Mirror with some correction

Dependencies:   mbed FastIO FastPWM USBDevice

Committer:
mjr
Date:
Sat Jan 21 19:48:30 2017 +0000
Revision:
73:4e8ce0b18915
Parent:
67:c39e66c4e000
Child:
74:822a92bc11d2
Add protocol commands for TV ON and button testers; add free memory status reporting; improve button scan interrupt speed; reduce button memory footprint slightly; further improve TSL1410R "scan mode 2" speed

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 35:e959ffba78fd 1 // USB Message Protocol
mjr 35:e959ffba78fd 2 //
mjr 35:e959ffba78fd 3 // This file is purely for documentation, to describe our USB protocol.
mjr 35:e959ffba78fd 4 // We use the standard HID setup with one endpoint in each direction.
mjr 35:e959ffba78fd 5 // See USBJoystick.cpp/.h for our USB descriptor arrangement.
mjr 35:e959ffba78fd 6 //
mjr 35:e959ffba78fd 7
mjr 35:e959ffba78fd 8 // ------ OUTGOING MESSAGES (DEVICE TO HOST) ------
mjr 35:e959ffba78fd 9 //
mjr 47:df7a88cd249c 10 // General note: 16-bit and 32-bit fields in our reports are little-endian
mjr 47:df7a88cd249c 11 // unless otherwise specified.
mjr 47:df7a88cd249c 12 //
mjr 39:b3815a1c3802 13 // 1. Joystick reports
mjr 35:e959ffba78fd 14 // In most cases, our outgoing messages are HID joystick reports, using the
mjr 35:e959ffba78fd 15 // format defined in USBJoystick.cpp. This allows us to be installed on
mjr 35:e959ffba78fd 16 // Windows as a standard USB joystick, which all versions of Windows support
mjr 35:e959ffba78fd 17 // using in-the-box drivers. This allows a completely transparent, driverless,
mjr 39:b3815a1c3802 18 // plug-and-play installation experience on Windows. Our joystick report
mjr 39:b3815a1c3802 19 // looks like this (see USBJoystick.cpp for the formal HID report descriptor):
mjr 35:e959ffba78fd 20 //
mjr 55:4db125cd11a0 21 // ss status bits:
mjr 55:4db125cd11a0 22 // 0x01 -> plunger enabled
mjr 55:4db125cd11a0 23 // 0x02 -> night mode engaged
mjr 73:4e8ce0b18915 24 // 0x04,0x08,0x10 -> power sense status: meaningful only when
mjr 73:4e8ce0b18915 25 // the TV-on timer is used. Figure (ss>>2) & 0x07 to
mjr 73:4e8ce0b18915 26 // isolate the status bits. The resulting value is:
mjr 73:4e8ce0b18915 27 // 1 -> latch was on at last check
mjr 73:4e8ce0b18915 28 // 2 -> latch was off at last check, SET pin high
mjr 73:4e8ce0b18915 29 // 3 -> latch off, SET pin low, ready to check status
mjr 73:4e8ce0b18915 30 // 4 -> TV timer countdown in progress
mjr 73:4e8ce0b18915 31 // 5 -> TV relay is on
mjr 40:cc0d9814522b 32 // 00 2nd byte of status (reserved)
mjr 40:cc0d9814522b 33 // 00 3rd byte of status (reserved)
mjr 39:b3815a1c3802 34 // 00 always zero for joystick reports
mjr 40:cc0d9814522b 35 // bb joystick buttons, low byte (buttons 1-8, 1 bit per button)
mjr 40:cc0d9814522b 36 // bb joystick buttons, 2nd byte (buttons 9-16)
mjr 40:cc0d9814522b 37 // bb joystick buttons, 3rd byte (buttons 17-24)
mjr 40:cc0d9814522b 38 // bb joystick buttons, high byte (buttons 25-32)
mjr 39:b3815a1c3802 39 // xx low byte of X position = nudge/accelerometer X axis
mjr 39:b3815a1c3802 40 // xx high byte of X position
mjr 39:b3815a1c3802 41 // yy low byte of Y position = nudge/accelerometer Y axis
mjr 39:b3815a1c3802 42 // yy high byte of Y position
mjr 39:b3815a1c3802 43 // zz low byte of Z position = plunger position
mjr 39:b3815a1c3802 44 // zz high byte of Z position
mjr 39:b3815a1c3802 45 //
mjr 39:b3815a1c3802 46 // The X, Y, and Z values are 16-bit signed integers. The accelerometer
mjr 39:b3815a1c3802 47 // values are on an abstract scale, where 0 represents no acceleration,
mjr 39:b3815a1c3802 48 // negative maximum represents -1g on that axis, and positive maximum
mjr 39:b3815a1c3802 49 // represents +1g on that axis. For the plunger position, 0 is the park
mjr 39:b3815a1c3802 50 // position (the rest position of the plunger) and positive values represent
mjr 39:b3815a1c3802 51 // retracted (pulled back) positions. A negative value means that the plunger
mjr 39:b3815a1c3802 52 // is pushed forward of the park position.
mjr 39:b3815a1c3802 53 //
mjr 39:b3815a1c3802 54 // 2. Special reports
mjr 35:e959ffba78fd 55 // We subvert the joystick report format in certain cases to report other
mjr 35:e959ffba78fd 56 // types of information, when specifically requested by the host. This allows
mjr 35:e959ffba78fd 57 // our custom configuration UI on the Windows side to query additional
mjr 35:e959ffba78fd 58 // information that we don't normally send via the joystick reports. We
mjr 35:e959ffba78fd 59 // define a custom vendor-specific "status" field in the reports that we
mjr 35:e959ffba78fd 60 // use to identify these special reports, as described below.
mjr 35:e959ffba78fd 61 //
mjr 39:b3815a1c3802 62 // Normal joystick reports always have 0 in the high bit of the 2nd byte
mjr 35:e959ffba78fd 63 // of the report. Special non-joystick reports always have 1 in the high bit
mjr 35:e959ffba78fd 64 // of the first byte. (This byte is defined in the HID Report Descriptor
mjr 35:e959ffba78fd 65 // as an opaque vendor-defined value, so the joystick interface on the
mjr 35:e959ffba78fd 66 // Windows side simply ignores it.)
mjr 35:e959ffba78fd 67 //
mjr 52:8298b2a73eb2 68 // 2A. Plunger sensor status report
mjr 52:8298b2a73eb2 69 // Software on the PC can request a detailed status report from the plunger
mjr 52:8298b2a73eb2 70 // sensor. The status information is meant as an aid to installing and
mjr 52:8298b2a73eb2 71 // adjusting the sensor device for proper performance. For imaging sensor
mjr 52:8298b2a73eb2 72 // types, the status report includes a complete current image snapshot
mjr 52:8298b2a73eb2 73 // (an array of all of the pixels the sensor is currently imaging). For
mjr 52:8298b2a73eb2 74 // all sensor types, it includes the current plunger position registered
mjr 52:8298b2a73eb2 75 // on the sensor, and some timing information.
mjr 52:8298b2a73eb2 76 //
mjr 52:8298b2a73eb2 77 // To request the sensor status, the host sends custom protocol message 65 3
mjr 52:8298b2a73eb2 78 // (see below). The device replies with a message in this format:
mjr 52:8298b2a73eb2 79 //
mjr 52:8298b2a73eb2 80 // bytes 0:1 = 0x87FF
mjr 52:8298b2a73eb2 81 // byte 2 = 0 -> first (currently only) status report packet
mjr 52:8298b2a73eb2 82 // (additional packets could be added in the future if
mjr 52:8298b2a73eb2 83 // more fields need to be added)
mjr 52:8298b2a73eb2 84 // bytes 3:4 = number of pixels to be sent in following messages, as
mjr 52:8298b2a73eb2 85 // an unsigned 16-bit little-endian integer. This is 0 if
mjr 52:8298b2a73eb2 86 // the sensor isn't an imaging type.
mjr 52:8298b2a73eb2 87 // bytes 5:6 = current plunger position registered on the sensor.
mjr 52:8298b2a73eb2 88 // For imaging sensors, this is the pixel position, so it's
mjr 52:8298b2a73eb2 89 // scaled from 0 to number of pixels - 1. For non-imaging
mjr 52:8298b2a73eb2 90 // sensors, this uses the generic joystick scale 0..4095.
mjr 52:8298b2a73eb2 91 // The special value 0xFFFF means that the position couldn't
mjr 52:8298b2a73eb2 92 // be determined,
mjr 52:8298b2a73eb2 93 // byte 7 = bit flags:
mjr 52:8298b2a73eb2 94 // 0x01 = normal orientation detected
mjr 52:8298b2a73eb2 95 // 0x02 = reversed orientation detected
mjr 52:8298b2a73eb2 96 // 0x04 = calibration mode is active (no pixel packets
mjr 52:8298b2a73eb2 97 // are sent for this reading)
mjr 52:8298b2a73eb2 98 // bytes 8:9:10 = average time for each sensor read, in 10us units.
mjr 52:8298b2a73eb2 99 // This is the average time it takes to complete the I/O
mjr 52:8298b2a73eb2 100 // operation to read the sensor, to obtain the raw sensor
mjr 52:8298b2a73eb2 101 // data for instantaneous plunger position reading. For
mjr 52:8298b2a73eb2 102 // an imaging sensor, this is the time it takes for the
mjr 52:8298b2a73eb2 103 // sensor to capture the image and transfer it to the
mjr 52:8298b2a73eb2 104 // microcontroller. For an analog sensor (e.g., an LVDT
mjr 52:8298b2a73eb2 105 // or potentiometer), it's the time to complete an ADC
mjr 52:8298b2a73eb2 106 // sample.
mjr 52:8298b2a73eb2 107 // bytes 11:12:13 = time it took to process the current frame, in 10us
mjr 52:8298b2a73eb2 108 // units. This is the software processing time that was
mjr 52:8298b2a73eb2 109 // needed to analyze the raw data read from the sensor.
mjr 52:8298b2a73eb2 110 // This is typically only non-zero for imaging sensors,
mjr 52:8298b2a73eb2 111 // where it reflects the time required to scan the pixel
mjr 52:8298b2a73eb2 112 // array to find the indicated plunger position. The time
mjr 52:8298b2a73eb2 113 // is usually zero or negligible for analog sensor types,
mjr 52:8298b2a73eb2 114 // since the only "analysis" is a multiplication to rescale
mjr 52:8298b2a73eb2 115 // the ADC sample.
