Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of TRP105F_Spline by
CubicSpline.c
- Committer:
- aktk
- Date:
- 2016-05-20
- Revision:
- 4:8db89b731133
- Parent:
- 3:75f50dbedf1b
- Child:
- 6:c4f36cee3ceb
File content as of revision 4:8db89b731133:
#define DEBUG
#include "TRP105F_Spline.h"
#include <cmath>
// To get voltage of TRP105F
AnalogIn g_Sensor_Voltage(p16);
// To get sample distance via seral com
Serial g_Serial_Signal(USBTX, USBRX);
LocalFileSystem local("local"); // マウントポイントを定義(ディレクトリパスになる)
// for debug
#ifdef DEBUG
DigitalOut led1(LED1);
DigitalOut led2(LED2);
DigitalOut led3(LED3);
DigitalOut led4(LED4);
#endif
CubicSpline2d::CubicSpline2d()
:_Data_Input_Type(SYSTEM)
{
_Sample_Num = 5;
_Sample_Set = (Vxyt *)malloc(_Sample_Num * sizeof(Vxyt));
//_u_param = (double*)malloc(_Sample_Num * sizeof(double));
for(int i = 0; i < _4; i++) {
_C_x[i] = (double*)malloc((_Sample_Num - 1)* sizeof(double));
_C_y[i] = (double*)malloc((_Sample_Num - 1) * sizeof(double));
}
//calibrateSensor();
}
CubicSpline2d::CubicSpline2d(
unsigned int arg_num
)
:_Data_Input_Type(SYSTEM)
{
_Sample_Num = arg_num;
_Sample_Set = (Vxyt *)malloc(_Sample_Num * sizeof(Vxyt));
//_u_param = (double*)malloc(_Sample_Num * sizeof(double));
for(int i = 0; i < 4; i++) {
_C_x[i] = (double*)malloc((_Sample_Num - 1) * sizeof(double));
_C_y[i] = (double*)malloc((_Sample_Num - 1) * sizeof(double));
}
//calibrateSensor();
}
CubicSpline2d::CubicSpline2d(
unsigned int arg_num,
UseType arg_useType
)
:_useType(arg_useType)
{
_Sample_Num = arg_num;
_Sample_Set = (Vxyt *)malloc(_Sample_Num * sizeof(Vxyt));
//_u_param = (double*)malloc(_Sample_Num * sizeof(double));
for(int i = 0; i < 4; i++) {
_C_x[i] = (double*)malloc((_Sample_Num - 1) * sizeof(double));
_C_y[i] = (double*)malloc((_Sample_Num - 1) * sizeof(double));
}
//calibrateSensor();
}
CubicSpline2d::~CubicSpline2d()
{
free(_Sample_Set);
//free(_u_param);
for(int i = 0; i < 4; i++) {
free(_C_x[i]);
free(_C_y[i]);
}
}
unsigned short CubicSpline2d::getDistance()
{
int idx;
unsigned short pv = 0;
// low-pass filter
for(int i = 0; i < 10; i++)
pv += g_Sensor_Voltage.read_u16() / 10;
idx = _getNearest(_LIDX, _RIDX, pv);
if (idx != 0xFFFF) // unless occuring error
return _Set[idx].dst;
else
return 0xFFFF;
}
void CubicSpline2d::_sampleData()
{
int tmp;
char sig;
Vxyt tmp_set;
// For evry set,
// 1, get dst data via serai com,
// 2, get vol data,
// and then do same for next index set.
for(int i = 0; i < _Sample_Num; i++) {
if(_useType == AsDebug) {
//
// Recieve a Distance datus and store it into member
//
g_Serial_Signal.printf("X:");
_Sample_Set[i].x = 0;
do {
sig = g_Serial_Signal.getc();
if('0' <= sig && sig <= '9') {
_Sample_Set[i].x = 10 * _Sample_Set[i].x + sig - 48;
g_Serial_Signal.putc(char(sig));
} else if(sig == 0x08) {
_Sample_Set[i].x = 0;
g_Serial_Signal.printf("[canseled!]");
g_Serial_Signal.putc('\n');
g_Serial_Signal.putc('>');
}
} while (!(sig == 0x0a || sig == 0x0d));
g_Serial_Signal.putc('\n');
//
// Recieve a Voltage datus and store it into member
//
// LOW PASS FILTERED
// Get 10 data and store mean as a sample.
// After get one original sample, system waits for 0.1 sec,
// thus it takes 1 sec evry sampling.
