Mirror with some correction

Dependencies:   mbed FastIO FastPWM USBDevice

Committer:
mjr
Date:
Fri Mar 17 22:02:08 2017 +0000
Revision:
77:0b96f6867312
Parent:
75:677892300e7a
Child:
78:1e00b3fa11af
New memory pool management; keeping old ones as #ifdefs for now for reference.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 35:e959ffba78fd 1 // USB Message Protocol
mjr 35:e959ffba78fd 2 //
mjr 74:822a92bc11d2 3 // This file is purely for documentation, to describe our USB protocol
mjr 74:822a92bc11d2 4 // for incoming messages (host to device). We use the standard HID setup
mjr 74:822a92bc11d2 5 // with one endpoint in each direction. See USBJoystick.cpp and .h for
mjr 74:822a92bc11d2 6 // the USB descriptors.
mjr 74:822a92bc11d2 7 //
mjr 74:822a92bc11d2 8 // Our incoming message protocol is an extended version of the protocol
mjr 74:822a92bc11d2 9 // used by the LedWiz. Our protocol is designed to be 100% backwards
mjr 74:822a92bc11d2 10 // compatible with clients using the original LedWiz wire protocol, as long
mjr 74:822a92bc11d2 11 // as they only send well-formed messages in the original protocol. The
mjr 74:822a92bc11d2 12 // "well-formed" part is an important condition, because our extensions to
mjr 74:822a92bc11d2 13 // the original protocol all consist of messages that aren't defined in the
mjr 74:822a92bc11d2 14 // original protocol and are meaningless to a real LedWiz.
mjr 35:e959ffba78fd 15 //
mjr 74:822a92bc11d2 16 // The protocol compatibility ensures that all original LedWiz clients can
mjr 74:822a92bc11d2 17 // also transparently access a Pinscape unit. Clients will simply think the
mjr 74:822a92bc11d2 18 // Pinscape unit is an LedWiz, thus they'll be able to operate 32 of our
mjr 74:822a92bc11d2 19 // ports. We designate the first 32 ports (ports 1-32) as the ones accessible
mjr 74:822a92bc11d2 20 // through the LedWiz protocol.
mjr 74:822a92bc11d2 21 //
mjr 74:822a92bc11d2 22 // In addition the wire-level protocol compatibility, we can provide legacy
mjr 74:822a92bc11d2 23 // LedWiz clients with access to more than 32 ports by emulating multiple
mjr 74:822a92bc11d2 24 // virtual LedWiz units. We can't do this across the wire protocol, since
mjr 74:822a92bc11d2 25 // the KL25Z USB interface constrains us to a single VID/PID (which is how
mjr 74:822a92bc11d2 26 // LedWiz clients distinguish units). However, virtuall all legacy LedWiz
mjr 74:822a92bc11d2 27 // clients access the device through a shared library, LEDWIZ.DLL, rather
mjr 74:822a92bc11d2 28 // than directly through USB. LEDWIZ.DLL is distributed by the LedWiz's
mjr 74:822a92bc11d2 29 // manufacturer and has a published client interface. We can thus provide
mjr 74:822a92bc11d2 30 // a replacement DLL that contains the logic needed to recognize a Pinscape
mjr 74:822a92bc11d2 31 // unit and represent it to clients as multiple LedWiz devices. This allows
mjr 74:822a92bc11d2 32 // old clients to access our full complement of ports without any changes
mjr 74:822a92bc11d2 33 // to the clients. We define some extended message types (SBX and PBX)
mjr 74:822a92bc11d2 34 // specifically to support this DLL feature.
mjr 74:822a92bc11d2 35 //
mjr 74:822a92bc11d2 36
mjr 35:e959ffba78fd 37
mjr 35:e959ffba78fd 38 // ------ OUTGOING MESSAGES (DEVICE TO HOST) ------
mjr 35:e959ffba78fd 39 //
mjr 47:df7a88cd249c 40 // General note: 16-bit and 32-bit fields in our reports are little-endian
mjr 47:df7a88cd249c 41 // unless otherwise specified.
mjr 47:df7a88cd249c 42 //
mjr 39:b3815a1c3802 43 // 1. Joystick reports
mjr 35:e959ffba78fd 44 // In most cases, our outgoing messages are HID joystick reports, using the
mjr 35:e959ffba78fd 45 // format defined in USBJoystick.cpp. This allows us to be installed on
mjr 35:e959ffba78fd 46 // Windows as a standard USB joystick, which all versions of Windows support
mjr 35:e959ffba78fd 47 // using in-the-box drivers. This allows a completely transparent, driverless,
mjr 39:b3815a1c3802 48 // plug-and-play installation experience on Windows. Our joystick report
mjr 39:b3815a1c3802 49 // looks like this (see USBJoystick.cpp for the formal HID report descriptor):
mjr 35:e959ffba78fd 50 //
mjr 55:4db125cd11a0 51 // ss status bits:
mjr 55:4db125cd11a0 52 // 0x01 -> plunger enabled
mjr 55:4db125cd11a0 53 // 0x02 -> night mode engaged
mjr 73:4e8ce0b18915 54 // 0x04,0x08,0x10 -> power sense status: meaningful only when
mjr 73:4e8ce0b18915 55 // the TV-on timer is used. Figure (ss>>2) & 0x07 to
mjr 73:4e8ce0b18915 56 // isolate the status bits. The resulting value is:
mjr 73:4e8ce0b18915 57 // 1 -> latch was on at last check
mjr 73:4e8ce0b18915 58 // 2 -> latch was off at last check, SET pin high
mjr 73:4e8ce0b18915 59 // 3 -> latch off, SET pin low, ready to check status
mjr 73:4e8ce0b18915 60 // 4 -> TV timer countdown in progress
mjr 73:4e8ce0b18915 61 // 5 -> TV relay is on
mjr 77:0b96f6867312 62 // 6 -> sending IR signals designated as TV ON signals
mjr 77:0b96f6867312 63 // 0x20 -> IR learning mode in progress
mjr 40:cc0d9814522b 64 // 00 2nd byte of status (reserved)
mjr 40:cc0d9814522b 65 // 00 3rd byte of status (reserved)
mjr 39:b3815a1c3802 66 // 00 always zero for joystick reports
mjr 40:cc0d9814522b 67 // bb joystick buttons, low byte (buttons 1-8, 1 bit per button)
mjr 40:cc0d9814522b 68 // bb joystick buttons, 2nd byte (buttons 9-16)
mjr 40:cc0d9814522b 69 // bb joystick buttons, 3rd byte (buttons 17-24)
mjr 40:cc0d9814522b 70 // bb joystick buttons, high byte (buttons 25-32)
mjr 39:b3815a1c3802 71 // xx low byte of X position = nudge/accelerometer X axis
mjr 39:b3815a1c3802 72 // xx high byte of X position
mjr 39:b3815a1c3802 73 // yy low byte of Y position = nudge/accelerometer Y axis
mjr 39:b3815a1c3802 74 // yy high byte of Y position
mjr 39:b3815a1c3802 75 // zz low byte of Z position = plunger position
mjr 39:b3815a1c3802 76 // zz high byte of Z position
mjr 39:b3815a1c3802 77 //
mjr 39:b3815a1c3802 78 // The X, Y, and Z values are 16-bit signed integers. The accelerometer
mjr 39:b3815a1c3802 79 // values are on an abstract scale, where 0 represents no acceleration,
mjr 39:b3815a1c3802 80 // negative maximum represents -1g on that axis, and positive maximum
mjr 39:b3815a1c3802 81 // represents +1g on that axis. For the plunger position, 0 is the park
mjr 39:b3815a1c3802 82 // position (the rest position of the plunger) and positive values represent
mjr 39:b3815a1c3802 83 // retracted (pulled back) positions. A negative value means that the plunger
mjr 39:b3815a1c3802 84 // is pushed forward of the park position.
mjr 39:b3815a1c3802 85 //
mjr 39:b3815a1c3802 86 // 2. Special reports
mjr 35:e959ffba78fd 87 // We subvert the joystick report format in certain cases to report other
mjr 35:e959ffba78fd 88 // types of information, when specifically requested by the host. This allows
mjr 35:e959ffba78fd 89 // our custom configuration UI on the Windows side to query additional
mjr 35:e959ffba78fd 90 // information that we don't normally send via the joystick reports. We
mjr 35:e959ffba78fd 91 // define a custom vendor-specific "status" field in the reports that we
mjr 35:e959ffba78fd 92 // use to identify these special reports, as described below.
mjr 35:e959ffba78fd 93 //
mjr 39:b3815a1c3802 94 // Normal joystick reports always have 0 in the high bit of the 2nd byte
mjr 35:e959ffba78fd 95 // of the report. Special non-joystick reports always have 1 in the high bit
mjr 35:e959ffba78fd 96 // of the first byte. (This byte is defined in the HID Report Descriptor
mjr 35:e959ffba78fd 97 // as an opaque vendor-defined value, so the joystick interface on the
mjr 35:e959ffba78fd 98 // Windows side simply ignores it.)
mjr 35:e959ffba78fd 99 //
mjr 52:8298b2a73eb2 100 // 2A. Plunger sensor status report
mjr 52:8298b2a73eb2 101 // Software on the PC can request a detailed status report from the plunger
mjr 52:8298b2a73eb2 102 // sensor. The status information is meant as an aid to installing and
mjr 52:8298b2a73eb2 103 // adjusting the sensor device for proper performance. For imaging sensor
mjr 52:8298b2a73eb2 104 // types, the status report includes a complete current image snapshot
mjr 52:8298b2a73eb2 105 // (an array of all of the pixels the sensor is currently imaging). For
mjr 52:8298b2a73eb2 106 // all sensor types, it includes the current plunger position registered
mjr 52:8298b2a73eb2 107 // on the sensor, and some timing information.
mjr 52:8298b2a73eb2 108 //
mjr 52:8298b2a73eb2 109 // To request the sensor status, the host sends custom protocol message 65 3
mjr 52:8298b2a73eb2 110 // (see below). The device replies with a message in this format:
mjr 52:8298b2a73eb2 111 //
mjr 52:8298b2a73eb2 112 // bytes 0:1 = 0x87FF
mjr 52:8298b2a73eb2 113 // byte 2 = 0 -> first (currently only) status report packet
mjr 52:8298b2a73eb2 114 // (additional packets could be added in the future if
mjr 52:8298b2a73eb2 115 // more fields need to be added)
mjr 52:8298b2a73eb2 116 // bytes 3:4 = number of pixels to be sent in following messages, as
mjr 52:8298b2a73eb2 117 // an unsigned 16-bit little-endian integer. This is 0 if
mjr 52:8298b2a73eb2 118 // the sensor isn't an imaging type.
mjr 52:8298b2a73eb2 119 // bytes 5:6 = current plunger position registered on the sensor.
mjr 52:8298b2a73eb2 120 // For imaging sensors, this is the pixel position, so it's
mjr 52:8298b2a73eb2 121 // scaled from 0 to number of pixels - 1. For non-imaging
mjr 52:8298b2a73eb2 122 // sensors, this uses the generic joystick scale 0..4095.
mjr 52:8298b2a73eb2 123 // The special value 0xFFFF means that the position couldn't
mjr 52:8298b2a73eb2 124 // be determined,
mjr 52:8298b2a73eb2 125 // byte 7 = bit flags:
mjr 52:8298b2a73eb2 126 // 0x01 = normal orientation detected
mjr 52:8298b2a73eb2 127 // 0x02 = reversed orientation detected
mjr 52:8298b2a73eb2 128 // 0x04 = calibration mode is active (no pixel packets
mjr 52:8298b2a73eb2 129 // are sent for this reading)
mjr 52:8298b2a73eb2 130 // bytes 8:9:10 = average time for each sensor read, in 10us units.
mjr 52:8298b2a73eb2 131 // This is the average time it takes to complete the I/O
mjr 52:8298b2a73eb2 132 // operation to read the sensor, to obtain the raw sensor
mjr 52:8298b2a73eb2 133 // data for instantaneous plunger position reading. For
mjr 52:8298b2a73eb2 134 // an imaging sensor, this is the time it takes for the
mjr 52:8298b2a73eb2 135 // sensor to capture the image and transfer it to the
mjr 52:8298b2a73eb2 136 // microcontroller. For an analog sensor (e.g., an LVDT
mjr 52:8298b2a73eb2 137 // or potentiometer), it's the time to complete an ADC
mjr 52:8298b2a73eb2 138 // sample.
mjr 52:8298b2a73eb2 139 // bytes 11:12:13 = time it took to process the current frame, in 10us
mjr 52:8298b2a73eb2 140 // units. This is the software processing time that was
mjr 52:8298b2a73eb2 141 // needed to analyze the raw data read from the sensor.
mjr 52:8298b2a73eb2 142 // This is typically only non-zero for imaging sensors,
mjr 52:8298b2a73eb2 143 // where it reflects the time required to scan the pixel
mjr 52:8298b2a73eb2 144 // array to find the indicated plunger position. The time
mjr 52:8298b2a73eb2 145 // is usually zero or negligible for analog sensor types,
mjr 52:8298b2a73eb2 146 // since the only "analysis" is a multiplication to rescale
mjr 52:8298b2a73eb2 147 // the ADC sample.