mjr 52:8298b2a73eb2 116 //
mjr 52:8298b2a73eb2 117 // If the sensor is an imaging sensor type, this will be followed by a
mjr 52:8298b2a73eb2 118 // series of pixel messages. The imaging sensor types have too many pixels
mjr 52:8298b2a73eb2 119 // to send in a single USB transaction, so the device breaks up the array
mjr 52:8298b2a73eb2 120 // into as many packets as needed and sends them in sequence. For non-
mjr 52:8298b2a73eb2 121 // imaging sensors, the "number of pixels" field in the lead packet is
mjr 52:8298b2a73eb2 122 // zero, so obviously no pixel packets will follow. If the "calibration
mjr 52:8298b2a73eb2 123 // active" bit in the flags byte is set, no pixel packets are sent even
mjr 52:8298b2a73eb2 124 // if the sensor is an imaging type, since the transmission time for the
mjr 52:8298b2a73eb2 125 // pixels would intefere with the calibration process. If pixels are sent,
mjr 52:8298b2a73eb2 126 // they're sent in order starting at the first pixel. The format of each
mjr 52:8298b2a73eb2 127 // pixel packet is:
mjr 35:e959ffba78fd 128 //
mjr 35:e959ffba78fd 129 // bytes 0:1 = 11-bit index, with high 5 bits set to 10000. For
mjr 48:058ace2aed1d 130 // example, 0x8004 (encoded little endian as 0x04 0x80)
mjr 48:058ace2aed1d 131 // indicates index 4. This is the starting pixel number
mjr 48:058ace2aed1d 132 // in the report. The first report will be 0x00 0x80 to
mjr 48:058ace2aed1d 133 // indicate pixel #0.
mjr 47:df7a88cd249c 134 // bytes 2 = 8-bit unsigned int brightness level of pixel at index
mjr 47:df7a88cd249c 135 // bytes 3 = brightness of pixel at index+1
mjr 35:e959ffba78fd 136 // etc for the rest of the packet
mjr 35:e959ffba78fd 137 //
mjr 52:8298b2a73eb2 138 // Note that we currently only support one-dimensional imaging sensors
mjr 52:8298b2a73eb2 139 // (i.e., pixel arrays that are 1 pixel wide). The report format doesn't
mjr 52:8298b2a73eb2 140 // have any provision for a two-dimensional layout. The KL25Z probably
mjr 52:8298b2a73eb2 141 // isn't powerful enough to do real-time image analysis on a 2D image
mjr 52:8298b2a73eb2 142 // anyway, so it's unlikely that we'd be able to make 2D sensors work at
mjr 52:8298b2a73eb2 143 // all, but if we ever add such a thing we'll have to upgrade the report
mjr 52:8298b2a73eb2 144 // format here accordingly.
mjr 51:57eb311faafa 145 //
mjr 51:57eb311faafa 146 //
mjr 53:9b2611964afc 147 // 2B. Configuration report.
mjr 39:b3815a1c3802 148 // This is requested by sending custom protocol message 65 4 (see below).
mjr 39:b3815a1c3802 149 // In reponse, the device sends one report to the host using this format:
mjr 35:e959ffba78fd 150 //
mjr 35:e959ffba78fd 151 // bytes 0:1 = 0x8800. This has the bit pattern 10001 in the high
mjr 35:e959ffba78fd 152 // 5 bits, which distinguishes it from regular joystick
mjr 40:cc0d9814522b 153 // reports and from other special report types.
mjr 35:e959ffba78fd 154 // bytes 2:3 = total number of outputs, little endian
mjr 73:4e8ce0b18915 155 // bytes 4:5 = Pinscape unit number (0-15), little endian
mjr 40:cc0d9814522b 156 // bytes 6:7 = plunger calibration zero point, little endian
mjr 40:cc0d9814522b 157 // bytes 8:9 = plunger calibration maximum point, little endian
mjr 52:8298b2a73eb2 158 // byte 10 = plunger calibration release time, in milliseconds
mjr 52:8298b2a73eb2 159 // byte 11 = bit flags:
mjr 40:cc0d9814522b 160 // 0x01 -> configuration loaded; 0 in this bit means that
mjr 40:cc0d9814522b 161 // the firmware has been loaded but no configuration
mjr 40:cc0d9814522b 162 // has been sent from the host
mjr 73:4e8ce0b18915 163 // bytes 12:13 = available RAM, in bytes, little endian. This is the amount
mjr 73:4e8ce0b18915 164 // of unused heap (malloc'able) memory. The firmware generally
mjr 73:4e8ce0b18915 165 // allocates all of the dynamic memory it needs during startup,
mjr 73:4e8ce0b18915 166 // so the free memory figure doesn't tend to fluctuate during
mjr 73:4e8ce0b18915 167 // normal operation. The dynamic memory used is a function of
mjr 73:4e8ce0b18915 168 // the set of features enabled.
mjr 35:e959ffba78fd 169 //
mjr 53:9b2611964afc 170 // 2C. Device ID report.
mjr 40:cc0d9814522b 171 // This is requested by sending custom protocol message 65 7 (see below).
mjr 40:cc0d9814522b 172 // In response, the device sends one report to the host using this format:
mjr 40:cc0d9814522b 173 //
mjr 52:8298b2a73eb2 174 // bytes 0:1 = 0x9000. This has bit pattern 10010 in the high 5 bits
mjr 52:8298b2a73eb2 175 // to distinguish this from other report types.
mjr 53:9b2611964afc 176 // byte 2 = ID type. This is the same ID type sent in the request.
mjr 53:9b2611964afc 177 // bytes 3-12 = requested ID. The ID is 80 bits in big-endian byte
mjr 53:9b2611964afc 178 // order. For IDs longer than 80 bits, we truncate to the
mjr 53:9b2611964afc 179 // low-order 80 bits (that is, the last 80 bits).
mjr 53:9b2611964afc 180 //
mjr 53:9b2611964afc 181 // ID type 1 = CPU ID. This is the globally unique CPU ID
mjr 53:9b2611964afc 182 // stored in the KL25Z CPU.
mjr 35:e959ffba78fd 183 //
mjr 53:9b2611964afc 184 // ID type 2 = OpenSDA ID. This is the globally unique ID
mjr 53:9b2611964afc 185 // for the connected OpenSDA controller, if known. This
mjr 53:9b2611964afc 186 // allow the host to figure out which USB MSD (virtual
mjr 53:9b2611964afc 187 // disk drive), if any, represents the OpenSDA module for
mjr 53:9b2611964afc 188 // this Pinscape USB interface. This is primarily useful
mjr 53:9b2611964afc 189 // to determine which MSD to write in order to update the
mjr 53:9b2611964afc 190 // firmware on a given Pinscape unit.
mjr 53:9b2611964afc 191 //
mjr 53:9b2611964afc 192 // 2D. Configuration variable report.
mjr 52:8298b2a73eb2 193 // This is requested by sending custom protocol message 65 9 (see below).
mjr 52:8298b2a73eb2 194 // In response, the device sends one report to the host using this format:
mjr 52:8298b2a73eb2 195 //
mjr 52:8298b2a73eb2 196 // bytes 0:1 = 0x9800. This has bit pattern 10011 in the high 5 bits
mjr 52:8298b2a73eb2 197 // to distinguish this from other report types.
mjr 52:8298b2a73eb2 198 // byte 2 = Variable ID. This is the same variable ID sent in the
mjr 52:8298b2a73eb2 199 // query message, to relate the reply to the request.
mjr 52:8298b2a73eb2 200 // bytes 3-8 = Current value of the variable, in the format for the
mjr 52:8298b2a73eb2 201 // individual variable type. The variable formats are
mjr 52:8298b2a73eb2 202 // described in the CONFIGURATION VARIABLES section below.
mjr 52:8298b2a73eb2 203 //
mjr 53:9b2611964afc 204 // 2E. Software build information report.
mjr 53:9b2611964afc 205 // This is requested by sending custom protocol message 65 10 (see below).
mjr 53:9b2611964afc 206 // In response, the device sends one report using this format:
mjr 53:9b2611964afc 207 //
mjr 73:4e8ce0b18915 208 // bytes 0:1 = 0xA000. This has bit pattern 10100 in the high 5 bits
mjr 53:9b2611964afc 209 // to distinguish it from other report types.
mjr 53:9b2611964afc 210 // bytes 2:5 = Build date. This is returned as a 32-bit integer,
mjr 53:9b2611964afc 211 // little-endian as usual, encoding a decimal value
mjr 53:9b2611964afc 212 // in the format YYYYMMDD giving the date of the build.
mjr 53:9b2611964afc 213 // E.g., Feb 16 2016 is encoded as 20160216 (decimal).
mjr 53:9b2611964afc 214 // bytes 6:9 = Build time. This is a 32-bit integer, little-endian,
mjr 53:9b2611964afc 215 // encoding a decimal value in the format HHMMSS giving
mjr 53:9b2611964afc 216 // build time on a 24-hour clock.
mjr 53:9b2611964afc 217 //
mjr 73:4e8ce0b18915 218 // 2F. Button status report.
mjr 73:4e8ce0b18915 219 // This is requested by sending custom protocol message 65 13 (see below).
mjr 73:4e8ce0b18915 220 // In response, the device sends one report using this format:
mjr 73:4e8ce0b18915 221 //
mjr 73:4e8ce0b18915 222 // bytes 0:1 = 0xA1. This has bit pattern 10101 in the high 5 bits
mjr 73:4e8ce0b18915 223 // to distinguish it from other report types.
mjr 73:4e8ce0b18915 224 // byte 2 = number of button reports
mjr 73:4e8ce0b18915 225 // byte 3 = Physical status of buttons 1-8, 1 bit each. The low-order
mjr 73:4e8ce0b18915 226 // bit (0x01) is button 1. Each bit is 0 if the button is off,
mjr 73:4e8ce0b18915 227 // 1 if on. This reflects the physical status of the button
mjr 73:4e8ce0b18915 228 // input pins, after debouncing but before any logical state
mjr 73:4e8ce0b18915 229 // processing. Pulse mode and shifting have no effect on the
mjr 73:4e8ce0b18915 230 // physical state; this simply indicates whether the button is
mjr 73:4e8ce0b18915 231 // electrically on (shorted to GND) or off (open circuit).
