjr 78:1e00b3fa11af 977 // send its assigned key or IR command when initially pressed.
mjr 78:1e00b3fa11af 978 // Instead, we wait to see if another button is pressed while
mjr 78:1e00b3fa11af 979 // the Shift button is held down. If so, this Shift button
mjr 78:1e00b3fa11af 980 // press ONLY counts as the Shift function, and its own assigned
mjr 78:1e00b3fa11af 981 // key is NOT sent to the PC. On the other hand, if you press
mjr 78:1e00b3fa11af 982 // the Shift button and then release it without having pressed
mjr 78:1e00b3fa11af 983 // any other key in the meantime, this press counts as a regular
mjr 78:1e00b3fa11af 984 // key press, so we send the assigned key to the PC.
mjr 78:1e00b3fa11af 985 //
mjr 78:1e00b3fa11af 986 // 1 -> Shift AND Key mode. In this mode, the Shift button sends its
mjr 78:1e00b3fa11af 987 // assigned key when pressed, just like a normal button. If you
mjr 78:1e00b3fa11af 988 // press another button while the Shift key is pressed, the
mjr 78:1e00b3fa11af 989 // shifted meaning of the other key is used.
mjr 66:2e3583fbd2f4 990 //
mjr 77:0b96f6867312 991 // 17 -> IR Remote Control physical device setup. We support IR remotes for
mjr 77:0b96f6867312 992 // both sending and receiving. On the receive side, we can read from a
mjr 77:0b96f6867312 993 // sensor such as a TSOP384xx. The sensor requires one GPIO pin with
mjr 77:0b96f6867312 994 // interrupt support, so any PTAxx or PTDxx pin will work. On the send
mjr 77:0b96f6867312 995 // side, we can transmit through any IR LED. This requires one PWM
mjr 77:0b96f6867312 996 // output pin. To enable send and/or receive, specify a valid pin; to
mjr 77:0b96f6867312 997 // disable, set the pin NC (not connected). Send and receive can be
mjr 77:0b96f6867312 998 // enabled and disabled independently; it's not necessary to enable
mjr 77:0b96f6867312 999 // the transmit function to use the receive function, or vice versa.
mjr 77:0b96f6867312 1000 //
mjr 77:0b96f6867312 1001 // byte 3 = receiver input GPIO pin ID. Must be interrupt-capable.
mjr 77:0b96f6867312 1002 // byte 4 = transmitter pin. Must be PWM-capable.
mjr 77:0b96f6867312 1003 //
mjr 53:9b2611964afc 1004 //
mjr 74:822a92bc11d2 1005 // SPECIAL DIAGNOSTICS VARIABLES: These work like the array variables below,
mjr 74:822a92bc11d2 1006 // the only difference being that we don't report these in the number of array
mjr 74:822a92bc11d2 1007 // variables reported in the "variable 0" query.
mjr 74:822a92bc11d2 1008 //
mjr 74:822a92bc11d2 1009 // 220 -> Performance/diagnostics variables. Items marked "read only" can't
mjr 74:822a92bc11d2 1010 // be written; any SET VARIABLE messages on these are ignored. Items
mjr 74:822a92bc11d2 1011 // marked "diagnostic only" refer to counters or statistics that are
mjr 74:822a92bc11d2 1012 // collected only when the diagnostics are enabled via the diags.h
mjr 74:822a92bc11d2 1013 // macro ENABLE_DIAGNOSTICS. These will simply return zero otherwise.
mjr 74:822a92bc11d2 1014 //
mjr 74:822a92bc11d2 1015 // byte 3 = diagnostic index (see below)
mjr 74:822a92bc11d2 1016 //
mjr 74:822a92bc11d2 1017 // Diagnostic index values:
mjr 74:822a92bc11d2 1018 //
mjr 74:822a92bc11d2 1019 // 1 -> Main loop cycle time [read only, diagnostic only]
mjr 74:822a92bc11d2 1020 // Retrieves the average time of one iteration of the main
mjr 74:822a92bc11d2 1021 // loop, in microseconds, as a uint32. This excludes the
mjr 74:822a92bc11d2 1022 // time spent processing incoming messages, as well as any
mjr 74:822a92bc11d2 1023 // time spent waiting for a dropped USB connection to be
mjr 74:822a92bc11d2 1024 // restored. This includes all subroutine time and polled
mjr 74:822a92bc11d2 1025 // task time, such as processing button and plunger input,
mjr 74:822a92bc11d2 1026 // sending USB joystick reports, etc.