mjr 52:8298b2a73eb2 148 //
mjr 52:8298b2a73eb2 149 // If the sensor is an imaging sensor type, this will be followed by a
mjr 52:8298b2a73eb2 150 // series of pixel messages. The imaging sensor types have too many pixels
mjr 52:8298b2a73eb2 151 // to send in a single USB transaction, so the device breaks up the array
mjr 52:8298b2a73eb2 152 // into as many packets as needed and sends them in sequence. For non-
mjr 52:8298b2a73eb2 153 // imaging sensors, the "number of pixels" field in the lead packet is
mjr 52:8298b2a73eb2 154 // zero, so obviously no pixel packets will follow. If the "calibration
mjr 52:8298b2a73eb2 155 // active" bit in the flags byte is set, no pixel packets are sent even
mjr 52:8298b2a73eb2 156 // if the sensor is an imaging type, since the transmission time for the
mjr 52:8298b2a73eb2 157 // pixels would intefere with the calibration process. If pixels are sent,
mjr 52:8298b2a73eb2 158 // they're sent in order starting at the first pixel. The format of each
mjr 52:8298b2a73eb2 159 // pixel packet is:
mjr 35:e959ffba78fd 160 //
mjr 35:e959ffba78fd 161 // bytes 0:1 = 11-bit index, with high 5 bits set to 10000. For
mjr 48:058ace2aed1d 162 // example, 0x8004 (encoded little endian as 0x04 0x80)
mjr 48:058ace2aed1d 163 // indicates index 4. This is the starting pixel number
mjr 48:058ace2aed1d 164 // in the report. The first report will be 0x00 0x80 to
mjr 48:058ace2aed1d 165 // indicate pixel #0.
mjr 47:df7a88cd249c 166 // bytes 2 = 8-bit unsigned int brightness level of pixel at index
mjr 47:df7a88cd249c 167 // bytes 3 = brightness of pixel at index+1
mjr 35:e959ffba78fd 168 // etc for the rest of the packet
mjr 35:e959ffba78fd 169 //
mjr 52:8298b2a73eb2 170 // Note that we currently only support one-dimensional imaging sensors
mjr 52:8298b2a73eb2 171 // (i.e., pixel arrays that are 1 pixel wide). The report format doesn't
mjr 52:8298b2a73eb2 172 // have any provision for a two-dimensional layout. The KL25Z probably
mjr 52:8298b2a73eb2 173 // isn't powerful enough to do real-time image analysis on a 2D image
mjr 52:8298b2a73eb2 174 // anyway, so it's unlikely that we'd be able to make 2D sensors work at
mjr 52:8298b2a73eb2 175 // all, but if we ever add such a thing we'll have to upgrade the report
mjr 52:8298b2a73eb2 176 // format here accordingly.
mjr 51:57eb311faafa 177 //
mjr 51:57eb311faafa 178 //
mjr 53:9b2611964afc 179 // 2B. Configuration report.
mjr 39:b3815a1c3802 180 // This is requested by sending custom protocol message 65 4 (see below).
mjr 39:b3815a1c3802 181 // In reponse, the device sends one report to the host using this format:
mjr 35:e959ffba78fd 182 //
mjr 35:e959ffba78fd 183 // bytes 0:1 = 0x8800. This has the bit pattern 10001 in the high
mjr 35:e959ffba78fd 184 // 5 bits, which distinguishes it from regular joystick
mjr 40:cc0d9814522b 185 // reports and from other special report types.
mjr 74:822a92bc11d2 186 // bytes 2:3 = total number of configured outputs, little endian. This
mjr 74:822a92bc11d2 187 // is the number of outputs with assigned functions in the
mjr 74:822a92bc11d2 188 // active configuration.
mjr 75:677892300e7a 189 // byte 4 = Pinscape unit number (0-15), little endian
mjr 75:677892300e7a 190 // byte 5 = reserved (currently always zero)
mjr 40:cc0d9814522b 191 // bytes 6:7 = plunger calibration zero point, little endian
mjr 40:cc0d9814522b 192 // bytes 8:9 = plunger calibration maximum point, little endian
mjr 52:8298b2a73eb2 193 // byte 10 = plunger calibration release time, in milliseconds
mjr 52:8298b2a73eb2 194 // byte 11 = bit flags:
mjr 40:cc0d9814522b 195 // 0x01 -> configuration loaded; 0 in this bit means that
mjr 40:cc0d9814522b 196 // the firmware has been loaded but no configuration
mjr 40:cc0d9814522b 197 // has been sent from the host
mjr 74:822a92bc11d2 198 // 0x02 -> SBX/PBX extension features: 1 in this bit means
mjr 74:822a92bc11d2 199 // that these features are present in this version.
mjr 73:4e8ce0b18915 200 // bytes 12:13 = available RAM, in bytes, little endian. This is the amount
mjr 73:4e8ce0b18915 201 // of unused heap (malloc'able) memory. The firmware generally
mjr 73:4e8ce0b18915 202 // allocates all of the dynamic memory it needs during startup,
mjr 73:4e8ce0b18915 203 // so the free memory figure doesn't tend to fluctuate during
mjr 73:4e8ce0b18915 204 // normal operation. The dynamic memory used is a function of
mjr 73:4e8ce0b18915 205 // the set of features enabled.
mjr 35:e959ffba78fd 206 //
mjr 53:9b2611964afc 207 // 2C. Device ID report.
mjr 40:cc0d9814522b 208 // This is requested by sending custom protocol message 65 7 (see below).
mjr 40:cc0d9814522b 209 // In response, the device sends one report to the host using this format:
mjr 40:cc0d9814522b 210 //
mjr 52:8298b2a73eb2 211 // bytes 0:1 = 0x9000. This has bit pattern 10010 in the high 5 bits
mjr 52:8298b2a73eb2 212 // to distinguish this from other report types.
mjr 53:9b2611964afc 213 // byte 2 = ID type. This is the same ID type sent in the request.
mjr 53:9b2611964afc 214 // bytes 3-12 = requested ID. The ID is 80 bits in big-endian byte
mjr 53:9b2611964afc 215 // order. For IDs longer than 80 bits, we truncate to the
mjr 53:9b2611964afc 216 // low-order 80 bits (that is, the last 80 bits).
mjr 53:9b2611964afc 217 //
mjr 53:9b2611964afc 218 // ID type 1 = CPU ID. This is the globally unique CPU ID
mjr 53:9b2611964afc 219 // stored in the KL25Z CPU.
mjr 35:e959ffba78fd 220 //
mjr 53:9b2611964afc 221 // ID type 2 = OpenSDA ID. This is the globally unique ID
mjr 53:9b2611964afc 222 // for the connected OpenSDA controller, if known. This
mjr 53:9b2611964afc 223 // allow the host to figure out which USB MSD (virtual
mjr 53:9b2611964afc 224 // disk drive), if any, represents the OpenSDA module for
mjr 53:9b2611964afc 225 // this Pinscape USB interface. This is primarily useful
mjr 53:9b2611964afc 226 // to determine which MSD to write in order to update the
mjr 53:9b2611964afc 227 // firmware on a given Pinscape unit.
mjr 53:9b2611964afc 228 //
mjr 53:9b2611964afc 229 // 2D. Configuration variable report.
mjr 52:8298b2a73eb2 230 // This is requested by sending custom protocol message 65 9 (see below).
mjr 52:8298b2a73eb2 231 // In response, the device sends one report to the host using this format:
mjr 52:8298b2a73eb2 232 //
mjr 52:8298b2a73eb2 233 // bytes 0:1 = 0x9800. This has bit pattern 10011 in the high 5 bits
mjr 52:8298b2a73eb2 234 // to distinguish this from other report types.
mjr 52:8298b2a73eb2 235 // byte 2 = Variable ID. This is the same variable ID sent in the
mjr 52:8298b2a73eb2 236 // query message, to relate the reply to the request.
mjr 52:8298b2a73eb2 237 // bytes 3-8 = Current value of the variable, in the format for the
mjr 52:8298b2a73eb2 238 // individual variable type. The variable formats are
mjr 52:8298b2a73eb2 239 // described in the CONFIGURATION VARIABLES section below.
mjr 52:8298b2a73eb2 240 //
mjr 53:9b2611964afc 241 // 2E. Software build information report.
mjr 53:9b2611964afc 242 // This is requested by sending custom protocol message 65 10 (see below).
mjr 53:9b2611964afc 243 // In response, the device sends one report using this format:
mjr 53:9b2611964afc 244 //
mjr 73:4e8ce0b18915 245 // bytes 0:1 = 0xA000. This has bit pattern 10100 in the high 5 bits
mjr 77:0b96f6867312 246 // (and 10100000 in the high 8 bits) to distinguish it from
mjr 77:0b96f6867312 247 // other report types.
mjr 53:9b2611964afc 248 // bytes 2:5 = Build date. This is returned as a 32-bit integer,
mjr 53:9b2611964afc 249 // little-endian as usual, encoding a decimal value
mjr 53:9b2611964afc 250 // in the format YYYYMMDD giving the date of the build.
mjr 53:9b2611964afc 251 // E.g., Feb 16 2016 is encoded as 20160216 (decimal).
mjr 53:9b2611964afc 252 // bytes 6:9 = Build time. This is a 32-bit integer, little-endian,
mjr 53:9b2611964afc 253 // encoding a decimal value in the format HHMMSS giving
mjr 53:9b2611964afc 254 // build time on a 24-hour clock.
mjr 53:9b2611964afc 255 //
mjr 73:4e8ce0b18915 256 // 2F. Button status report.
mjr 73:4e8ce0b18915 257 // This is requested by sending custom protocol message 65 13 (see below).
mjr 73:4e8ce0b18915 258 // In response, the device sends one report using this format:
mjr 73:4e8ce0b18915 259 //
mjr 77:0b96f6867312 260 // bytes 0:1 = 0xA1. This has bit pattern 10100 in the high 5 bits (and
mjr 77:0b96f6867312 261 // 10100001 in the high 8 bits) to distinguish it from other
mjr 77:0b96f6867312 262 // report types.
mjr 73:4e8ce0b18915 263 // byte 2 = number of button reports
mjr 73:4e8ce0b18915 264 // byte 3 = Physical status of buttons 1-8, 1 bit each. The low-order
mjr 73:4e8ce0b18915 265 // bit (0x01) is button 1. Each bit is 0 if the button is off,
mjr 73:4e8ce0b18915 266 // 1 if on. This reflects the physical status of the button
mjr 73:4e8ce0b18915 267 // input pins, after debouncing but before any logical state
mjr 73:4e8ce0b18915 268 // processing. Pulse mode and shifting have no effect on the
mjr 73:4e8ce0b18915 269 // physical state; this simply indicates whether the button is
mjr 73:4e8ce0b18915 270 // electrically on (shorted to GND) or off (open circuit).
mjr 73:4e8ce0b18915 271 // byte 4 = buttons 9-16
mjr 73:4e8ce0b18915 272 // byte 5 = buttons 17-24
mjr 73:4e8ce0b18915 273 // byte 6 = buttons 25-32
mjr 73:4e8ce0b18915 274 // byte 7 = buttons 33-40
mjr 73:4e8ce0b18915 275 // byte 8 = buttons 41-48
mjr 73:4e8ce0b18915 276 //
mjr 77:0b96f6867312 277 // 2G. IR sensor data report.
mjr 77:0b96f6867312 278 // This is requested by sending custom protocol message 65 12 (see below).
mjr 77:0b96f6867312 279 // That command puts controller in IR learning mode for a short time, during
mjr 77:0b96f6867312 280 // which it monitors the IR sensor and send these special reports to relay the
mjr 77:0b96f6867312 281 // readings. The reports contain the raw data, plus the decoded command code
mjr 77:0b96f6867312 282 // and protocol information if the controller is able to recognize and decode
mjr 77:0b96f6867312 283 // the command.
mjr 52:8298b2a73eb2 284 //
mjr 77:0b96f6867312 285 // bytes 0:1 = 0xA2. This has bit pattern 10100 in the high 5 bits (and
mjr 77:0b96f6867312 286 // 10100010 in the high 8 bits to distinguish it from other
mjr 77:0b96f6867312 287 // report types.
mjr 77:0b96f6867312 288 // byte 2 = number of raw reports that follow
mjr 77:0b96f6867312 289 // bytes 3:4 = first raw report, as a little-endian 16-bit int. The
mjr 77:0b96f6867312 290 // value represents the time of an IR "space" or "mark" in
mjr 77:0b96f6867312 291 // 2us units. The low bit is 0 for a space and 1 for a mark.
mjr 77:0b96f6867312 292 // To recover the time in microseconds, mask our the low bit
mjr 77:0b96f6867312 293 // and multiply the result by 2. Received codes always
mjr 77:0b96f6867312 294 // alternate between spaces and marks. A space is an interval
mjr 77:0b96f6867312 295 // where the IR is off, and a mark is an interval with IR on.
mjr 77:0b96f6867312 296 // If the value is 0xFFFE (after masking out the low bit), it
mjr 77:0b96f6867312 297 // represents a timeout, that is, a time greater than or equal
mjr 77:0b96f6867312 298 // to the maximum that can be represented in this format,
mjr 77:0b96f6867312 299 // which is 131068us. None of the IR codes we can parse have
mjr 77:0b96f6867312 300 // any internal signal component this long, so a timeout value
mjr 77:0b96f6867312 301 // is generally seen only during a gap between codes where
mjr 77:0b96f6867312 302 // nothing is being transmitted.
mjr 77:0b96f6867312 303 // bytes 4:5 = second raw report
mjr 77:0b96f6867312 304 // (etc for remaining reports)
mjr 77:0b96f6867312 305 //
mjr 77:0b96f6867312 306 // If byte 2 is 0x00, it indicates that learning mode has expired without
mjr 77:0b96f6867312 307 // a code being received, so it's the last report sent for the learning
mjr 77:0b96f6867312 308 // session.