mjr 73:4e8ce0b18915 232 // byte 4 = buttons 9-16
mjr 73:4e8ce0b18915 233 // byte 5 = buttons 17-24
mjr 73:4e8ce0b18915 234 // byte 6 = buttons 25-32
mjr 73:4e8ce0b18915 235 // byte 7 = buttons 33-40
mjr 73:4e8ce0b18915 236 // byte 8 = buttons 41-48
mjr 73:4e8ce0b18915 237 //
mjr 52:8298b2a73eb2 238 //
mjr 35:e959ffba78fd 239 // WHY WE USE THIS HACKY APPROACH TO DIFFERENT REPORT TYPES
mjr 35:e959ffba78fd 240 //
mjr 35:e959ffba78fd 241 // The HID report system was specifically designed to provide a clean,
mjr 35:e959ffba78fd 242 // structured way for devices to describe the data they send to the host.
mjr 35:e959ffba78fd 243 // Our approach isn't clean or structured; it ignores the promises we
mjr 35:e959ffba78fd 244 // make about the contents of our report via the HID Report Descriptor
mjr 35:e959ffba78fd 245 // and stuffs our own different data format into the same structure.
mjr 35:e959ffba78fd 246 //
mjr 35:e959ffba78fd 247 // We use this hacky approach only because we can't use the official
mjr 35:e959ffba78fd 248 // mechanism, due to the constraint that we want to emulate the LedWiz.
mjr 35:e959ffba78fd 249 // The right way to send different report types is to declare different
mjr 35:e959ffba78fd 250 // report types via extra HID Report Descriptors, then send each report
mjr 35:e959ffba78fd 251 // using one of the types we declared. If it weren't for the LedWiz
mjr 35:e959ffba78fd 252 // constraint, we'd simply define the pixel dump and config query reports
mjr 35:e959ffba78fd 253 // as their own separate HID Report types, each consisting of opaque
mjr 35:e959ffba78fd 254 // blocks of bytes. But we can't do this. The snag is that some versions
mjr 35:e959ffba78fd 255 // of the LedWiz Windows host software parse the USB HID descriptors as part
mjr 35:e959ffba78fd 256 // of identifying a device as a valid LedWiz unit, and will only recognize
mjr 35:e959ffba78fd 257 // the device if it matches certain particulars about the descriptor
mjr 35:e959ffba78fd 258 // structure of a real LedWiz. One of the features that's important to
mjr 35:e959ffba78fd 259 // some versions of the software is the descriptor link structure, which
mjr 35:e959ffba78fd 260 // is affected by the layout of HID Report Descriptor entries. In order
mjr 35:e959ffba78fd 261 // to match the expected layout, we can only define a single kind of output
mjr 35:e959ffba78fd 262 // report. Since we have to use Joystick reports for the sake of VP and
mjr 35:e959ffba78fd 263 // other pinball software, and we're only allowed the one report type, we
mjr 35:e959ffba78fd 264 // have to make that one report type the Joystick type. That's why we
mjr 35:e959ffba78fd 265 // overload the joystick reports with other meanings. It's a hack, but
mjr 35:e959ffba78fd 266 // at least it's a fairly reliable and isolated hack, iun that our special
mjr 35:e959ffba78fd 267 // reports are only generated when clients specifically ask for them.
mjr 35:e959ffba78fd 268 // Plus, even if a client who doesn't ask for a special report somehow
mjr 35:e959ffba78fd 269 // gets one, the worst that happens is that they get a momentary spurious
mjr 35:e959ffba78fd 270 // reading from the accelerometer and plunger.
mjr 35:e959ffba78fd 271
mjr 35:e959ffba78fd 272
mjr 35:e959ffba78fd 273
mjr 35:e959ffba78fd 274 // ------- INCOMING MESSAGES (HOST TO DEVICE) -------
mjr 35:e959ffba78fd 275 //
mjr 35:e959ffba78fd 276 // For LedWiz compatibility, our incoming message format conforms to the
mjr 35:e959ffba78fd 277 // basic USB format used by real LedWiz units. This is simply 8 data
mjr 35:e959ffba78fd 278 // bytes, all private vendor-specific values (meaning that the Windows HID
mjr 35:e959ffba78fd 279 // driver treats them as opaque and doesn't attempt to parse them).
mjr 35:e959ffba78fd 280 //
mjr 35:e959ffba78fd 281 // Within this basic 8-byte format, we recognize the full protocol used
mjr 35:e959ffba78fd 282 // by real LedWiz units, plus an extended protocol that we define privately.
mjr 35:e959ffba78fd 283 // The LedWiz protocol leaves a large part of the potential protocol space
mjr 35:e959ffba78fd 284 // undefined, so we take advantage of this undefined region for our
mjr 35:e959ffba78fd 285 // extensions. This ensures that we can properly recognize all messages
mjr 35:e959ffba78fd 286 // intended for a real LedWiz unit, as well as messages from custom host
mjr 35:e959ffba78fd 287 // software that knows it's talking to a Pinscape unit.
mjr 35:e959ffba78fd 288
mjr 35:e959ffba78fd 289 // --- REAL LED WIZ MESSAGES ---
mjr 35:e959ffba78fd 290 //
mjr 35:e959ffba78fd 291 // The real LedWiz protocol has two message types, identified by the first
mjr 35:e959ffba78fd 292 // byte of the 8-byte USB packet:
mjr 35:e959ffba78fd 293 //
mjr 35:e959ffba78fd 294 // 64 -> SBA (64 xx xx xx xx ss uu uu)
mjr 35:e959ffba78fd 295 // xx = on/off bit mask for 8 outputs
mjr 35:e959ffba78fd 296 // ss = global flash speed setting (1-7)
mjr 35:e959ffba78fd 297 // uu = unused
mjr 35:e959ffba78fd 298 //
mjr 35:e959ffba78fd 299 // If the first byte has value 64 (0x40), it's an SBA message. This type of
mjr 35:e959ffba78fd 300 // message sets all 32 outputs individually ON or OFF according to the next
mjr 35:e959ffba78fd 301 // 32 bits (4 bytes) of the message, and sets the flash speed to the value in
mjr 35:e959ffba78fd 302 // the sixth byte. (The flash speed sets the global cycle rate for flashing
mjr 35:e959ffba78fd 303 // outputs - outputs with their values set to the range 128-132 - to a
mjr 35:e959ffba78fd 304 // relative speed, scaled linearly in frequency. 1 is the slowest at about
mjr 35:e959ffba78fd 305 // 2 Hz, 7 is the fastest at about 14 Hz.)
mjr 35:e959ffba78fd 306 //
mjr 35:e959ffba78fd 307 // 0-49 or 128-132 -> PBA (bb bb bb bb bb bb bb bb)
mjr 35:e959ffba78fd 308 // bb = brightness level/flash pattern for one output
mjr 35:e959ffba78fd 309 //
mjr 35:e959ffba78fd 310 // If the first byte is any valid brightness setting, it's a PBA message.
mjr 35:e959ffba78fd 311 // Valid brightness settings are:
mjr 35:e959ffba78fd 312 //
mjr 35:e959ffba78fd 313 // 0-48 = fixed brightness level, linearly from 0% to 100% intensity
mjr 35:e959ffba78fd 314 // 49 = fixed brightness level at 100% intensity (same as 48)
mjr 35:e959ffba78fd 315 // 129 = flashing pattern, fade up / fade down (sawtooth wave)
mjr 35:e959ffba78fd 316 // 130 = flashing pattern, on / off (square wave)
mjr 35:e959ffba78fd 317 // 131 = flashing pattern, on for 50% duty cycle / fade down
mjr 35:e959ffba78fd 318 // 132 = flashing pattern, fade up / on for 50% duty cycle
mjr 35:e959ffba78fd 319 //
mjr 35:e959ffba78fd 320 // A PBA message sets 8 outputs out of 32. Which 8 are to be set is
mjr 35:e959ffba78fd 321 // implicit in the message sequence: the first PBA sets outputs 1-8, the
mjr 35:e959ffba78fd 322 // second sets 9-16, and so on, rolling around after each fourth PBA.
mjr 35:e959ffba78fd 323 // An SBA also resets the implicit "bank" for the next PBA to outputs 1-8.
mjr 35:e959ffba78fd 324 //
mjr 35:e959ffba78fd 325 // Note that there's no special first byte to indicate the PBA message
mjr 35:e959ffba78fd 326 // type, as there is in an SBA. The first byte of a PBA is simply the
mjr 53:9b2611964afc 327 // first output setting. The way the LedWiz creators conceived this, an
mjr 53:9b2611964afc 328 // SBA message is distinguishable from a PBA because there's no such thing
mjr 53:9b2611964afc 329 // as a brightness level 64, hence 64 is never valid as a byte in an PBA
mjr 53:9b2611964afc 330 // message, hence a message starting with 64 must be something other than
mjr 53:9b2611964afc 331 // an PBA message.
mjr 35:e959ffba78fd 332 //
mjr 35:e959ffba78fd 333 // Our extended protocol uses the same principle, taking advantage of the
mjr 53:9b2611964afc 334 // many other byte values that are also invalid in PBA messages. To be a
mjr 53:9b2611964afc 335 // valid PBA message, the first byte must be in the range 0-49 or 129-132.
mjr 53:9b2611964afc 336 // As already mentioned, byte value 64 indicates an SBA message, so we
mjr 53:9b2611964afc 337 // can't use that one for private extensions. This still leaves many
mjr 53:9b2611964afc 338 // other byte values for us, though, namely 50-63, 65-128, and 133-255.
mjr 35:e959ffba78fd 339
mjr 35:e959ffba78fd 340
mjr 35:e959ffba78fd 341 // --- PRIVATE EXTENDED MESSAGES ---
mjr 35:e959ffba78fd 342 //
mjr 35:e959ffba78fd 343 // All of our extended protocol messages are identified by the first byte:
mjr 35:e959ffba78fd 344 //
mjr 35:e959ffba78fd 345 // 65 -> Miscellaneous control message. The second byte specifies the specific
mjr 35:e959ffba78fd 346 // operation:
mjr 35:e959ffba78fd 347 //
mjr 39:b3815a1c3802 348 // 0 -> No Op - does nothing. (This can be used to send a test message on the
mjr 39:b3815a1c3802 349 // USB endpoint.)
mjr 39:b3815a1c3802 350 //
mjr 35:e959ffba78fd 351 // 1 -> Set device unit number and plunger status, and save the changes immediately
mjr 35:e959ffba78fd 352 // to flash. The device will automatically reboot after the changes are saved.
