This makes Amplitude Modulated Pulse Train, which can be regarded as the discretized wave of the signal. Pulse Train can be defined by frequency and duty cycle, which can be temporarily changed, referring to PWM.

Dependents:   Interference_Simple

AMSignal.cpp

Committer:
aktk
Date:
2020-02-21
Branch:
35e9675a
Revision:
9:80a5ef57af11
Parent:
1:19c3a52c80c3

File content as of revision 9:80a5ef57af11:

#include "AMSignal.h"

void AMSignal::setFrequency(uint16_t const arg_freq)
{
    m_freq = velidateRange<uint16_t>(arg_freq, 1, FREQ_MAX);
    m_period_us = 1000000 / m_freq;
    if(1000000 % m_freq >= (m_freq/2)) m_period_us += 1;
}

void AMSignal::setAmplitude(float const arg_ampl)
{
    m_ampl_u16 = AMPL_MAX_u16 * velidateRange<float>(arg_ampl, 0.0, 1.0);
}

void AMSignal::setAmplitude(uint16_t const arg_ampl)
{
    m_ampl_u16 = arg_ampl;
}

/// Get a parameter which defines the size of pulse hight axis with in [0,1]
float AMSignal::getAmplitude_uf()
{
    return (float) m_ampl_u16 / (float) AMPL_MAX_u16;
}

uint16_t AMSignal::getAmplitude_u16()
{
    return m_ampl_u16;
}

uint16_t AMSignal::getFrequency()
{
    return m_freq;
}

uint16_t AMSignal::getPeriod_us()
{
    return m_period_us;
}


template <typename T>
T AMSignal::velidateRange(T const arg_val, T const arg_min, T const arg_max)
{
    if(arg_val < arg_min) return arg_min;
    else if (arg_val <=  arg_max) return arg_val;
    else return arg_max;
}