mjr 74:822a92bc11d2 1027 //
mjr 74:822a92bc11d2 1028 // 2 -> Main loop message read time [read only, diagnostic only]
mjr 74:822a92bc11d2 1029 // Retrieves the average time spent processing incoming USB
mjr 74:822a92bc11d2 1030 // messages per iteration of the main loop, in microseconds,
mjr 74:822a92bc11d2 1031 // as a uint32. This only counts the processing time when
mjr 74:822a92bc11d2 1032 // messages are actually present, so the average isn't reduced
mjr 74:822a92bc11d2 1033 // by iterations of the main loop where no messages are found.
mjr 74:822a92bc11d2 1034 // That is, if we run a million iterations of the main loop,
mjr 74:822a92bc11d2 1035 // and only five of them have messages at all, the average time
mjr 74:822a92bc11d2 1036 // includes only those five cycles with messages to process.
mjr 74:822a92bc11d2 1037 //
mjr 74:822a92bc11d2 1038 // 3 -> PWM update polling time [read only, diagnostic only]
mjr 74:822a92bc11d2 1039 // Retrieves the average time, as a uint32 in microseconds,
mjr 74:822a92bc11d2 1040 // spent in the PWM update polling routine.
mjr 74:822a92bc11d2 1041 //
mjr 74:822a92bc11d2 1042 // 4 -> LedWiz update polling time [read only, diagnostic only]
mjr 74:822a92bc11d2 1043 // Retrieves the average time, as a uint32 in microseconds,
mjr 74:822a92bc11d2 1044 // units, spent in the LedWiz flash cycle update routine.
mjr 74:822a92bc11d2 1045 //
mjr 74:822a92bc11d2 1046 //
mjr 53:9b2611964afc 1047 // ARRAY VARIABLES: Each variable below is an array. For each get/set message,
mjr 53:9b2611964afc 1048 // byte 3 gives the array index. These are grouped at the top end of the variable
mjr 53:9b2611964afc 1049 // ID range to distinguish this special feature. On QUERY, set the index byte to 0
mjr 53:9b2611964afc 1050 // to query the number of slots; the reply will be a report for the array index
mjr 53:9b2611964afc 1051 // variable with index 0, with the first (and only) byte after that indicating
mjr 53:9b2611964afc 1052 // the maximum array index.
mjr 53:9b2611964afc 1053 //
mjr 77:0b96f6867312 1054 // 250 -> IR remote control commands - code part 2. This stores the high-order
mjr 77:0b96f6867312 1055 // 32 bits of the remote control for each slot. These are combined with
mjr 77:0b96f6867312 1056 // the low-order 32 bits from variable 251 below to form a 64-bit code.
mjr 77:0b96f6867312 1057 //
mjr 77:0b96f6867312 1058 // byte 3 = Command slot number (1..MAX_IR_CODES)
mjr 77:0b96f6867312 1059 // byte 4 = bits 32..39 of remote control command code
mjr 77:0b96f6867312 1060 // byte 5 = bits 40..47
mjr 77:0b96f6867312 1061 // byte 6 = bits 48..55
mjr 77:0b96f6867312 1062 // byte 7 = bits 56..63
mjr 77:0b96f6867312 1063 //
mjr 77:0b96f6867312 1064 // 251 -> IR remote control commands - code part 1. This stores the protocol
mjr 77:0b96f6867312 1065 // identifier and low-order 32 bits of the remote control code for each
mjr 77:0b96f6867312 1066 // remote control command slot. The code represents a key press on a
mjr 77:0b96f6867312 1067 // remote, and is usually determined by reading it from the device's
mjr 77:0b96f6867312 1068 // actual remote via the IR sensor input feature. These codes combine
mjr 77:0b96f6867312 1069 // with variable 250 above to form a 64-bit code for each slot.
mjr 77:0b96f6867312 1070 // See IRRemote/IRProtocolID.h for the protocol ID codes.
mjr 77:0b96f6867312 1071 //
mjr 77:0b96f6867312 1072 // byte 3 = Command slot number (1..MAX_IR_CODES)
mjr 77:0b96f6867312 1073 // byte 4 = protocol ID
mjr 77:0b96f6867312 1074 // byte 5 = bits 0..7 of remote control command code
mjr 77:0b96f6867312 1075 // byte 6 = bits 8..15
mjr 77:0b96f6867312 1076 // byte 7 = bits 16..23
mjr 77:0b96f6867312 1077 // byte 8 = bits 24..31
mjr 77:0b96f6867312 1078 //
mjr 77:0b96f6867312 1079 // 252 -> IR remote control commands - control information. This stores
mjr 77:0b96f6867312 1080 // descriptive information for each remote control command slot.