mjr 35:e959ffba78fd 353 // The additional bytes of the message give the parameters:
mjr 35:e959ffba78fd 354 //
mjr 35:e959ffba78fd 355 // third byte = new unit number (0-15, corresponding to nominal unit numbers 1-16)
mjr 35:e959ffba78fd 356 // fourth byte = plunger on/off (0=disabled, 1=enabled)
mjr 35:e959ffba78fd 357 //
mjr 35:e959ffba78fd 358 // 2 -> Begin plunger calibration mode. The device stays in this mode for about
mjr 35:e959ffba78fd 359 // 15 seconds, and sets the zero point and maximum retraction points to the
mjr 35:e959ffba78fd 360 // observed endpoints of sensor readings while the mode is running. After
mjr 35:e959ffba78fd 361 // the time limit elapses, the device automatically stores the results in
mjr 35:e959ffba78fd 362 // non-volatile flash memory and exits the mode.
mjr 35:e959ffba78fd 363 //
mjr 51:57eb311faafa 364 // 3 -> Send pixel dump. The device sends one complete image snapshot from the
mjr 51:57eb311faafa 365 // plunger sensor, as as series of pixel dump messages. (The message format
mjr 51:57eb311faafa 366 // isn't big enough to allow the whole image to be sent in one message, so
mjr 53:9b2611964afc 367 // the image is broken up into as many messages as necessary.) The device
mjr 53:9b2611964afc 368 // then resumes sending normal joystick messages. If the plunger sensor
mjr 53:9b2611964afc 369 // isn't an imaging type, or no sensor is installed, no pixel messages are
mjr 53:9b2611964afc 370 // sent. Parameters:
mjr 48:058ace2aed1d 371 //
mjr 48:058ace2aed1d 372 // third byte = bit flags:
mjr 51:57eb311faafa 373 // 0x01 = low res mode. The device rescales the sensor pixel array
mjr 51:57eb311faafa 374 // sent in the dump messages to a low-resolution subset. The
mjr 51:57eb311faafa 375 // size of the subset is determined by the device. This has
mjr 51:57eb311faafa 376 // no effect on the sensor operation; it merely reduces the
mjr 51:57eb311faafa 377 // USB transmission time to allow for a faster frame rate for
mjr 51:57eb311faafa 378 // viewing in the config tool.
mjr 35:e959ffba78fd 379 //
mjr 53:9b2611964afc 380 // fourth byte = extra exposure time in 100us (.1ms) increments. For
mjr 53:9b2611964afc 381 // imaging sensors, we'll add this delay to the minimum exposure
mjr 53:9b2611964afc 382 // time. This allows the caller to explicitly adjust the exposure
mjr 53:9b2611964afc 383 // level for calibration purposes.
mjr 53:9b2611964afc 384 //
mjr 35:e959ffba78fd 385 // 4 -> Query configuration. The device sends a special configuration report,
mjr 40:cc0d9814522b 386 // (see above; see also USBJoystick.cpp), then resumes sending normal
mjr 40:cc0d9814522b 387 // joystick reports.
mjr 35:e959ffba78fd 388 //
mjr 35:e959ffba78fd 389 // 5 -> Turn all outputs off and restore LedWiz defaults. Sets output ports
mjr 35:e959ffba78fd 390 // 1-32 to OFF and LedWiz brightness/mode setting 48, sets outputs 33 and
mjr 35:e959ffba78fd 391 // higher to brightness level 0, and sets the LedWiz global flash speed to 2.
mjr 35:e959ffba78fd 392 //
mjr 35:e959ffba78fd 393 // 6 -> Save configuration to flash. This saves all variable updates sent via
mjr 35:e959ffba78fd 394 // type 66 messages since the last reboot, then automatically reboots the
mjr 35:e959ffba78fd 395 // device to put the changes into effect.
mjr 35:e959ffba78fd 396 //
mjr 53:9b2611964afc 397 // third byte = delay time in seconds. The device will wait this long
mjr 53:9b2611964afc 398 // before disconnecting, to allow the PC to perform any cleanup tasks
mjr 53:9b2611964afc 399 // while the device is still attached (e.g., modifying Windows device
mjr 53:9b2611964afc 400 // driver settings)
mjr 53:9b2611964afc 401 //
mjr 40:cc0d9814522b 402 // 7 -> Query device ID. The device replies with a special device ID report
mjr 40:cc0d9814522b 403 // (see above; see also USBJoystick.cpp), then resumes sending normal
mjr 40:cc0d9814522b 404 // joystick reports.
mjr 40:cc0d9814522b 405 //
mjr 53:9b2611964afc 406 // The third byte of the message is the ID index to retrieve:
mjr 53:9b2611964afc 407 //
mjr 53:9b2611964afc 408 // 1 = CPU ID: returns the KL25Z globally unique CPU ID.
mjr 53:9b2611964afc 409 //
mjr 53:9b2611964afc 410 // 2 = OpenSDA ID: returns the OpenSDA TUID. This must be patched
mjr 53:9b2611964afc 411 // into the firmware by the PC host when the .bin file is
mjr 53:9b2611964afc 412 // installed onto the device. This will return all 'X' bytes
mjr 53:9b2611964afc 413 // if the value wasn't patched at install time.
mjr 53:9b2611964afc 414 //
mjr 40:cc0d9814522b 415 // 8 -> Engage/disengage night mode. The third byte of the message is 1 to
mjr 55:4db125cd11a0 416 // engage night mode, 0 to disengage night mode. The current mode isn't
mjr 55:4db125cd11a0 417 // stored persistently; night mode is always off after a reset.
mjr 40:cc0d9814522b 418 //
mjr 52:8298b2a73eb2 419 // 9 -> Query configuration variable. The second byte is the config variable
mjr 52:8298b2a73eb2 420 // number (see the CONFIGURATION VARIABLES section below). For the array
mjr 52:8298b2a73eb2 421 // variables (button assignments, output ports), the third byte is the
mjr 52:8298b2a73eb2 422 // array index. The device replies with a configuration variable report
mjr 52:8298b2a73eb2 423 // (see above) with the current setting for the requested variable.
mjr 52:8298b2a73eb2 424 //
mjr 53:9b2611964afc 425 // 10 -> Query software build information. No parameters. This replies with
mjr 53:9b2611964afc 426 // the software build information report (see above).
mjr 53:9b2611964afc 427 //
mjr 73:4e8ce0b18915 428 // 11 -> TV ON relay manual control. This allows testing and operating the
mjr 73:4e8ce0b18915 429 // relay from the PC. This doesn't change the power-up configuration;
mjr 73:4e8ce0b18915 430 // it merely allows the relay to be controlled directly.
mjr 73:4e8ce0b18915 431 //
mjr 73:4e8ce0b18915 432 // 0 = turn relay off
mjr 73:4e8ce0b18915 433 // 1 = turn relay on
mjr 73:4e8ce0b18915 434 // 2 = pulse the relay as though the power-on delay timer fired
mjr 73:4e8ce0b18915 435 //
mjr 73:4e8ce0b18915 436 // 12 -> Select virtual LedWiz unit. This selects a bank of 32 ports that
mjr 73:4e8ce0b18915 437 // will be addressed by subsequent SBA and PBA messages. After this
mjr 73:4e8ce0b18915 438 // command is sent, all SBA and PBA messages will address the bank of
mjr 73:4e8ce0b18915 439 // ports selected by this command. Send this command again with a new
mjr 73:4e8ce0b18915 440 // bank number to address other ports with SBA/PBA messages.
mjr 73:4e8ce0b18915 441 //
mjr 73:4e8ce0b18915 442 // The rationale for this command is to allow legacy software that only
mjr 73:4e8ce0b18915 443 // uses the original LedWiz protocol to access more than 32 ports. To
mjr 73:4e8ce0b18915 444 // do this, we must replace the LEDWIZ.DLL interface library on the PC
mjr 73:4e8ce0b18915 445 // with a new version that exposes each Pinscape unit as multiple virtual
mjr 73:4e8ce0b18915 446 // LedWiz devices. The DLL creates a virtual LedWiz unit (each with its
mjr 73:4e8ce0b18915 447 // own unit number) for each bank of 32 ports on the Pincape unit. When
mjr 73:4e8ce0b18915 448 // the DLL receives an SBA or PBA command addressed to one of the virtual
mjr 73:4e8ce0b18915 449 // LedWiz units, it first sends a "select virtual unit" command (i.e.,
mjr 73:4e8ce0b18915 450 // this message) to Pinscape, selecting the appropriate bank of 32 ports
mjr 73:4e8ce0b18915 451 // represented by the virtual unit being accessed by the client, then
mjr 73:4e8ce0b18915 452 // follows with the SBA/PBA command the client sent.
mjr 73:4e8ce0b18915 453 //
mjr 73:4e8ce0b18915 454 // The third byte of the message is the bank number to select. Bank 0
mjr 73:4e8ce0b18915 455 // is ports 1-32, bank 1 is ports 33-64, and so on.
mjr 73:4e8ce0b18915 456 //
mjr 73:4e8ce0b18915 457 // 13 -> Get button status report. The device sends one button status report
mjr 73:4e8ce0b18915 458 // in response (see section "2F" above).
mjr 73:4e8ce0b18915 459 //
mjr 35:e959ffba78fd 460 // 66 -> Set configuration variable. The second byte of the message is the config
mjr 35:e959ffba78fd 461 // variable number, and the remaining bytes give the new value for the variable.
mjr 53:9b2611964afc 462 // The value format is specific to each variable; see the CONFIGURATION VARIABLES
mjr 53:9b2611964afc 463 // section below for a list of the variables and their formats. This command
mjr 53:9b2611964afc 464 // only sets the value in RAM; it doesn't write the value to flash and doesn't
mjr 53:9b2611964afc 465 // put the change into effect. To save the new settings, the host must send a
mjr 53:9b2611964afc 466 // type 65 subtype 6 message (see above). That saves the settings to flash and
mjr 53:9b2611964afc 467 // reboots the device, which makes the new settings active.
mjr 35:e959ffba78fd 468 //
mjr 35:e959ffba78fd 469 // 200-228 -> Set extended output brightness. This sets outputs N to N+6 to the
mjr 35:e959ffba78fd 470 // respective brightness values in the 2nd through 8th bytes of the message
mjr 35:e959ffba78fd 471 // (output N is set to the 2nd byte value, N+1 is set to the 3rd byte value,
mjr 35:e959ffba78fd 472 // etc). Each brightness level is a linear brightness level from 0-255,
mjr 35:e959ffba78fd 473 // where 0 is 0% brightness and 255 is 100% brightness. N is calculated as
mjr 35:e959ffba78fd 474 // (first byte - 200)*7 + 1:
mjr 35:e959ffba78fd 475 //
mjr 35:e959ffba78fd 476 // 200 = outputs 1-7
mjr 35:e959ffba78fd 477 // 201 = outputs 8-14
mjr 35:e959ffba78fd 478 // 202 = outputs 15-21
mjr 35:e959ffba78fd 479 // ...