_Sample_Set[i].y = 0;
for(int j = 0; j < 10; j++) {
tmp_set.y = g_Sensor_Voltage.read();
#ifdef DEBUG
g_Serial_Signal.printf("%d,",tmp_set.y);
#endif
_Sample_Set[i].y += (tmp_set.y / 10);
wait(0.1);
}
#ifdef DEBUG
g_Serial_Signal.printf("(%d)\n",_Sample_Set[i].y);
#endif
}
// if the input data is over the bound, it is calibrated
if (_Sample_Set[i].x < 0)
_Sample_Set[i].x = 0;
}
//
// Sort set data array in x-Ascending order
//
tmp = 0;
for( int i = 0 ; i < _Sumple_Num; i++) {
for(int j = _Sample_Num - 1; j < i+1 ; j++) {
// use dst as index for dst range [2,20]
if (_Sample_Set[i].x > _Sample_set[j].x) {
tmp_set.x = _Sample_Set[i].x;
tmp_set.y = _Sample_Set[i].y;
_Sample_Set[i].x = _Sample_Set[j].x;
_Sample_Set[i].y = _Sample_Set[j].y;
_Sample_Set[j].x = tmp_set.x;
_Sample_Set[j].y = tmp_set.y;
}
// if a same dst has been input, calcurate mean.
else if (_Sample_Set[i].x == _Sample_set[j]) {
tmp_set.y = (_Sample_Set[i].y + _Sample_Set[j].y)/2;
_Sample_Set[i] = _Sample_Set[j] = tmp_set.y;
tmp++;
}
}
}
#ifdef DEBUG
g_Serial_Signal.printf(" _Sample_num: %d\n", _Sample_Num );
g_Serial_Signal.printf("-) tmp: %d\n", tmp );
#endif
// substruct tmp from number of sample.
_Sample_Num -= tmp;
#ifdef DEBUG
g_Serial_Signal.printf("-----------------\n");
g_Serial_Signal.printf(" _Sample_num: %d\n", _Sample_Num );
#endif
// generate t which is parameter related to x,y
_Sample_Set[i].t = 0;
for(int i = 1; i < _Sample_Num; i++)
_Sample_Set[i].t =
_Sample_Set[i-1]
+ sqrt(pow(_Sample_Set[i].x - _Sample_Set[i-1].x, 2)
+pow(_Sample_Set[i].y - _Sample_Set[i-1].y, 2));
}
//
// Function to define _u_spline, specific constants of spline.
//
void CubicSpline2d::_makeSpline(double* arg_t, double* arg_ft, double* arg_C[4], unsigned int arg_num)
{
// arg_t : t; parameter of x or y
// arg_ft: f(t); cubic poliminal. Value:<=> x or y.
// arg_C[i]: Ci; The parameter (set) that defines Spline Model Poliminal. Coefficient of t^i of f(t).
// arg_num: j in [0,_Sample_Num-1]; The number of interval.
// f(t)j = C3j*t^3 + C2j*t^2 + C1j*t + C0j
//
// N: max of index <=> (_Sample_Num - 1)
//
// u[i] === d^2/dx^2(Spline f)[i]
// i:[0,N]
// u[0] = u[N] = 0
double *u = (double*)malloc((arg_num ) * sizeof(double));
//
// h[i] = x[i+1] - x[i]
// i:[0,N-1]; num of elm: N<=>_Sample_Num - 1
double *h = (double*)malloc((arg_num - 1) * sizeof(double));
//
// v[i] = 6*((y[i+2]-y[i+1])/h[i+1] + (y[i+1]-y[i])/h[i])
// i:[0,N-2]
double *v = (double*)malloc((arg_num - 2) * sizeof(double));
//
// temporary array whose num of elm equals v array
double *w = (double*)malloc((arg_num - 2) * sizeof(double));
//
// [ 2(h[0]+h[1]) , h[1] , O ] [u[1] ] [v[0] ]
// [ h[1] , 2(h[1]+h[2]) , h[2] ] [u[2] ] [v[1] ]
// [ ... ] * [... ] = [... ]
// [ h[j] , 2(h[j]+h[j+1]) , h[j+1] ] [u[j+1]] [v[j] ]
// [ ... ] [ ... ] [ ... ]
// [ h[N-3] , 2(h[N-3]+h[N-2]), h[N-2] ] [u[j+1]] [v[j] ]
// [ O h[N-2] , 2(h[N-2]+h[N-1]) ] [u[N-1]] [v[N-2]]
//
// For LU decomposition
double *Upper = (double*)malloc((arg_num - 2) * sizeof(double));
double *Lower = (double*)malloc((arg_num - 2) * sizeof(double));
#ifdef DEBUG
_printOutData(arg_t, arg_ft, arg_num, "\nargment set\n");