mjr 77:0b96f6867312 309 //
mjr 77:0b96f6867312 310 // If byte 2 is 0xFF, it indicates that a code has been successfully
mjr 77:0b96f6867312 311 // learned. The rest of the report contains the learned code instead
mjr 77:0b96f6867312 312 // of the raw data:
mjr 77:0b96f6867312 313 //
mjr 77:0b96f6867312 314 // byte 3 = protocol ID, which is an integer giving an internal code
mjr 77:0b96f6867312 315 // identifying the IR protocol that was recognized for the
mjr 77:0b96f6867312 316 // received data. See IRProtocolID.h for a list of the IDs.
mjr 77:0b96f6867312 317 // byte 4 = bit flags:
mjr 77:0b96f6867312 318 // 0x02 -> the protocol uses "dittos"
mjr 77:0b96f6867312 319 // bytes 5:6:7:8:9:10:11:12 = a little-endian 64-bit int containing
mjr 77:0b96f6867312 320 // the code received. The code is essentially the data payload
mjr 77:0b96f6867312 321 // of the IR packet, after removing bits that are purely
mjr 77:0b96f6867312 322 // structural, such as toggle bits and error correction bits.
mjr 77:0b96f6867312 323 // The mapping between the IR bit stream and our 64-bit is
mjr 77:0b96f6867312 324 // essentially arbitrary and varies by protocol, but it always
mjr 77:0b96f6867312 325 // has round-trip fidelity: using the 64-bit code value +
mjr 77:0b96f6867312 326 // protocol ID + flags to send an IR command will result in
mjr 77:0b96f6867312 327 // the same IR bit sequence being sent, modulo structural bits
mjr 77:0b96f6867312 328 // that need to be updates in the reconstruction (such as toggle
mjr 77:0b96f6867312 329 // bits or sequencing codes).
mjr 77:0b96f6867312 330 //
mjr 77:0b96f6867312 331 //
mjr 77:0b96f6867312 332 // WHY WE USE A HACKY APPROACH TO DIFFERENT REPORT TYPES
mjr 35:e959ffba78fd 333 //
mjr 35:e959ffba78fd 334 // The HID report system was specifically designed to provide a clean,
mjr 35:e959ffba78fd 335 // structured way for devices to describe the data they send to the host.
mjr 35:e959ffba78fd 336 // Our approach isn't clean or structured; it ignores the promises we
mjr 35:e959ffba78fd 337 // make about the contents of our report via the HID Report Descriptor
mjr 35:e959ffba78fd 338 // and stuffs our own different data format into the same structure.
mjr 35:e959ffba78fd 339 //
mjr 77:0b96f6867312 340 // We use this hacky approach only because we can't use the standard USB
mjr 77:0b96f6867312 341 // HID mechanism for varying report types, which is to provide multiple
mjr 77:0b96f6867312 342 // report descriptors and tag each report with a type byte that indicates
mjr 77:0b96f6867312 343 // which descriptor applies. We can't use that standard approach because
mjr 77:0b96f6867312 344 // we want to be 100% LedWiz compatible. The snag is that some Windows
mjr 77:0b96f6867312 345 // LedWiz clients parse the USB HID descriptors as part of identifying a
mjr 77:0b96f6867312 346 // USB HID device as a valid LedWiz unit, and will only recognize the device
mjr 77:0b96f6867312 347 // if certain properties of the HID descriptors match those of a real LedWiz.
mjr 77:0b96f6867312 348 // One of the features that's important to some clients is the descriptor
mjr 77:0b96f6867312 349 // link structure, which is affected by the layout of HID Report Descriptor
mjr 77:0b96f6867312 350 // entries. In order to match the expected layout, we can only define a
mjr 77:0b96f6867312 351 // single kind of output report. Since we have to use Joystick reports for
mjr 77:0b96f6867312 352 // the sake of VP and other pinball software, and we're only allowed the
mjr 77:0b96f6867312 353 // one report type, we have to make that one report type the Joystick type.
mjr 77:0b96f6867312 354 // That's why we overload the joystick reports with other meanings. It's a
mjr 77:0b96f6867312 355 // hack, but at least it's a fairly reliable and isolated hack, in that our
mjr 77:0b96f6867312 356 // special reports are only generated when clients specifically ask for
mjr 77:0b96f6867312 357 // them. Plus, even if a client who doesn't ask for a special report
mjr 77:0b96f6867312 358 // somehow gets one, the worst that happens is that they get a momentary
mjr 77:0b96f6867312 359 // spurious reading from the accelerometer and plunger.
mjr 35:e959ffba78fd 360
mjr 35:e959ffba78fd 361
mjr 35:e959ffba78fd 362
mjr 35:e959ffba78fd 363 // ------- INCOMING MESSAGES (HOST TO DEVICE) -------
mjr 35:e959ffba78fd 364 //
mjr 35:e959ffba78fd 365 // For LedWiz compatibility, our incoming message format conforms to the
mjr 35:e959ffba78fd 366 // basic USB format used by real LedWiz units. This is simply 8 data
mjr 35:e959ffba78fd 367 // bytes, all private vendor-specific values (meaning that the Windows HID
mjr 35:e959ffba78fd 368 // driver treats them as opaque and doesn't attempt to parse them).
mjr 35:e959ffba78fd 369 //
mjr 35:e959ffba78fd 370 // Within this basic 8-byte format, we recognize the full protocol used
mjr 35:e959ffba78fd 371 // by real LedWiz units, plus an extended protocol that we define privately.
mjr 35:e959ffba78fd 372 // The LedWiz protocol leaves a large part of the potential protocol space
mjr 35:e959ffba78fd 373 // undefined, so we take advantage of this undefined region for our
mjr 35:e959ffba78fd 374 // extensions. This ensures that we can properly recognize all messages
mjr 35:e959ffba78fd 375 // intended for a real LedWiz unit, as well as messages from custom host
mjr 35:e959ffba78fd 376 // software that knows it's talking to a Pinscape unit.
mjr 35:e959ffba78fd 377
mjr 35:e959ffba78fd 378 // --- REAL LED WIZ MESSAGES ---
mjr 35:e959ffba78fd 379 //
mjr 74:822a92bc11d2 380 // The real LedWiz protocol has two message types, "SBA" and "PBA". The
mjr 74:822a92bc11d2 381 // message type can be determined from the first byte of the 8-byte message
mjr 74:822a92bc11d2 382 // packet: if the first byte 64 (0x40), it's an SBA message. If the first
mjr 74:822a92bc11d2 383 // byte is 0-49 or 129-132, it's a PBA message. All other byte values are
mjr 74:822a92bc11d2 384 // invalid in the original protocol and have undefined behavior if sent to
mjr 74:822a92bc11d2 385 // a real LedWiz. We take advantage of this to extend the protocol with
mjr 74:822a92bc11d2 386 // our new features by assigning new meanings to byte patterns that have no
mjr 74:822a92bc11d2 387 // meaning in the original protocol.
mjr 35:e959ffba78fd 388 //
mjr 74:822a92bc11d2 389 // "SBA" message: 64 xx xx xx xx ss 00 00
mjr 74:822a92bc11d2 390 // xx = on/off bit mask for 8 outputs
mjr 74:822a92bc11d2 391 // ss = global flash speed setting (valid values 1-7)
mjr 74:822a92bc11d2 392 // 00 = unused/reserved; client should set to zero (not enforced, but
mjr 74:822a92bc11d2 393 // strongly recommended in case of future additions)
mjr 35:e959ffba78fd 394 //
mjr 35:e959ffba78fd 395 // If the first byte has value 64 (0x40), it's an SBA message. This type of
mjr 35:e959ffba78fd 396 // message sets all 32 outputs individually ON or OFF according to the next
mjr 35:e959ffba78fd 397 // 32 bits (4 bytes) of the message, and sets the flash speed to the value in
mjr 74:822a92bc11d2 398 // the sixth byte. The flash speed sets the global cycle rate for flashing
mjr 74:822a92bc11d2 399 // outputs - outputs with their values set to the range 128-132. The speed
mjr 74:822a92bc11d2 400 // parameter is in ad hoc units that aren't documented in the LedWiz API, but
mjr 74:822a92bc11d2 401 // observations of real LedWiz units show that the "speed" is actually the
mjr 74:822a92bc11d2 402 // period, each unit representing 0.25s: so speed 1 is a 0.25s period, or 4Hz,
mjr 74:822a92bc11d2 403 // speed 2 is a 0.5s period or 2Hz, etc., up to speed 7 as a 1.75s period or
mjr 74:822a92bc11d2 404 // 0.57Hz. The period is the full waveform cycle time.
mjr 74:822a92bc11d2 405 //
mjr 35:e959ffba78fd 406 //
mjr 74:822a92bc11d2 407 // "PBA" message: bb bb bb bb bb bb bb bb
mjr 74:822a92bc11d2 408 // bb = brightness level, 0-49 or 128-132
mjr 35:e959ffba78fd 409 //
mjr 74:822a92bc11d2 410 // Note that there's no prefix byte indicating this message type. This
mjr 74:822a92bc11d2 411 // message is indicated simply by the first byte being in one of the valid
mjr 74:822a92bc11d2 412 // ranges.
mjr 74:822a92bc11d2 413 //
mjr 74:822a92bc11d2 414 // Each byte gives the new brightness level or flash pattern for one part.
mjr 74:822a92bc11d2 415 // The valid values are:
mjr 35:e959ffba78fd 416 //
mjr 35:e959ffba78fd 417 // 0-48 = fixed brightness level, linearly from 0% to 100% intensity
mjr 35:e959ffba78fd 418 // 49 = fixed brightness level at 100% intensity (same as 48)
mjr 35:e959ffba78fd 419 // 129 = flashing pattern, fade up / fade down (sawtooth wave)
mjr 35:e959ffba78fd 420 // 130 = flashing pattern, on / off (square wave)
mjr 35:e959ffba78fd 421 // 131 = flashing pattern, on for 50% duty cycle / fade down
mjr 35:e959ffba78fd 422 // 132 = flashing pattern, fade up / on for 50% duty cycle
mjr 35:e959ffba78fd 423 //
mjr 74:822a92bc11d2 424 // This message sets new brightness/flash settings for 8 ports. There's
mjr 74:822a92bc11d2 425 // no port number specified in the message; instead, the port is given by
mjr 74:822a92bc11d2 426 // the protocol state. Specifically, the device has an internal register
mjr 74:822a92bc11d2 427 // containing the base port for PBA messages. On reset AND after any SBA
mjr 74:822a92bc11d2 428 // message is received, the base port is set to 0. After any PBA message
mjr 74:822a92bc11d2 429 // is received and processed, the base port is incremented by 8, resetting
mjr 74:822a92bc11d2 430 // to 0 when it reaches 32. The bytes of the message set the brightness
mjr 74:822a92bc11d2 431 // levels for the base port, base port + 1, ..., base port + 7 respectively.
mjr 35:e959ffba78fd 432 //
mjr 74:822a92bc11d2 433 //
mjr 35:e959ffba78fd 434
mjr 35:e959ffba78fd 435 // --- PRIVATE EXTENDED MESSAGES ---
mjr 35:e959ffba78fd 436 //
mjr 35:e959ffba78fd 437 // All of our extended protocol messages are identified by the first byte:
mjr 35:e959ffba78fd 438 //
mjr 35:e959ffba78fd 439 // 65 -> Miscellaneous control message. The second byte specifies the specific
mjr 35:e959ffba78fd 440 // operation:
mjr 35:e959ffba78fd 441 //
mjr 39:b3815a1c3802 442 // 0 -> No Op - does nothing. (This can be used to send a test message on the
mjr 39:b3815a1c3802 443 // USB endpoint.)
mjr 39:b3815a1c3802 444 //
mjr 35:e959ffba78fd 445 // 1 -> Set device unit number and plunger status, and save the changes immediately
mjr 35:e959ffba78fd 446 // to flash. The device will automatically reboot after the changes are saved.
mjr 35:e959ffba78fd 447 // The additional bytes of the message give the parameters:
mjr 35:e959ffba78fd 448 //
mjr 35:e959ffba78fd 449 // third byte = new unit number (0-15, corresponding to nominal unit numbers 1-16)
mjr 35:e959ffba78fd 450 // fourth byte = plunger on/off (0=disabled, 1=enabled)
mjr 35:e959ffba78fd 451 //
mjr 35:e959ffba78fd 452 // 2 -> Begin plunger calibration mode. The device stays in this mode for about
mjr 35:e959ffba78fd 453 // 15 seconds, and sets the zero point and maximum retraction points to the
mjr 35:e959ffba78fd 454 // observed endpoints of sensor readings while the mode is running. After
mjr 35:e959ffba78fd 455 // the time limit elapses, the device automatically stores the results in
mjr 35:e959ffba78fd 456 // non-volatile flash memory and exits the mode.
mjr 35:e959ffba78fd 457 //
mjr 51:57eb311faafa 458 // 3 -> Send pixel dump. The device sends one complete image snapshot from the
mjr 51:57eb311faafa 459 // plunger sensor, as as series of pixel dump messages. (The message format
mjr 51:57eb311faafa 460 // isn't big enough to allow the whole image to be sent in one message, so
mjr 53:9b2611964afc 461 // the image is broken up into as many messages as necessary.) The device
mjr 53:9b2611964afc 462 // then resumes sending normal joystick messages. If the plunger sensor
mjr 53:9b2611964afc 463 // isn't an imaging type, or no sensor is installed, no pixel messages are
mjr 53:9b2611964afc 464 // sent. Parameters:
mjr 48:058ace2aed1d 465 //
mjr 48:058ace2aed1d 466 // third byte = bit flags:
mjr 51:57eb311faafa 467 // 0x01 = low res mode. The device rescales the sensor pixel array
mjr 51:57eb311faafa 468 // sent in the dump messages to a low-resolution subset. The
mjr 51:57eb311faafa 469 // size of the subset is determined by the device. This has
mjr 51:57eb311faafa 470 // no effect on the sensor operation; it merely reduces the
mjr 51:57eb311faafa 471 // USB transmission time to allow for a faster frame rate for
mjr 51:57eb311faafa 472 // viewing in the config tool.