mjr 77:0b96f6867312 1081 // The IR code for each slot is stored in the corresponding array
mjr 77:0b96f6867312 1082 // entry in variables 251 & 250 above; the information is split over
mjr 77:0b96f6867312 1083 // several variables like this because of the 8-byte command message
mjr 77:0b96f6867312 1084 // size in our USB protocol (which we use for LedWiz compatibility).
mjr 77:0b96f6867312 1085 //
mjr 77:0b96f6867312 1086 // byte 3 = Command slot number (1..MAX_IR_CODES)
mjr 77:0b96f6867312 1087 // byte 4 = bit flags:
mjr 77:0b96f6867312 1088 // 0x01 -> send this code as a TV ON signal at system start
mjr 77:0b96f6867312 1089 // 0x02 -> use "ditto" codes when sending the command
mjr 77:0b96f6867312 1090 // byte 5 = key type; same as the key type in an input button variable
mjr 77:0b96f6867312 1091 // byte 6 = key code; same as the key code in an input button variable
mjr 77:0b96f6867312 1092 //
mjr 77:0b96f6867312 1093 // Each IR command slot can serve three purposes:
mjr 77:0b96f6867312 1094 //
mjr 77:0b96f6867312 1095 // - First, it can be used as part of the TV ON sequence when the
mjr 77:0b96f6867312 1096 // system powers up, to turn on cabinet TVs that don't power up by
mjr 77:0b96f6867312 1097 // themselves. To use this feature, set the TV ON bit in the flags.
mjr 77:0b96f6867312 1098 //
mjr 77:0b96f6867312 1099 // - Second, when the IR sensor receives a command in a given slot, we
mjr 77:0b96f6867312 1100 // can translate it into a keyboard key or joystick button press sent
mjr 77:0b96f6867312 1101 // to the PC. This lets you use any IR remote to send commands to the
mjr 77:0b96f6867312 1102 // PC, allowing access to additional control inputs without any extra
mjr 77:0b96f6867312 1103 // buttons on the cabinet. To use this feature, assign the key to
mjr 77:0b96f6867312 1104 // send in the key type and key code bytes.
mjr 77:0b96f6867312 1105 //
mjr 77:0b96f6867312 1106 // - Third, we can send a given IR command when a physical cabinet
mjr 77:0b96f6867312 1107 // button is pressed. This lets you use cabinet buttons to send IR
mjr 77:0b96f6867312 1108 // commands to other devices in your system. For example, you could
mjr 77:0b96f6867312 1109 // assign cabinet buttons to control the volume on a cab TV. To use
mjr 77:0b96f6867312 1110 // this feature, assign an IR slot as a button function in the button
mjr 77:0b96f6867312 1111 // setup.
mjr 77:0b96f6867312 1112 //
mjr 66:2e3583fbd2f4 1113 // 253 -> Extended input button setup. This adds on to the information set by
mjr 66:2e3583fbd2f4 1114 // variable 254 below, accessing additional fields. The "shifted" key
mjr 66:2e3583fbd2f4 1115 // type and code fields assign a secondary meaning to the button that's
mjr 66:2e3583fbd2f4 1116 // used when the local Shift button is being held down. See variable 16
mjr 66:2e3583fbd2f4 1117 // above for more details on the Shift button.
mjr 66:2e3583fbd2f4 1118 //
mjr 77:0b96f6867312 1119 // byte 3 = Button number (1..MAX_BUTTONS)
mjr 66:2e3583fbd2f4 1120 // byte 4 = shifted key type (same codes as "key type" in var 254)
mjr 77:0b96f6867312 1121 // byte 5 = shifted key code (same codes as "key code" in var 254)
mjr 77:0b96f6867312 1122 // byte 6 = shifted IR command (see "IR command" in var 254)
mjr 66:2e3583fbd2f4 1123 //
mjr 53:9b2611964afc 1124 // 254 -> Input button setup. This sets up one button; it can be repeated for each
mjr 64:ef7ca92dff36 1125 // button to be configured. There are MAX_EXT_BUTTONS button slots (see
mjr 64:ef7ca92dff36 1126 // config.h for the constant definition), numbered 1..MAX_EXT_BUTTONS. Each
mjr 53:9b2611964afc 1127 // slot can be configured as a joystick button, a regular keyboard key, or a
mjr 53:9b2611964afc 1128 // media control key (mute, volume up, volume down).