mjr 35:e959ffba78fd 480 // 228 = outputs 197-203
mjr 35:e959ffba78fd 481 //
mjr 53:9b2611964afc 482 // This message is the way to address ports 33 and higher. Original LedWiz
mjr 53:9b2611964afc 483 // protocol messages can't access ports above 32, since the protocol is
mjr 53:9b2611964afc 484 // hard-wired for exactly 32 ports.
mjr 35:e959ffba78fd 485 //
mjr 53:9b2611964afc 486 // Note that the extended output messages differ from regular LedWiz commands
mjr 35:e959ffba78fd 487 // in two ways. First, the brightness is the ONLY attribute when an output is
mjr 53:9b2611964afc 488 // set using this mode. There's no separate ON/OFF state per output as there
mjr 35:e959ffba78fd 489 // is with the SBA/PBA messages. To turn an output OFF with this message, set
mjr 35:e959ffba78fd 490 // the intensity to 0. Setting a non-zero intensity turns it on immediately
mjr 35:e959ffba78fd 491 // without regard to the SBA status for the port. Second, the brightness is
mjr 35:e959ffba78fd 492 // on a full 8-bit scale (0-255) rather than the LedWiz's approximately 5-bit
mjr 35:e959ffba78fd 493 // scale, because there are no parts of the range reserved for flashing modes.
mjr 35:e959ffba78fd 494 //
mjr 35:e959ffba78fd 495 // Outputs 1-32 can be controlled by EITHER the regular LedWiz SBA/PBA messages
mjr 35:e959ffba78fd 496 // or by the extended messages. The latest setting for a given port takes
mjr 35:e959ffba78fd 497 // precedence. If an SBA/PBA message was the last thing sent to a port, the
mjr 35:e959ffba78fd 498 // normal LedWiz combination of ON/OFF and brightness/flash mode status is used
mjr 35:e959ffba78fd 499 // to determine the port's physical output setting. If an extended brightness
mjr 35:e959ffba78fd 500 // message was the last thing sent to a port, the LedWiz ON/OFF status and
mjr 35:e959ffba78fd 501 // flash modes are ignored, and the fixed brightness is set. Outputs 33 and
mjr 35:e959ffba78fd 502 // higher inherently can't be addressed or affected by SBA/PBA messages.
mjr 53:9b2611964afc 503 //
mjr 53:9b2611964afc 504 // (The precedence scheme is designed to accommodate a mix of legacy and DOF
mjr 53:9b2611964afc 505 // software transparently. The behavior described is really just to ensure
mjr 53:9b2611964afc 506 // transparent interoperability; it's not something that host software writers
mjr 53:9b2611964afc 507 // should have to worry about. We expect that anyone writing new software will
mjr 53:9b2611964afc 508 // just use the extended protocol and ignore the old LedWiz commands, since
mjr 53:9b2611964afc 509 // the extended protocol is easier to use and more powerful.)
mjr 35:e959ffba78fd 510
mjr 35:e959ffba78fd 511
mjr 35:e959ffba78fd 512 // ------- CONFIGURATION VARIABLES -------
mjr 35:e959ffba78fd 513 //
mjr 35:e959ffba78fd 514 // Message type 66 (see above) sets one configuration variable. The second byte
mjr 35:e959ffba78fd 515 // of the message is the variable ID, and the rest of the bytes give the new
mjr 35:e959ffba78fd 516 // value, in a variable-specific format. 16-bit values are little endian.
mjr 55:4db125cd11a0 517 // Any bytes at the end of the message not otherwise specified are reserved
mjr 55:4db125cd11a0 518 // for future use and should always be set to 0 in the message data.
mjr 35:e959ffba78fd 519 //
mjr 53:9b2611964afc 520 // 0 -> QUERY ONLY: Describe the configuration variables. The device
mjr 53:9b2611964afc 521 // sends a config variable query report with the following fields:
mjr 53:9b2611964afc 522 //
mjr 53:9b2611964afc 523 // byte 3 -> number of scalar (non-array) variables (these are
mjr 53:9b2611964afc 524 // numbered sequentially from 1 to N)
mjr 53:9b2611964afc 525 // byte 4 -> number of array variables (these are numbered
mjr 53:9b2611964afc 526 // sequentially from 256-N to 255)
mjr 53:9b2611964afc 527 //
mjr 53:9b2611964afc 528 // The description query is meant to allow the host to capture all
mjr 53:9b2611964afc 529 // configuration settings on the device without having to know what
mjr 53:9b2611964afc 530 // the variables mean or how many there are. This is useful for
mjr 53:9b2611964afc 531 // backing up the settings in a file on the PC, for example, or for
mjr 53:9b2611964afc 532 // capturing them to restore after a firmware update. This allows
mjr 53:9b2611964afc 533 // more flexible interoperability between unsynchronized versions
mjr 53:9b2611964afc 534 // of the firmware and the host software.
mjr 53:9b2611964afc 535 //
mjr 53:9b2611964afc 536 // 1 -> USB device ID. This sets the USB vendor and product ID codes
mjr 53:9b2611964afc 537 // to use when connecting to the PC. For LedWiz emulation, use
mjr 35:e959ffba78fd 538 // vendor 0xFAFA and product 0x00EF + unit# (where unit# is the
mjr 53:9b2611964afc 539 // nominal LedWiz unit number, from 1 to 16). If you have any
mjr 53:9b2611964afc 540 // REAL LedWiz units in your system, we recommend starting the
mjr 53:9b2611964afc 541 // Pinscape LedWiz numbering at 8 to avoid conflicts with the
mjr 53:9b2611964afc 542 // real LedWiz units. If you don't have any real LedWiz units,
mjr 53:9b2611964afc 543 // you can number your Pinscape units starting from 1.
mjr 35:e959ffba78fd 544 //
mjr 53:9b2611964afc 545 // If LedWiz emulation isn't desired or causes host conflicts,
mjr 53:9b2611964afc 546 // use our private ID: Vendor 0x1209, product 0xEAEA. (These IDs
mjr 53:9b2611964afc 547 // are registered with http://pid.codes, a registry for open-source
mjr 53:9b2611964afc 548 // USB devices, so they're guaranteed to be free of conflicts with
mjr 53:9b2611964afc 549 // other properly registered devices). The device will NOT appear
mjr 53:9b2611964afc 550 // as an LedWiz if you use the private ID codes, but DOF (R3 or
mjr 53:9b2611964afc 551 // later) will still recognize it as a Pinscape controller.
mjr 53:9b2611964afc 552 //
mjr 53:9b2611964afc 553 // bytes 3:4 -> USB Vendor ID
mjr 53:9b2611964afc 554 // bytes 5:6 -> USB Product ID
mjr 53:9b2611964afc 555 //
mjr 53:9b2611964afc 556 // 2 -> Pinscape Controller unit number for DOF. The Pinscape unit
mjr 53:9b2611964afc 557 // number is independent of the LedWiz unit number, and indepedent
mjr 53:9b2611964afc 558 // of the USB vendor/product IDs. DOF (R3 and later) uses this to
mjr 53:9b2611964afc 559 // identify the unit for the extended Pinscape functionality.
mjr 53:9b2611964afc 560 // For easiest DOF configuration, we recommend numbering your
mjr 53:9b2611964afc 561 // units sequentially starting at 1 (regardless of whether or not
mjr 53:9b2611964afc 562 // you have any real LedWiz units).
mjr 53:9b2611964afc 563 //
mjr 53:9b2611964afc 564 // byte 3 -> unit number, from 1 to 16
mjr 35:e959ffba78fd 565 //
mjr 55:4db125cd11a0 566 // 3 -> Enable/disable joystick reports.
mjr 55:4db125cd11a0 567 //
mjr 55:4db125cd11a0 568 // byte 2 -> 1 to enable, 0 to disable
mjr 35:e959ffba78fd 569 //
mjr 55:4db125cd11a0 570 // When joystick reports are disabled, the device registers as a generic HID
mjr 55:4db125cd11a0 571 // device, and only sends the private report types used by the Windows config
mjr 55:4db125cd11a0 572 // tool. It won't appear to Windows as a USB game controller or joystick.
mjr 55:4db125cd11a0 573 //
mjr 55:4db125cd11a0 574 // Note that this doesn't affect whether the device also registers a keyboard
mjr 55:4db125cd11a0 575 // interface. A keyboard interface will appear if and only if any buttons
mjr 55:4db125cd11a0 576 // (including virtual buttons, such as the ZB Launch Ball feature) are assigned
mjr 55:4db125cd11a0 577 // to generate keyboard key input.
mjr 55:4db125cd11a0 578 //
mjr 55:4db125cd11a0 579 // 4 -> Accelerometer orientation.
mjr 35:e959ffba78fd 580 //
mjr 55:4db125cd11a0 581 // byte 3 -> orientation:
mjr 55:4db125cd11a0 582 // 0 = ports at front (USB ports pointing towards front of cabinet)
mjr 55:4db125cd11a0 583 // 1 = ports at left
mjr 55:4db125cd11a0 584 // 2 = ports at right
mjr 55:4db125cd11a0 585 // 3 = ports at rear
mjr 55:4db125cd11a0 586 //
mjr 55:4db125cd11a0 587 // 5 -> Plunger sensor type.
mjr 35:e959ffba78fd 588 //
mjr 55:4db125cd11a0 589 // byte 3 -> plunger type:
mjr 55:4db125cd11a0 590 // 0 = none (disabled)
mjr 55:4db125cd11a0 591 // 1 = TSL1410R linear image sensor, 1280x1 pixels, serial mode
mjr 55:4db125cd11a0 592 // *2 = TSL1410R, parallel mode
mjr 55:4db125cd11a0 593 // 3 = TSL1412R linear image sensor, 1536x1 pixels, serial mode
mjr 55:4db125cd11a0 594 // *4 = TSL1412R, parallel mode
mjr 55:4db125cd11a0 595 // 5 = Potentiometer with linear taper, or any other device that
mjr 55:4db125cd11a0 596 // represents the position reading with a single analog voltage
mjr 55:4db125cd11a0 597 // *6 = AEDR8300 optical quadrature sensor, 75lpi
mjr 55:4db125cd11a0 598 // *7 = AS5304 magnetic quadrature sensor, 160 steps per 2mm
mjr 55:4db125cd11a0 599 //
mjr 55:4db125cd11a0 600 // * The sensor types marked with asterisks (*) are reserved for types
mjr 55:4db125cd11a0 601 // that aren't currently implemented but could be added in the future.