mjr 35:e959ffba78fd 473 //
mjr 53:9b2611964afc 474 // fourth byte = extra exposure time in 100us (.1ms) increments. For
mjr 53:9b2611964afc 475 // imaging sensors, we'll add this delay to the minimum exposure
mjr 53:9b2611964afc 476 // time. This allows the caller to explicitly adjust the exposure
mjr 53:9b2611964afc 477 // level for calibration purposes.
mjr 53:9b2611964afc 478 //
mjr 35:e959ffba78fd 479 // 4 -> Query configuration. The device sends a special configuration report,
mjr 40:cc0d9814522b 480 // (see above; see also USBJoystick.cpp), then resumes sending normal
mjr 40:cc0d9814522b 481 // joystick reports.
mjr 35:e959ffba78fd 482 //
mjr 74:822a92bc11d2 483 // 5 -> Turn all outputs off and restore LedWiz defaults. Sets all output
mjr 74:822a92bc11d2 484 // ports to OFF and LedWiz brightness/mode setting 48, and sets the LedWiz
mjr 74:822a92bc11d2 485 // global flash speed to 2.
mjr 35:e959ffba78fd 486 //
mjr 35:e959ffba78fd 487 // 6 -> Save configuration to flash. This saves all variable updates sent via
mjr 35:e959ffba78fd 488 // type 66 messages since the last reboot, then automatically reboots the
mjr 35:e959ffba78fd 489 // device to put the changes into effect.
mjr 35:e959ffba78fd 490 //
mjr 53:9b2611964afc 491 // third byte = delay time in seconds. The device will wait this long
mjr 53:9b2611964afc 492 // before disconnecting, to allow the PC to perform any cleanup tasks
mjr 53:9b2611964afc 493 // while the device is still attached (e.g., modifying Windows device
mjr 53:9b2611964afc 494 // driver settings)
mjr 53:9b2611964afc 495 //
mjr 40:cc0d9814522b 496 // 7 -> Query device ID. The device replies with a special device ID report
mjr 40:cc0d9814522b 497 // (see above; see also USBJoystick.cpp), then resumes sending normal
mjr 40:cc0d9814522b 498 // joystick reports.
mjr 40:cc0d9814522b 499 //
mjr 53:9b2611964afc 500 // The third byte of the message is the ID index to retrieve:
mjr 53:9b2611964afc 501 //
mjr 53:9b2611964afc 502 // 1 = CPU ID: returns the KL25Z globally unique CPU ID.
mjr 53:9b2611964afc 503 //
mjr 53:9b2611964afc 504 // 2 = OpenSDA ID: returns the OpenSDA TUID. This must be patched
mjr 53:9b2611964afc 505 // into the firmware by the PC host when the .bin file is
mjr 53:9b2611964afc 506 // installed onto the device. This will return all 'X' bytes
mjr 53:9b2611964afc 507 // if the value wasn't patched at install time.
mjr 53:9b2611964afc 508 //
mjr 40:cc0d9814522b 509 // 8 -> Engage/disengage night mode. The third byte of the message is 1 to
mjr 55:4db125cd11a0 510 // engage night mode, 0 to disengage night mode. The current mode isn't
mjr 55:4db125cd11a0 511 // stored persistently; night mode is always off after a reset.
mjr 40:cc0d9814522b 512 //
mjr 52:8298b2a73eb2 513 // 9 -> Query configuration variable. The second byte is the config variable
mjr 52:8298b2a73eb2 514 // number (see the CONFIGURATION VARIABLES section below). For the array
mjr 52:8298b2a73eb2 515 // variables (button assignments, output ports), the third byte is the
mjr 52:8298b2a73eb2 516 // array index. The device replies with a configuration variable report
mjr 52:8298b2a73eb2 517 // (see above) with the current setting for the requested variable.
mjr 52:8298b2a73eb2 518 //
mjr 53:9b2611964afc 519 // 10 -> Query software build information. No parameters. This replies with
mjr 53:9b2611964afc 520 // the software build information report (see above).
mjr 53:9b2611964afc 521 //
mjr 73:4e8ce0b18915 522 // 11 -> TV ON relay manual control. This allows testing and operating the
mjr 73:4e8ce0b18915 523 // relay from the PC. This doesn't change the power-up configuration;
mjr 73:4e8ce0b18915 524 // it merely allows the relay to be controlled directly.
mjr 73:4e8ce0b18915 525 //
mjr 73:4e8ce0b18915 526 // 0 = turn relay off
mjr 73:4e8ce0b18915 527 // 1 = turn relay on
mjr 73:4e8ce0b18915 528 // 2 = pulse the relay as though the power-on delay timer fired
mjr 73:4e8ce0b18915 529 //
mjr 77:0b96f6867312 530 // 12 -> Learn IR code. The device enters "IR learning mode". While in
mjr 77:0b96f6867312 531 // learning mode, the device reports the raw signals read through
mjr 77:0b96f6867312 532 // the IR sensor to the PC through the special IR learning report
mjr 77:0b96f6867312 533 // (see "2G" above). If a signal can be decoded through a known
mjr 77:0b96f6867312 534 // protocol, the device sends a final "2G" report with the decoded
mjr 77:0b96f6867312 535 // command, then terminates learning mode. If no signal can be
mjr 77:0b96f6867312 536 // decoded within a timeout period, the mode automatically ends,
mjr 77:0b96f6867312 537 // and the device sends a final IR learning report with zero raw
mjr 77:0b96f6867312 538 // signals to indicate termination. After initiating IR learning
mjr 77:0b96f6867312 539 // mode, the user should point the remote control with the key to
mjr 77:0b96f6867312 540 // be learned at the IR sensor on the KL25Z, and press and hold the
mjr 77:0b96f6867312 541 // key on the remote for a few seconds. Holding the key for a few
mjr 77:0b96f6867312 542 // moments is important because it lets the decoder sense the type
mjr 77:0b96f6867312 543 // of auto-repeat coding the remote uses. The learned code can be
mjr 77:0b96f6867312 544 // written to an IR config variable slot to program the controller
mjr 77:0b96f6867312 545 // to send the learned command on events like TV ON or a button
mjr 77:0b96f6867312 546 // press.
mjr 77:0b96f6867312 547 //
mjr 73:4e8ce0b18915 548 // 13 -> Get button status report. The device sends one button status report
mjr 73:4e8ce0b18915 549 // in response (see section "2F" above).
mjr 73:4e8ce0b18915 550 //
mjr 35:e959ffba78fd 551 // 66 -> Set configuration variable. The second byte of the message is the config
mjr 35:e959ffba78fd 552 // variable number, and the remaining bytes give the new value for the variable.
mjr 53:9b2611964afc 553 // The value format is specific to each variable; see the CONFIGURATION VARIABLES
mjr 53:9b2611964afc 554 // section below for a list of the variables and their formats. This command
mjr 53:9b2611964afc 555 // only sets the value in RAM; it doesn't write the value to flash and doesn't
mjr 53:9b2611964afc 556 // put the change into effect. To save the new settings, the host must send a
mjr 53:9b2611964afc 557 // type 65 subtype 6 message (see above). That saves the settings to flash and
mjr 53:9b2611964afc 558 // reboots the device, which makes the new settings active.
mjr 35:e959ffba78fd 559 //
mjr 74:822a92bc11d2 560 // 67 -> "SBX". This is an extended form of the original LedWiz SBA message. This
mjr 74:822a92bc11d2 561 // version is specifically designed to support a replacement LEDWIZ.DLL on the
mjr 74:822a92bc11d2 562 // host that exposes one Pinscape device as multiple virtual LedWiz devices,
mjr 74:822a92bc11d2 563 // in order to give legacy clients access to more than 32 ports. Each virtual
mjr 74:822a92bc11d2 564 // LedWiz represents a block of 32 ports. The format of this message is the
mjr 74:822a92bc11d2 565 // same as for the original SBA, with the addition of one byte:
mjr 74:822a92bc11d2 566 //
mjr 74:822a92bc11d2 567 // 67 xx xx xx xx ss pp 00
mjr 74:822a92bc11d2 568 // xx = on/off switches for 8 ports, one bit per port
mjr 74:822a92bc11d2 569 // ss = global flash speed setting for this bank of ports, 1-7
mjr 74:822a92bc11d2 570 // pp = port group: 0 for ports 1-32, 1 for ports 33-64, etc
mjr 74:822a92bc11d2 571 // 00 = unused/reserved; client should set to zero
mjr 74:822a92bc11d2 572 //
mjr 74:822a92bc11d2 573 // As with SBA, this sets the on/off switch states for a block of 32 ports.
mjr 74:822a92bc11d2 574 // SBA always addresses ports 1-32; SBX can address any set of 32 ports.
mjr 74:822a92bc11d2 575 //
mjr 74:822a92bc11d2 576 // We keep a separate speed setting for each group of 32 ports. The purpose
mjr 74:822a92bc11d2 577 // of the SBX extension is to allow a custom LEDWIZ.DLL to expose multiple
mjr 74:822a92bc11d2 578 // virtual LedWiz units to legacy clients, so clients will expect each unit
mjr 74:822a92bc11d2 579 // to have its separate flash speed setting. Each block of 32 ports maps to
mjr 74:822a92bc11d2 580 // a virtual unit on the client side, so each block needs its own speed state.
mjr 74:822a92bc11d2 581 //
mjr 74:822a92bc11d2 582 // 68 -> "PBX". This is an extended form of the original LedWiz PBA message; it's
mjr 74:822a92bc11d2 583 // the PBA equivalent of our SBX extension above.
mjr 74:822a92bc11d2 584 //
mjr 74:822a92bc11d2 585 // 68 pp ee ee ee ee ee ee
mjr 74:822a92bc11d2 586 // pp = port group: 0 for ports 1-8, 1 for 9-16, etc
mjr 74:822a92bc11d2 587 // qq = sequence number: 0 for the first 8 ports in the group, etc
mjr 74:822a92bc11d2 588 // ee = brightness/flash values, 6 bits per port, packed into the bytes
mjr 74:822a92bc11d2 589 //
mjr 74:822a92bc11d2 590 // The port group 'pp' selects a group of 8 ports. Note that, unlike PBA,
mjr 74:822a92bc11d2 591 // the port group being updated is explicitly coded in the message, which makes
mjr 74:822a92bc11d2 592 // the message stateless. This eliminates any possibility of the client and
mjr 74:822a92bc11d2 593 // host getting out of sync as to which ports they're talking about. This
mjr 74:822a92bc11d2 594 // message doesn't affect the PBA port address state.
mjr 74:822a92bc11d2 595 //
mjr 74:822a92bc11d2 596 // The brightness values are *almost* the same as in PBA, but not quite. We
mjr 74:822a92bc11d2 597 // remap the flashing state values as follows:
mjr 74:822a92bc11d2 598 //
mjr 74:822a92bc11d2 599 // 0-48 = brightness level, 0% to 100%, on a linear scale
mjr 74:822a92bc11d2 600 // 49 = brightness level 100% (redundant with 48)
mjr 74:822a92bc11d2 601 // 60 = PBA 129 equivalent, sawtooth
mjr 74:822a92bc11d2 602 // 61 = PBA 130 equivalent, square wave (on/off)
mjr 74:822a92bc11d2 603 // 62 = PBA 131 equivalent, on/fade down
mjr 74:822a92bc11d2 604 // 63 = PBA 132 equivalent, fade up/on
mjr 74:822a92bc11d2 605 //
mjr 74:822a92bc11d2 606 // We reassign the brightness levels like this because it allows us to pack
mjr 74:822a92bc11d2 607 // every possible value into 6 bits. This allows us to fit 8 port settings
mjr 74:822a92bc11d2 608 // into six bytes. The 6-bit fields are packed into the 8 bytes consecutively
mjr 74:822a92bc11d2 609 // starting with the low-order bit of the first byte. An efficient way to
mjr 74:822a92bc11d2 610 // pack the 'ee' fields given the brightness values is to shift each group of
mjr 74:822a92bc11d2 611 // four bytes into a uint, then shift the uint into three 'ee' bytes:
mjr 74:822a92bc11d2 612 //
mjr 74:822a92bc11d2 613 // unsigned int tmp1 = bri[0] | (bri[1]<<6) | (bri[2]<<12) | (bri[3]<<18);
mjr 74:822a92bc11d2 614 // unsigned int tmp2 = bri[4] | (bri[5]<<6) | (bri[6]<<12) | (bri[7]<<18);
mjr 74:822a92bc11d2 615 // unsigned char port_group = FIRST_PORT_TO_ADDRESS / 8;
mjr 74:822a92bc11d2 616 // unsigned char msg[8] = {
mjr 74:822a92bc11d2 617 // 68, pp,
mjr 74:822a92bc11d2 618 // tmp1 & 0xFF, (tmp1 >> 8) & 0xFF, (tmp1 >> 16) & 0xFF,
mjr 74:822a92bc11d2 619 // tmp2 & 0xFF, (tmp2 >> 8) & 0xFF, (tmp2 >> 16) & 0xFF
mjr 74:822a92bc11d2 620 // };
mjr 74:822a92bc11d2 621 //
mjr 35:e959ffba78fd 622 // 200-228 -> Set extended output brightness. This sets outputs N to N+6 to the
mjr 35:e959ffba78fd 623 // respective brightness values in the 2nd through 8th bytes of the message
mjr 35:e959ffba78fd 624 // (output N is set to the 2nd byte value, N+1 is set to the 3rd byte value,
mjr 35:e959ffba78fd 625 // etc). Each brightness level is a linear brightness level from 0-255,
mjr 35:e959ffba78fd 626 // where 0 is 0% brightness and 255 is 100% brightness. N is calculated as
mjr 35:e959ffba78fd 627 // (first byte - 200)*7 + 1:
mjr 35:e959ffba78fd 628 //
mjr 35:e959ffba78fd 629 // 200 = outputs 1-7
mjr 35:e959ffba78fd 630 // 201 = outputs 8-14
mjr 35:e959ffba78fd 631 // 202 = outputs 15-21
mjr 35:e959ffba78fd 632 // ...