#endif
for(int i = 0; i < arg_num - 1; i++)
h[i] = (double)(arg_t[i + 1] - arg_t[i]);
for(int i = 0; i < arg_num - 2; i++)
v[i] = 6 * (
((double)(arg_ft[i + 2] - arg_ft[i + 1])) / h[i + 1]
-
((double)(arg_ft[i + 1] - arg_ft[i])) / h[i]
);
//
// LU decomposition
//
Upper[0] = 2 * (h[0] + h[1]);
Lower[0] = 0;
for (int i = 1; i < arg_num - 2; i++) {
Lower[i] = h[i] / Upper[i - 1];
Upper[i] = 2 * (h[i] + h[i + 1]) - Lower[i] * h[i];
}
//
// forward substitution
//
w[0] = v[0];
for (int i = 1; i < arg_num - 2; i ++) {
w[i] = v[i] - Lower[i] * w[i-1];
}
//
// backward substitution
//
u[arg_num - 2] = w[arg_num - 3] / Upper[arg_num - 3];
for(int i = arg_num - 3; i > 0; i--) {
u[i] = (w[(i - 1)] - h[(i)] * u[(i) + 1]) / Upper[(i - 1)];
}
// _u_spline[i] === d^2/dx^2(Spline f)[i]
u[0] = u[arg_num - 1] = 0.0;
#ifdef DEBUG
_printOutData(h, arg_num - 1, "h");
_printOutData(v, arg_num - 2, "v");
_printOutData(w, arg_num - 2, "w");
_printOutData(Upper, arg_num - 2, "Upper");
_printOutData(Lower, arg_num - 2, "Lower");
_printOutData(u, arg_num , "u");
#endif
for(int itv = 0; itv < arg_num - 1; itv++) {
C[3][itv] = (u[itv + 1] - u[itv]) / 6.0 / (arg_t[itv + 1] - arg_t[itv]);
C[2][itv] = (u[itv]) / 2.0;
C[1][itv] = (arg_ft[itv + 1] - arg_ft[itv]) / (arg_t[itv + 1] - arg_t[itv])
-
(arg_t[itv + 1] - arg_t[itv]) * (u[itv + 1] + 2.0 * u[itv]) / 6.0;
C[0][itv] = (arg_ft[itv]);
}
free(h);
free(u);
free(v);
free(w);
free(Upper);
free(Lower);
}
//
// Function to return Voltage for distance.
//
unsigned short CubicSpline2d:: _getSplineYof(
double arg_x // the argument is supposed as distance [mm]
)
{
double y; // voltage calculated by spline polynomial
double a,b,c,d; // which is specific constant of spline, and can be expressed with _u.
int itv = 0; // interval(section) of interpolation
// the number of interval is less 1 than the number of sample sets,
// which means the max number of interval is _Sample_num - 2.
if((double)(_Sample_Set[0].dst) <= arg_x) {
while (!((double)(_Sample_Set[itv].dst) <= arg_x && arg_x < (double)(_Sample_Set[itv + 1].dst))) {
itv++;
if(itv > _Sample_Num - 2) {
itv = _Sample_Num - 2;
break;
}
}
}
a = (double)(_u_spline[itv + 1] - _u_spline[itv]) / 6.0 / (double)(_Sample_Set[itv + 1].dst - _Sample_Set[itv].dst);
b = (double)(_u_spline[itv]) / 2.0;
c = (double)(_Sample_Set[itv + 1].vol - _Sample_Set[itv].vol) / (double)(_Sample_Set[itv + 1].dst - _Sample_Set[itv].dst)
-
(double)(_Sample_Set[itv + 1].dst - _Sample_Set[itv].dst) * (double)(_u_spline[itv + 1] + 2.0 * _u_spline[itv]) / 6.0;
d = (double)(_Sample_Set[itv].vol);
// cubic spline expression
y = a * (arg_x - (double)(_Sample_Set[itv].dst)) * (arg_x - (double)(_Sample_Set[itv].dst)) * (arg_x - (double)(_Sample_Set[itv].dst))
+
b * (arg_x - (double)(_Sample_Set[itv].dst)) * (arg_x - (double)(_Sample_Set[itv].dst))
+
c * (arg_x - (double)(_Sample_Set[itv].dst))
+
d;
#ifdef DEBUG2
g_Serial_Signal.printf("%f(interval: %d)", arg_x, itv);
g_Serial_Signal.printf("a:%f, b:%f, c:%f, d:%f, ", a,b,c,d);
g_Serial_Signal.printf("(y:%f -> %d)\n", y, (unsigned short)y);
#endif
return ((unsigned short)(int)y);
}