mjr 53:9b2611964afc 1129 //
mjr 53:9b2611964afc 1130 // The bytes of the message are:
mjr 66:2e3583fbd2f4 1131 // byte 3 = Button number (1..MAX_BUTTONS)
mjr 64:ef7ca92dff36 1132 // byte 4 = GPIO pin for the button input; mapped as a DigitalIn port
mjr 53:9b2611964afc 1133 // byte 5 = key type reported to PC when button is pushed:
mjr 53:9b2611964afc 1134 // 0 = none (no PC input reported when button pushed)
mjr 53:9b2611964afc 1135 // 1 = joystick button -> byte 6 is the button number, 1-32
mjr 53:9b2611964afc 1136 // 2 = regular keyboard key -> byte 6 is the USB key code (see below)
mjr 67:c39e66c4e000 1137 // 3 = media key -> byte 6 is the USB media control code (see below)
mjr 53:9b2611964afc 1138 // byte 6 = key code, which depends on the key type in byte 5
mjr 53:9b2611964afc 1139 // byte 7 = flags - a combination of these bit values:
mjr 53:9b2611964afc 1140 // 0x01 = pulse mode. This reports a physical on/off switch's state
mjr 53:9b2611964afc 1141 // to the host as a brief key press whenever the switch changes
mjr 53:9b2611964afc 1142 // state. This is useful for the VPinMAME Coin Door button,
mjr 53:9b2611964afc 1143 // which requires the End key to be pressed each time the
mjr 53:9b2611964afc 1144 // door changes state.
mjr 77:0b96f6867312 1145 // byte 8 = IR command to transmit when unshifted button is pressed. This
mjr 77:0b96f6867312 1146 // contains an IR slot number (1..MAX_IR_CODES), or 0 if no code
mjr 77:0b96f6867312 1147 // is associated with the button.
mjr 53:9b2611964afc 1148 //
mjr 53:9b2611964afc 1149 // 255 -> LedWiz output port setup. This sets up one output port; it can be repeated
mjr 53:9b2611964afc 1150 // for each port to be configured. There are 128 possible slots for output ports,
mjr 53:9b2611964afc 1151 // numbered 1 to 128. The number of ports atcually active is determined by
mjr 53:9b2611964afc 1152 // the first DISABLED port (type 0). For example, if ports 1-32 are set as GPIO
mjr 53:9b2611964afc 1153 // outputs and port 33 is disabled, we'll report to the host that we have 32 ports,
mjr 53:9b2611964afc 1154 // regardless of the settings for post 34 and higher.
mjr 53:9b2611964afc 1155 //
mjr 53:9b2611964afc 1156 // The bytes of the message are:
mjr 53:9b2611964afc 1157 // byte 3 = LedWiz port number (1 to MAX_OUT_PORTS)
mjr 53:9b2611964afc 1158 // byte 4 = physical output type:
mjr 53:9b2611964afc 1159 // 0 = Disabled. This output isn't used, and isn't visible to the
mjr 53:9b2611964afc 1160 // LedWiz/DOF software on the host. The FIRST disabled port
mjr 53:9b2611964afc 1161 // determines the number of ports visible to the host - ALL ports
mjr 53:9b2611964afc 1162 // after the first disabled port are also implicitly disabled.
mjr 53:9b2611964afc 1163 // 1 = GPIO PWM output: connected to GPIO pin specified in byte 5,
mjr 53:9b2611964afc 1164 // operating in PWM mode. Note that only a subset of KL25Z GPIO
mjr 53:9b2611964afc 1165 // ports are PWM-capable.
mjr 53:9b2611964afc 1166 // 2 = GPIO Digital output: connected to GPIO pin specified in byte 5,
mjr 53:9b2611964afc 1167 // operating in digital mode. Digital ports can only be set ON
mjr 53:9b2611964afc 1168 // or OFF, with no brightness/intensity control. All pins can be
mjr 53:9b2611964afc 1169 // used in this mode.
mjr 53:9b2611964afc 1170 // 3 = TLC5940 port: connected to TLC5940 output port number specified
mjr 53:9b2611964afc 1171 // in byte 5. Ports are numbered sequentially starting from port 0
mjr 53:9b2611964afc 1172 // for the first output (OUT0) on the first chip in the daisy chain.