mjr 35:e959ffba78fd 633 // 228 = outputs 197-203
mjr 35:e959ffba78fd 634 //
mjr 53:9b2611964afc 635 // This message is the way to address ports 33 and higher. Original LedWiz
mjr 53:9b2611964afc 636 // protocol messages can't access ports above 32, since the protocol is
mjr 53:9b2611964afc 637 // hard-wired for exactly 32 ports.
mjr 35:e959ffba78fd 638 //
mjr 53:9b2611964afc 639 // Note that the extended output messages differ from regular LedWiz commands
mjr 35:e959ffba78fd 640 // in two ways. First, the brightness is the ONLY attribute when an output is
mjr 53:9b2611964afc 641 // set using this mode. There's no separate ON/OFF state per output as there
mjr 35:e959ffba78fd 642 // is with the SBA/PBA messages. To turn an output OFF with this message, set
mjr 35:e959ffba78fd 643 // the intensity to 0. Setting a non-zero intensity turns it on immediately
mjr 35:e959ffba78fd 644 // without regard to the SBA status for the port. Second, the brightness is
mjr 35:e959ffba78fd 645 // on a full 8-bit scale (0-255) rather than the LedWiz's approximately 5-bit
mjr 35:e959ffba78fd 646 // scale, because there are no parts of the range reserved for flashing modes.
mjr 35:e959ffba78fd 647 //
mjr 35:e959ffba78fd 648 // Outputs 1-32 can be controlled by EITHER the regular LedWiz SBA/PBA messages
mjr 35:e959ffba78fd 649 // or by the extended messages. The latest setting for a given port takes
mjr 35:e959ffba78fd 650 // precedence. If an SBA/PBA message was the last thing sent to a port, the
mjr 35:e959ffba78fd 651 // normal LedWiz combination of ON/OFF and brightness/flash mode status is used
mjr 35:e959ffba78fd 652 // to determine the port's physical output setting. If an extended brightness
mjr 35:e959ffba78fd 653 // message was the last thing sent to a port, the LedWiz ON/OFF status and
mjr 35:e959ffba78fd 654 // flash modes are ignored, and the fixed brightness is set. Outputs 33 and
mjr 35:e959ffba78fd 655 // higher inherently can't be addressed or affected by SBA/PBA messages.
mjr 53:9b2611964afc 656 //
mjr 53:9b2611964afc 657 // (The precedence scheme is designed to accommodate a mix of legacy and DOF
mjr 53:9b2611964afc 658 // software transparently. The behavior described is really just to ensure
mjr 53:9b2611964afc 659 // transparent interoperability; it's not something that host software writers
mjr 53:9b2611964afc 660 // should have to worry about. We expect that anyone writing new software will
mjr 53:9b2611964afc 661 // just use the extended protocol and ignore the old LedWiz commands, since
mjr 53:9b2611964afc 662 // the extended protocol is easier to use and more powerful.)
mjr 35:e959ffba78fd 663
mjr 35:e959ffba78fd 664
mjr 35:e959ffba78fd 665 // ------- CONFIGURATION VARIABLES -------
mjr 35:e959ffba78fd 666 //
mjr 35:e959ffba78fd 667 // Message type 66 (see above) sets one configuration variable. The second byte
mjr 35:e959ffba78fd 668 // of the message is the variable ID, and the rest of the bytes give the new
mjr 35:e959ffba78fd 669 // value, in a variable-specific format. 16-bit values are little endian.
mjr 55:4db125cd11a0 670 // Any bytes at the end of the message not otherwise specified are reserved
mjr 55:4db125cd11a0 671 // for future use and should always be set to 0 in the message data.
mjr 35:e959ffba78fd 672 //
mjr 77:0b96f6867312 673 // Variable IDs:
mjr 77:0b96f6867312 674 //
mjr 53:9b2611964afc 675 // 0 -> QUERY ONLY: Describe the configuration variables. The device
mjr 53:9b2611964afc 676 // sends a config variable query report with the following fields:
mjr 53:9b2611964afc 677 //
mjr 53:9b2611964afc 678 // byte 3 -> number of scalar (non-array) variables (these are
mjr 53:9b2611964afc 679 // numbered sequentially from 1 to N)
mjr 53:9b2611964afc 680 // byte 4 -> number of array variables (these are numbered
mjr 53:9b2611964afc 681 // sequentially from 256-N to 255)
mjr 53:9b2611964afc 682 //
mjr 53:9b2611964afc 683 // The description query is meant to allow the host to capture all
mjr 53:9b2611964afc 684 // configuration settings on the device without having to know what
mjr 53:9b2611964afc 685 // the variables mean or how many there are. This is useful for
mjr 53:9b2611964afc 686 // backing up the settings in a file on the PC, for example, or for
mjr 53:9b2611964afc 687 // capturing them to restore after a firmware update. This allows
mjr 53:9b2611964afc 688 // more flexible interoperability between unsynchronized versions
mjr 53:9b2611964afc 689 // of the firmware and the host software.
mjr 53:9b2611964afc 690 //
mjr 53:9b2611964afc 691 // 1 -> USB device ID. This sets the USB vendor and product ID codes
mjr 53:9b2611964afc 692 // to use when connecting to the PC. For LedWiz emulation, use
mjr 35:e959ffba78fd 693 // vendor 0xFAFA and product 0x00EF + unit# (where unit# is the
mjr 53:9b2611964afc 694 // nominal LedWiz unit number, from 1 to 16). If you have any
mjr 53:9b2611964afc 695 // REAL LedWiz units in your system, we recommend starting the
mjr 53:9b2611964afc 696 // Pinscape LedWiz numbering at 8 to avoid conflicts with the
mjr 53:9b2611964afc 697 // real LedWiz units. If you don't have any real LedWiz units,
mjr 53:9b2611964afc 698 // you can number your Pinscape units starting from 1.
mjr 35:e959ffba78fd 699 //
mjr 53:9b2611964afc 700 // If LedWiz emulation isn't desired or causes host conflicts,
mjr 53:9b2611964afc 701 // use our private ID: Vendor 0x1209, product 0xEAEA. (These IDs
mjr 53:9b2611964afc 702 // are registered with http://pid.codes, a registry for open-source
mjr 53:9b2611964afc 703 // USB devices, so they're guaranteed to be free of conflicts with
mjr 53:9b2611964afc 704 // other properly registered devices). The device will NOT appear
mjr 53:9b2611964afc 705 // as an LedWiz if you use the private ID codes, but DOF (R3 or
mjr 53:9b2611964afc 706 // later) will still recognize it as a Pinscape controller.
mjr 53:9b2611964afc 707 //
mjr 53:9b2611964afc 708 // bytes 3:4 -> USB Vendor ID
mjr 53:9b2611964afc 709 // bytes 5:6 -> USB Product ID
mjr 53:9b2611964afc 710 //
mjr 53:9b2611964afc 711 // 2 -> Pinscape Controller unit number for DOF. The Pinscape unit
mjr 53:9b2611964afc 712 // number is independent of the LedWiz unit number, and indepedent
mjr 53:9b2611964afc 713 // of the USB vendor/product IDs. DOF (R3 and later) uses this to
mjr 53:9b2611964afc 714 // identify the unit for the extended Pinscape functionality.
mjr 53:9b2611964afc 715 // For easiest DOF configuration, we recommend numbering your
mjr 53:9b2611964afc 716 // units sequentially starting at 1 (regardless of whether or not
mjr 53:9b2611964afc 717 // you have any real LedWiz units).
mjr 53:9b2611964afc 718 //
mjr 53:9b2611964afc 719 // byte 3 -> unit number, from 1 to 16
mjr 35:e959ffba78fd 720 //
mjr 55:4db125cd11a0 721 // 3 -> Enable/disable joystick reports.
mjr 55:4db125cd11a0 722 //
mjr 55:4db125cd11a0 723 // byte 2 -> 1 to enable, 0 to disable
mjr 35:e959ffba78fd 724 //
mjr 55:4db125cd11a0 725 // When joystick reports are disabled, the device registers as a generic HID
mjr 55:4db125cd11a0 726 // device, and only sends the private report types used by the Windows config
mjr 55:4db125cd11a0 727 // tool. It won't appear to Windows as a USB game controller or joystick.
mjr 55:4db125cd11a0 728 //
mjr 55:4db125cd11a0 729 // Note that this doesn't affect whether the device also registers a keyboard
mjr 55:4db125cd11a0 730 // interface. A keyboard interface will appear if and only if any buttons
mjr 55:4db125cd11a0 731 // (including virtual buttons, such as the ZB Launch Ball feature) are assigned
mjr 55:4db125cd11a0 732 // to generate keyboard key input.
mjr 55:4db125cd11a0 733 //
mjr 77:0b96f6867312 734 // 4 -> Accelerometer settings
mjr 35:e959ffba78fd 735 //
mjr 55:4db125cd11a0 736 // byte 3 -> orientation:
mjr 55:4db125cd11a0 737 // 0 = ports at front (USB ports pointing towards front of cabinet)
mjr 55:4db125cd11a0 738 // 1 = ports at left
mjr 55:4db125cd11a0 739 // 2 = ports at right
mjr 55:4db125cd11a0 740 // 3 = ports at rear
mjr 77:0b96f6867312 741 // byte 4 -> dynamic range
mjr 77:0b96f6867312 742 // 0 = +/- 1G (2G hardware mode, but rescales joystick reports to 1G range)
mjr 77:0b96f6867312 743 // 1 = +/- 2G (2G hardware mode)
mjr 77:0b96f6867312 744 // 2 = +/- 4G (4G hardware mode)
mjr 77:0b96f6867312 745 // 3 = +/- 8G (8G hardware mode)
mjr 55:4db125cd11a0 746 //
mjr 55:4db125cd11a0 747 // 5 -> Plunger sensor type.
mjr 35:e959ffba78fd 748 //
mjr 55:4db125cd11a0 749 // byte 3 -> plunger type:
mjr 55:4db125cd11a0 750 // 0 = none (disabled)
mjr 55:4db125cd11a0 751 // 1 = TSL1410R linear image sensor, 1280x1 pixels, serial mode
mjr 55:4db125cd11a0 752 // *2 = TSL1410R, parallel mode
mjr 55:4db125cd11a0 753 // 3 = TSL1412R linear image sensor, 1536x1 pixels, serial mode
mjr 55:4db125cd11a0 754 // *4 = TSL1412R, parallel mode
mjr 55:4db125cd11a0 755 // 5 = Potentiometer with linear taper, or any other device that
mjr 55:4db125cd11a0 756 // represents the position reading with a single analog voltage
mjr 55:4db125cd11a0 757 // *6 = AEDR8300 optical quadrature sensor, 75lpi
mjr 55:4db125cd11a0 758 // *7 = AS5304 magnetic quadrature sensor, 160 steps per 2mm
mjr 55:4db125cd11a0 759 //
mjr 55:4db125cd11a0 760 // * The sensor types marked with asterisks (*) are reserved for types
mjr 55:4db125cd11a0 761 // that aren't currently implemented but could be added in the future.
mjr 55:4db125cd11a0 762 // Selecting these types will effectively disable the plunger.
mjr 55:4db125cd11a0 763 //
mjr 55:4db125cd11a0 764 // 6 -> Plunger pin assignments.
mjr 47:df7a88cd249c 765 //
mjr 55:4db125cd11a0 766 // byte 3 -> pin assignment 1
mjr 55:4db125cd11a0 767 // byte 4 -> pin assignment 2
mjr 55:4db125cd11a0 768 // byte 5 -> pin assignment 3
mjr 55:4db125cd11a0 769 // byte 6 -> pin assignment 4
mjr 55:4db125cd11a0 770 //
mjr 55:4db125cd11a0 771 // All of the pins use the standard GPIO port format (see "GPIO pin number
mjr 55:4db125cd11a0 772 // mappings" below). The actual use of the four pins depends on the plunger
mjr 55:4db125cd11a0 773 // type, as shown below. "NC" means that the pin isn't used at all for the
mjr 55:4db125cd11a0 774 // corresponding plunger type.
mjr 35:e959ffba78fd 775 //
mjr 55:4db125cd11a0 776 // Plunger Type Pin 1 Pin 2 Pin 3 Pin 4
mjr 35:e959ffba78fd 777 //
mjr 55:4db125cd11a0 778 // TSL1410R/1412R, serial SI (DigitalOut) CLK (DigitalOut) AO (AnalogIn) NC
mjr 55:4db125cd11a0 779 // TSL1410R/1412R, parallel SI (DigitalOut) CLK (DigitalOut) AO1 (AnalogIn) AO2 (AnalogIn)
mjr 55:4db125cd11a0 780 // Potentiometer AO (AnalogIn) NC NC NC
mjr 55:4db125cd11a0 781 // AEDR8300 A (InterruptIn) B (InterruptIn) NC NC
mjr 55:4db125cd11a0 782 // AS5304 A (InterruptIn) B (InterruptIn) NC NC
mjr 55:4db125cd11a0 783 //
mjr 55:4db125cd11a0 784 // 7 -> Plunger calibration button pin assignments.