void CubicSpline2d::calibrateSensor()
{
_sampleData();
_makeSpline();
for(int i = 0; i < _ENUM; i++) {
_Set[i].dst = i;
_Set[i].vol = _getSplineYof((double)(_Set[i].dst));
_Threshold[i] = _getSplineYof((double)(_Set[i].dst) + 0.5);
#ifdef DEBUG2
g_Serial_Signal.printf("(get...threashold:%d)\n", _Threshold[i]);
#endif
}
}
void CubicSpline2d::saveSetting()
{
FILE *fp;
fp = fopen("/local/savedata.log", "wb");
for(int i = 0; i < _ENUM; i++) {
fwrite(&_Set[i].dst, sizeof(unsigned short), 1, fp);
fputc(0x2c, fp);
fwrite(&_Set[i].vol, sizeof(unsigned short), 1, fp);
fputc(0x2c, fp);
fwrite(&_Threshold[i], sizeof(unsigned short), 1, fp);
fputc(0x3b, fp);
}
fwrite(&_Sample_Num, sizeof(int), 1, fp);
fputc(0x3b, fp);
for(int i = 0; i < _Sample_Num; i++) {
fwrite(&_Sample_Set[i].dst, sizeof(unsigned short), 1, fp);
fputc(0x2c, fp);
fwrite(&_Sample_Set[i].vol, sizeof(unsigned short), 1, fp);
fputc(0x3b, fp);
}
fclose(fp);
}
void CubicSpline2d::printThresholds()
{
for(int i = 0; i < _ENUM; i++)
g_Serial_Signal.printf("Threshold[%d]%d\n",i,_Threshold[i]);
}
void CubicSpline2d::loadSetting()
{
FILE *fp;
char tmp;
//sprintf(filepath, "/local/%s", filename);
//fp = fopen(filepath, "rb");
fp = fopen("/local/savedata.log", "rb");
for(int i = 0; i < _ENUM; i++) {
fread(&_Set[i].dst, sizeof(unsigned short), 1, fp);
fread(&tmp, sizeof(char), 1, fp);
#ifdef DEBUG2
g_Serial_Signal.printf("%d%c", _Set[i].dst, tmp);
#endif
fread(&_Set[i].vol, sizeof(unsigned short), 1, fp);
fread(&tmp, sizeof(char), 1, fp);
#ifdef DEBUG2
g_Serial_Signal.printf("%d%c", _Set[i].vol, tmp);
#endif
fread(&_Threshold[i], sizeof(unsigned short), 1, fp);
fread(&tmp, sizeof(char), 1, fp);
#ifdef DEBUG2
g_Serial_Signal.printf("%d%c\n",_Threshold[i], tmp);
#endif
}
fread(&_Sample_Num, sizeof(unsigned short), 1, fp);
fread(&tmp, sizeof(char), 1, fp);
for(int i = 0; i < _Sample_Num; i++) {
fread(&_Sample_Set[i].dst, sizeof(unsigned short), 1, fp);
fread(&tmp, sizeof(char),1,fp);
fread(&_Sample_Set[i].vol, sizeof(unsigned short), 1, fp);
fread(&tmp, sizeof(char),1,fp);
}
fclose(fp);
}
void CubicSpline2d::saveSetting(
const char *filename
)
{
FILE *fp;
char *filepath;
int fnnum = 0;
while (filename[fnnum] != 0) fnnum++;
filepath = (char *)malloc((fnnum + 8) * sizeof(char)); // "/local/" are 7 char and \0 is 1 char.
sprintf(filepath, "/local/%s", filename);
fp = fopen(filepath, "wb");
for(int i = 0; i < _ENUM; i++) {
fwrite(&_Set[i].dst, sizeof(unsigned short), 1, fp);
fputc(0x2c, fp);
fwrite(&_Set[i].vol, sizeof(unsigned short), 1, fp);
fputc(0x2c, fp);
fwrite(&_Threshold[i], sizeof(unsigned short), 1, fp);
fputc(0x3b, fp);
}
fwrite(&_Sample_Num, sizeof(int), 1, fp);
fputc(0x3b, fp);
for(int i = 0; i < _Sample_Num; i++) {
fwrite(&_Sample_Set[i].dst, sizeof(unsigned short), 1, fp);
fputc(0x2c, fp);
fwrite(&_Sample_Set[i].vol, sizeof(unsigned short), 1, fp);
fputc(0x3b, fp);
}
fclose(fp);
free(filepath);
}
void CubicSpline2d::loadSetting(
const char *filename
)
{
FILE *fp;
char *filepath;
char tmp;
int fnnum = 0;
while (filename[fnnum] != 0) fnnum++;
filepath = (char *)malloc((fnnum + 8) * sizeof(char)); // "/local/" are 7 char and \0 is 1 char.