mjr 55:4db125cd11a0 602 // Selecting these types will effectively disable the plunger.
mjr 55:4db125cd11a0 603 //
mjr 55:4db125cd11a0 604 // 6 -> Plunger pin assignments.
mjr 47:df7a88cd249c 605 //
mjr 55:4db125cd11a0 606 // byte 3 -> pin assignment 1
mjr 55:4db125cd11a0 607 // byte 4 -> pin assignment 2
mjr 55:4db125cd11a0 608 // byte 5 -> pin assignment 3
mjr 55:4db125cd11a0 609 // byte 6 -> pin assignment 4
mjr 55:4db125cd11a0 610 //
mjr 55:4db125cd11a0 611 // All of the pins use the standard GPIO port format (see "GPIO pin number
mjr 55:4db125cd11a0 612 // mappings" below). The actual use of the four pins depends on the plunger
mjr 55:4db125cd11a0 613 // type, as shown below. "NC" means that the pin isn't used at all for the
mjr 55:4db125cd11a0 614 // corresponding plunger type.
mjr 35:e959ffba78fd 615 //
mjr 55:4db125cd11a0 616 // Plunger Type Pin 1 Pin 2 Pin 3 Pin 4
mjr 35:e959ffba78fd 617 //
mjr 55:4db125cd11a0 618 // TSL1410R/1412R, serial SI (DigitalOut) CLK (DigitalOut) AO (AnalogIn) NC
mjr 55:4db125cd11a0 619 // TSL1410R/1412R, parallel SI (DigitalOut) CLK (DigitalOut) AO1 (AnalogIn) AO2 (AnalogIn)
mjr 55:4db125cd11a0 620 // Potentiometer AO (AnalogIn) NC NC NC
mjr 55:4db125cd11a0 621 // AEDR8300 A (InterruptIn) B (InterruptIn) NC NC
mjr 55:4db125cd11a0 622 // AS5304 A (InterruptIn) B (InterruptIn) NC NC
mjr 55:4db125cd11a0 623 //
mjr 55:4db125cd11a0 624 // 7 -> Plunger calibration button pin assignments.
mjr 35:e959ffba78fd 625 //
mjr 55:4db125cd11a0 626 // byte 3 -> features enabled/disabled: bit mask consisting of:
mjr 55:4db125cd11a0 627 // 0x01 button input is enabled
mjr 55:4db125cd11a0 628 // 0x02 lamp output is enabled
mjr 55:4db125cd11a0 629 // byte 4 -> DigitalIn pin for the button switch
mjr 55:4db125cd11a0 630 // byte 5 -> DigitalOut pin for the indicator lamp
mjr 55:4db125cd11a0 631 //
mjr 55:4db125cd11a0 632 // Note that setting a pin to NC (Not Connected) will disable it even if the
mjr 55:4db125cd11a0 633 // corresponding feature enable bit (in byte 3) is set.
mjr 35:e959ffba78fd 634 //
mjr 55:4db125cd11a0 635 // 8 -> ZB Launch Ball setup. This configures the ZB Launch Ball feature.
mjr 55:4db125cd11a0 636 //
mjr 55:4db125cd11a0 637 // byte 3 -> LedWiz port number (1-255) mapped to "ZB Launch Ball" in DOF
mjr 55:4db125cd11a0 638 // byte 4 -> key type
mjr 55:4db125cd11a0 639 // byte 5 -> key code
mjr 55:4db125cd11a0 640 // bytes 6:7 -> "push" distance, in 1/1000 inch increments (16 bit little endian)
mjr 55:4db125cd11a0 641 //
mjr 55:4db125cd11a0 642 // Set the port number to 0 to disable the feature. The key type and key code
mjr 55:4db125cd11a0 643 // fields use the same conventions as for a button mapping (see below). The
mjr 55:4db125cd11a0 644 // recommended push distance is 63, which represents .063" ~ 1/16".
mjr 35:e959ffba78fd 645 //
mjr 35:e959ffba78fd 646 // 9 -> TV ON relay setup. This requires external circuitry implemented on the
mjr 35:e959ffba78fd 647 // Expansion Board (or an equivalent circuit as described in the Build Guide).
mjr 55:4db125cd11a0 648 //
mjr 55:4db125cd11a0 649 // byte 3 -> "power status" input pin (DigitalIn)
mjr 55:4db125cd11a0 650 // byte 4 -> "latch" output (DigitalOut)
mjr 55:4db125cd11a0 651 // byte 5 -> relay trigger output (DigitalOut)
mjr 55:4db125cd11a0 652 // bytes 6:7 -> delay time in 10ms increments (16 bit little endian);
mjr 55:4db125cd11a0 653 // e.g., 550 (0x26 0x02) represents 5.5 seconds
mjr 55:4db125cd11a0 654 //
mjr 55:4db125cd11a0 655 // Set the delay time to 0 to disable the feature. The pin assignments will
mjr 55:4db125cd11a0 656 // be ignored if the feature is disabled.
mjr 35:e959ffba78fd 657 //
mjr 35:e959ffba78fd 658 // 10 -> TLC5940NT setup. This chip is an external PWM controller, with 32 outputs
mjr 35:e959ffba78fd 659 // per chip and a serial data interface that allows the chips to be daisy-
mjr 35:e959ffba78fd 660 // chained. We can use these chips to add an arbitrary number of PWM output
mjr 55:4db125cd11a0 661 // ports for the LedWiz emulation.
mjr 55:4db125cd11a0 662 //
mjr 35:e959ffba78fd 663 // byte 3 = number of chips attached (connected in daisy chain)
mjr 35:e959ffba78fd 664 // byte 4 = SIN pin - Serial data (must connect to SPIO MOSI -> PTC6 or PTD2)
mjr 35:e959ffba78fd 665 // byte 5 = SCLK pin - Serial clock (must connect to SPIO SCLK -> PTC5 or PTD1)
mjr 35:e959ffba78fd 666 // byte 6 = XLAT pin - XLAT (latch) signal (any GPIO pin)
mjr 35:e959ffba78fd 667 // byte 7 = BLANK pin - BLANK signal (any GPIO pin)
mjr 35:e959ffba78fd 668 // byte 8 = GSCLK pin - Grayscale clock signal (must be a PWM-out capable pin)
mjr 35:e959ffba78fd 669 //
mjr 55:4db125cd11a0 670 // Set the number of chips to 0 to disable the feature. The pin assignments are
mjr 55:4db125cd11a0 671 // ignored if the feature is disabled.
mjr 55:4db125cd11a0 672 //
mjr 35:e959ffba78fd 673 // 11 -> 74HC595 setup. This chip is an external shift register, with 8 outputs per
mjr 35:e959ffba78fd 674 // chip and a serial data interface that allows daisy-chaining. We use this
mjr 35:e959ffba78fd 675 // chips to add extra digital outputs for the LedWiz emulation. In particular,
mjr 35:e959ffba78fd 676 // the Chime Board (part of the Expansion Board suite) uses these to add timer-
mjr 55:4db125cd11a0 677 // protected outputs for coil devices (knockers, chimes, bells, etc).
mjr 55:4db125cd11a0 678 //
mjr 35:e959ffba78fd 679 // byte 3 = number of chips attached (connected in daisy chain)
mjr 35:e959ffba78fd 680 // byte 4 = SIN pin - Serial data (any GPIO pin)
mjr 35:e959ffba78fd 681 // byte 5 = SCLK pin - Serial clock (any GPIO pin)
mjr 35:e959ffba78fd 682 // byte 6 = LATCH pin - LATCH signal (any GPIO pin)
mjr 35:e959ffba78fd 683 // byte 7 = ENA pin - ENABLE signal (any GPIO pin)
mjr 35:e959ffba78fd 684 //
mjr 55:4db125cd11a0 685 // Set the number of chips to 0 to disable the feature. The pin assignments are
mjr 55:4db125cd11a0 686 // ignored if the feature is disabled.
mjr 55:4db125cd11a0 687 //
mjr 53:9b2611964afc 688 // 12 -> Disconnect reboot timeout. The reboot timeout allows the controller software
mjr 51:57eb311faafa 689 // to automatically reboot the KL25Z after it detects that the USB connection is
mjr 51:57eb311faafa 690 // broken. On some hosts, the device isn't able to reconnect after the initial
mjr 51:57eb311faafa 691 // connection is lost. The reboot timeout is a workaround for these cases. When
mjr 51:57eb311faafa 692 // the software detects that the connection is no longer active, it will reboot
mjr 51:57eb311faafa 693 // the KL25Z automatically if a new connection isn't established within the
mjr 55:4db125cd11a0 694 // timeout period. Set the timeout to 0 to disable the feature (i.e., the device
mjr 55:4db125cd11a0 695 // will never automatically reboot itself on a broken connection).
mjr 55:4db125cd11a0 696 //
mjr 55:4db125cd11a0 697 // byte 3 -> reboot timeout in seconds; 0 = disabled
mjr 51:57eb311faafa 698 //
mjr 53:9b2611964afc 699 // 13 -> Plunger calibration. In most cases, the calibration is set internally by the
mjr 52:8298b2a73eb2 700 // device by running the calibration procedure. However, it's sometimes useful
mjr 52:8298b2a73eb2 701 // for the host to be able to get and set the calibration, such as to back up
mjr 52:8298b2a73eb2 702 // the device settings on the PC, or to save and restore the current settings
mjr 52:8298b2a73eb2 703 // when installing a software update.
mjr 52:8298b2a73eb2 704 //
mjr 52:8298b2a73eb2 705 // bytes 3:4 = rest position (unsigned 16-bit little-endian)
mjr 52:8298b2a73eb2 706 // bytes 5:6 = maximum retraction point (unsigned 16-bit little-endian)
mjr 52:8298b2a73eb2 707 // byte 7 = measured plunger release travel time in milliseconds
mjr 52:8298b2a73eb2 708 //
mjr 53:9b2611964afc 709 // 14 -> Expansion board configuration. This doesn't affect the controller behavior
mjr 52:8298b2a73eb2 710 // directly; the individual options related to the expansion boards (such as
mjr 52:8298b2a73eb2 711 // the TLC5940 and 74HC595 setup) still need to be set separately. This is
mjr 52:8298b2a73eb2 712 // stored so that the PC config UI can store and recover the information to
mjr 52:8298b2a73eb2 713 // present in the UI. For the "classic" KL25Z-only configuration, simply set
mjr 52:8298b2a73eb2 714 // all of the fields to zero.