mjr 35:e959ffba78fd 785 //
mjr 55:4db125cd11a0 786 // byte 3 -> features enabled/disabled: bit mask consisting of:
mjr 55:4db125cd11a0 787 // 0x01 button input is enabled
mjr 55:4db125cd11a0 788 // 0x02 lamp output is enabled
mjr 55:4db125cd11a0 789 // byte 4 -> DigitalIn pin for the button switch
mjr 55:4db125cd11a0 790 // byte 5 -> DigitalOut pin for the indicator lamp
mjr 55:4db125cd11a0 791 //
mjr 55:4db125cd11a0 792 // Note that setting a pin to NC (Not Connected) will disable it even if the
mjr 55:4db125cd11a0 793 // corresponding feature enable bit (in byte 3) is set.
mjr 35:e959ffba78fd 794 //
mjr 55:4db125cd11a0 795 // 8 -> ZB Launch Ball setup. This configures the ZB Launch Ball feature.
mjr 55:4db125cd11a0 796 //
mjr 55:4db125cd11a0 797 // byte 3 -> LedWiz port number (1-255) mapped to "ZB Launch Ball" in DOF
mjr 55:4db125cd11a0 798 // byte 4 -> key type
mjr 55:4db125cd11a0 799 // byte 5 -> key code
mjr 55:4db125cd11a0 800 // bytes 6:7 -> "push" distance, in 1/1000 inch increments (16 bit little endian)
mjr 55:4db125cd11a0 801 //
mjr 55:4db125cd11a0 802 // Set the port number to 0 to disable the feature. The key type and key code
mjr 55:4db125cd11a0 803 // fields use the same conventions as for a button mapping (see below). The
mjr 55:4db125cd11a0 804 // recommended push distance is 63, which represents .063" ~ 1/16".
mjr 35:e959ffba78fd 805 //
mjr 35:e959ffba78fd 806 // 9 -> TV ON relay setup. This requires external circuitry implemented on the
mjr 35:e959ffba78fd 807 // Expansion Board (or an equivalent circuit as described in the Build Guide).
mjr 55:4db125cd11a0 808 //
mjr 55:4db125cd11a0 809 // byte 3 -> "power status" input pin (DigitalIn)
mjr 55:4db125cd11a0 810 // byte 4 -> "latch" output (DigitalOut)
mjr 55:4db125cd11a0 811 // byte 5 -> relay trigger output (DigitalOut)
mjr 55:4db125cd11a0 812 // bytes 6:7 -> delay time in 10ms increments (16 bit little endian);
mjr 55:4db125cd11a0 813 // e.g., 550 (0x26 0x02) represents 5.5 seconds
mjr 55:4db125cd11a0 814 //
mjr 55:4db125cd11a0 815 // Set the delay time to 0 to disable the feature. The pin assignments will
mjr 55:4db125cd11a0 816 // be ignored if the feature is disabled.
mjr 35:e959ffba78fd 817 //
mjr 77:0b96f6867312 818 // If an IR remote control transmitter is installed (see variable 17), we'll
mjr 77:0b96f6867312 819 // also transmit any IR codes designated as TV ON codes when the startup timer
mjr 77:0b96f6867312 820 // finishes. This allows TVs to be turned on via IR remotes codes rather than
mjr 77:0b96f6867312 821 // hard-wiring them through the relay. The relay can be omitted in this case.
mjr 77:0b96f6867312 822 //
mjr 35:e959ffba78fd 823 // 10 -> TLC5940NT setup. This chip is an external PWM controller, with 32 outputs
mjr 35:e959ffba78fd 824 // per chip and a serial data interface that allows the chips to be daisy-
mjr 35:e959ffba78fd 825 // chained. We can use these chips to add an arbitrary number of PWM output
mjr 55:4db125cd11a0 826 // ports for the LedWiz emulation.
mjr 55:4db125cd11a0 827 //
mjr 35:e959ffba78fd 828 // byte 3 = number of chips attached (connected in daisy chain)
mjr 35:e959ffba78fd 829 // byte 4 = SIN pin - Serial data (must connect to SPIO MOSI -> PTC6 or PTD2)
mjr 35:e959ffba78fd 830 // byte 5 = SCLK pin - Serial clock (must connect to SPIO SCLK -> PTC5 or PTD1)
mjr 35:e959ffba78fd 831 // byte 6 = XLAT pin - XLAT (latch) signal (any GPIO pin)
mjr 35:e959ffba78fd 832 // byte 7 = BLANK pin - BLANK signal (any GPIO pin)
mjr 35:e959ffba78fd 833 // byte 8 = GSCLK pin - Grayscale clock signal (must be a PWM-out capable pin)
mjr 35:e959ffba78fd 834 //
mjr 55:4db125cd11a0 835 // Set the number of chips to 0 to disable the feature. The pin assignments are
mjr 55:4db125cd11a0 836 // ignored if the feature is disabled.
mjr 55:4db125cd11a0 837 //
mjr 35:e959ffba78fd 838 // 11 -> 74HC595 setup. This chip is an external shift register, with 8 outputs per
mjr 35:e959ffba78fd 839 // chip and a serial data interface that allows daisy-chaining. We use this
mjr 35:e959ffba78fd 840 // chips to add extra digital outputs for the LedWiz emulation. In particular,
mjr 35:e959ffba78fd 841 // the Chime Board (part of the Expansion Board suite) uses these to add timer-
mjr 55:4db125cd11a0 842 // protected outputs for coil devices (knockers, chimes, bells, etc).
mjr 55:4db125cd11a0 843 //
mjr 35:e959ffba78fd 844 // byte 3 = number of chips attached (connected in daisy chain)
mjr 35:e959ffba78fd 845 // byte 4 = SIN pin - Serial data (any GPIO pin)
mjr 35:e959ffba78fd 846 // byte 5 = SCLK pin - Serial clock (any GPIO pin)
mjr 35:e959ffba78fd 847 // byte 6 = LATCH pin - LATCH signal (any GPIO pin)
mjr 35:e959ffba78fd 848 // byte 7 = ENA pin - ENABLE signal (any GPIO pin)
mjr 35:e959ffba78fd 849 //
mjr 55:4db125cd11a0 850 // Set the number of chips to 0 to disable the feature. The pin assignments are
mjr 55:4db125cd11a0 851 // ignored if the feature is disabled.
mjr 55:4db125cd11a0 852 //
mjr 53:9b2611964afc 853 // 12 -> Disconnect reboot timeout. The reboot timeout allows the controller software
mjr 51:57eb311faafa 854 // to automatically reboot the KL25Z after it detects that the USB connection is
mjr 51:57eb311faafa 855 // broken. On some hosts, the device isn't able to reconnect after the initial
mjr 51:57eb311faafa 856 // connection is lost. The reboot timeout is a workaround for these cases. When
mjr 51:57eb311faafa 857 // the software detects that the connection is no longer active, it will reboot
mjr 51:57eb311faafa 858 // the KL25Z automatically if a new connection isn't established within the
mjr 55:4db125cd11a0 859 // timeout period. Set the timeout to 0 to disable the feature (i.e., the device
mjr 55:4db125cd11a0 860 // will never automatically reboot itself on a broken connection).
mjr 55:4db125cd11a0 861 //
mjr 55:4db125cd11a0 862 // byte 3 -> reboot timeout in seconds; 0 = disabled
mjr 51:57eb311faafa 863 //
mjr 53:9b2611964afc 864 // 13 -> Plunger calibration. In most cases, the calibration is set internally by the
mjr 52:8298b2a73eb2 865 // device by running the calibration procedure. However, it's sometimes useful
mjr 52:8298b2a73eb2 866 // for the host to be able to get and set the calibration, such as to back up
mjr 52:8298b2a73eb2 867 // the device settings on the PC, or to save and restore the current settings
mjr 52:8298b2a73eb2 868 // when installing a software update.
mjr 52:8298b2a73eb2 869 //
mjr 52:8298b2a73eb2 870 // bytes 3:4 = rest position (unsigned 16-bit little-endian)
mjr 52:8298b2a73eb2 871 // bytes 5:6 = maximum retraction point (unsigned 16-bit little-endian)
mjr 52:8298b2a73eb2 872 // byte 7 = measured plunger release travel time in milliseconds
mjr 52:8298b2a73eb2 873 //
mjr 53:9b2611964afc 874 // 14 -> Expansion board configuration. This doesn't affect the controller behavior
mjr 52:8298b2a73eb2 875 // directly; the individual options related to the expansion boards (such as
mjr 52:8298b2a73eb2 876 // the TLC5940 and 74HC595 setup) still need to be set separately. This is
mjr 52:8298b2a73eb2 877 // stored so that the PC config UI can store and recover the information to
mjr 52:8298b2a73eb2 878 // present in the UI. For the "classic" KL25Z-only configuration, simply set
mjr 52:8298b2a73eb2 879 // all of the fields to zero.
mjr 52:8298b2a73eb2 880 //
mjr 53:9b2611964afc 881 // byte 3 = board set type. At the moment, the Pinscape expansion boards
mjr 53:9b2611964afc 882 // are the only ones supported in the software. This allows for
mjr 53:9b2611964afc 883 // adding new designs or independent designs in the future.
mjr 53:9b2611964afc 884 // 0 = Standalone KL25Z (no expansion boards)
mjr 53:9b2611964afc 885 // 1 = Pinscape expansion boards
mjr 53:9b2611964afc 886 //
mjr 53:9b2611964afc 887 // byte 4 = board set interface revision. This *isn't* the version number
mjr 53:9b2611964afc 888 // of the board itself, but rather of its software interface. In
mjr 53:9b2611964afc 889 // other words, this doesn't change every time the EAGLE layout
mjr 53:9b2611964afc 890 // for the board changes. It only changes when a revision is made
mjr 53:9b2611964afc 891 // that affects the software, such as a GPIO pin assignment.
mjr 53:9b2611964afc 892 //
mjr 55:4db125cd11a0 893 // For Pinscape expansion boards (board set type = 1):
mjr 55:4db125cd11a0 894 // 0 = first release (Feb 2016)
mjr 53:9b2611964afc 895 //
mjr 55:4db125cd11a0 896 // bytes 5:8 = additional hardware-specific data. These slots are used
mjr 55:4db125cd11a0 897 // to store extra data specific to the expansion boards selected.
mjr 55:4db125cd11a0 898 //
mjr 55:4db125cd11a0 899 // For Pinscape expansion boards (board set type = 1):
mjr 55:4db125cd11a0 900 // byte 5 = number of main interface boards
mjr 55:4db125cd11a0 901 // byte 6 = number of MOSFET power boards
mjr 55:4db125cd11a0 902 // byte 7 = number of chime boards
mjr 53:9b2611964afc 903 //
mjr 53:9b2611964afc 904 // 15 -> Night mode setup.
mjr 53:9b2611964afc 905 //
mjr 53:9b2611964afc 906 // byte 3 = button number - 1..MAX_BUTTONS, or 0 for none. This selects
mjr 53:9b2611964afc 907 // a physically wired button that can be used to control night mode.
mjr 53:9b2611964afc 908 // The button can also be used as normal for PC input if desired.
mjr 55:4db125cd11a0 909 // Note that night mode can still be activated via a USB command
mjr 55:4db125cd11a0 910 // even if no button is assigned.
mjr 55:4db125cd11a0 911 //
mjr 53:9b2611964afc 912 // byte 4 = flags:
mjr 66:2e3583fbd2f4 913 //
mjr 66:2e3583fbd2f4 914 // 0x01 -> The wired input is an on/off switch: night mode will be
mjr 53:9b2611964afc 915 // active when the input is switched on. If this bit isn't
mjr 66:2e3583fbd2f4 916 // set, the input is a momentary button: pushing the button
mjr 53:9b2611964afc 917 // toggles night mode.
mjr 55:4db125cd11a0 918 //
mjr 66:2e3583fbd2f4 919 // 0x02 -> Night Mode is assigned to the SHIFTED button (see Shift
mjr 66:2e3583fbd2f4 920 // Button setup at variable 16). This can only be used
mjr 66:2e3583fbd2f4 921 // in momentary mode; it's ignored if flag bit 0x01 is set.
mjr 66:2e3583fbd2f4 922 // When the shift flag is set, the button only toggles
mjr 66:2e3583fbd2f4 923 // night mode when you press it while also holding down
mjr 66:2e3583fbd2f4 924 // the Shift button.
mjr 66:2e3583fbd2f4 925 //
mjr 53:9b2611964afc 926 // byte 5 = indicator output number - 1..MAX_OUT_PORTS, or 0 for none. This
mjr 53:9b2611964afc 927 // selects an output port that will be turned on when night mode is
mjr 53:9b2611964afc 928 // activated. Night mode activation overrides any setting made by
mjr 53:9b2611964afc 929 // the host.
mjr 53:9b2611964afc 930 //
mjr 66:2e3583fbd2f4 931 // 16 -> Shift Button setup. One button can be designated as a "Local Shift
mjr 66:2e3583fbd2f4 932 // Button" that can be pressed to select a secondary meaning for other
mjr 66:2e3583fbd2f4 933 // buttons. This isn't to be confused with the PC Shift keys; those can
mjr 66:2e3583fbd2f4 934 // be programmed using the USB key codes for Left Shift and Right Shift.