sprintf(filepath, "/local/%s", filename);
fp = fopen(filepath, "rb");
for(int i = 0; i < _ENUM; i++) {
fread(&_Set[i].dst, sizeof(unsigned short), 1, fp);
fread(&tmp, sizeof(char), 1, fp);
#ifdef DEBUG3
g_Serial_Signal.printf("%d%c", _Set[i].dst, tmp);
#endif
fread(&_Set[i].vol, sizeof(unsigned short), 1, fp);
fread(&tmp, sizeof(char), 1, fp);
#ifdef DEBUG3
g_Serial_Signal.printf("%d%c", _Set[i].vol, tmp);
#endif
fread(&_Threshold[i], sizeof(unsigned short), 1, fp);
fread(&tmp, sizeof(char), 1, fp);
#ifdef DEBUG3
g_Serial_Signal.printf("%d%c\n",_Threshold[i], tmp);
#endif
}
fread(&_Sample_Num, sizeof(unsigned short), 1, fp);
fread(&tmp, sizeof(char), 1, fp);
#ifdef DEBUG3
g_Serial_Signal.printf("%d%c\n",_Sample_Num, tmp);
#endif
for(int i = 0; i < _Sample_Num; i++) {
fread(&_Sample_Set[i].dst, sizeof(unsigned short), 1, fp);
fread(&tmp, sizeof(char),1,fp);
#ifdef DEBUG3
g_Serial_Signal.printf("%d%c", _Sample_Set[i].dst, tmp);
#endif
fread(&_Sample_Set[i].vol, sizeof(unsigned short), 1, fp);
fread(&tmp, sizeof(char),1,fp);
#ifdef DEBUG3
g_Serial_Signal.printf("%d%c", _Sample_Set[i].vol, tmp);
#endif
}
fclose(fp);
free(filepath);
}
void CubicSpline2d::printOutData()
{
FILE *fp;
fp = fopen("/local/log.txt", "w"); // open file in writing mode
fprintf(fp, "dst, vol,(threshold)\n");
for(int i = 0; i < _ENUM; i++) {
fprintf(fp, "%d,%d,(%d)\n", _Set[i].dst, _Set[i].vol, _Threshold[i]);
}
fprintf(fp, "\nSample:dst, vol\n");
for(int i = 0; i < _Sample_Num; i++) {
fprintf(fp, "%d,%d\n", _Sample_Set[i].dst, _Sample_Set[i].vol);
}
fclose(fp);
}
void CubicSpline2d::_printOutData(unsigned short *arg, int num, char* name)
{
FILE *fp;
fp = fopen("/local/varlog.txt", "a"); // open file in add mode
fprintf(fp, "%10s\n", name);
for(int i = 0; i < num; i++) {
fprintf(fp, "%d, ", arg[i]);
}
fprintf(fp, "\n");
fclose(fp);
}
void CubicSpline2d::_printOutData(double *arg, int num, char* name)
{
FILE *fp;
fp = fopen("/local/varlog.txt", "a"); // open file in add mode
fprintf(fp, "%10s\n", name);
for(int i = 0; i < num; i++) {
fprintf(fp, "%.2f, ", arg[i]);
}
fprintf(fp, "\n");
fclose(fp);
}
void CubicSpline2d::_printOutDataCouple(double *arg1, double *arg2, int num, char* name)
{
FILE *fp;
fp = fopen("/local/varlog.txt", "a"); // open file in add mode
fprintf(fp, "%10s\n", name);
for(int i = 0; i < num; i++) {
fprintf(fp, "(%.2f, %.2f)\n", arg1[i], arg2[i]);
}
fprintf(fp, "\n");
fclose(fp);
}
void CubicSpline2d::_printOutData(Vxyt *arg, int num, char* name)
{
FILE *fp;
fp = fopen("/local/varlog.txt", "a"); // open file in add mode
fprintf(fp, "%10s\n", name);
for(int i = 0; i < num; i++) {
fprintf(fp, "%d, ", arg[i].vol);
}
fprintf(fp, "\n");
fclose(fp);
}