mjr 53:9b2611964afc 1173 // 4 = 74HC595 port: connected to 74HC595 output port specified in byte 5.
mjr 53:9b2611964afc 1174 // As with the TLC5940 outputs, ports are numbered sequentially from 0
mjr 53:9b2611964afc 1175 // for the first output on the first chip in the daisy chain.
mjr 53:9b2611964afc 1176 // 5 = Virtual output: this output port exists for the purposes of the
mjr 53:9b2611964afc 1177 // LedWiz/DOF software on the host, but isn't physically connected
mjr 53:9b2611964afc 1178 // to any output device. This can be used to create a virtual output
mjr 53:9b2611964afc 1179 // for the DOF ZB Launch Ball signal, for example, or simply as a
mjr 53:9b2611964afc 1180 // placeholder in the LedWiz port numbering. The physical output ID
mjr 53:9b2611964afc 1181 // (byte 5) is ignored for this port type.
mjr 53:9b2611964afc 1182 // byte 5 = physical output port, interpreted according to the value in byte 4
mjr 53:9b2611964afc 1183 // byte 6 = flags: a combination of these bit values:
mjr 53:9b2611964afc 1184 // 0x01 = active-high output (0V on output turns attached device ON)
mjr 53:9b2611964afc 1185 // 0x02 = noisemaker device: disable this output when "night mode" is engaged
mjr 53:9b2611964afc 1186 // 0x04 = apply gamma correction to this output
mjr 53:9b2611964afc 1187 //
mjr 53:9b2611964afc 1188 // Note that the on-board LED segments can be used as LedWiz output ports. This
mjr 53:9b2611964afc 1189 // is useful for testing a new installation with DOF or other PC software without
mjr 53:9b2611964afc 1190 // having to connect any external devices. Assigning the on-board LED segments to
mjr 53:9b2611964afc 1191 // output ports overrides their normal status/diagnostic display use, so the normal
mjr 53:9b2611964afc 1192 // status flash pattern won't appear when they're used this way.
mjr 52:8298b2a73eb2 1193 //
mjr 35:e959ffba78fd 1194
mjr 35:e959ffba78fd 1195
mjr 55:4db125cd11a0 1196 // --- GPIO PIN NUMBER MAPPINGS ---
mjr 35:e959ffba78fd 1197 //
mjr 53:9b2611964afc 1198 // In USB messages that specify GPIO pin assignments, pins are identified by
mjr 53:9b2611964afc 1199 // 8-bit integers. The special value 0xFF means NC (not connected). All actual
mjr 53:9b2611964afc 1200 // pins are mapped with the port number in the top 3 bits and the pin number in
mjr 53:9b2611964afc 1201 // the bottom 5 bits. Port A=0, B=1, ..., E=4. For example, PTC7 is port C (2)
mjr 53:9b2611964afc 1202 // pin 7, so it's represented as (2 << 5) | 7.
mjr 53:9b2611964afc 1203
mjr 35:e959ffba78fd 1204
mjr 35:e959ffba78fd 1205 // --- USB KEYBOARD SCAN CODES ---
mjr 35:e959ffba78fd 1206 //
mjr 53:9b2611964afc 1207 // For regular keyboard keys, we use the standard USB HID scan codes
mjr 53:9b2611964afc 1208 // for the US keyboard layout. The scan codes are defined by the USB
mjr 53:9b2611964afc 1209 // HID specifications; you can find a full list in the official USB
mjr 53:9b2611964afc 1210 // specs. Some common codes are listed below as a quick reference.