mjr 66:2e3583fbd2f4 935 // Rather, this applies a LOCAL shift feature in the cabinet button that
mjr 66:2e3583fbd2f4 936 // lets you select a secondary meaning. For example, you could assign
mjr 66:2e3583fbd2f4 937 // the Start button to the "1" key (VP "Start Game") normally, but have
mjr 66:2e3583fbd2f4 938 // its meaning change to the "5" key ("Insert Coin") when the shift
mjr 66:2e3583fbd2f4 939 // button is pressed. This provides access to more control functions
mjr 66:2e3583fbd2f4 940 // without adding more physical buttons.
mjr 66:2e3583fbd2f4 941 //
mjr 66:2e3583fbd2f4 942 // The shift button itself can also have a regular key assignment. If
mjr 66:2e3583fbd2f4 943 // it does, the key is only sent to the PC when you RELEASE the shift
mjr 66:2e3583fbd2f4 944 // button, and then only if no other key with a shifted key code assigned
mjr 66:2e3583fbd2f4 945 // was pressed while the shift button was being held down. If another
mjr 66:2e3583fbd2f4 946 // key was pressed, and it has a shifted meaning assigned, we assume that
mjr 66:2e3583fbd2f4 947 // the shift button was only pressed in the first place for its shifting
mjr 66:2e3583fbd2f4 948 // function rather than for its normal keystroke. This dual usage lets
mjr 66:2e3583fbd2f4 949 // you make the shifting function even more unobtrusive by assigning it
mjr 66:2e3583fbd2f4 950 // to an ordinary button that has its own purpose when not used as a
mjr 66:2e3583fbd2f4 951 // shift button. For example, you could assign the shift function to the
mjr 66:2e3583fbd2f4 952 // rarely used Extra Ball button. In those cases where you actually want
mjr 66:2e3583fbd2f4 953 // to use the Extra Ball feature, it's there, but you also get more
mjr 66:2e3583fbd2f4 954 // mileage out of the button by using it to select secondary mappings for
mjr 66:2e3583fbd2f4 955 // other buttons.
mjr 66:2e3583fbd2f4 956 //
mjr 66:2e3583fbd2f4 957 // byte 3 = button number - 1..MAX_BUTTONS, or 0 for none.
mjr 66:2e3583fbd2f4 958 //
mjr 77:0b96f6867312 959 // 17 -> IR Remote Control physical device setup. We support IR remotes for
mjr 77:0b96f6867312 960 // both sending and receiving. On the receive side, we can read from a
mjr 77:0b96f6867312 961 // sensor such as a TSOP384xx. The sensor requires one GPIO pin with
mjr 77:0b96f6867312 962 // interrupt support, so any PTAxx or PTDxx pin will work. On the send
mjr 77:0b96f6867312 963 // side, we can transmit through any IR LED. This requires one PWM
mjr 77:0b96f6867312 964 // output pin. To enable send and/or receive, specify a valid pin; to
mjr 77:0b96f6867312 965 // disable, set the pin NC (not connected). Send and receive can be
mjr 77:0b96f6867312 966 // enabled and disabled independently; it's not necessary to enable
mjr 77:0b96f6867312 967 // the transmit function to use the receive function, or vice versa.
mjr 77:0b96f6867312 968 //
mjr 77:0b96f6867312 969 // byte 3 = receiver input GPIO pin ID. Must be interrupt-capable.
mjr 77:0b96f6867312 970 // byte 4 = transmitter pin. Must be PWM-capable.
mjr 77:0b96f6867312 971 //
mjr 53:9b2611964afc 972 //
mjr 74:822a92bc11d2 973 // SPECIAL DIAGNOSTICS VARIABLES: These work like the array variables below,
mjr 74:822a92bc11d2 974 // the only difference being that we don't report these in the number of array
mjr 74:822a92bc11d2 975 // variables reported in the "variable 0" query.
mjr 74:822a92bc11d2 976 //
mjr 74:822a92bc11d2 977 // 220 -> Performance/diagnostics variables. Items marked "read only" can't
mjr 74:822a92bc11d2 978 // be written; any SET VARIABLE messages on these are ignored. Items
mjr 74:822a92bc11d2 979 // marked "diagnostic only" refer to counters or statistics that are
mjr 74:822a92bc11d2 980 // collected only when the diagnostics are enabled via the diags.h
mjr 74:822a92bc11d2 981 // macro ENABLE_DIAGNOSTICS. These will simply return zero otherwise.
mjr 74:822a92bc11d2 982 //
mjr 74:822a92bc11d2 983 // byte 3 = diagnostic index (see below)
mjr 74:822a92bc11d2 984 //
mjr 74:822a92bc11d2 985 // Diagnostic index values:
mjr 74:822a92bc11d2 986 //
mjr 74:822a92bc11d2 987 // 1 -> Main loop cycle time [read only, diagnostic only]
mjr 74:822a92bc11d2 988 // Retrieves the average time of one iteration of the main
mjr 74:822a92bc11d2 989 // loop, in microseconds, as a uint32. This excludes the
mjr 74:822a92bc11d2 990 // time spent processing incoming messages, as well as any
mjr 74:822a92bc11d2 991 // time spent waiting for a dropped USB connection to be
mjr 74:822a92bc11d2 992 // restored. This includes all subroutine time and polled
mjr 74:822a92bc11d2 993 // task time, such as processing button and plunger input,
mjr 74:822a92bc11d2 994 // sending USB joystick reports, etc.
mjr 74:822a92bc11d2 995 //
mjr 74:822a92bc11d2 996 // 2 -> Main loop message read time [read only, diagnostic only]
mjr 74:822a92bc11d2 997 // Retrieves the average time spent processing incoming USB
mjr 74:822a92bc11d2 998 // messages per iteration of the main loop, in microseconds,
mjr 74:822a92bc11d2 999 // as a uint32. This only counts the processing time when
mjr 74:822a92bc11d2 1000 // messages are actually present, so the average isn't reduced
mjr 74:822a92bc11d2 1001 // by iterations of the main loop where no messages are found.
mjr 74:822a92bc11d2 1002 // That is, if we run a million iterations of the main loop,
mjr 74:822a92bc11d2 1003 // and only five of them have messages at all, the average time
mjr 74:822a92bc11d2 1004 // includes only those five cycles with messages to process.
mjr 74:822a92bc11d2 1005 //
mjr 74:822a92bc11d2 1006 // 3 -> PWM update polling time [read only, diagnostic only]
mjr 74:822a92bc11d2 1007 // Retrieves the average time, as a uint32 in microseconds,
mjr 74:822a92bc11d2 1008 // spent in the PWM update polling routine.
mjr 74:822a92bc11d2 1009 //
mjr 74:822a92bc11d2 1010 // 4 -> LedWiz update polling time [read only, diagnostic only]
mjr 74:822a92bc11d2 1011 // Retrieves the average time, as a uint32 in microseconds,
mjr 74:822a92bc11d2 1012 // units, spent in the LedWiz flash cycle update routine.
mjr 74:822a92bc11d2 1013 //
mjr 74:822a92bc11d2 1014 //
mjr 53:9b2611964afc 1015 // ARRAY VARIABLES: Each variable below is an array. For each get/set message,
mjr 53:9b2611964afc 1016 // byte 3 gives the array index. These are grouped at the top end of the variable
mjr 53:9b2611964afc 1017 // ID range to distinguish this special feature. On QUERY, set the index byte to 0
mjr 53:9b2611964afc 1018 // to query the number of slots; the reply will be a report for the array index
mjr 53:9b2611964afc 1019 // variable with index 0, with the first (and only) byte after that indicating
mjr 53:9b2611964afc 1020 // the maximum array index.
mjr 53:9b2611964afc 1021 //
mjr 77:0b96f6867312 1022 // 250 -> IR remote control commands - code part 2. This stores the high-order
mjr 77:0b96f6867312 1023 // 32 bits of the remote control for each slot. These are combined with
mjr 77:0b96f6867312 1024 // the low-order 32 bits from variable 251 below to form a 64-bit code.
mjr 77:0b96f6867312 1025 //
mjr 77:0b96f6867312 1026 // byte 3 = Command slot number (1..MAX_IR_CODES)
mjr 77:0b96f6867312 1027 // byte 4 = bits 32..39 of remote control command code
mjr 77:0b96f6867312 1028 // byte 5 = bits 40..47
mjr 77:0b96f6867312 1029 // byte 6 = bits 48..55
mjr 77:0b96f6867312 1030 // byte 7 = bits 56..63
mjr 77:0b96f6867312 1031 //
mjr 77:0b96f6867312 1032 // 251 -> IR remote control commands - code part 1. This stores the protocol
mjr 77:0b96f6867312 1033 // identifier and low-order 32 bits of the remote control code for each
mjr 77:0b96f6867312 1034 // remote control command slot. The code represents a key press on a
mjr 77:0b96f6867312 1035 // remote, and is usually determined by reading it from the device's
mjr 77:0b96f6867312 1036 // actual remote via the IR sensor input feature. These codes combine
mjr 77:0b96f6867312 1037 // with variable 250 above to form a 64-bit code for each slot.
mjr 77:0b96f6867312 1038 // See IRRemote/IRProtocolID.h for the protocol ID codes.
mjr 77:0b96f6867312 1039 //
mjr 77:0b96f6867312 1040 // byte 3 = Command slot number (1..MAX_IR_CODES)
mjr 77:0b96f6867312 1041 // byte 4 = protocol ID
mjr 77:0b96f6867312 1042 // byte 5 = bits 0..7 of remote control command code
mjr 77:0b96f6867312 1043 // byte 6 = bits 8..15
mjr 77:0b96f6867312 1044 // byte 7 = bits 16..23
mjr 77:0b96f6867312 1045 // byte 8 = bits 24..31
mjr 77:0b96f6867312 1046 //
mjr 77:0b96f6867312 1047 // 252 -> IR remote control commands - control information. This stores
mjr 77:0b96f6867312 1048 // descriptive information for each remote control command slot.
mjr 77:0b96f6867312 1049 // The IR code for each slot is stored in the corresponding array
mjr 77:0b96f6867312 1050 // entry in variables 251 & 250 above; the information is split over
mjr 77:0b96f6867312 1051 // several variables like this because of the 8-byte command message
mjr 77:0b96f6867312 1052 // size in our USB protocol (which we use for LedWiz compatibility).
mjr 77:0b96f6867312 1053 //
mjr 77:0b96f6867312 1054 // byte 3 = Command slot number (1..MAX_IR_CODES)
mjr 77:0b96f6867312 1055 // byte 4 = bit flags:
mjr 77:0b96f6867312 1056 // 0x01 -> send this code as a TV ON signal at system start
mjr 77:0b96f6867312 1057 // 0x02 -> use "ditto" codes when sending the command
mjr 77:0b96f6867312 1058 // byte 5 = key type; same as the key type in an input button variable
mjr 77:0b96f6867312 1059 // byte 6 = key code; same as the key code in an input button variable
mjr 77:0b96f6867312 1060 //
mjr 77:0b96f6867312 1061 // Each IR command slot can serve three purposes:
mjr 77:0b96f6867312 1062 //
mjr 77:0b96f6867312 1063 // - First, it can be used as part of the TV ON sequence when the
mjr 77:0b96f6867312 1064 // system powers up, to turn on cabinet TVs that don't power up by
mjr 77:0b96f6867312 1065 // themselves. To use this feature, set the TV ON bit in the flags.
mjr 77:0b96f6867312 1066 //
mjr 77:0b96f6867312 1067 // - Second, when the IR sensor receives a command in a given slot, we
mjr 77:0b96f6867312 1068 // can translate it into a keyboard key or joystick button press sent
mjr 77:0b96f6867312 1069 // to the PC. This lets you use any IR remote to send commands to the
mjr 77:0b96f6867312 1070 // PC, allowing access to additional control inputs without any extra
mjr 77:0b96f6867312 1071 // buttons on the cabinet. To use this feature, assign the key to
mjr 77:0b96f6867312 1072 // send in the key type and key code bytes.
mjr 77:0b96f6867312 1073 //
mjr 77:0b96f6867312 1074 // - Third, we can send a given IR command when a physical cabinet
mjr 77:0b96f6867312 1075 // button is pressed. This lets you use cabinet buttons to send IR
mjr 77:0b96f6867312 1076 // commands to other devices in your system. For example, you could
mjr 77:0b96f6867312 1077 // assign cabinet buttons to control the volume on a cab TV. To use
mjr 77:0b96f6867312 1078 // this feature, assign an IR slot as a button function in the button
mjr 77:0b96f6867312 1079 // setup.
mjr 77:0b96f6867312 1080 //
mjr 66:2e3583fbd2f4 1081 // 253 -> Extended input button setup. This adds on to the information set by
mjr 66:2e3583fbd2f4 1082 // variable 254 below, accessing additional fields. The "shifted" key
mjr 66:2e3583fbd2f4 1083 // type and code fields assign a secondary meaning to the button that's
mjr 66:2e3583fbd2f4 1084 // used when the local Shift button is being held down. See variable 16
mjr 66:2e3583fbd2f4 1085 // above for more details on the Shift button.