mjr 52:8298b2a73eb2 715 //
mjr 53:9b2611964afc 716 // byte 3 = board set type. At the moment, the Pinscape expansion boards
mjr 53:9b2611964afc 717 // are the only ones supported in the software. This allows for
mjr 53:9b2611964afc 718 // adding new designs or independent designs in the future.
mjr 53:9b2611964afc 719 // 0 = Standalone KL25Z (no expansion boards)
mjr 53:9b2611964afc 720 // 1 = Pinscape expansion boards
mjr 53:9b2611964afc 721 //
mjr 53:9b2611964afc 722 // byte 4 = board set interface revision. This *isn't* the version number
mjr 53:9b2611964afc 723 // of the board itself, but rather of its software interface. In
mjr 53:9b2611964afc 724 // other words, this doesn't change every time the EAGLE layout
mjr 53:9b2611964afc 725 // for the board changes. It only changes when a revision is made
mjr 53:9b2611964afc 726 // that affects the software, such as a GPIO pin assignment.
mjr 53:9b2611964afc 727 //
mjr 55:4db125cd11a0 728 // For Pinscape expansion boards (board set type = 1):
mjr 55:4db125cd11a0 729 // 0 = first release (Feb 2016)
mjr 53:9b2611964afc 730 //
mjr 55:4db125cd11a0 731 // bytes 5:8 = additional hardware-specific data. These slots are used
mjr 55:4db125cd11a0 732 // to store extra data specific to the expansion boards selected.
mjr 55:4db125cd11a0 733 //
mjr 55:4db125cd11a0 734 // For Pinscape expansion boards (board set type = 1):
mjr 55:4db125cd11a0 735 // byte 5 = number of main interface boards
mjr 55:4db125cd11a0 736 // byte 6 = number of MOSFET power boards
mjr 55:4db125cd11a0 737 // byte 7 = number of chime boards
mjr 53:9b2611964afc 738 //
mjr 53:9b2611964afc 739 // 15 -> Night mode setup.
mjr 53:9b2611964afc 740 //
mjr 53:9b2611964afc 741 // byte 3 = button number - 1..MAX_BUTTONS, or 0 for none. This selects
mjr 53:9b2611964afc 742 // a physically wired button that can be used to control night mode.
mjr 53:9b2611964afc 743 // The button can also be used as normal for PC input if desired.
mjr 55:4db125cd11a0 744 // Note that night mode can still be activated via a USB command
mjr 55:4db125cd11a0 745 // even if no button is assigned.
mjr 55:4db125cd11a0 746 //
mjr 53:9b2611964afc 747 // byte 4 = flags:
mjr 66:2e3583fbd2f4 748 //
mjr 66:2e3583fbd2f4 749 // 0x01 -> The wired input is an on/off switch: night mode will be
mjr 53:9b2611964afc 750 // active when the input is switched on. If this bit isn't
mjr 66:2e3583fbd2f4 751 // set, the input is a momentary button: pushing the button
mjr 53:9b2611964afc 752 // toggles night mode.
mjr 55:4db125cd11a0 753 //
mjr 66:2e3583fbd2f4 754 // 0x02 -> Night Mode is assigned to the SHIFTED button (see Shift
mjr 66:2e3583fbd2f4 755 // Button setup at variable 16). This can only be used
mjr 66:2e3583fbd2f4 756 // in momentary mode; it's ignored if flag bit 0x01 is set.
mjr 66:2e3583fbd2f4 757 // When the shift flag is set, the button only toggles
mjr 66:2e3583fbd2f4 758 // night mode when you press it while also holding down
mjr 66:2e3583fbd2f4 759 // the Shift button.
mjr 66:2e3583fbd2f4 760 //
mjr 53:9b2611964afc 761 // byte 5 = indicator output number - 1..MAX_OUT_PORTS, or 0 for none. This
mjr 53:9b2611964afc 762 // selects an output port that will be turned on when night mode is
mjr 53:9b2611964afc 763 // activated. Night mode activation overrides any setting made by
mjr 53:9b2611964afc 764 // the host.
mjr 53:9b2611964afc 765 //
mjr 66:2e3583fbd2f4 766 // 16 -> Shift Button setup. One button can be designated as a "Local Shift
mjr 66:2e3583fbd2f4 767 // Button" that can be pressed to select a secondary meaning for other
mjr 66:2e3583fbd2f4 768 // buttons. This isn't to be confused with the PC Shift keys; those can
mjr 66:2e3583fbd2f4 769 // be programmed using the USB key codes for Left Shift and Right Shift.
mjr 66:2e3583fbd2f4 770 // Rather, this applies a LOCAL shift feature in the cabinet button that
mjr 66:2e3583fbd2f4 771 // lets you select a secondary meaning. For example, you could assign
mjr 66:2e3583fbd2f4 772 // the Start button to the "1" key (VP "Start Game") normally, but have
mjr 66:2e3583fbd2f4 773 // its meaning change to the "5" key ("Insert Coin") when the shift
mjr 66:2e3583fbd2f4 774 // button is pressed. This provides access to more control functions
mjr 66:2e3583fbd2f4 775 // without adding more physical buttons.
mjr 66:2e3583fbd2f4 776 //
mjr 66:2e3583fbd2f4 777 // The shift button itself can also have a regular key assignment. If
mjr 66:2e3583fbd2f4 778 // it does, the key is only sent to the PC when you RELEASE the shift
mjr 66:2e3583fbd2f4 779 // button, and then only if no other key with a shifted key code assigned
mjr 66:2e3583fbd2f4 780 // was pressed while the shift button was being held down. If another
mjr 66:2e3583fbd2f4 781 // key was pressed, and it has a shifted meaning assigned, we assume that
mjr 66:2e3583fbd2f4 782 // the shift button was only pressed in the first place for its shifting
mjr 66:2e3583fbd2f4 783 // function rather than for its normal keystroke. This dual usage lets
mjr 66:2e3583fbd2f4 784 // you make the shifting function even more unobtrusive by assigning it
mjr 66:2e3583fbd2f4 785 // to an ordinary button that has its own purpose when not used as a
mjr 66:2e3583fbd2f4 786 // shift button. For example, you could assign the shift function to the
mjr 66:2e3583fbd2f4 787 // rarely used Extra Ball button. In those cases where you actually want
mjr 66:2e3583fbd2f4 788 // to use the Extra Ball feature, it's there, but you also get more
mjr 66:2e3583fbd2f4 789 // mileage out of the button by using it to select secondary mappings for
mjr 66:2e3583fbd2f4 790 // other buttons.
mjr 66:2e3583fbd2f4 791 //
mjr 66:2e3583fbd2f4 792 // byte 3 = button number - 1..MAX_BUTTONS, or 0 for none.
mjr 66:2e3583fbd2f4 793 //
mjr 53:9b2611964afc 794 //
mjr 53:9b2611964afc 795 // ARRAY VARIABLES: Each variable below is an array. For each get/set message,
mjr 53:9b2611964afc 796 // byte 3 gives the array index. These are grouped at the top end of the variable
mjr 53:9b2611964afc 797 // ID range to distinguish this special feature. On QUERY, set the index byte to 0
mjr 53:9b2611964afc 798 // to query the number of slots; the reply will be a report for the array index
mjr 53:9b2611964afc 799 // variable with index 0, with the first (and only) byte after that indicating
mjr 53:9b2611964afc 800 // the maximum array index.
mjr 53:9b2611964afc 801 //
mjr 66:2e3583fbd2f4 802 // 253 -> Extended input button setup. This adds on to the information set by
mjr 66:2e3583fbd2f4 803 // variable 254 below, accessing additional fields. The "shifted" key
mjr 66:2e3583fbd2f4 804 // type and code fields assign a secondary meaning to the button that's
mjr 66:2e3583fbd2f4 805 // used when the local Shift button is being held down. See variable 16
mjr 66:2e3583fbd2f4 806 // above for more details on the Shift button.
mjr 66:2e3583fbd2f4 807 //
mjr 66:2e3583fbd2f4 808 // byte 3 = Button number 91..MAX_BUTTONS
mjr 66:2e3583fbd2f4 809 // byte 4 = shifted key type (same codes as "key type" in var 254)
mjr 66:2e3583fbd2f4 810 // byte 5 = shifted key code (same meaning as "key code" in var 254)
mjr 66:2e3583fbd2f4 811 //
mjr 53:9b2611964afc 812 // 254 -> Input button setup. This sets up one button; it can be repeated for each
mjr 64:ef7ca92dff36 813 // button to be configured. There are MAX_EXT_BUTTONS button slots (see
mjr 64:ef7ca92dff36 814 // config.h for the constant definition), numbered 1..MAX_EXT_BUTTONS. Each
mjr 53:9b2611964afc 815 // slot can be configured as a joystick button, a regular keyboard key, or a
mjr 53:9b2611964afc 816 // media control key (mute, volume up, volume down).
mjr 53:9b2611964afc 817 //
mjr 53:9b2611964afc 818 // The bytes of the message are:
mjr 66:2e3583fbd2f4 819 // byte 3 = Button number (1..MAX_BUTTONS)
mjr 64:ef7ca92dff36 820 // byte 4 = GPIO pin for the button input; mapped as a DigitalIn port
mjr 53:9b2611964afc 821 // byte 5 = key type reported to PC when button is pushed:
mjr 53:9b2611964afc 822 // 0 = none (no PC input reported when button pushed)
mjr 53:9b2611964afc 823 // 1 = joystick button -> byte 6 is the button number, 1-32
mjr 53:9b2611964afc 824 // 2 = regular keyboard key -> byte 6 is the USB key code (see below)
mjr 67:c39e66c4e000 825 // 3 = media key -> byte 6 is the USB media control code (see below)
mjr 53:9b2611964afc 826 // byte 6 = key code, which depends on the key type in byte 5
mjr 53:9b2611964afc 827 // byte 7 = flags - a combination of these bit values:
mjr 53:9b2611964afc 828 // 0x01 = pulse mode. This reports a physical on/off switch's state
mjr 53:9b2611964afc 829 // to the host as a brief key press whenever the switch changes
mjr 53:9b2611964afc 830 // state. This is useful for the VPinMAME Coin Door button,
mjr 53:9b2611964afc 831 // which requires the End key to be pressed each time the
mjr 53:9b2611964afc 832 // door changes state.