mjr 35:e959ffba78fd 1211 //
mjr 53:9b2611964afc 1212 // Key name -> USB scan code (hex)
mjr 53:9b2611964afc 1213 // A-Z -> 04-1D
mjr 53:9b2611964afc 1214 // top row 1!->0) -> 1E-27
mjr 53:9b2611964afc 1215 // Return -> 28
mjr 53:9b2611964afc 1216 // Escape -> 29
mjr 53:9b2611964afc 1217 // Backspace -> 2A
mjr 53:9b2611964afc 1218 // Tab -> 2B
mjr 53:9b2611964afc 1219 // Spacebar -> 2C
mjr 53:9b2611964afc 1220 // -_ -> 2D
mjr 53:9b2611964afc 1221 // =+ -> 2E
mjr 53:9b2611964afc 1222 // [{ -> 2F
mjr 53:9b2611964afc 1223 // ]} -> 30
mjr 53:9b2611964afc 1224 // \| -> 31
mjr 53:9b2611964afc 1225 // ;: -> 33
mjr 53:9b2611964afc 1226 // '" -> 34
mjr 53:9b2611964afc 1227 // `~ -> 35
mjr 53:9b2611964afc 1228 // ,< -> 36
mjr 53:9b2611964afc 1229 // .> -> 37
mjr 53:9b2611964afc 1230 // /? -> 38
mjr 53:9b2611964afc 1231 // Caps Lock -> 39
mjr 53:9b2611964afc 1232 // F1-F12 -> 3A-45
mjr 53:9b2611964afc 1233 // F13-F24 -> 68-73
mjr 53:9b2611964afc 1234 // Print Screen -> 46
mjr 53:9b2611964afc 1235 // Scroll Lock -> 47
mjr 53:9b2611964afc 1236 // Pause -> 48
mjr 53:9b2611964afc 1237 // Insert -> 49
mjr 53:9b2611964afc 1238 // Home -> 4A
mjr 53:9b2611964afc 1239 // Page Up -> 4B
mjr 53:9b2611964afc 1240 // Del -> 4C
mjr 53:9b2611964afc 1241 // End -> 4D
mjr 53:9b2611964afc 1242 // Page Down -> 4E
mjr 53:9b2611964afc 1243 // Right Arrow -> 4F
mjr 53:9b2611964afc 1244 // Left Arrow -> 50
mjr 53:9b2611964afc 1245 // Down Arrow -> 51
mjr 53:9b2611964afc 1246 // Up Arrow -> 52
mjr 53:9b2611964afc 1247 // Num Lock/Clear -> 53
mjr 53:9b2611964afc 1248 // Keypad / * - + -> 54 55 56 57
mjr 53:9b2611964afc 1249 // Keypad Enter -> 58
mjr 53:9b2611964afc 1250 // Keypad 1-9 -> 59-61
mjr 53:9b2611964afc 1251 // Keypad 0 -> 62
mjr 53:9b2611964afc 1252 // Keypad . -> 63
mjr 53:9b2611964afc 1253 // Mute -> 7F
mjr 53:9b2611964afc 1254 // Volume Up -> 80
mjr 53:9b2611964afc 1255 // Volume Down -> 81
mjr 53:9b2611964afc 1256 // Left Control -> E0
mjr 53:9b2611964afc 1257 // Left Shift -> E1
mjr 53:9b2611964afc 1258 // Left Alt -> E2
mjr 53:9b2611964afc 1259 // Left GUI -> E3
mjr 53:9b2611964afc 1260 // Right Control -> E4
mjr 53:9b2611964afc 1261 // Right Shift -> E5
mjr 53:9b2611964afc 1262 // Right Alt -> E6
mjr 53:9b2611964afc 1263 // Right GUI -> E7
mjr 53:9b2611964afc 1264 //
mjr 66:2e3583fbd2f4 1265 // Due to limitations in Windows, there's a limit of 6 regular keys
mjr 66:2e3583fbd2f4 1266 // pressed at the same time. The shift keys in the E0-E7 range don't
mjr 66:2e3583fbd2f4 1267 // count against this limit, though, since they're encoded as modifier
mjr 66:2e3583fbd2f4 1268 // keys; all of these can be pressed at the same time in addition to 6
mjr 67:c39e66c4e000 1269 // regular keys.
mjr 67:c39e66c4e000 1270
mjr 67:c39e66c4e000 1271 // --- USB MEDIA CONTROL SCAN CODES ---
mjr 67:c39e66c4e000 1272 //
mjr 67:c39e66c4e000 1273 // Buttons mapped to type 3 are Media Control buttons. These select
mjr 67:c39e66c4e000 1274 // a small set of common media control functions. We recognize the
mjr 67:c39e66c4e000 1275 // following type codes only:
mjr 67:c39e66c4e000 1276 //
mjr 67:c39e66c4e000 1277 // Mute -> E2
mjr 67:c39e66c4e000 1278 // Volume up -> E9
mjr 67:c39e66c4e000 1279 // Volume Down -> EA
mjr 67:c39e66c4e000 1280 // Next Track -> B5
mjr 67:c39e66c4e000 1281 // Previous Track -> B6
mjr 67:c39e66c4e000 1282 // Stop -> B7
mjr 67:c39e66c4e000 1283 // Play/Pause -> CD