mjr 66:2e3583fbd2f4 1086 //
mjr 77:0b96f6867312 1087 // byte 3 = Button number (1..MAX_BUTTONS)
mjr 66:2e3583fbd2f4 1088 // byte 4 = shifted key type (same codes as "key type" in var 254)
mjr 77:0b96f6867312 1089 // byte 5 = shifted key code (same codes as "key code" in var 254)
mjr 77:0b96f6867312 1090 // byte 6 = shifted IR command (see "IR command" in var 254)
mjr 66:2e3583fbd2f4 1091 //
mjr 53:9b2611964afc 1092 // 254 -> Input button setup. This sets up one button; it can be repeated for each
mjr 64:ef7ca92dff36 1093 // button to be configured. There are MAX_EXT_BUTTONS button slots (see
mjr 64:ef7ca92dff36 1094 // config.h for the constant definition), numbered 1..MAX_EXT_BUTTONS. Each
mjr 53:9b2611964afc 1095 // slot can be configured as a joystick button, a regular keyboard key, or a
mjr 53:9b2611964afc 1096 // media control key (mute, volume up, volume down).
mjr 53:9b2611964afc 1097 //
mjr 53:9b2611964afc 1098 // The bytes of the message are:
mjr 66:2e3583fbd2f4 1099 // byte 3 = Button number (1..MAX_BUTTONS)
mjr 64:ef7ca92dff36 1100 // byte 4 = GPIO pin for the button input; mapped as a DigitalIn port
mjr 53:9b2611964afc 1101 // byte 5 = key type reported to PC when button is pushed:
mjr 53:9b2611964afc 1102 // 0 = none (no PC input reported when button pushed)
mjr 53:9b2611964afc 1103 // 1 = joystick button -> byte 6 is the button number, 1-32
mjr 53:9b2611964afc 1104 // 2 = regular keyboard key -> byte 6 is the USB key code (see below)
mjr 67:c39e66c4e000 1105 // 3 = media key -> byte 6 is the USB media control code (see below)
mjr 53:9b2611964afc 1106 // byte 6 = key code, which depends on the key type in byte 5
mjr 53:9b2611964afc 1107 // byte 7 = flags - a combination of these bit values:
mjr 53:9b2611964afc 1108 // 0x01 = pulse mode. This reports a physical on/off switch's state
mjr 53:9b2611964afc 1109 // to the host as a brief key press whenever the switch changes
mjr 53:9b2611964afc 1110 // state. This is useful for the VPinMAME Coin Door button,
mjr 53:9b2611964afc 1111 // which requires the End key to be pressed each time the
mjr 53:9b2611964afc 1112 // door changes state.
mjr 77:0b96f6867312 1113 // byte 8 = IR command to transmit when unshifted button is pressed. This
mjr 77:0b96f6867312 1114 // contains an IR slot number (1..MAX_IR_CODES), or 0 if no code
mjr 77:0b96f6867312 1115 // is associated with the button.
mjr 53:9b2611964afc 1116 //
mjr 53:9b2611964afc 1117 // 255 -> LedWiz output port setup. This sets up one output port; it can be repeated
mjr 53:9b2611964afc 1118 // for each port to be configured. There are 128 possible slots for output ports,
mjr 53:9b2611964afc 1119 // numbered 1 to 128. The number of ports atcually active is determined by
mjr 53:9b2611964afc 1120 // the first DISABLED port (type 0). For example, if ports 1-32 are set as GPIO
mjr 53:9b2611964afc 1121 // outputs and port 33 is disabled, we'll report to the host that we have 32 ports,
mjr 53:9b2611964afc 1122 // regardless of the settings for post 34 and higher.
mjr 53:9b2611964afc 1123 //
mjr 53:9b2611964afc 1124 // The bytes of the message are:
mjr 53:9b2611964afc 1125 // byte 3 = LedWiz port number (1 to MAX_OUT_PORTS)
mjr 53:9b2611964afc 1126 // byte 4 = physical output type:
mjr 53:9b2611964afc 1127 // 0 = Disabled. This output isn't used, and isn't visible to the
mjr 53:9b2611964afc 1128 // LedWiz/DOF software on the host. The FIRST disabled port
mjr 53:9b2611964afc 1129 // determines the number of ports visible to the host - ALL ports
mjr 53:9b2611964afc 1130 // after the first disabled port are also implicitly disabled.
mjr 53:9b2611964afc 1131 // 1 = GPIO PWM output: connected to GPIO pin specified in byte 5,
mjr 53:9b2611964afc 1132 // operating in PWM mode. Note that only a subset of KL25Z GPIO
mjr 53:9b2611964afc 1133 // ports are PWM-capable.
mjr 53:9b2611964afc 1134 // 2 = GPIO Digital output: connected to GPIO pin specified in byte 5,
mjr 53:9b2611964afc 1135 // operating in digital mode. Digital ports can only be set ON
mjr 53:9b2611964afc 1136 // or OFF, with no brightness/intensity control. All pins can be
mjr 53:9b2611964afc 1137 // used in this mode.
mjr 53:9b2611964afc 1138 // 3 = TLC5940 port: connected to TLC5940 output port number specified
mjr 53:9b2611964afc 1139 // in byte 5. Ports are numbered sequentially starting from port 0
mjr 53:9b2611964afc 1140 // for the first output (OUT0) on the first chip in the daisy chain.
mjr 53:9b2611964afc 1141 // 4 = 74HC595 port: connected to 74HC595 output port specified in byte 5.
mjr 53:9b2611964afc 1142 // As with the TLC5940 outputs, ports are numbered sequentially from 0
mjr 53:9b2611964afc 1143 // for the first output on the first chip in the daisy chain.
mjr 53:9b2611964afc 1144 // 5 = Virtual output: this output port exists for the purposes of the
mjr 53:9b2611964afc 1145 // LedWiz/DOF software on the host, but isn't physically connected
mjr 53:9b2611964afc 1146 // to any output device. This can be used to create a virtual output
mjr 53:9b2611964afc 1147 // for the DOF ZB Launch Ball signal, for example, or simply as a
mjr 53:9b2611964afc 1148 // placeholder in the LedWiz port numbering. The physical output ID
mjr 53:9b2611964afc 1149 // (byte 5) is ignored for this port type.
mjr 53:9b2611964afc 1150 // byte 5 = physical output port, interpreted according to the value in byte 4
mjr 53:9b2611964afc 1151 // byte 6 = flags: a combination of these bit values:
mjr 53:9b2611964afc 1152 // 0x01 = active-high output (0V on output turns attached device ON)
mjr 53:9b2611964afc 1153 // 0x02 = noisemaker device: disable this output when "night mode" is engaged
mjr 53:9b2611964afc 1154 // 0x04 = apply gamma correction to this output
mjr 53:9b2611964afc 1155 //
mjr 53:9b2611964afc 1156 // Note that the on-board LED segments can be used as LedWiz output ports. This
mjr 53:9b2611964afc 1157 // is useful for testing a new installation with DOF or other PC software without
mjr 53:9b2611964afc 1158 // having to connect any external devices. Assigning the on-board LED segments to
mjr 53:9b2611964afc 1159 // output ports overrides their normal status/diagnostic display use, so the normal
mjr 53:9b2611964afc 1160 // status flash pattern won't appear when they're used this way.
mjr 52:8298b2a73eb2 1161 //
mjr 35:e959ffba78fd 1162
mjr 35:e959ffba78fd 1163
mjr 55:4db125cd11a0 1164 // --- GPIO PIN NUMBER MAPPINGS ---
mjr 35:e959ffba78fd 1165 //
mjr 53:9b2611964afc 1166 // In USB messages that specify GPIO pin assignments, pins are identified by
mjr 53:9b2611964afc 1167 // 8-bit integers. The special value 0xFF means NC (not connected). All actual
mjr 53:9b2611964afc 1168 // pins are mapped with the port number in the top 3 bits and the pin number in
mjr 53:9b2611964afc 1169 // the bottom 5 bits. Port A=0, B=1, ..., E=4. For example, PTC7 is port C (2)
mjr 53:9b2611964afc 1170 // pin 7, so it's represented as (2 << 5) | 7.
mjr 53:9b2611964afc 1171
mjr 35:e959ffba78fd 1172
mjr 35:e959ffba78fd 1173 // --- USB KEYBOARD SCAN CODES ---
mjr 35:e959ffba78fd 1174 //
mjr 53:9b2611964afc 1175 // For regular keyboard keys, we use the standard USB HID scan codes
mjr 53:9b2611964afc 1176 // for the US keyboard layout. The scan codes are defined by the USB
mjr 53:9b2611964afc 1177 // HID specifications; you can find a full list in the official USB
mjr 53:9b2611964afc 1178 // specs. Some common codes are listed below as a quick reference.
mjr 35:e959ffba78fd 1179 //
mjr 53:9b2611964afc 1180 // Key name -> USB scan code (hex)
mjr 53:9b2611964afc 1181 // A-Z -> 04-1D
mjr 53:9b2611964afc 1182 // top row 1!->0) -> 1E-27
mjr 53:9b2611964afc 1183 // Return -> 28
mjr 53:9b2611964afc 1184 // Escape -> 29
mjr 53:9b2611964afc 1185 // Backspace -> 2A
mjr 53:9b2611964afc 1186 // Tab -> 2B
mjr 53:9b2611964afc 1187 // Spacebar -> 2C
mjr 53:9b2611964afc 1188 // -_ -> 2D
mjr 53:9b2611964afc 1189 // =+ -> 2E
mjr 53:9b2611964afc 1190 // [{ -> 2F
mjr 53:9b2611964afc 1191 // ]} -> 30
mjr 53:9b2611964afc 1192 // \| -> 31
mjr 53:9b2611964afc 1193 // ;: -> 33
mjr 53:9b2611964afc 1194 // '" -> 34
mjr 53:9b2611964afc 1195 // `~ -> 35
mjr 53:9b2611964afc 1196 // ,< -> 36
mjr 53:9b2611964afc 1197 // .> -> 37
mjr 53:9b2611964afc 1198 // /? -> 38
mjr 53:9b2611964afc 1199 // Caps Lock -> 39
mjr 53:9b2611964afc 1200 // F1-F12 -> 3A-45
mjr 53:9b2611964afc 1201 // F13-F24 -> 68-73
mjr 53:9b2611964afc 1202 // Print Screen -> 46
mjr 53:9b2611964afc 1203 // Scroll Lock -> 47
mjr 53:9b2611964afc 1204 // Pause -> 48
mjr 53:9b2611964afc 1205 // Insert -> 49
mjr 53:9b2611964afc 1206 // Home -> 4A
mjr 53:9b2611964afc 1207 // Page Up -> 4B
mjr 53:9b2611964afc 1208 // Del -> 4C
mjr 53:9b2611964afc 1209 // End -> 4D
mjr 53:9b2611964afc 1210 // Page Down -> 4E
mjr 53:9b2611964afc 1211 // Right Arrow -> 4F
mjr 53:9b2611964afc 1212 // Left Arrow -> 50
mjr 53:9b2611964afc 1213 // Down Arrow -> 51
mjr 53:9b2611964afc 1214 // Up Arrow -> 52
mjr 53:9b2611964afc 1215 // Num Lock/Clear -> 53
mjr 53:9b2611964afc 1216 // Keypad / * - + -> 54 55 56 57
mjr 53:9b2611964afc 1217 // Keypad Enter -> 58
mjr 53:9b2611964afc 1218 // Keypad 1-9 -> 59-61
mjr 53:9b2611964afc 1219 // Keypad 0 -> 62
mjr 53:9b2611964afc 1220 // Keypad . -> 63
mjr 53:9b2611964afc 1221 // Mute -> 7F
mjr 53:9b2611964afc 1222 // Volume Up -> 80
mjr 53:9b2611964afc 1223 // Volume Down -> 81
mjr 53:9b2611964afc 1224 // Left Control -> E0
mjr 53:9b2611964afc 1225 // Left Shift -> E1
mjr 53:9b2611964afc 1226 // Left Alt -> E2
mjr 53:9b2611964afc 1227 // Left GUI -> E3
mjr 53:9b2611964afc 1228 // Right Control -> E4
mjr 53:9b2611964afc 1229 // Right Shift -> E5
mjr 53:9b2611964afc 1230 // Right Alt -> E6
mjr 53:9b2611964afc 1231 // Right GUI -> E7
mjr 53:9b2611964afc 1232 //
mjr 66:2e3583fbd2f4 1233 // Due to limitations in Windows, there's a limit of 6 regular keys
mjr 66:2e3583fbd2f4 1234 // pressed at the same time. The shift keys in the E0-E7 range don't
mjr 66:2e3583fbd2f4 1235 // count against this limit, though, since they're encoded as modifier
mjr 66:2e3583fbd2f4 1236 // keys; all of these can be pressed at the same time in addition to 6
mjr 67:c39e66c4e000 1237 // regular keys.
mjr 67:c39e66c4e000 1238
mjr 67:c39e66c4e000 1239 // --- USB MEDIA CONTROL SCAN CODES ---
mjr 67:c39e66c4e000 1240 //
mjr 67:c39e66c4e000 1241 // Buttons mapped to type 3 are Media Control buttons. These select
mjr 67:c39e66c4e000 1242 // a small set of common media control functions. We recognize the
mjr 67:c39e66c4e000 1243 // following type codes only:
mjr 67:c39e66c4e000 1244 //
mjr 67:c39e66c4e000 1245 // Mute -> E2
mjr 67:c39e66c4e000 1246 // Volume up -> E9
mjr 67:c39e66c4e000 1247 // Volume Down -> EA
mjr 67:c39e66c4e000 1248 // Next Track -> B5
mjr 67:c39e66c4e000 1249 // Previous Track -> B6
mjr 67:c39e66c4e000 1250 // Stop -> B7
mjr 67:c39e66c4e000 1251 // Play/Pause -> CD