This makes Amplitude Modulated Pulse Train, which can be regarded as the discretized wave of the signal. Pulse Train can be defined by frequency and duty cycle, which can be temporarily changed, referring to PWM.
Dependents: Interference_Simple
PulseTrain.cpp
- Committer:
- aktk
- Date:
- 2020-01-13
- Branch:
- 35e9675a
- Revision:
- 7:5eae3f90d161
- Parent:
- 4:7d5afb2e3b79
File content as of revision 7:5eae3f90d161:
#include "PulseTrain.h" PulseTrain::PulseTrain( uint32_t const arg_freq_init, float const arg_duty_init, uint32_t const arg_freq_max ): FREQ_MAX(arg_freq_max), m_freq(velidateRange<uint32_t>(arg_freq_init, 1, FREQ_MAX)), m_duty(velidateRange<float>(arg_duty_init, 0.0, 1.0)) { m_period_us = 1000000 / m_freq + (1000000 % m_freq > m_freq / 2 ? 1 : 0); init(); m_callback_asClock = doNothing; m_callback_asPulseEdge = doNothing; } void PulseTrain::attachCallback_asClock(Callback<void(bool)> arg_callback) { m_callback_asClock = arg_callback; } void PulseTrain::attachCallback_asPulseEdge(Callback<void(bool)> arg_callback) { m_callback_asPulseEdge = arg_callback; } void PulseTrain::setFrequency(uint32_t const arg_freq) { m_freq = velidateRange<uint32_t>(arg_freq, 1, FREQ_MAX); m_period_us = 1000000 / m_freq + (1000000 % m_freq > m_freq / 2 ? 1 : 0); init(); } void PulseTrain::setDutycycle(float const arg_duty) { m_duty = velidateRange<float>(arg_duty, 0.0, 1.0); init(); } template <typename T> T PulseTrain::velidateRange(T const arg_val, T const arg_min, T const arg_max) { if(arg_val < arg_min) return arg_min; else if (arg_val <= arg_max) return arg_val; else return arg_max; } void PulseTrain::init() { int a, b, r; a = m_period_us; b = a * m_duty; r = a % b; while ( r != 0 ) { a = b; b = r; r = a % b; } m_clock_period_us = b; m_period_pcp = m_period_us / m_clock_period_us; m_falling = m_period_pcp * m_duty; } void PulseTrain::incrementClock() { static unsigned int l_itr = 0; if (l_itr == m_raising) { m_pulsestate = true; m_callback_asPulseEdge(m_pulsestate); } else if (l_itr == m_falling) { m_pulsestate = false; m_callback_asPulseEdge(m_pulsestate); } l_itr = (l_itr + 1) % m_period_pcp; m_callback_asClock(m_pulsestate); } bool PulseTrain::getState() { return m_pulsestate; } uint32_t PulseTrain::getFrequency() { return m_freq; } float PulseTrain::getDutycycle() { return m_duty; } uint32_t PulseTrain::getPeriod_us() { return m_period_us; } uint32_t PulseTrain::getClockperiod_us() { return m_clock_period_us; }