mjr 53:9b2611964afc 833 //
mjr 53:9b2611964afc 834 // 255 -> LedWiz output port setup. This sets up one output port; it can be repeated
mjr 53:9b2611964afc 835 // for each port to be configured. There are 128 possible slots for output ports,
mjr 53:9b2611964afc 836 // numbered 1 to 128. The number of ports atcually active is determined by
mjr 53:9b2611964afc 837 // the first DISABLED port (type 0). For example, if ports 1-32 are set as GPIO
mjr 53:9b2611964afc 838 // outputs and port 33 is disabled, we'll report to the host that we have 32 ports,
mjr 53:9b2611964afc 839 // regardless of the settings for post 34 and higher.
mjr 53:9b2611964afc 840 //
mjr 53:9b2611964afc 841 // The bytes of the message are:
mjr 53:9b2611964afc 842 // byte 3 = LedWiz port number (1 to MAX_OUT_PORTS)
mjr 53:9b2611964afc 843 // byte 4 = physical output type:
mjr 53:9b2611964afc 844 // 0 = Disabled. This output isn't used, and isn't visible to the
mjr 53:9b2611964afc 845 // LedWiz/DOF software on the host. The FIRST disabled port
mjr 53:9b2611964afc 846 // determines the number of ports visible to the host - ALL ports
mjr 53:9b2611964afc 847 // after the first disabled port are also implicitly disabled.
mjr 53:9b2611964afc 848 // 1 = GPIO PWM output: connected to GPIO pin specified in byte 5,
mjr 53:9b2611964afc 849 // operating in PWM mode. Note that only a subset of KL25Z GPIO
mjr 53:9b2611964afc 850 // ports are PWM-capable.
mjr 53:9b2611964afc 851 // 2 = GPIO Digital output: connected to GPIO pin specified in byte 5,
mjr 53:9b2611964afc 852 // operating in digital mode. Digital ports can only be set ON
mjr 53:9b2611964afc 853 // or OFF, with no brightness/intensity control. All pins can be
mjr 53:9b2611964afc 854 // used in this mode.
mjr 53:9b2611964afc 855 // 3 = TLC5940 port: connected to TLC5940 output port number specified
mjr 53:9b2611964afc 856 // in byte 5. Ports are numbered sequentially starting from port 0
mjr 53:9b2611964afc 857 // for the first output (OUT0) on the first chip in the daisy chain.
mjr 53:9b2611964afc 858 // 4 = 74HC595 port: connected to 74HC595 output port specified in byte 5.
mjr 53:9b2611964afc 859 // As with the TLC5940 outputs, ports are numbered sequentially from 0
mjr 53:9b2611964afc 860 // for the first output on the first chip in the daisy chain.
mjr 53:9b2611964afc 861 // 5 = Virtual output: this output port exists for the purposes of the
mjr 53:9b2611964afc 862 // LedWiz/DOF software on the host, but isn't physically connected
mjr 53:9b2611964afc 863 // to any output device. This can be used to create a virtual output
mjr 53:9b2611964afc 864 // for the DOF ZB Launch Ball signal, for example, or simply as a
mjr 53:9b2611964afc 865 // placeholder in the LedWiz port numbering. The physical output ID
mjr 53:9b2611964afc 866 // (byte 5) is ignored for this port type.
mjr 53:9b2611964afc 867 // byte 5 = physical output port, interpreted according to the value in byte 4
mjr 53:9b2611964afc 868 // byte 6 = flags: a combination of these bit values:
mjr 53:9b2611964afc 869 // 0x01 = active-high output (0V on output turns attached device ON)
mjr 53:9b2611964afc 870 // 0x02 = noisemaker device: disable this output when "night mode" is engaged
mjr 53:9b2611964afc 871 // 0x04 = apply gamma correction to this output
mjr 53:9b2611964afc 872 //
mjr 53:9b2611964afc 873 // Note that the on-board LED segments can be used as LedWiz output ports. This
mjr 53:9b2611964afc 874 // is useful for testing a new installation with DOF or other PC software without
mjr 53:9b2611964afc 875 // having to connect any external devices. Assigning the on-board LED segments to
mjr 53:9b2611964afc 876 // output ports overrides their normal status/diagnostic display use, so the normal
mjr 53:9b2611964afc 877 // status flash pattern won't appear when they're used this way.
mjr 52:8298b2a73eb2 878 //
mjr 35:e959ffba78fd 879
mjr 35:e959ffba78fd 880
mjr 55:4db125cd11a0 881 // --- GPIO PIN NUMBER MAPPINGS ---
mjr 35:e959ffba78fd 882 //
mjr 53:9b2611964afc 883 // In USB messages that specify GPIO pin assignments, pins are identified by
mjr 53:9b2611964afc 884 // 8-bit integers. The special value 0xFF means NC (not connected). All actual
mjr 53:9b2611964afc 885 // pins are mapped with the port number in the top 3 bits and the pin number in
mjr 53:9b2611964afc 886 // the bottom 5 bits. Port A=0, B=1, ..., E=4. For example, PTC7 is port C (2)
mjr 53:9b2611964afc 887 // pin 7, so it's represented as (2 << 5) | 7.
mjr 53:9b2611964afc 888
mjr 35:e959ffba78fd 889
mjr 35:e959ffba78fd 890 // --- USB KEYBOARD SCAN CODES ---
mjr 35:e959ffba78fd 891 //
mjr 53:9b2611964afc 892 // For regular keyboard keys, we use the standard USB HID scan codes
mjr 53:9b2611964afc 893 // for the US keyboard layout. The scan codes are defined by the USB
mjr 53:9b2611964afc 894 // HID specifications; you can find a full list in the official USB
mjr 53:9b2611964afc 895 // specs. Some common codes are listed below as a quick reference.
mjr 35:e959ffba78fd 896 //
mjr 53:9b2611964afc 897 // Key name -> USB scan code (hex)
mjr 53:9b2611964afc 898 // A-Z -> 04-1D
mjr 53:9b2611964afc 899 // top row 1!->0) -> 1E-27
mjr 53:9b2611964afc 900 // Return -> 28
mjr 53:9b2611964afc 901 // Escape -> 29
mjr 53:9b2611964afc 902 // Backspace -> 2A
mjr 53:9b2611964afc 903 // Tab -> 2B
mjr 53:9b2611964afc 904 // Spacebar -> 2C
mjr 53:9b2611964afc 905 // -_ -> 2D
mjr 53:9b2611964afc 906 // =+ -> 2E
mjr 53:9b2611964afc 907 // [{ -> 2F
mjr 53:9b2611964afc 908 // ]} -> 30
mjr 53:9b2611964afc 909 // \| -> 31
mjr 53:9b2611964afc 910 // ;: -> 33
mjr 53:9b2611964afc 911 // '" -> 34
mjr 53:9b2611964afc 912 // `~ -> 35
mjr 53:9b2611964afc 913 // ,< -> 36
mjr 53:9b2611964afc 914 // .> -> 37
mjr 53:9b2611964afc 915 // /? -> 38
mjr 53:9b2611964afc 916 // Caps Lock -> 39
mjr 53:9b2611964afc 917 // F1-F12 -> 3A-45
mjr 53:9b2611964afc 918 // F13-F24 -> 68-73
mjr 53:9b2611964afc 919 // Print Screen -> 46
mjr 53:9b2611964afc 920 // Scroll Lock -> 47
mjr 53:9b2611964afc 921 // Pause -> 48
mjr 53:9b2611964afc 922 // Insert -> 49
mjr 53:9b2611964afc 923 // Home -> 4A
mjr 53:9b2611964afc 924 // Page Up -> 4B
mjr 53:9b2611964afc 925 // Del -> 4C
mjr 53:9b2611964afc 926 // End -> 4D
mjr 53:9b2611964afc 927 // Page Down -> 4E
mjr 53:9b2611964afc 928 // Right Arrow -> 4F
mjr 53:9b2611964afc 929 // Left Arrow -> 50
mjr 53:9b2611964afc 930 // Down Arrow -> 51
mjr 53:9b2611964afc 931 // Up Arrow -> 52
mjr 53:9b2611964afc 932 // Num Lock/Clear -> 53
mjr 53:9b2611964afc 933 // Keypad / * - + -> 54 55 56 57
mjr 53:9b2611964afc 934 // Keypad Enter -> 58
mjr 53:9b2611964afc 935 // Keypad 1-9 -> 59-61
mjr 53:9b2611964afc 936 // Keypad 0 -> 62
mjr 53:9b2611964afc 937 // Keypad . -> 63
mjr 53:9b2611964afc 938 // Mute -> 7F
mjr 53:9b2611964afc 939 // Volume Up -> 80
mjr 53:9b2611964afc 940 // Volume Down -> 81
mjr 53:9b2611964afc 941 // Left Control -> E0
mjr 53:9b2611964afc 942 // Left Shift -> E1
mjr 53:9b2611964afc 943 // Left Alt -> E2
mjr 53:9b2611964afc 944 // Left GUI -> E3
mjr 53:9b2611964afc 945 // Right Control -> E4
mjr 53:9b2611964afc 946 // Right Shift -> E5
mjr 53:9b2611964afc 947 // Right Alt -> E6
mjr 53:9b2611964afc 948 // Right GUI -> E7
mjr 53:9b2611964afc 949 //
mjr 66:2e3583fbd2f4 950 // Due to limitations in Windows, there's a limit of 6 regular keys
mjr 66:2e3583fbd2f4 951 // pressed at the same time. The shift keys in the E0-E7 range don't
mjr 66:2e3583fbd2f4 952 // count against this limit, though, since they're encoded as modifier
mjr 66:2e3583fbd2f4 953 // keys; all of these can be pressed at the same time in addition to 6
mjr 67:c39e66c4e000 954 // regular keys.
mjr 67:c39e66c4e000 955
mjr 67:c39e66c4e000 956 // --- USB MEDIA CONTROL SCAN CODES ---
mjr 67:c39e66c4e000 957 //
mjr 67:c39e66c4e000 958 // Buttons mapped to type 3 are Media Control buttons. These select
mjr 67:c39e66c4e000 959 // a small set of common media control functions. We recognize the
mjr 67:c39e66c4e000 960 // following type codes only:
mjr 67:c39e66c4e000 961 //
mjr 67:c39e66c4e000 962 // Mute -> E2
mjr 67:c39e66c4e000 963 // Volume up -> E9
mjr 67:c39e66c4e000 964 // Volume Down -> EA
mjr 67:c39e66c4e000 965 // Next Track -> B5
mjr 67:c39e66c4e000 966 // Previous Track -> B6
mjr 67:c39e66c4e000 967 // Stop -> B7
mjr 67:c39e66c4e000 968 // Play/Pause -> CD